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Science, while it penetrates deeply the system of things about us, sees 
everywhere in the dim limits of vision, the word mystery. Surely there is no 
reason why the simplest of organisms should bear the impress most 
strongly... It is not more surprising, nor a matter of more difficult 
comprehension, that a polyp should form structures of stone (carbonate of 
lime) called coral, than that the quadruped should form its bones, or the 
mollusc its shell. 
 
 

This power of secretion is then one of the first and most common of 
those that belong to living tissue; and though differing in different organs 
according to their end or function, it is all one process, both in its nature 
and cause, whether in the Animalcule or Man. It belongs eminently to the 
lowest kinds of life. These are the best stone-makers; for in their simplicity 
of structure they may be almost all stone and still carry on the processes of 
nutrition and growth. Throughout geological time they were the agents 
appointed to produces the material of limestones, and also to make even 
the flint and many of the siliceous deposits of the earth’s formations. 
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In: Corals and Coral Islands. 1875 

Sampson Low, Marston, Lowe and Searle, London 
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Abstract 
Corals are sensitive to changes in climate and, recently, high-latitude coral 
communities have received increased attention for their ability to act as refugia 
during global climate change. In this study, I report high resolution elemental ratio 
and stable isotope (δ18O, δ13C) time-series generated from the faviid coral 
Plesiastrea versipora to assess the fidelity of chemical variations in coral skeletons 
to reconstruct environmental conditions along the southern margin of Australia. This 
coral species has an expansive distribution throughout the Indo-Pacific and Indian 
marginal seas, providing a potential climate archive in a diverse range of oceanic 
conditions. 
 
High resolution laser-ablation inductively-coupled plasma mass spectrometer (ICP-
MS) analyses of established paleo-temperature proxies including B/Ca, Mg/Ca, 
Sr/Ca, Ba/Ca and U/Ca, a suite of minor trace elements (Li, P, V, Mn, Cu, Zn, Y, Zr, 
Mo, Cd, Sn, Ba, Ce, Pr, Nd, Pb) and milled δ18O and δ13C analyses were obtained 
from seven cores of P. versipora from Gulf St Vincent and Spencer Gulf (35ºS), 
South Australia.  The annual nature of density bands were verified using U/Th ages 
derived from multi-collector ICP-MS analyses and colony ages ranged from 100-400 
years.  Large skeletal density variations were observed between the different coral 
colonies, including colonies sampled from the same reef. Annual extension rates for 
P. versipora varied from 1.2 to 8 mm yr-1and these extension rates are among the 
slowest growth rates reported for hermatypic corals and are more comparable to 
growth rates of deep-sea corals. 
 
The potential of Plesiastrea versipora to capture the full seasonal cycle of sea 
surface temperature (SST) variation (10-24°C) in the South Australian gulfs was 
assessed by comparing skeletal chemistry with in situ SST data. Proxy/SST 
calibrations generated from the fast growing corals (> 3 mm yr-1) of Sr/Ca, U/Ca and 
δ18O were comparable to published SST calibrations for other species. Very little 
temperature dependence was observed for B/Ca and Mg/Ca, and concentrations of 
these elements were amplified by secondary precipitates and other sources of 
contamination, and did not reflect temperature dependent fractionation in P. 
versipora. Ba/Ca generally displayed a strong inverse correlation with SST and was 
the trace element which captured the full amplitude of the seasonal cycle with 
highest fidelity. Ba/Ca ratios are the most reliable trace element paleotemperature 
proxy in P. versipora.  
 
Corals with a very slow extension rate (less than 2 mm per year) did not capture the 
full amplitude of the seasonal cycle in either the trace elements or δ18O analyses and 
are not useful for high resolution climate reconstructions. Sr/Ca and U/Ca from all 
colonies were strongly correlated with each other (r2 = 0.86-0.96) in contrast to 
previous studies using Porites (r2 = 0.4-0.8). Sr/Ca and U/Ca concentrations were 
observed to behave with a ‘bimodal’ distribution in the coral skeleton which was 
reproducible down the same laser track, but offset between adjacent tracks. The 
bimodal distribution in Sr and U was only observed in the corals with an extension 
rate of less than 2 mm yr-1. This behaviour has implications for coral studies on other 
species with low extension rates, because it suggests that the coral polyp is mediating 
the fractionation of Sr and U (i.e. biological fractionation) rather than the 
thermodynamic fractionation exhibited by inorganic aragonite and fast growing coral 
species such as Porites. 
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Trace metal analyses conducted on Plesiastrea versipora indicate substantial 
contamination in several sites in Spencer Gulf and Gulf St. Vincent. Trace metal 
contamination was associated with changes in urban and industrial development, and 
land use changes. The coastal corals from Seacliff reef recorded increased 
concentrations of lead, most likely due to the proliferation of automobiles in the 
1960s. Increased concentrations of other heavy metals including Cu, Sn, Zn and Mn 
may be related to the discharge of treated sewage at a coastal site less than 10 km 
away. High concentrations of V and Mo occurred in pulse events and correlated with 
luminescent bands in a fast growing metropolitan reef coral. The enriched 
concentrations in these elements were coincident with known oil spills in the region. 
The corals from Whyalla indicated higher concentrations in the heavy metals Zn, Sn 
and Pb and the source of the contamination is likely to be nearby smelters. Strong 
annual cycles of Zn were observed in two corals from different locations, this may be 
caused by phytoplankton blooms. Light rare earth element (Y, La, Ce, Pr, Nd) 
enrichment occurred in three corals. This enrichment had a positive correlation with 
westerly winds suggesting an aeolian dust source.  
 
Two coral colonies separated by less than 10 m display considerably different 
maximum concentrations of several metals including Cu, Mn, Zn, Sn and Pb. This 
suggests that distribution coefficients vary within a species, and are dependent on 
growth rate or another colony specific mechanism. Caution should be used when 
applying published distribution coefficients to different species and growth rates and 
estimating seawater concentrations from coral trace metal concentrations. δ13C 
analyses from a slow growing colony revealed a significant correlation with surface 
oceanic 13C depletion from fossil fuel CO2 (0.8‰) from the early 1930s to 2005 (the 
Suess effect).  
 
The results from this study demonstrate that Plesiastrea versipora provides valuable 
paleoclimate information in high-latitude environments, recording seasonal and long-
term variation in productivity regimes with high fidelity.  P. versipora has the 
potential to act as a sentinel organism recording the industrial depletion in 13C of 
DIC.  This archive may be employed to reconstruct anthropogenic activity since 
European settlement and land-use changes not only in temperate Australia but other 
temperate regions in Asia and Africa. 
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Chapter 1: Approach and Study Motivation 

 

Rationale 

Geological and anthropological evidence suggests that the global climate has been 

very different in the past than it is today. Variations in the temperature extremes and 

rainfall during the seasonal cycle can cause catastrophic effects for human 

inhabitants and other animals living in specialised environments. An example of 

climate related extinction is Australia’s marsupial megafauna which died out during 

the Holocene, potentially due to vegetation changes in response to fluctuating 

Austral-Asian monsoon dynamics. Our knowledge of paleoenvironmental changes in 

the Southern Hemisphere is lacking compared with the extensive historical archives 

of the Northern Hemisphere. The known deficiencies in Southern Hemisphere 

records suggest that climate records from mid-southern latitudes would make an 

important contribution to understanding climate systematics and associated 

teleconnections. Paleotemperature reconstructions from the South Australian gulfs 

are influenced by complex oceanography and positioned to provide information on a 

broad range of climate oscillations. These gulfs are situated on the southern margin 

of a continental land-mass, one of the longest east-west coastlines in the world and 

may be influenced by three ocean basins including the Pacific, Indian and Southern 

Oceans. In this thesis, paleo-proxy archives from temperate corals are used to give 

insight into a unique ecosystem and provide greater temporal resolution on the role 

of the Southern Ocean in climate dynamics than has previously been achieved using 

speleothem or deep-sea sediment core archives. 

 

 

Why the temperate coral: Plesiastrea versipora? 

Corals growing in temperate-high latitude waters are sensitive to changes in climate, 

especially seasonal fluctuations in sea surface temperature. In the cool-water, high-

energy environments of South Australia scleractinian corals are ideally positioned to 

record variability of temperature, salinity and ocean circulation along the southern 
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margin of Australia. Scleractinia are typically stenotypic organisms with 

distributions limited by relatively minor fluctuations in environmental variables. In 

this regard Plesiastrea versipora (Lamarck, 1816) is an unusual species of 

scleractinia, because it occurs around the entire Australian coastline, which suggests 

it tolerates a wider range of climatic conditions. Large colonies of Plesiastrea 

versipora were first discovered in South Australia near Glenelg almost 100 years ago 

(Howchin 1909). Typical habitat is moderately exposed reef in water-depths of 0–30 

m. Plesiastrea versipora is the most wide-spread of the southern Australian reef-

building corals.  

 

 

Background 

Paleoclimate records have a unique role to play in our understanding of climate 

sensitivity and variability and how it changed in the past. High resolution proxy 

records provide detailed information on amplitude and characteristics of the seasonal 

cycle which have important climatic implications. In addition, high resolution 

climate proxies (weekly-monthly) timescales may record discrete events such as 

volcanic eruptions, floods and phytoplankton blooms as well as seasonal phenomena 

such as upwelling and winter rainfall. Paleoclimate reconstructions that have been 

calibrated against instrumental data offer the only source of information on long-term 

changes in climate variability and associated teleconnections. Paleoclimate 

reconstructions provide data for calibrating atmospheric and oceanic numerical 

models to develop predictive knowledge of these climate systems. With the modern 

climate concerns addressing global warming (Barnett et al. 2005) it is important to 

have multiple high-resolution temperature reconstructions for the last 300-400 years. 

