30 research outputs found

    Short Proofs for Slow Consistency

    Full text link
    Let Con(T) ⁣ ⁣x\operatorname{Con}(\mathbf T)\!\restriction\!x denote the finite consistency statement "there are no proofs of contradiction in T\mathbf T with x\leq x symbols". For a large class of natural theories T\mathbf T, Pudl\'ak has shown that the lengths of the shortest proofs of Con(T) ⁣ ⁣n\operatorname{Con}(\mathbf T)\!\restriction\!n in the theory T\mathbf T itself are bounded by a polynomial in nn. At the same time he conjectures that T\mathbf T does not have polynomial proofs of the finite consistency statements Con(T+Con(T)) ⁣ ⁣n\operatorname{Con}(\mathbf T+\operatorname{Con}(\mathbf T))\!\restriction\!n. In contrast we show that Peano arithmetic (PA\mathbf{PA}) has polynomial proofs of Con(PA+Con(PA)) ⁣ ⁣n\operatorname{Con}(\mathbf{PA}+\operatorname{Con}^*(\mathbf{PA}))\!\restriction\!n, where Con(PA)\operatorname{Con}^*(\mathbf{PA}) is the slow consistency statement for Peano arithmetic, introduced by S.-D. Friedman, Rathjen and Weiermann. We also obtain a new proof of the result that the usual consistency statement Con(PA)\operatorname{Con}(\mathbf{PA}) is equivalent to ε0\varepsilon_0 iterations of slow consistency. Our argument is proof-theoretic, while previous investigations of slow consistency relied on non-standard models of arithmetic

    On the inevitability of the consistency operator

    Full text link
    We examine recursive monotonic functions on the Lindenbaum algebra of EA\mathsf{EA}. We prove that no such function sends every consistent φ\varphi to a sentence with deductive strength strictly between φ\varphi and (φCon(φ))(\varphi\wedge\mathsf{Con}(\varphi)). We generalize this result to iterates of consistency into the effective transfinite. We then prove that for any recursive monotonic function ff, if there is an iterate of Con\mathsf{Con} that bounds ff everywhere, then ff must be somewhere equal to an iterate of Con\mathsf{Con}

    A note on the consistency operator

    Full text link
    It is a well known empirical observation that natural axiomatic theories are pre-well-ordered by consistency strength. For any natural theory TT, the next strongest natural theory is T+ConTT+\mathsf{Con}_T. We formulate and prove a statement to the effect that the consistency operator is the weakest natural way to uniformly extend axiomatic theories

    On Verifying Causal Consistency

    Full text link
    Causal consistency is one of the most adopted consistency criteria for distributed implementations of data structures. It ensures that operations are executed at all sites according to their causal precedence. We address the issue of verifying automatically whether the executions of an implementation of a data structure are causally consistent. We consider two problems: (1) checking whether one single execution is causally consistent, which is relevant for developing testing and bug finding algorithms, and (2) verifying whether all the executions of an implementation are causally consistent. We show that the first problem is NP-complete. This holds even for the read-write memory abstraction, which is a building block of many modern distributed systems. Indeed, such systems often store data in key-value stores, which are instances of the read-write memory abstraction. Moreover, we prove that, surprisingly, the second problem is undecidable, and again this holds even for the read-write memory abstraction. However, we show that for the read-write memory abstraction, these negative results can be circumvented if the implementations are data independent, i.e., their behaviors do not depend on the data values that are written or read at each moment, which is a realistic assumption.Comment: extended version of POPL 201

    On the Hierarchy of Natural Theories

    Full text link
    It is a well-known empirical phenomenon that natural axiomatic theories are pre-well-ordered by consistency strength. Without a precise mathematical definition of "natural," it is unclear how to study this phenomenon mathematically. We will discuss the significance of this problem and survey some strategies that have recently been developed for addressing it. These strategies emphasize the role of reflection principles and ordinal analysis and draw on analogies with research in recursion theory. We will conclude with a discussion of open problems and directions for future research

    Slow Reflection

    Get PDF
    We describe a “slow” version of the hierarchy of uniform reflection principles over Peano Arithmetic (PA). These principles are unprovable in Peano Arithmetic (even when extended by usual reflection principles of lower complexity) and introduce a new provably total function. At the same time the consistency of PA plus slow reflection is provable in PA + Con ( PA ) . We deduce a conjecture of S.-D. Friedman, Rathjen and Weiermann: Transfinite iterations of slow consistency generate a hierarchy of precisely ε 0 stages between PA and PA + Con ( PA ) (where Con ( PA ) refers to the usual consistency statement)

    Hyperations, Veblen progressions and transfinite iterations of ordinal functions

    Full text link
    In this paper we introduce hyperations and cohyperations, which are forms of transfinite iteration of ordinal functions. Hyperations are iterations of normal functions. Unlike iteration by pointwise convergence, hyperation preserves normality. The hyperation of a normal function f is a sequence of normal functions so that f^0= id, f^1 = f and for all ordinals \alpha, \beta we have that f^(\alpha + \beta) = f^\alpha f^\beta. These conditions do not determine f^\alpha uniquely; in addition, we require that the functions be minimal in an appropriate sense. We study hyperations systematically and show that they are a natural refinement of Veblen progressions. Next, we define cohyperations, very similar to hyperations except that they are left-additive: given \alpha, \beta, f^(\alpha + \beta)= f^\beta f^\alpha. Cohyperations iterate initial functions which are functions that map initial segments to initial segments. We systematically study cohyperations and see how they can be employed to define left inverses to hyperations. Hyperations provide an alternative presentation of Veblen progressions and can be useful where a more fine-grained analysis of such sequences is called for. They are very amenable to algebraic manipulation and hence are convenient to work with. Cohyperations, meanwhile, give a novel way to describe slowly increasing functions as often appear, for example, in proof theory

    Verification of a multiprocessor system memory model

    Get PDF
    corecore