346,700 research outputs found

    Innate differences in consumption and utilization of food by the fast- and slow-growing larvae of cabbage looper, Trichoplusia ni (Hübner) (Lep., Noctuidae)

    Get PDF
    Consumption and utilization of soybean leaves by the fast versus slow-growing larvae of the cabbage looper, Trichoplusia ni were studied under laboratory conditions. Fast-growing larvae consumed more food/unit of body mass, and gained weight 10 times faster than the slow-growing larvae. Slow-growing larvae were less efficient in consumption and utilization of food, and the differences in indices of food utilization were greater between the fast- and slow-growing larvae on the relatively resistant soybean cultivar, “PI 227687” than on the susceptible cultivar, “Davis”. Implications of differences in growth rates and food utilization by the fast- and slow-growing larvae on resistant and susceptible cultivars are discussed in relation to evolution of new biotypes and host-plant resistance

    Plant-litter-soil feedbacks in common grass species are slightly negative and only marginally modified by litter exposed to insect herbivory

    Get PDF
    Purpose Insect herbivory affects plant growth, nutrient and secondary metabolite concentrations and litter quality. Changes to litter quality due to insect herbivory can alter decomposition, with knock on effects for plant growth mediated through the plant-litter-soil feedback pathway. Methods Using a multi-phase glasshouse experiment, we tested how changes in shoot and root litter quality of fast- and slow-growing grass caused by insect herbivores affect the performance of response plants in the soil in which the litter decomposed. Results We found that insect herbivory resulted in marginal changes to litter quality and did not affect growth when plants were grown with fast- versus slow-growing litter. Overall, presence of litter resulted in reduced root and shoot growth and this effect was significantly more negative in shoots versus roots. However, this effect was minimal, with a loss of c. 1.4% and 3.1% dry weight biomass in roots versus shoots, respectively. Further, shoot litter exposed to insect herbivory interacted with response plant identity to affect root growth. Conclusions Our results suggest that whether litter originates from plant tissues exposed to insect herbivory or not and its interaction with fast- versus slow-growing grasses is of little importance, but species-specific responses to herbivory-conditioned litter can occur. Taken collectively, the overall role of the plant-litter-soil feedback pathway, as well as its interaction with insect herbivory, is unlikely to affect broader ecosystem processes in this system

    Machine learning-based prediction of breast cancer growth rate in-vivo

    Get PDF
    BackgroundDetermining the rate of breast cancer (BC) growth in vivo, which can predict prognosis, has remained elusive despite its relevance for treatment, screening recommendations and medicolegal practice. We developed a model that predicts the rate of in vivo tumour growth using a unique study cohort of BC patients who had two serial mammograms wherein the tumour, visible in the diagnostic mammogram, was missed in the first screen.MethodsA serial mammography-derived in vivo growth rate (SM-INVIGOR) index was developed using tumour volumes from two serial mammograms and time interval between measurements. We then developed a machine learning-based surrogate model called Surr-INVIGOR using routinely assessed biomarkers to predict in vivo rate of tumour growth and extend the utility of this approach to a larger patient population. Surr-INVIGOR was validated using an independent cohort.ResultsSM-INVIGOR stratified discovery cohort patients into fast-growing versus slow-growing tumour subgroups, wherein patients with fast-growing tumours experienced poorer BC-specific survival. Our clinically relevant Surr-INVIGOR stratified tumours in the discovery cohort and was concordant with SM-INVIGOR. In the validation cohort, Surr-INVIGOR uncovered significant survival differences between patients with fast-growing and slow-growing tumours.ConclusionOur Surr-INVIGOR model predicts in vivo BC growth rate during the pre-diagnostic stage and offers several useful applications

    RNA-Seq Identifies SNP Markers for Growth Traits in Rainbow Trout

    Get PDF
    Fast growth is an important and highly desired trait, which affects the profitability of food animal production, with feed costs accounting for the largest proportion of production costs. Traditional phenotype-based selection is typically used to select for growth traits; however, genetic improvement is slow over generations. Single nucleotide polymorphisms (SNPs) explain 90% of the genetic differences between individuals; therefore, they are most suitable for genetic evaluation and strategies that employ molecular genetics for selective breeding. SNPs found within or near a coding sequence are of particular interest because they are more likely to alter the biological function of a protein. We aimed to use SNPs to identify markers and genes associated with genetic variation in growth. RNA-Seq whole-transcriptome analysis of pooled cDNA samples from a population of rainbow trout selected for improved growth versus unselected genetic cohorts (10 fish from 1 full-sib family each) identified SNP markers associated with growth-rate. The allelic imbalances (the ratio between the allele frequencies of the fast growing sample and that of the slow growing sample) were considered at scores >5.0 as an amplification and <0.2 as loss of heterozygosity. A subset of SNPs (n = 54) were validated and evaluated for association with growth traits in 778 individuals of a three-generation parent/offspring panel representing 40 families. Twenty-two SNP markers and one mitochondrial haplotype were significantly associated with growth traits. Polymorphism of 48 of the markers was confirmed in other commercially important aquaculture stocks. Many markers were clustered into genes of metabolic energy production pathways and are suitable candidates for genetic selection. The study demonstrates that RNA-Seq at low sequence coverage of divergent populations is a fast and effective means of identifying SNPs, with allelic imbalances between phenotypes. This technique is suitable for marker development in non-model species lacking complete and well-annotated genome reference sequences

    Growth–defence trade-off in rice: fast-growing and acquisitive genotypes have lower expression of genes involved in immunity

    Get PDF
    Plant ecologists and molecular biologists have long considered the hypothesis of a trade-off between plant growth and defence separately. In particular, how genes thought to control the growth–defence trade-off at the molecular level relate to trait-based frameworks in functional ecology, such as the slow–fast plant economics spectrum, is unknown. We grew 49 phenotypically diverse rice genotypes in pots under optimal conditions and measured growth-related functional traits and the constitutive expression of 11 genes involved in plant defence. We also quantified the concentration of silicon (Si) in leaves to estimate silica-based defences. Rice genotypes were aligned along a slow–fast continuum, with slow-growing, late-flowering genotypes versus fast-growing, early-flowering genotypes. Leaf dry matter content and leaf Si concentrations were not aligned with this axis and negatively correlated with each other. Live-fast genotypes exhibited greater expression of OsNPR1, a regulator of the salicylic acid pathway that promotes plant defence while suppressing plant growth. These genotypes also exhibited greater expression of SPL7 and GH3.2, which are also involved in both stress resistance and growth. Our results do not support the hypothesis of a growth–defence trade-off when leaf Si and leaf dry matter content are considered, but they do when hormonal pathway genes are considered. We demonstrate the benefits of combining ecological and molecular approaches to elucidate the growth–defence trade-off, opening new avenues for plant breeding and crop science

    Long-term nutrient enrichment of an oligotroph-dominated wetland increases bacterial diversity in bulk soils and plant rhizospheres.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.In nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return, plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast-growing copiotrophs, slow-growing oligotrophs) and plant (C3 forb, C4 grass) communities residing in a nutrient-poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized versus unfertilized) and plant association (bulk versus rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass versus forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease-suppressive bacterial taxa, and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilization serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling.ECU Open Access Publishing Support Fun

    Latino Settlement in the New Century

    Get PDF
    Identifies trends in the Hispanic/Latino population's growth and areas of settlement since 2000. Highlights faster growth in the West and Northeast and in metropolitan areas, slower growth in the Midwest, and the wider gender gap in faster-growing areas
    corecore