A variety of proxy archives from a broad range of latitudes will allow short term 

changes in temperature due to anthropogenic influences to be accurately assessed and 

potential future impacts more accurately modelled.  

 

Instrumental records in many locations only extend back to the mid 19th century, 

prohibiting the development of seasonal resolution archives at regional scales to 

assess climate response to increasing greenhouse gas concentrations in the 

atmosphere. However, the instrumental record indicates large scale changes in the 
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average climate since the industrial revolution (Keeling et al. 1979; Thompson et al. 

1993; O’Brien et al. 1995) and also provides a vital calibration for modern 

paleoclimate records. There is a plethora of different paleoenvironmental archives 

which record climate variables on differing temporal scales, including annually 

resolved tree-rings (Cook 1995; D'Arrigo et al. 1996), laminated lake sediments 

(Kotwicki & Allan 1998; Shulmeister et al. 2004), speleothems (Treble et al. 2003; 

Fairchild et al. 2006), Antarctic firn (Etheridge et al. 1996), coral (Fairbanks & 

Dodge 1979; Druffel 1982; Dodge et al. 1984), deep sea sediments (Duplessy et al. 

1988; Broecker & Denton 1989; Lynch-Stieglitz et al. 1994) and historical climate 

data sets.  

 

One of the most well known paleoclimate temperature reconstructions for the past 

millennia, known as the ‘hockey stick curve’ combined proxy and model 

reconstructions using over 400 data sets (Mann et al. 1998; Mann et al. 1999). The 

curve sloped gently downwards for the majority of the last 1000 years before rising 

sharply in the 20th century (the blade of the hockey stick) indicating global 

temperatures are currently warmer than the medieval warm period (~800-1000 years 

ago). To establish the impact of anthropogenically-induced climate change, the 

Intergovernmental Panel of Climate Change (IPCC) was established in 1988 to 

assess our understanding of the scientific basis of human-induced climate change and 

the ‘hockey stick’ curve featured prominently in the 2001 IPCC report. A great deal 

of criticism has been levelled at the Mann et al (1998) reconstructions due to the 

smaller data set from the early part of the curve (1000-1500) and the lack of data 

from the Southern Hemisphere but the conclusions of the study were upheld. 

 

Once there is an understanding of natural climate variability, we can assess the 

anthropogenic impact on climate through increased greenhouse gases, pollution, 

deforestation and land-use practices. By robustly reconstructing regional, 

hemispheric and global climate we will be able to appreciate natural variability and 

disentangle the different roles which atmospheric and oceanic processes have in the 

climate system and the teleconnections between them. Where comparisons between 

the hemispheres have been made, the Southern Hemisphere temperature average 

indicates greater recent warming in the latter part of the 20th century and had a muted 

temperature response during the Little Ice Age in the 1500-1800’s.  
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Australia is in a unique position to contribute to a regional and global understanding 

of how climate systems have operated in the past.  Australia and its territories span a 

range of climatic zones including polar, temperate, arid, subtropical, tropical, oceanic 

and continental.  The Australasian region includes several major atmospheric and 

oceanic boundaries that are highly sensitive to future climate change. Climate 

oscillations which effect Australia include the El Niño Southern Oscillation, West 

Pacific Warm Pool, Interdecadal Pacific Oscillation, Indian Ocean Dipole, Southern 

Annular Mode, Asian-Australian Monsoon and several boundary currents around the 

continental coastline including the East Australia Current, Leeuwin Current and the 

Antarctic Circumpolar Current south of the continent. By comparing records from 

different regions it is possible to identify unusual variation and/or synchronicity in 

climate cycles.  This not only allows an assessment of the degree to which observed 

regional climate variations across Australia can be explained by natural processes, 

they can also improve our understanding of the relative effects of local and global 

climate driving forces. 

 

Corals are well-suited to providing high fidelity climate records with which to test 

anthropogenic influences on the local and global environment. Corals have the 

potential to act as an archive of the chemical and physical environment in which they 

were growing (Knutson et al. 1972; Highsmith 1979), as their aragonitic skeleton 

incorporates trace elements and stable isotopes which reflect the local seawater 

chemistry (Dodge et al. 1984). Coral based geochemical proxies provide a means for 

temporally extending the instrumental record of climate (Fairbanks et al. 1997). The 

density of the coral skeleton varies seasonally; generating annual density bands that 

can be observed in x-ray photographs (Barnes 1970). In addition, the presence of 

other skeletal markers such as fluorescent bands can be used to independently verify 

the chronology (Lough et al. 1997). Corals are an ideal paleoenvironmental archive 

because they combine the chronological fidelity of tree rings with a higher resolution 

geochemical archive than deep-sea sediment cores. Modern scleractinian corals not 

only provide continuous climate data, but through the use of radiocarbon and 

uranium dating, fossil colonies can provide a record of climatic conditions over the 

last few hundred thousand years (Esat et al. 1999; Tudhope et al. 2001; Marshall & 

McCulloch 2002; Ayling et al. 2006). 
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Corals are capable of revealing subtle changes in sea surface temperature (SST) 

(McCulloch et al. 1996; Alibert & McCulloch 1997), rainfall and evaporation 

(McConnaughey 1989; Gagan et al. 1998), solar radiation (Raspopov et al. 2004) and 

nutrient dynamics (Lea et al. 1989; Grottoli 2002) on an intra-annual timescale and 

can provide clues as to how seasonal climate responds to large-scale regional 

forcings and background changes. New coral trace element paleothermometers 

combined with carbon and oxygen stable isotope ratios allow us to explore the 

natural variability in SST, the hydrological cycle and ocean circulation both in the 

recent past and by using fossil corals through the last glacial cycle.  

 

While corals have been the subject of a considerable amount of research over the last 

few decades for example (Hudson et al. 1976; Nozaki et al. 1978; Smith et al. 1979; 

Dunbar & Wellington 1981; Shen et al. 1987; Lea et al. 1989; Beck et al. 1992; 

Evans et al. 1998; Cole et al. 2000; Schrag & Linsley 2002; Abram et al. 2003) there 

remain many areas of coral geochemistry (Sinclair 2005; Cohen et al. 2006; Gaetani 

& Cohen 2006) still to explore, including new chemical tracers from new locations 

and a greater understanding of the biochemical and biological processes influencing 

trace element coprecipitation. The vast majority of studies have focused on tropical 

corals with rapid skeletal extension rates (for reviews see (Druffel 1997; Gagan et al. 

2000; Swart & Grottoli 2003; Correge 2006). A growing number of studies are 

examining high-latitude or deep-sea corals to further resolve natural climate 

variability in the recent past (Fallon et al. 1999; Roark et al. 2005; Robinson et al. 

2005; Montagna et al. 2007). Studies focusing on these corals have the advantage of 

producing a longer paleoenvironmental archive because the corals grow more slowly. 

 

Corals also record temporal changes in seawater carbonate chemistry and ocean 

acidity by varying pH during calcification and aragonite precipitation. Experimental 

and modelling studies suggest that rates of CaCO3 deposition of marine biogenic 

calcifying organisms should have already declined in response to the 19th and 20th 

century increase in atmospheric CO2 reducing the carbonate saturation state of the 

surface ocean (Gattuso et al. 1998; Kleypas et al. 1999; Leclercq et al. 2000; 

Langdon & Atkinson 2005; Orr et al. 2005). These studies have also suggested that 

the CaCO3 saturation state is going to be more heavily impacted at higher latitudes. 
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Potentially important regions for CO2 uptake such as the Southern Ocean are 

chronically undersampled. 

 

The current global climate change debate (between scientists and sceptics) has led to 

renewed interest in analysing corals and other paleoclimate archives that grew during 

periods when the earth was warmer than modern times or during periods of rapid 

warming. Although past climate archives are not a direct analogue for a CO2 warmed 

world (Barnett et al. 2005), these archives increase our understanding of processes 

driving the climate system. 

 

 

Statement of Research 

The aim of this research was to explore the application of a multi-proxy approach on 

the cold-water coral Plesiastrea versipora and investigate biogeochemical cycling in 

temperate coastal environments. Coral archives provide a continuous temporal record 

at higher resolution than previous studies using foraminifera in sediment cores from 

the southern margin of Australia. 

 

To asses the potential of Plesiastrea versipora as a paleoenvironmental archive, the 

geochemical investigations include both trace elements and light stable isotopes. The 

trace elements were measured on a quadrapole Inductively-Coupled Plasma Mass 

Spectrometers (ICP-MS) with high spatial sampling resolution achievable by laser 

ablation. This study took advantage of recent improvements in increased sensitivity 

and interference reduction in ICP-MS to explore a broader range of transition metals 

to be analysed from previous ICP-MS studies. This study represents a natural 

progression of the method developmental work undertaken at ANU (Sinclair et al. 

