525 research outputs found

    An Overview of Recent Development of the Gap-Waveguide Technology for mmWave and Sub-THz Applications

    Get PDF
    The millimeter-wave (mmWave) and sub-terahertz (sub-THz) bands have received much attention in recent years for wireless communication and high-resolution imaging radar applications. The objective of this paper is to provide an overview of recent developments in the design and technical implementation of GW-based antenna systems and components. This paper begins by comparing the GW-transmission line to other widely used transmission lines for the mmWave and sub-THz bands. Furthermore, the basic operating principle and possible implementation technique of the GW-technology are briefly discussed. In addition, various antennas and passive components have been developed based on the GW-technology. Despite its advantages in controlling electromagnetic wave propagation, it is also widely used for the packaging of electronic components such as transceivers and power amplifiers. This article also provided an overview of the current manufacturing technologies that are commonly used for the fabrication of GW-components. Finally, the practical applications and industry interest in GW technology developments for mmWave and sub-THz applications have been scrutinized.Funding Agencies|European Union - Marie Sklodowska-Curie [766231WAVECOMBEH2020-MSCA-ITN-2017]</p

    Design, Analysis and Characterisation of Spoof Surface Plasmon Polaritons based Wideband Bandpass Filter at Microwave Frequency

    Get PDF
    This paper presents the wideband bandpass filter (BPF) in the microwave frequency domain. The realisation approach is based on spoof surface plasmon polaritons (SSPPs) phenomenon using plasmonic metamaterial. A novel unit cell is designed for filter design using an LC resonator concept. Then SSPPs BPF is realised using an optimised mode converter and five unit cells. This paper includes a brief design detail of the proposed novel unit cell. The passband of BPF is achieved at approximately 1.20 - 5.80 GHz, 3dB bandwidth is tentatively 4.60 GHz and the insertion loss is less than 2 dB approximately over the passband. The overall dimension of fabricated filter is (90 x 45) mm. A basic schematic of transmission line representation is also proposed to evaluate the BPF structure

    In-depth Study of the Corona Discharge Breakdown Thresholds in Groove Gap Waveguides and Enhancement Strategies for Inductive Bandpass Filters

    Get PDF
    This work focuses on the study of the corona discharge breakdown in groove gap waveguides (GGWs) and inductive bandpass filters (BPFs) based on this technology. With the main aim of improving the peak power handling capability (PPHC), the location of the maximum normalized electric field strength (|Ê MAX |) as a function of the geometrical parameters is analyzed. First, the research deals with wave-guiding structures, comparing the distribution of the transverse electric TE10-like mode of a GGW to that of an equivalent rectangular waveguide (RW). Next, a design strategy based on the adjustment of the geometrical dimensions of the bed of nails is proposed, thus achieving a considerable reduction of |Ê MAX |. The second part of this paper aims for vertically polarized GGW BPFs, where the inductive irises become the most critical part of the component. By a simple modification of their dimensions, a second design criterion is suggested for improving the PPHC. Finally, several Ku-band BPFs centered at 14 GHz and 16 GHz have been manufactured and experimentally verified at the European High-Power Radiofrequency Space Laboratory. This measurement campaign shows peak power thresholds up to 1.09 kW and 3.59 kW at 600 mbar for the non- and full-optimized GGW BPFs, respectively, thereby demonstrating a PPHC enhancement up to 5.16 dB in the high-pressure range when both strategies, proposed in this work, are used.The authors would like to thank the European Space Agency (ESA) and Val Space Consortium (VSC) —Laboratories funded by the European Regional Development Fund—A way of making Europe, and the Antennas and Propagation Lab (APL – iTEAM UPV) for their contributions

    Polymer-Based Low-Cost Micromachining of Gap Waveguide Components

    Get PDF
    The millimeter-wave (mmWave) and sub-millimeter-wave (sub-mmWave) frequency bands have gained significant attention over the past few years due to the growth of commercial wireless applications. As the operating frequency approaches these higher frequencies, the dimensions of the waveguide-based components continue to decrease. The decreasing feature size of those waveguide components makes the traditional machine-based (computer numerical control, CNC) fabrication method increasingly challenging in terms of time and cost, especially above 100 GHz. Additionally, this method is a serial process and cost will not scale with volume production. Micromachining has the potential of addressing the manufacturing issues of mmWave components. However, the existing microfabrication techniques either suffer from technological immaturity, are time-consuming, or lack sufficient cost-efficiency. A straightforward, fast, and low-cost fabrication method that can offer batch fabrication of waveguide components operating at mmWave and sub-mmWave frequency range is desirable to address the needs for hardware on the growing market of mmWave and sub-mmWave wireless systems.Conventional metal waveguides have very strict fabrication requirements in terms of mechanical assembly and integration of RF electronics. In comparison, gap waveguide technology not only offers competitive loss performance but also provides several benefits in terms of assembly and integration of active components. A gap waveguide is a planar waveguide technology which does not suffer from the dielectric loss in planar waveguides and which does not require any electrical connections between the metal walls, in contrast to hollow waveguides. This thesis aims to realize gap waveguide components operating at mmWave and sub-mmWave frequency range, in a low-cost and time-efficient way by developing new polymer-based fabrication methods.A template-based injection molding process has been designed to realize a high gain antenna operating at D band (110 -170 GHz). We can confirm that injection molding of OSTEMER is a straightforward and fast device fabrication method. In the proposed method, the time-consuming and complicated parts need to be fabricated only once and can later be reused.A dry film photoresist-based method is also presented in this thesis to fabricate waveguide components operating between 220 - 320 GHz. Dry film photoresist offers rapid fabrication of waveguide components without using sophisticated tools. The measurement results presented in the thesis indicate that this dry film-based method is a promising method for fabricating waveguide components operating in mmWave and sub- mmWave frequency ranges