1998; Fallon et al. 1999; Sinclair 1999; Fallon 2000; Fallon et al. 2002; Wyndham et 

al. 2004; Wyndham 2005). The investigation of a new species of coral will increase 

our understanding of environmental variability in temperate latitudes and how 

sensitive this environment is to the 20th and 21st century climate change. 
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Aims:  

The aim of this thesis was to sample corals from the eastern Great Australian Bight 

(For detailed map of field area see: Figure 3.2) to reconstruct historical upwelling 

proxies such as Ba/Ca and Cd/Ca (Shen et al. 1987; Lea et al. 1989), to determine 

temporal variability in upwelling intensity and how it may impact commercially 

important fisheries such as bluefin tuna in the region. However, large colonies of 

Plesiastrea versipora could not be located in this region and the focus of the study 

moved to comparing and contrasting Spencer Gulf and Gulf St. Vincent, where 

corals had been successfully located and sampled.  

 

By focussing on corals located in the gulf environments, the thesis evolved into a 

more geochemically interesting study: endeavouring to not only assess the potential 

of Plesiastrea versipora as a paleoenvironmental archive and generate long 

seasonally-resolved records of climate, but also to ascertain what anthropogenic 

changes had occurred since European settlement and industrialisation in Southern 

Australia.  

 

In this thesis, the following aspects will be addressed: 

• Examine the growth rate of Plesiastrea in Spencer Gulf and Gulf St Vincent, 

South Australia and establish detailed chronologies for corals in this region. 

• Assess trace element and stable isotope proxies incorporated into Plesiastrea to 

investigate climate variations in high latitude environments and establish this 

species of coral as a paleothermometer.  

• Examine intra- and inter-annual variations in environmental conditions in the 

Gulf waters of South Australia by examining minor elements incorporated in 

the coral skeleton. 

• Use climate and environmental records to characterise anthropogenic changes 

in the South Australian seawater chemistry since European settlement. 

• Assess the impacts of increased CO2 from fossil fuel burning on coral 

calcification, and explore the ramifications for biogenic calcification in 

temperate latitude surface ocean systems in the future. 
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Thesis Structure 

The subsequent two chapters of this thesis review the literature on coral 

geochemistry and environmental studies; regional climate, geology and 

oceanography affecting the South Australian gulf environment. The next four 

chapters are written in a manuscript style and each chapter describes one of the aims 

of the thesis. The last chapter provides a synthesis of the major outcomes of this 

thesis and provides suggestions for future research.   

 

Chapter 2 

This chapter provides an overview of the coral paleoclimate literature, focusing on 

modern corals. Further to this, our current knowledge of trace metal and stable 

isotope paleotemperature proxies is summarised, including the large variations in 

transfer function equations between different coral species and locations. Published 

coral-proxy SST calibrations are presented in Appendix A. Previous coral pollution 

studies are also reviewed to provide a background for how the data generated during 

this thesis has extended our knowledge of trace metal incorporation in corals. 

 

Chapter 3 

This chapter presents the regional oceanography of the South Australian gulfs. 

Previous paleoenvironmental studies in Southern Australia were reviewed to 

establish potential climate forcing and associated teleconnections. The coral habitat 

is described and coral colony locations are provided (including maps of all colonies). 

The methodology of coral coring is also described.  A complete field log is included 

in Appendix B.  

 

Chapter 4 

This chapter describes the growth histories of five colonies of Plesiastrea versipora 

through X-ray and 238U/230Th dating techniques. Density bands of varying widths 

were present in each coral, and coral growth rates varied on very small spatial scales 

including the same reef. Average extension rates of colonies varied between 1.2 and 
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7 mm yr-1 which are among the slowest growth rates reported for hermatypic corals. 

The potential mechanisms for the large variation in growth rate are discussed. 

Results from this chapter suggest that a combination of band counting and 

radiometric dating be used on future coral studies analysing corals with slow growth 

rates. A complete set of the coral X-radiographs and luminescence images are in 

Appendix C on supplementary DVD. 

 

Chapter 5 

Chapter 5 investigates the paleothermometer potential of this coral species using both 

trace elements and stable isotopes. The level of reproducibility is examined within 

Plesiastrea versipora and also between two different ICP-MS. Coral - SST 

calibrations are generated for five corals. Slow growing corals (< 2mm yr-1) do not 

appear to accurately resolve seasonal variability in either trace element or δ18O 

paleotemperature proxies. Long records were generated for seven coral colonies with 

an observed temperature increase of 1.5°C over the last 100 years. A table of the LA-

ICP-MS data files is listed in Appendix D and all data can be found in digital format 

on the supplementary DVD provided with the thesis. The stable isotope data is in 

Appendix E on the supplementary DVD. 

 

Chapter 6 

This chapter examines the minor trace element records in seven coral colonies. The 

chapter is divided into three environmental components influencing the trace element 

signal in the corals, with subsections including urban impacts, industrial impacts and 

landscape change/agricultural impacts. The urban impacts include records of treated 

sewage outfall variations into Gulf St. Vincent and a historical lead record from 

vehicle emissions. The industrial impacts include heavy metal contamination from 

nearby smelters and the implications for the local environment are discussed. The 

landscape changes are reflected in the light rare earth element (LREE) record in the 

corals. Correlation tables of the trace metals for Plesiastrea versipora are in 

Appendix F. 
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Chapter 7 

This chapter focuses on the δ13C signal recorded in annual-pentannual analyses from 

three coral colonies and the surface ocean CO2 increase from the Suess effect since 

industrialisation. The coral δ13C records are compared with ice core and tropical 

coral records, and the potential of temperate corals to act as an archive of long term 

atmosphere-surface ocean mixing is discussed. The differences between temperate 

and tropical corals with a more complex δ13C signal are also discussed. 

 

Chapter 8  

This chapter provides a summary of the key finding of this thesis and discusses the 

questions generated by the data analysed in the thesis.  The impacts of anthropogenic 

change in the South Australian gulfs are discussed in terms of the regional ecology. 

Several future directions are suggested for addressing some of the questions raised 

by this research and further geochemical investigations with Plesiastrea versipora. 

The archived material remaining at the Research School of Earth Sciences, The 

Australian National University is listed in Appendix G on supplemental DVD.  
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Chapter 2: Literature Review: Corals as 

Paleoclimate Archives 

 

Introduction 

Massive corals growing in tropical and subtropical oceans contain annual density 

banding in their skeletons that contain physical, isotopic and geochemical evidence 

of past environments at sub-annual resolution. Corals are widely distributed and can 

be accurately dated using annual density variations (Barnes 1972; Dodge & Vaisnys 

1975; Hudson et al. 1976) with some species of corals providing records for several 

centuries. Modern scleractinian corals not only provide continuous climate data, but 

through the use of radiocarbon and uranium dating, fossil corals can provide a record 

of climatic conditions throughout the Holocene (Gagan et al. 1998; Marshall & 

McCulloch 2002; Cobb et al. 2003; Correge et al. 2004; Abram et al. 2007) and 

through several glacial/interglacial cycles (McCulloch et al. 1999; Tudhope et al. 

2001; Felis et al. 2004; Ayling et al. 2006). Overlapping records can be linked to 

provide records extending back thousands of years e.g. the South Western Pacific 

(Gagan et al. 2000; Hendy et al. 2002). Scleractinian corals record environmental 

features of climate at high temporal and spatial resolution in the physical, chemical 

and isotopic composition of their skeletons (Knutson et al. 1972; Dodge & Vaisnys 

1975; Wellington & Glynn 1983; Spiro et al. 2000). Coral based geochemical 

proxies provide a means for temporally extending the instrumental record of climate 

(Fairbanks et al. 1997). Coral growth rates vary intra- and inter-annually and extreme 

values of geochemical proxies coincide with climate extremes (Cardinal et al. 2001). 

The skeletons of scleractinian coral are ideal for extracting environmental 

information due to their wide distribution, longevity, seasonality, stable aragonite 

matrix and broad array of geochemical tracers.  

 

Annual bands are accreted in couplets and the low-density portion is produced during 

late summer when sea surface temperatures (SST) are highest (Highsmith 1979; 

Leder et al. 1996). Physical characteristics of the annual coral bands such as their 

density, linear extension rate, tissue thickness and calcification rate provide data 
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about the environmental conditions controlling coral growth, and complement 

chemical information incorporated into coral skeletons. Luminescent banding found 

in corals has been used to improve dating control of coral records (Hendy et al. 2003). 

The aragonitic skeletal matrix of corals carries isotopic and chemical indicators that 

track environmental parameters such as water temperature, salinity and isotopic 

composition as well as site specific features including turbidity, terrestrial runoff and 

upwelling intensity (Weber et al. 1975; Highsmith 1979; Lea et al. 1989; Allison & 

Tudhope 1992; Gagan et al. 2000; McCulloch et al. 2003a). These geochemical 

tracers can provide otherwise unavailable data needed to assess the links between 

local climatic processes and global climate patterns. For example, seawater 

temperature has been linked to the relative ratios of the stable oxygen isotopes (δ18O) 

and concentrations of several elements including strontium, uranium, magnesium and 

boron (Smith et al. 1979; Mikkelsen et al. 1982; Beck et al. 1992; McCulloch et al. 

1994; Hart & Cohen 1996; McCulloch et al. 1996; Alibert & McCulloch 1997; 

Druffel & Griffin 1999). In locations where the temperature signal is complicated by 

interplay between precipitation, evaporation and water temperature, the δ18O 

composition of coral skeletons and the trace element Sr/Ca may be used to 

differentiate between the hydrological component and the SST component recorded 

in the skeleton (McCulloch et al. 1994). Coral trace element concentrations have also 

been correlated to other environmental variables, such as oceanic upwelling 

measured by inclusion of barium and cadmium into the skeletal matrix (Lea et al. 

1989; Shen et al. 1992b; Delaney et al. 1993; Druffel 1997).  

 

Investigations into the chemistry of coral skeletons began in the early 1970s (Veeh & 

Turekian 1968; Kinsman 1969; Thompson & Livingston 1970; Livingston & 

Thompson 1971; Weber & Woodhead 1972; Amiel et al. 1973a). The topic of 

reconstructing paleoenvironmental information from coral skeletons has expanded 

rapidly over the past 40 years and several excellent reviews have been published 

(Swart 1983; Druffel 1997; Dunbar & Cole 1999; Gagan et al. 2000; Cohen & 

McConnaughey 2003; Swart & Grottoli 2003; Correge 2006). However, even though 

long-term coral records yield robust correlations with paleoclimatic environmental 

variables, our level of understanding of coral biogeochemistry and the mechanisms 

driving elemental and isotopic incorporation into skeletons remains limited. Recent 

literature has concentrated on identifying new climatic tracers in coral and 
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developing more sophisticated techniques for data extraction (Sinclair et al. 1998; 

Fallon et al. 1999). As a result, a multi-proxy approach to climatic reconstruction is 

emerging that is yielding new insights into environments inhabited by corals. The 

lack of long-term environmental information in temperate environments reduces our 

ability to interpret recent changes in regional oceanographic and climate indices due 

to anthropogenic mechanisms. This chapter presents an overview of literature on 

coral growth mechanisms and incorporation of trace elements into coral skeletons 

and how they relate to environmental factors to provide a context for the data 

presented later in the thesis. Minor elements are also reviewed in this chapter, 

examining how they are incorporated into coral skeletons and the associated natural 

and anthropogenic environmental chemistry. 

 

 

Coral Calcification Mechanisms 

Mechanisms that control the incorporation of isotopes and trace elements into the 

coral skeleton are poorly understood, and the incorporation of geochemical tracers is 

likely to be influenced by several factors including the ionic composition of the 

calcifying fluid, the calcification rate and water temperature. There are two schools 

of thought regarding the processes dictating biomineralisation in corals; (1) that 

skeletons grow from an organic matrix template (Goreau 1959; Risk & Pearce 1992; 

Cuif et al. 2003); or (2) the skeleton is formed inorganically inside membrane 

enclosed pockets of fluid (Barnes 1970; Wells 1970; Cohen & McConnaughey 2003). 

An understanding of the biomineralisation process is important for understanding the 

distribution of trace elements and the inorganic mechanistics of crystal growth within 

the coral skeleton. If calcification occurs from a solution, then the crystal 

morphology and aragonitic trace element composition are subject to thermodynamic 

and kinetic constraints of inorganic crystal growth once the solution is no longer 

saturated in particular trace elements.  If calcification occurs from an organic matrix, 

then crystal deposition is largely controlled by biological factors including 

physiological transport and membrane excretion. 

 

The organic matrix model, first proposed by Goreau (1959) suggested a mucco-

polysaccharide sheath as a template for crystallisation. Coral skeletons contain small 
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amounts (approximately 0.01-0.1%) of organic material distributed throughout the 

aragonite (Wainwright 1963).  Organic material is believed to play a role in skeletal 

construction by absorbing Ca2+ and HCO3
- then concentrating them spatially so that 

CaCO3 precipitation can occur. Other possible roles include the nucleation and 

seating the mineral crystals controlling the size, shape and orientation of the crystals 

and altering the structural properties of the skeleton (Goreau 1959). A more recent 

study suggested that sulphated organic compounds provide the nucleation of 

aragonitic fibres, rather than the centres of calcification, and that calcification took 

place during a polycyclic model of crystal growth (Cuif et al. 2003).  

 

 

Figure 2.1: Coral skeletal calcification model, indicating ion transport occurring across the membrane 

by vacuoles (vac) that transfer seawater at the basal epithelium. Seawater also enters the calcifying 

space by diffusion through pericellular channels (PC) and the porous skeleton. The ATP pump adds 

Ca2+ through Ca2+ATPase and removes protons from the calcifying fluid to raise the pH, CO2 is 

diffused in and reacts with water to produce CO3
2- and OH-. Adapted from Cohen and McConnaughey 

(2003). 

 

The alternative hypothesis for aragonite skeleton formation is that physiochemical 

growth of crystals results from unrestricted inorganic crystal growth from a 
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physiologically modified pool of calcifying fluid. The evidence for this comes from 

the observation that corals are constructed from spherulitic bundles of acicular 

aragonite fibres (Wainwright 1963; Barnes 1970; Constantz 1986), and this mode of 

crystal growth is commonly observed in calcitic marine cements (Constantz 1986). 

These structures are hard to explain by epitaxial growth within an organic matrix, 

suggesting that although calcification may be biologically initiated, it progresses 

under physiochemical control (Hayes & Goreau 1977; Constantz & Weiner 1988).   

 

In contrast to the idea that single crystals nucleate and grow within individual 

membrane sheaths, a large proportion of the literature suggests that crystal growth 

and nucleation occurs freely within a larger membrane bound pocket of 

supersaturated fluid (Figure 2.1) (Barnes 1970; McConnaughey 1989a; Clode & 

Marshall 2003; Cohen & McConnaughey 2003; Sinclair & Risk 2006). Crystals 

nucleate and grow outwards from structures called centres of calcification or early 

mineralisation zones. The nucleating structures appear darker than the surrounding 

aragonite in thin sections analysed by light microscope, and have a grainy texture in 

SEM analyses (Clode & Marshall 2003). The growth form of crystals in centres of 

calcification differs from the fibrous aragonite that makes up the bulk of the skeleton.  

Crystals tend to be more platy and tabular than elongated rods (Johnston 1980). 

Centres of calcification have been found to display significantly different trace 

element chemistry (Allison & Tudhope 1992; Allison 1996b). It is postulated that 

centres of calcification contain high amounts of organic material (Allison 1996 

Allison and Tudhope 1992).  

 

From the centres of calcification, clusters of acicular aragonite crystals grow 

concentrically outwards forming fan shaped bundles called sclerodermites (Barnes 

1970) or fasciculi (Constantz 1986). Additional crystal nucleation occurs 

spontaneously in spaces between growing crystals.  New crystals nucleate on the 

walls and ends of existing crystals and depending on the condition of the solution, 

this can be syntaxial (orientated the same way as seed crystals) or nonsyntaxial 

(Barnes 1970).  The amount of spontaneous nucleation and non syntaxial growth 

increases with the degree of supersaturation in the calcifying fluid. Recent studies 

have indicated that the composition of the calcifying fluid is actively controlled by 

the coral polyp, with the chemistry of the seawater modified by transport of ions 
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across the basal epithelium (Cohen et al. 2006; Gaetani & Cohen 2006). These 

authors concluded that the variations in concentrations of Mg2+, Sr2+ and Ba2+ 

observed over a seasonal cycle were in fact due to the concentration of Ca2+ in the 

calcifying fluid, enriched relative to seawater in summer (lower concentrations of 

Sr2+ and Ba2+) and depleted in winter (Gaetani & Cohen 2006). 

 

Stable Isotope Proxies 

δ18O 

The first paleotemperature proxies to be extracted from coral skeletons (and other 

aragonitic organisms) was the stable isotope δ18O, which was found to be inversely 

variable with SST (Epstein et al. 1951; Weber & Woodhead 1972; Weber 1973a). 

Corals precipitate their aragonitic skeletons out of isotopic equilibrium (indicating 

depleted values) with the surrounding seawater.  Biogenic aragonite has a depleted 

stable isotopic composition relative to inorganic aragonite precipitated from seawater, 

and this depletion is dependent on kinetic fractionation, and corals with faster growth 

rates display the strongest depletion in δ18O (McConnaughey 1989b). Variations in 

coral δ18O are dominated by sea surface temperature, sea surface salinity (SSS) (Cole 

& Fairbanks 1990) or a composite signal of both SST and SSS. Sea surface salinity is 

governed by evaporation, precipitation and runoff from nearby land. To extract the 

temperature component of the δ18O signal, this data is compared with instrumental 

temperature data or the temperature component of the record is resolved from 

another proxy such as the Sr/Ca ratio.  

 

The mechanisms for oxygen isotope fractionation into coral skeletons are not 

completely understood, but they are considered to be more complicated than trace 

elements due to the different chemical forms involved from CO2 to CO3
2-. Both these 

forms are present in seawater and the isotopic composition in corals can be a 

function of seawater chemistry, respired products from symbiotic zooxanthellae and 

a component from ingested food (McConnaughey 1989a). Factors known to 

influence δ18O (apart from temperature and salinity) include; growth rates 

(McConnaughey 1989a); pH (Rollion-Bard et al. 2003b); light levels (Reynaud-

Vaganay et al. 2001); feeding and productivity (Grottoli 1999; Juillet-Leclerc & 
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Schmidt 2001; Grottoli 2002). It is recognized that both δ13C and δ18O vary on a 

micrometric scale, with higher variability observed in δ18O suggesting different 

fractionation mechanisms (Rollion-Bard et al. 2003a; Rollion-Bard et al. 2003b).  