    Inverted Microstrip Gap Waveguide Coplanar EBG Filter for Antenna Applications

    Full text link
    The possibility of making compact stopband filters using coplanar-coupled EBG resonators in inverted microstrip gap waveguide technology is studied in this work. To do this, the filtering characteristics of different configurations of mushroom-type elements are shown in which the short-circuit element is placed on the edge of the resonator of the patch. The behavior of the structure as well as its main advantages such as: low losses, self-packaging, low level of complexity, flexibility and easy design are illustrated in the paper. To evaluate the possibility of integrating these structures in gap waveguide planar antennas feeding networks, a 5-cell EBG filter was designed and built at the X band. The proposed filter reached a maximum rejection level of minus 35.4 dB, had a stopband centered at 9 GHz and a relative fractional bandwidth below minus 20 dB of 10.6 percent. The new compact filter presented a flat passband in which it was well matched and had low insertion losses that, including the connectors, were close to 1.5 dB in most of the band. These results are enough to improve low-complexity future antenna designs with filter functionalities in this technology.Comment: 18 pages, 17 figures, journa

    Enhancement of Millimeter-Band Transceivers with Gap Waveguide Technology

    Get PDF
    Mención Internacional en el título de doctorIt is known to all that year after year in modern society there is an urgent demand to consume wirelessly, and even stream ever larger multimedia content. High-frequency technologies have made it possible to go from transmitting analog voice and SMS text messages, to now transmitting live video in 4K quality from a mid-range smartphone. The way to measure these advances is by the bandwidth (Mb/s) reserved for each network user and the cost required to achieve it. To achieve even higher bandwidths, it is essential to improve signal coding techniques or increase the frequency of the signal, for example: to the mmWave bands (25GHz - 100 GHz), where these high-frequency techniques come into play. However, there is a frequency limit where current planar technology materials - such as the printed circuit boards used to build RF devices - are so lossy that they are not suitable at these mmWave frequencies. Current commercial solutions consist of guiding the electromagnetic energy with hollow metallic waveguides, but they suffer from the problem that as the frequency increases the diameter of these waveguides gets smaller and smaller, so manufacturing tolerances increase exorbitantly. Not to mention that they are usually manufactured in two parts, one upper and one lower, whose joints are not always perfect and produce energy losses. With these issues in mind, in 2009 the theory and basic science of a new electromagnetic energy guidance technology called Gap Waveguide was proposed, which is based on the use of metasurfaces constructed with periodic elements similar to a bed of nails. There are several implementations of this technology, but the three main ones are: Ridge, Groove and Inverted Microstrip Gap Waveguide. The latter is the most compatible with conventional planar manufacturing technologies and therefore the most cost-effective, although it also has drawbacks mainly in terms of losses when compared to the other versions. This thesis aims to deepen the study of the Inverted Microstrip guidance technology, its limitations and to develop with it some of the needed components in RF systems such as filters, diplexers, amplifiers, antennas, etc. Regarding the methodology for this thesis, a commercial simulation software for the analysis of antennas and components, CST Microwave Studio [1], has been used. AWR Microwave Office [2], a circuit simulator, has also been used to complement the simulations. On the other hand, there is a laboratory for the manufacture of prototypes in printed technology (with some limitations in terms of resolution) and the corresponding measurement laboratory, which includes network analyzers up to 40 GHz, spectrum analyzers and an anechoic chamber.This thesis arose under the Spanish Ministry of Science and Innovation (MINECO) and European Regional Development Fund (ERDF) project, called "Antenna for Mobile Satellite Communications (SATCOM) in Ka-Band by means of metasurfaces (2016-2019)", with reference TEC2016-79700-C2-2-R. Under this contract, the author signed an FPI research contract.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Íñigo Cuiñas Gómez.- Secretario: Ángela María Coves Soler.- Vocal: Astrid Algaba Brazále

    Polymer-Based Micromachining for Scalable and Cost-Effective Fabrication of Gap Waveguide Devices Beyond 100 GHz