 

The complex interactions between the different environmental variables impacting 

the δ18O record in coral skeletons suggests that there is not a universal calibration of 

coral δ18O to SST due to site specific and colony specific fractionation (‘vital 

effects’). A range of published calibrations for inorganic aragonite and different coral 

species has been listed in appendix A. The value of the slope of the temperature-

transfer function usually varies between 0.18‰°C-1 and 0.22‰°C-1 (Correge 2006). 

Yet despite the many environmental and biological factors that influence δ18O in 

coral skeletons and introduce error into SST calibrations, this stable isotope system is 

still considered to be one of the most reliable coral-derived temperature proxies 

available to investigate relative temperature changes over time. 

 

Long records of δ18O spanning several centuries have been constructed for corals in 

the Pacific, Indian and Atlantic Basins, providing evidence of variation in climate 

processes including: changes in monsoon dynamics (Charles et al. 1997; Klein et al. 

1997; Greer & Swart 2006; Pfeiffer & Dullo 2006), variations in the frequency of El 

Niño (Cole & Fairbanks 1990; Carriquiry et al. 1994; Evans et al. 1999; Cole et al. 

2000; Gagan et al. 2000; Urban et al. 2000; Cobb et al. 2003; Damassa et al. 2006); 

the Indian Ocean Dipole (Abram et al. 2003; Zinke et al. 2004); Pacific Decadal 

Oscillation (Correge 2006); and movement of the Subtropical Convergence (Linsley 

et al. 1994; Juillet-Leclerc et al. 2006; Linsley et al. 2006). 

 

 

δ13C 

The δ13C in coral skeletons is impacted by kinetic isotope fractionation and 

metabolic isotopic fractionation (Weber & Woodhead 1972) and also reflects a 

number of environmental variables. Thus coral δ13C records are difficult to interpret. 

Kinetic fractionation is the dominant process, whereby the heavier 13C isotope is 

discriminated against during the hydration of CO2.  The δ13C composition of coral 

aragonite is also influenced by metabolic effects of the zooxanthellae undergoing 
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photosynthesis and respiration (Swart et al. 2005), while photosynthesis varies with 

external factors such as depth, cloudiness or water turbidity. Other factors known to 

influence coral δ13C include the proportion of dissolved inorganic carbon (Swart 

1983), coral spawning (Gagan et al. 1996), and changes in the dietary component of 

carbon with heterotrophic feeding exceeding autotrophic support from zooxanthellae 

(Grottoli et al. 2004).  

 

Determining past changes in the carbon cycle is the key to understanding 

paleoclimate forcing, and also provides an insight into how the oceans may respond 

to present and future changes to the climate system. The depletion of 13C in the 

atmosphere due to industrialisation increasing the amount of 12C emitted to the 

atmosphere through fossil fuel burning is known as the ‘Suess effect’. Several studies 

have detected the changing ratio of 13C/12C in biogenic organisms such as corals and 

sclerosponges as a record of the oceanic Suess effect (Nozaki et al. 1978; Druffel & 

Benavides 1986; Böhm et al. 1996). Since the Subantarctic Zone is considered one of 

the strongest sinks for atmospheric CO2 (Quay et al. 1992; Lo Monaco et al. 2005), 

identification of biogenic proxies from the Southern Ocean is central to our 

understanding of the global carbon cycle,  

 

 

Trace element proxies 

During precipitation of the aragonite lattice, substitution occurs between calcium and 

a range of divalent metals including Mg, Sr and Ba.  The trace element/calcium 

ratios (M/Ca: metal/calcium) correlate with sea surface temperature, but other 

environmental variables are believed to influence M/Ca, including salinity, vital 

effects, pH and kinetic factors (Min et al. 1995; Shen & Dunbar 1995; Hart & Cohen 

1996; Mitsuguchi et al. 1996; Cardinal et al. 2001). The utility of an individual trace 

element ratio as an independent paleotemperature proxy is hampered by the limited 

understanding of the factors controlling trace element incorporation into coral 

aragonite. However, by using multiple trace elemental ratios, a more complete 

picture of environmental conditions can be generated.  Growth effects can be 

minimised by consistently sampling down a corals major growth axis (Shen & 

Dunbar 1995; Alibert & McCulloch 1997; Cohen & Hart 1997).  Many calibrations 
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have been calculated and published for different species of corals worldwide using 

the equation (x = a + b.SST°C where x is the M/Ca ratio). These calibrations are 

similar, except differences exist between the degree of temperature dependence and 

the intercept value. A range of published calibrations are presented for Sr/Ca, B/Ca, 

Mg/Ca U/Ca and Ba/Ca in Appendix A.  

 

Boron 

Boron has a long oceanic residence time of 16-20 million years implying studies of 

boron concentration in paleoenvironmental reconstructions are robust over long 

timescales. Boron has a concentration range of 3.5-5 ppm and has two dominant 

species boric acid B(OH)3, or borate iron B(OH)-
4 in seawater (Schwarcz et al. 1969). 

The relative proportion between the 2 species is a function of pH (Hemming & 

Hanson 1992), with boric acid the main species at low pH (< 7) and borate ion exists 

predominantly at high pH (> 10) (Hershey et al. 1986). There is also a temperature 

control on the B(OH)3/B(OH)-
4  speciation in seawater, with a 1.8% increase in the 

ratio per temperature increase of 1°C (Hemming & Hanson 1992). 

 

Boron isotopic studies on biogenic organisms have established that B is incorporated 

into coralline aragonite by substituting for the CO3
2-, and most likely derived from 

B(OH)-
4 as a solid phase HBO3

2- (Vengosh et al. 1991; Gaillardet & Allegre 1995; 

Hemming et al. 1998). The distribution coefficient for B in corals is low (D =~0.011), 

probably because the species incorporates as a negative ion complex and replaces 

CO3
2- rather than direct substitution for Ca2+ as other divalent cation 

paleotemperature proxies (Gaillardet & Allegre 1995). The boron concentration and 

isotopic composition in corals can be controlled by several environmental factors 

including: temperature, salinity, pH, B(OH)-
4/H(CO3)- ratio in seawater, biological 

controls on calcification, calcite/aragonite mineralogy and kinetic fractionation 

(Hemming & Hanson 1992; Hemming et al. 1998).  

 

A seasonal cycle was first established for B/Ca when correlated with Sr/Ca using ion 

microprobe analyses (Hart & Cohen 1996). However Hart and Cohen (1996) did not 

correlate B/Ca with temperature. Laser ablation ICP-MS analyses further explored 

B/Ca as a paleotemperature proxy and have shown B/Ca to change by approximately 
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3-5% per 1°C in tropical corals (Sinclair et al. 1998; Fallon et al. 1999). A study on 

the high-latitude coral Cladocora caespitosa from the Mediterranean indicated that 

B/Ca was the most reliable temperature proxy (Montagna et al. 2007). However, 

Fallon et al. (1999) observed large variations in B concentration over small spatial 

scales, indicating temperature was not the only environmental variable influencing 

B/Ca concentrations. 

 

 

Magnesium 

The dominant species of magnesium in seawater is Mg2+, and average concentrations 

are approximately 1300 ppm.  Magnesium has a very long oceanic residence time, 13 

million years, suggesting suitability for paleoclimate reconstructions (Broecker & 

Peng 1982). The mechanisms of Mg incorporation into carbonate have been widely 

studied due to the contribution Mg makes to the different carbonate species 

(aragonite, calcite and High-Mg calcite). At seawater Mg concentrations the majority 

of carbonate precipitated is in the form of aragonite (Chave 1954; Kinsman 1970; 

Amiel et al. 1973a).  

 

The mechanisms controlling incorporation of Mg into coral skeletons have not been 

well established, and the possible locations for Mg incorporation include loosely 

bound in the aragonite crystal lattice, bound to organic compounds or adsorbed to 

crystal surfaces (Amiel et al. 1973a; Oomori et al. 1987). There is a large difference 

in the ionic radius between Ca2+ (1.06 Å) and Mg2+ (0.78 Å) which is thought to 

preclude direct substitution when there is a difference greater than 15% between 

ionic radii (Amiel et al. 1973a). Aragonite has an orthorhombic structure and when 

Mg2+ is present in solid solution (MgCO3) the structure is rhombohedral, which does 

not fit into the aragonite crystal lattice (Mitsuguchi et al. 1996). This suggests that 

Mg2+ concentrations in aragonite may be easily affected by diagenesis (Cross & 

Cross 1983). 

 

Mg/Ca has proven to be one of the most reliable and reproducible paleotemperature 

proxies in molluscs (Chave 1954; Katz 1973; Kolesar 1978), but did not appear to be 

reliably recording temperature in corals until the study by Mitsuguchi and co-authors 
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(1996). In early studies on coral the Mg/SST relationship was not very clear, 

although small positive correlations with sea surface temperature were observed 

(Chave 1954; Weber et al. 1975).  The lack of correlation between Mg/Ca and 

temperature in the early work may have been due to a combination of large sample 

size, different coral genera and varying locations (Mitsuguchi et al. 1996). The 

positive Mg/Ca-SST relationship may have several potential mechanisms including 

increased tolerance of the crystalline lattice to distortion or increased activity 

coefficient of Mg2+ compared to Ca2+ with temperature (Kinsman & Holland 1969; 

Swart 1981). There is large variation in the Mg/Ca content of corals, with 

concentrations ranging between 700-2400 ppm and this variation cannot be 

accounted for by changes in water chemistry or temperature (Chave 1954; Swart 

1981; Oomori et al. 1987; Allison & Tudhope 1992). Ion microprobe and laser 

ablation analyses have provided evidence of micron-scale heterogeneity in Mg2+ 

concentration unrelated to temperature fluctuations, with centres of calcification (or 

early mineralisation zones) enriched in Mg/Ca (Allison 1996a; Fallon et al. 1999; 

Sinclair 1999; Meibom et al. 2004; Cohen et al. 2006). The heterogeneity in Mg/Ca 

may be related to Mg2+ not bound in the crystalline lattice or presence of other forms 

of carbonate and up to 40% can be removed by extensive cleaning (Mitsuguchi et al. 

2001; Watanabe et al. 2001). 

 

 

Strontium 

The calibration of Sr/Ca versus SST has been the most studied elemental proxy aside 

from the δ18O, for example (Smith et al. 1979; Beck et al. 1992; McCulloch et al. 

1994; Alibert & McCulloch 1997; Schrag 1999). The concentration of Sr in seawater 

is approximately 8000 µg/L with a long residence time of 4-5 million years (Brass & 

Turekian 1974). The main Sr species in seawater is Sr2+ and it displays a 

predominantly conservative behaviour in nutrient rich waters and ‘nutrient type’ 

behaviour in the shallow zone of oligotrophic waters due to the formation of celestite 

(SrSO4) skeletons by radiolarians (Brass & Turekian 1974; de Villiers et al. 1994). 

The primary method of incorporation into the crystal lattice is direct substitution of 

Sr2+ for Ca2+, although Sr2+ has a larger ionic radius (1.31 Å compared with 1.06 Å), 

strontium forms an orthorhombic isomorph of aragonite called strontianite (SrCO3) 
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(Kinsman 1969; Cross & Cross 1983; Speer 1983; Greegor et al. 1997). Therefore, 

Sr/Ca has the potential to be a more reliable paleotemperature proxy than δ18O 

because it is not influenced by precipitation/evaporation to the same extent and is 

more stable through time. However, small variations in Sr concentration in seawater 

occur in different locations due to continental weathering (de Villiers et al. 1995). 

 

The distribution coefficient for Sr in coralline aragonite is negatively correlated to 

temperature, and displays an offset from inorganic aragonite values, suggesting that 

corals do not incorporate Sr in equilibrium with seawater concentrations during 

calcification (Weber 1973b; Gaetani & Cohen 2006). There have been various 

discussions concerning the variability of the Sr/Ca SST calibration differences such 

as different species, sampling, reliability of SST measurements, inter-laboratory 

spikes and calibrations on instrumentation (Shen et al. 1996; Alibert & McCulloch 

1997; Allison et al. 2001; Cohen et al. 2001; Cohen & Sohn 2004; Allison et al. 

2005). Studies on inorganic aragonite found no correlation with precipitation and Sr 

incorporation (Kinsman & Holland 1969; Dietzel et al. 2004). However, because 

corals precipitate aragonite approximately six times faster than inorganic rates, the 

distribution coefficient of Sr for biogenic aragonite may be lower than inorganic 

experimentally derived values (de Villiers et al. 1994). An accepted value of the 

distribution coefficient in corals was determined to be DSr = 1.1 at 20°C (McCulloch 

et al. 1994). Several studies have reinforced the need for consistent sampling of the 

main growth axis for the most reproducible results in Sr/Ca concentrations with 

higher Sr/Ca values attributed to suboptimal growth conditions resulting in smaller 

corallites, lower calcification and skeletal density (Alibert & McCulloch 1997; 

Cohen & Hart 1997).  

 

A wide range exists between published Sr/Ca SST calibrations since the early work 

by Beck et al. (1992) (for details see Appendix A). Micron-scale studies have 

indicated heterogeneous distributions of Sr/Ca in coral skeletons, over spatial scales 

which are too short for temperature or seawater chemistry fluctuations and may 

reflect the biological control in Sr incorporation (Allison 1996b; Allison et al. 2001; 

Cohen et al. 2001; Sinclair 2005).  

 

Although it is well established that Sr/Ca is a reliable paleotemperture proxy and 
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many long climate records have been generated for this proxy e.g. (Cole et al. 2000; 

Correge et al. 2000; Linsley et al. 2000; Hendy et al. 2002; Kuhnert et al. 2005) there 

is not a universal calibration either for a location or for a particular coral genus 

(Appendix A). However, the percent change per 1°C between published calibrations 

is very similar with the values of 0.7/°C at 25°C.   

 

 

Uranium 

Uranium also has a long residence time in the ocean at approximately 300,000 years 

and the average oceanic concentration is 3.3 µg/L (Ku et al. 1977).  Uranium has 

several species in seawater including UO2
2+, UO2CO3, UO2(CO3)2

2-  and UO2(CO3)3
4-  

(Langmuir 1978). The majority of U in corals appears to be lattice bound with UO2
2+  

substituting for Ca2+ (Min et al. 1995) or as a carbonate ion complex UO2(CO3)2
2-  or 

UO2(CO3)3
4-  substituting for CO3

2- (Swart & Hubbard 1982; Meece & Benninger 

1993; Shen & Dunbar 1995). Although U has a larger ionic structure than Ca, there is 

a naturally occurring orthorhombic carbonate, rutherfordine (UO2CO3) with a similar 

crystal lattice to aragonite (Christ et al. 1955). 

 

The CO3
2-  activity in seawater varies as a function of temperature, pH and total CO2 

suggesting that U/Ca concentrations in corals are variable due to changes in pH and 

total CO2 in microenvironments (Min et al. 1995). Early studies observed no 

seasonal dependence on U/Ca concentrations, probably due to large sample sizes and 

analytical limitations (Veeh & Turekian 1968; Schroeder et al. 1970; Livingston & 

Thompson 1971; Amiel et al. 1973b). Shen & Dunbar (1995) reported seasonal 

variations in U/Ca correlating with δ18O in Galapagos corals; and Min et al. (1995) 

observed an inverse correlation between U/Ca and SST from New Caledonian and 

Tahitian corals. The inverse relationship between U/Ca and SST has been 

documented by several studies with a temperature dependence of 3-5% per 1°C 

temperature change (Sinclair et al. 1998; Fallon 2000; Wei et al. 2000; Cardinal et al. 

2001; Quinn & Sampson 2002). The sensitivity of U/Ca to SST is approximately five 

times that of Sr/Ca, however, temperature is not the only control on U/Ca in corals 

and salinity, alkalinity and U speciation and incorporation into aragonite also effect 

the U concentration (Swart & Hubbard 1982; Shen & Dunbar 1995; Pingitore et al. 
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2002). The concentration and speciation of U in seawater can vary temporally with 

high rainfall causing lower salinities and stratification, as well as terrestrial input of 

U from carbonate weathering (Shen & Dunbar 1995). 

 

Barium 

Barium has an average residence time in seawater of approximately 84,000 years and 

principally behaves as a ‘nutrient-type’ elemental distribution in seawater compared 

to the ‘conservative’ distribution behaviour of B, Mg, Sr and U. Concentrations of 

Ba in surface waters are approximately 4.5 ppb and increase to 15-30 ppb in deeper 

waters (near the seawater-benthic boundary) due to the production of barite (BaSO4) 

by marine organisms (Riley & Chester 1971; Bacon & Edmond 1972). Barium also 

rapidly desorbs from suspended sediments when river water encounters highly ionic 

seawater in estuarine or coastal environments (McCulloch et al. 2003a). Barium 

substitutes directly for Ca2+ in coral skeletons (Speer 1983), forming a stable 

isomorph of aragonite called witherite (BaCO3). The processes driving incorporation 

of Ba2+ may be similar to Sr2+ as they are both alkaline earth elements with larger 

ionic radii (Ba = 1.47 Å; Sr = 1.31 Å) than Ca2+ (Lea et al. 1989). The Ba2+ 

incorporation into corals is considered to be proportional to seawater concentrations, 

with a partition coefficient close to 1 (Lea et al. 1989). 

 

High Ba/Ca concentrations have also been observed in contaminant phases including 

organic matter trapped in pore spaces of the coral skeleton (Allison & Tudhope 1992; 

Tudhope et al. 1996). Coral tissue has also been shown to have higher Ba/Ca 

concentrations than the majority of the coral skeleton (Buddemeier et al. 1981) or 

contaminant phases such as barite crystals (Tudhope et al. 1996). Ion microprobe 

studies have determined no association with high Ba concentrations and organic 

carbon and concluded that Ba/Ca was not controlled by organic material (Hart et al. 

1997) although it may be present as a contaminant phase (Pingitore et al. 1989; Hart 

et al. 1997).  

 

Trace elements such as B, Mg, Sr and U have displayed potential application as 

paleotemperature proxies and have stable seawater concentrations over short-

medium timescales. Barium concentrations can be influenced by oceanic sources 
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including upwelling of deep-water (Lea et al. 1989; Shen et al. 1992a; Reuer et al. 

2003) and by terrestrial sources such as river runoff (Fallon 2000; McCulloch et al. 

2003b; Sinclair & McCulloch 2004; Fleitmann et al. 2007). Correlations have been 

found between Ba/Ca and water temperature in Galapagos corals recording changes 

in the thermocline depth and associated upwelling (Lea et al. 1989). Variations in 

Ba/Ca concentrations have been related to upwelling influenced by different 

environmental variables including  El Niño events effecting the strength of upwelling 

and thermocline depth (Shen et al. 1992a) and wind-induced upwelling (Fallon et al. 