    Get PDF
    The terahertz (THz) frequency bands have gained attention over the past few years due to the growing number of applications in fields like communication, healthcare, imaging, and spectroscopy. Above 100 GHz transmission line losses become dominating, and waveguides are typically used for transmission. As the operating frequency approaches higher frequencies, the dimensions of the waveguide-based components continue to decrease. This makes the traditional machine-based (computer numerical control, CNC) fabrication method increasingly challenging in terms of time, cost, and volume production. Micromachining has the potential of addressing the manufacturing issues of THz waveguide components. However, the current microfabrication techniques either suffer from technological immaturity, are time-consuming, or lack sufficient cost-efficiency. A straightforward, fast, and low-cost fabrication method that can offer batch fabrication of waveguide components operating at THz frequency range is needed to address the requirements.A gap waveguide is a planar waveguide technology which does not suffer from the dielectric loss of planar waveguides, and which does not require any electrical connections between the metal walls. It therefore offers competitive loss performance together with providing several benefits in terms of assembly and integration of active components. This thesis demonstrates the realization of gap waveguide components operating above 100 GHz, in a low-cost and time-efficient way employing the development of new polymer-based fabrication methods.A template-based injection molding process has been designed to realize a high gain antenna operating at D band (110 - 170 GHz). The injection molding of OSTEMER is an uncomplicated and fast device fabrication method. In the proposed method, the time-consuming and complicated parts need to be fabricated only once and can later be reused.A dry film photoresist-based method is also presented for the fabrication of waveguide components operating above 100 GHz. Dry film photoresist offers rapid fabrication of waveguide components without using complex and advanced machinery. For the integration of active circuits and passive waveguides section a straightforward solution has been demonstrated. By utilizing dry film photoresist, a periodic metal pin array has been fabricated and incorporated in a waveguide to microstrip transition that can be an effective and low-cost way of integrating MMIC of arbitrary size to waveguide blocks

    A Spoof Surface Plasmon Polaritons (SSPPs) Based Dual-Band-Rejection Filter with Wide Rejection Bandwidth.

    Full text link
    This paper presents a novel single-layer dual band-rejection-filter based on Spoof Surface Plasmon Polaritons (SSPPs). The filter consists of an SSPP-based transmission line, as well as six coupled circular ring resonators (CCRRs) etched among ground planes of the center corrugated strip. These resonators are excited by electric-field of the SSPP structure. The added ground on both sides of the strip yields tighter electromagnetic fields and improves the filter performance at lower frequencies. By removing flaring ground in comparison to prevalent SSPP-based constructions, the total size of the filter is significantly decreased, and mode conversion efficiency at the transition from co-planar waveguide (CPW) to the SSPP line is increased. The proposed filter possesses tunable rejection bandwidth, wide stop bands, and a variety of different parameters to adjust the forbidden bands and the filter's cut-off frequency. To demonstrate the filter tunability, the effect of different elements like number (n), width (WR), radius (RR) of CCRRs, and their distance to the SSPP line (yR) are surveyed. Two forbidden bands, located in the X and K bands, are 8.6-11.2 GHz and 20-21.8 GHz. As the proof-of-concept, the proposed filter was fabricated, and a good agreement between the simulation and experiment results was achieved

    Planar groove gap waveguides

    Get PDF
    With the increasing demand for wireless services and applications, the integration and coexistence of multi-standard and multi-band operations into a single device has led to intensive research in the design of tunable and reconfigurable planar devices. A planar medium to achieve this integration is the Substrate Integrated Waveguide (SIW). However, due to a lack of DC isolated planes of the structure, bridging wires or concentric etched rings are often used to enable active device biasing. This research presents a novel planar structure referred to as the Planar Groove Gap Waveguide (PGGWG). The new structure has similar modal characteristics to air-filled machined Groove Gap Waveguide (GGWG), but in a low-cost fabrication technology that is readily integrated with surface mount components. The structure provides two DC isolated conducting planes, while still providing a low loss planar transmission medium. Simulation results demonstrate the existence of a TE10 propagating mode within the artificially created bandgap. There is good agreement between de-embedded simulated and measured results over the usable bandwidth of the waveguide (28 to 40 GHz). A passband is measured having an average insertion loss of 1.2 dB and 0.5 dB insertion loss variation implemented on a substrate of relative permittivity r of 3.5, and loss tangent of 0.004. The broadband characterization of the transmission line loss and phase constant for PGGWG at Ka-band shows that PGGWG has comparable attenuation over the band of interest to SIW. The transmission line Q-factor is found to vary from 135 to 140 over the band of interest, which is comparable to SIW in the same medium. PGGWG is also found to have a phase constant of nearly double that of comparable SIW, which is a significant results for system miniaturization. The unloaded Q-factor of a 33.5GHz PGGWG rectangular cavity resonator is measured to be 209. This is found to be comparable to an SIW resonator on the same substrate and frequency band. This work further explores the DC isolation property of the PGGWG by presenting electrically tunable PGGWG resonant cavities. It is found that a simple biasing network can be applied to the cavity using a varactor diode to vary the resonant frequency of the cavity. This is done without bridging wire and concentric etched rings as a direct result of the DC isolation of the PGGWG. A tuning range of 4.5% is achieved in measurement. From the experiments conducted, it is concluded that PGGWG can be used as an alternative planar waveguide media. The PGGWG platform can be used in the design and implementation of RF front-end components at millimeter waves. Its DC isolated conducting planes also provide a simple way of biasing active components in frequency agile applications
    corecore