1999).  Another significant source of Ba to the coastal zone is from river runoff, as 

seawater Ba concentrations are increased by the desorption of Ba from particulate 

material (Riley & Chester 1971). This desorption process can increase coastal 

seawater Ba concentrations by more than 50% (Hanor & Chan 1977).  Corals 

collected from near shore waters adjacent to river systems have peak skeletal Ba/Ca 

concentrations that are correlated to the magnitude of flood events (Shen & Sanford 

1990; Sinclair 1999; Fallon 2000; McCulloch et al. 2003b). 

 

Lea et al. (1989) suggested Ba/Ca concentrations may have a temperature 

dependence in Galapagos corals and concluded that one-third of the Ba/Ca signal 

was related to seasonal variations in SST. If Ba is incorporated with a similar 

mechanism to Sr, then the  temperature dependence of partitioning may be similar, 

based on Sr/Ca-SST calibrations this would suggest an ~ 0.7% change in Ba/Ca per 

°C (Lea et al. 1989). A recent study on high-latitude corals from the Mediterranean 

observed a seasonal cycle in the Ba/Ca concentration and suggested a temperature 

dependence of 3% per °C at 25°C (Montagna et al. 2007). These authors concluded 

that there was a close relationship between Ba/Ca and SST in Cladocera with a 

temperature dependence of -0.18 µmol/mol. Gaetani and Cohen (2006) also observed 

a temperature dependence of Ba/Ca in Diploria of -0.16 µmol/mol. Few other studies 

on coral geochemistry have observed any temperature dependence in the Ba/Ca 

concentrations, even once removed from upwelling or runoff influences.  

 

However, experimental precipitation studies have found a strong temperature 

dependence on Ba/Ca incorporation into inorganic aragonite (Dietzel et al. 2004; 

Gaetani & Cohen 2006). Dietzel et al. (2004) observed the effect of temperature on 

Ba was an order of magnitude higher than on Sr and suggested that Ba may be a 
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potential paleothermometer if the composition of the solution is known. Gaetani and 

Cohen (2006) observed a disparity between experimental Ba/Ca concentrations and 

concentrations in annual cycles of a coral skeleton, and interpreted the difference 

between inorganic and biogenic aragonite to be the magnitude of the coral ‘vital 

effects’ caused by modification of the fluid composition during calcification. 

 

Minor trace elements 

Divalent cations of trace abundances can be incorporated into coral skeletons at 

concentrations that are proportional to ambient seawater concentrations (Figure 2.2). 

The trace metal/calcium ratio (M/Ca) in coral skeletons can be used to reconstruct 

past concentrations of trace metals in seawater. Many trace metals have a nutrient-

like behaviour and are enriched in upwelled waters and low in oligotrophic waters.  

 

 
 

Figure 2.2: Trace element/Calcium ratios for tropical scleractinian corals and seawater. The dashed 

line represents the partition coefficient (Dp) between the Y axis (X/Ca coral) and the X axis (X/Ca seawater). 

The points above the line correspond to preferential uptake by corals and the elements below the line 

correspond to preferential exclusion of these elements by corals. Figure adapted from Reuer et al. 

(2003). 
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There is a growing body of literature examining trace and minor elemental 

concentrations in corals and associated environmental changes. The majority of these 

studies have focused on anthropogenic impacts to coastal and coral reef 

environments (St John 1974; Brown & Holley 1982; Howard & Brown 1984; Brown 

1987; Shen & Boyle 1987; Scott 1990; Fallon et al. 2002). However, some studies 

have found evidence of trace metals varying in relation to climate related phenomena 

including regional scale upwelling and the El Niño Southern Oscillation (Shen et al. 

1987; Shen et al. 1991; Shen et al. 1992c; Reuer et al. 2003).  

 

Corals may be used as biomonitors of anthropogenic environment modification or 

pollution, since they incorporate trace metals into the annual growth bands of their 

skeletons (Shen & Boyle 1988; Fallon 2000). Corals can be exposed to high metal 

concentrations as a result of industrial activities (Howard & Brown 1987; Fallon et 

al. 2002; David 2003);  or environmental modification near urban areas including 

harbour dredging or sewage discharges (Dodge et al. 1984; Bastidas et al. 1999; 

Esslemont 1999). 

 

However, few studies have investigated the rate of trace metal uptake, or the transfer 

between tissue and skeleton (Esslemont et al. 2000; Reichelt-Brushett & McOrist 

2003). There is also no clear correlation between metal exposure and metal 

accumulation (Hanna & Muir 1990). Incorporation of trace metals into corals can be 

the result of coral feeding (Hanna & Muir 1990; Ferrier-Pages et al. 2005), 

zooxanthellae uptake (Reichelt-Brushett & McOrist 2003), organic matter from coral 

tissue (St John 1974; Glynn et al. 1989), particulate matter trapped within skeletal 

cavities (Howard & Brown 1984; Hanna & Muir 1990) or incorporation (via 

substitution with Ca) into the aragonite crystal lattice (Dodge & Gilbert 1984; Shen 

et al. 1987; Shen & Boyle 1988; Delaney et al. 1993; Esslemont 1999; Fallon et al. 

2002; David 2003; Wyndham et al. 2004). The variability in the different 

mechanisms of incorporation into coral skeleton may account for the large variations 

in metal concentrations in published studies (Appendix A). 

 

The majority of minor trace elements have a ‘nutrient-like’ behaviour in seawater 

and many elements produce a stable carbonate mineral phase in solution with calcite 
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or aragonite (Speer 1983). One example is cadmium, with a similar ionic radius to 

Ca and forms the mineral otavite, CdCO3. Cadmium has been suggested to be lattice 

bound in corals, with a distribution coefficient close to 1 (Shen & Boyle 1988). Shen 

et al (1987) related Cd concentrations in corals from Bermuda with historical 

upwelling and industrial fallout. 

 

Phosphorus acts as a limiting nutrient that plays a key role in sustaining the 

biological productivity of the oceans. Phosphorous has also been used as an 

anthropogenic tracer, with increases in P concentrations of North Atlantic corals 

recording historical variations in treated sewage (Dodge et al. 1984). Phosphorus 

inclusion into the skeletons of deep-sea corals has been shown to be directly 

proportional to the ambient seawater phosphorus concentration serving as a paleo-

productivity proxy (Montagna et al. 2006).  

 

The manganese seawater concentration is influenced by a variety of sources 

including dissolved and particulate Mn from rivers, reduction of Mn and shelf 

sediments and aeolian inputs dominates the coast seawater manganese concentrations 

(Bender et al. 1977; Klinkhammer & Bender 1980; Shen et al. 1991). Manganese is 

predominantly lattice bound, however it is discriminated against in the coral lattice, 

with a distribution coefficient of Dmn =~ 0.2-0.6 (Linn et al. 1990; Shen et al. 1991; 

Delaney et al. 1993). Manganese has been measured in corals from the coastal 

locations Gulf of Panama, the Galapagos islands (Shen et al. 1991; Delaney et al. 

1993), and open ocean Tarawa Atoll, (Shen et al. 1992b).  In these studies 

manganese displays a clear strong annual signal (Delaney et al. 1993), or a series of 

pulse events (Shen et al. 1992b). Mn/Ca concentrations have been related to a range 

of environmental factors including movement of surface ocean currents (Linn et al. 

1990; Shen et al. 1991; Delaney et al. 1993); variations in wind strength and 

direction (Fallon 2000; Alibert et al. 2003; Wyndham 2005) and deep-sea 

hydrothermal vent activity (Shen et al. 1991). 

 

Concentrations of dissolved zinc in surface waters of the open ocean are often very 

low, therefore, it has been suggested that low levels may limit phytoplankton growth, 

and their ability to acquire inorganic carbon (Morel et al. 1994). Zinc may be an 

important trace metal for corals, assisting in photosynthesis of their dinoflagellate 
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symbionts and calcification.  Metals such as zinc, can be substituted for calcium in 

the skeleton or can be associated with the organic matrix (Howard & Brown 1984).  

The incorporation of zinc into coral skeleton is dependent on zinc concentration in 

seawater and on the duration of the exposure (Ferrier-Pages et al. 2005). A recent 

study observed that zinc accumulation in the coral skeleton was dependent upon light 

stimulation suggesting that zooxanthellae are involved in the process of zinc uptake 

through photosynthesis (Ferrier-Pages et al. 2005). However, no previous studies 

have established the role of zinc in coral skeletons as an environmental biomarker of 

natural fluctuations in zinc. Studies on calcification in phytoplankton 

(coccolithophores) indicated the importance of zinc in calcification, and noted slower 

cellular growth and nitrogen utilisation rates with zinc deficiency (Schultz et al. 

2004).   

 

Lead also forms a stable orthorhombic carbonate, cerussite (PbCO3), therefore it is 

suggested that Pb substitutes directly into the coral lattice (Speer 1983). Lead is 

enriched in coral skeletons relative to seawater with a distribution coefficient DPb = ~ 

2.3 (Shen & Boyle 1987). Increases in Pb/Ca concentrations in corals have been 

attributed to anthropogenic sources including industrial sources, fossil fuel burning 

and sewage (Dodge & Gilbert 1984; Shen & Boyle 1987; Shen & Boyle 1988). 
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Chapter 3: The South Australian Gulf Environment 

Regional Climate, Geology & Oceanography 

The southern coastline of Australia (Figure 3.1) is the longest east-west coastline in 

the world. The regional climate is similar to the Mediterranean with hot, dry 

summers and cool, moist winters. Winds are generally NW to SW during winter 

caused by low pressure systems in the Southern Ocean between 40-50°S. The 

geological provinces in this region include the Gawler Craton and the Adelaide 

Geosyncline with orogenic processes occurring between 2300-600 for Gawler Craton 

and 1400-560 million years ago (Adelaide Geosyncline). The Gawler Craton is 

predominantly weathered granite overlain by Quaternary aeolian and marine 

sediments (Belerio et al. 1984). The Adelaide Geosyncline consists of heavily folded 

metasediments, mainly comprised of steeply dipping sandstones and quartzites. The 

peninsulas are influenced by moderate wave energy, resulting in extensive beaches 

and large, open embayments backed by stable Tertiary-Quaternary dunes. 

 

 

Figure 3.1: LANDSAT image of part of the southern coastline of Australia including the Great 

Australian Bight, Spencer Gulf and Gulf St Vincent. Image captured on 22nd December 2004. Image 

from http://modis.gsfc.nasa.gov/index.php. 



Geochemical Ecology of Temperate Corals 

 52 

The regional climate displays strong annual cycles in all environmental variables 

including temperature (SST), salinity, rainfall, sea level and cloud cover. There is a 

large annual temperature range of over 50°C between summer and winter for some 

regions in South Australia. The annual temperature range in Gulf St. Vincent is 

approximately 10-11°C from 12°C in winter to 23°C in summer (Figure 3.2). During 

El Niño years (such as 1998 – Figure 3.2) the amplitude of the seasonal variation 

increases up to 15°C with summer maximums around 26-27°C. 

 

Figure 3.2: Environmental variables influencing the South Australian Gulfs. Sea surface temperature, 

rainfall and sea level data were provided by the National Tidal Facility, part of the Bureau of 

Meteorology. Cloud radiation and solar flux were sourced from the data library International Research 

Institute for Climate and Society at Columbia University (http://iridl.ldeo.columbia.edu/SOURCES/). 
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Figure 3.3: Map of Spencer Gulf and Gulf St. Vincent with insets of coral collection sites. A: Seacliff; B: 

Edithburgh and Troubridge; C: Whyalla and Point Lowly; D: Taylors Island, E: Dutton Bay. Locations of 

local rivers including the Torrens River and Onkaparinga River are labelled in 3.3.A. Sources of point 

source pollution including the waste water treatment plants at Port Adelaide and Glenelg, oil refinery at 

Port Stanvac in 3.3.A and the smelters present at Whyalla and Port Pirie in 3.3.C.  

 

Rainfall predominantly occurs during winter and maximum monthly rainfall can be 

up to 120 mm. Since there is a considerable temperature variation in regional SST 

and depressed winter rainfall during El Niño years, corals collected from the South 

Australian gulfs, Spencer Gulf and Gulf St. Vincent (Figure 3.3) may record these 

temperature anomalies in their skeletal geochemistry. Sea level varies by 

approximately 400 mm throughout the year with sea level highs recorded during 

winter months (July-September). Satellite derived information (Figure 3.2) for the 

region including cloud radiation is highest in summer and solar flux varies on a 

decadal timescale. 

 

Great Australian Bight 

The Great Australian Bight (GAB) is a latitude-parallel shelf with complex 

oceanography facing the Southern Ocean approximately 500 km north of the 

Subtropical Convergence (Rochford 1986). The eastern Great Australian Bight 

supports one of the most diverse soft-sediment communities (Ward et al. 2006). The 

present sea level was reached approximately 1700 years BP (Belerio et al. 1984) and 

future predictions by the IPCC suggest an increasing rate of sea level rise by up to 

0.9 m by 2100.  

 

The Great Australian Bight waters change markedly between seasons; in winter the 

region is crossed by a series of cold fronts extending from low pressure systems 

originating in the Southern Ocean moving eastwards, in summer high pressure cells 

develop with anti-cyclonic wind circulation (Herzfeld 1997). This results in 

predominantly south-easterly summer winds, and westerly winter winds. In general, 

the GAB is a region of sustained coastal downwelling, with local, diffuse upwelling 

in summer partly maintained by bottom Ekman transport in the eastern GAB along 
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the western coast of Eyre Peninsula (Figure 3.4). Strong currents occur on the shelf 

slope boundary, with the South Australian current (Figure 3.4) a continuation of the 

Leeuwin current which predominantly lies on the continental shelf/slope boundary 

with eddies intruding onto the continental shelf in summer. The strength of the 

Leeuwin current can vary with Indian Ocean Dipole events causing temperature 

anomalies on the northwest Australian continental shelf and stronger trade winds 

increase the influence of the current along the southern coastline of Australia 

(Meyers et al. in press). The Flinders current is a westerly flowing current and may 

be dependent on the strength of the East Australia current reaching past Tasmania. 

 

 

 

Figure 3.4: The major currents in the GAB region. The Leeuwin Current and South Australian Current 

are strongest in winter. Winter outflow is a south-eastward movement of saline, oligotrophic water off 

the shelf generated by evaporation and solar heating during summer. Adapted from (James et al. 

2001) and http://www.es.flinders.edu.au/~pbarker/bye.html 

 

The environment is generally oligotrophic, with surface inorganic phosphate levels 

the lowest measured in the Indian and Southern Oceans (Rochford 1986). The 

eastern Great Australian Bight is one of the few regions in Australia where 

predictable, large-scale upwelling occurs providing nutrient-enrichment on to the 

shelf (Lewis 1981). Cold water intrudes onto the shelf in the eastern GAB during 

summer-autumn, (Figure 3.5) reaching the surface in coastal waters of the south-

western Eyre Peninsula (Herzfeld, 1997), but is not present on the shelf during winter. 
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Figure 3.5: Sea Surface Temperature maps of the South Australian Gulfs and GAB. Summer map 

collected on 13 March 1995. Winter map collected on 13 October 1998. Maps courtesy of CSIRO 

Division of Marine Research.  
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The extensive gulf systems of Spencer Gulf to the west and Gulf St. Vincent 

represent one of the largest sheltered coastal ecosystems in Australia (Edyvane 1999). 

The waters of the two South Australian gulfs influence the regional peninsula 

weather, producing a temperate climate with smaller monthly temperature deviations 

than inland areas at similar latitudes. Both Spencer Gulf and Gulf St Vincent behave 

like inverse estuaries, due to minimal fresh water input from rivers or groundwater, 

and high evaporation rates at the head of the gulfs. This results in a double layered 

circulation, with oceanic water entering the gulf in the upper layer and hyper-saline 

water leaving in the lower layer.  

 

Gulf St. Vincent 

The dominance of evaporation over rainfall and virtual absence of river runoff 

increases the salinity at the head of Gulf St Vincent (GSV) from 39 ‰ in winter to 

over 42 ‰ in summer. The average salinity across the mouth of Gulf St. Vincent 

(Cape Jervis to Troubridge shoals) is ~ 36.5 ‰ (de Silva Samarasinghe et al. 2003). 

The general circulation is clockwise, with less saline shelf water entering through 

Investigator Strait, flowing up the western side of the gulf, and more saline outflow 

along the eastern side. Outflow of Gulf water in summer is restricted by the 

formation of temperature fronts over the western end of the Strait. The rate of salt 

flushing is influenced by variability in general circulation, and the directional 

variability in currents is a hindering factor for the transport of tracers (de Silva 

Samarasinghe et al. 2003). 

 

Ecologically, the waters of Gulf St. Vincent are relatively diverse with sand, seagrass 

and rocky reef ecosystems providing important nursery and feeding grounds for 

molluscs, crustaceans, fish and marine mammals. Significant pollution comes from 

many sources, including stormwater runoff, river catchment discharges. Urban runoff 

contains solid wastes, chemical pollutants, vehicle pollutants and pesticides, whereas 

rural runoff includes a combination of fertilisers, agricultural chemicals, animal 

waste, pesticides, herbicides and soil. Wastewater treatment plants discharge 

secondary treated effluent from four locations into Gulf St. Vincent including Port 

Adelaide and Glenelg. These discharges are high in nutrients and suspended solids 
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and contain heavy metals. Historically, sewage sludge has been discharged at 

Glenelg causing over 1000 Ha loss of seagrass (Gaylard 2004). Port Adelaide and 

Port Stanvac have been the site of several oil spills with 10 spills at Port Stanvac 

between 1988 and 1992 and the largest spill of 234,325 litres in 1982 (Edyvane 

1999). The use of tributyl tin (TBT) as boat antifoulant has been proven to cause 

growth abnormalities and is banned in all states of Australia except South Australia. 

 

The metropolitan water supply of Adelaide (> 1,300,000 people) has a major impact 

on the natural flows of a number of catchments draining into Gulf St. Vincent. The 

largest river in the region, the Torrens River has a catchment of approximately 500 

km2 and has two distinct catchment regions, a watershed in the upper catchment and 

an urbanised lower catchment. Annual average rainfall varies from 1200 mmyr-1 in 

the upper catchment to 400 mmyr-1 on the coastal plains (Gaylard 2004). The current 

outlet of the Torrens River, was constructed in the 1930s and bypassed the coastal 

wetlands, resulting in direct discharge of turbid stormwater into the coastal zone 

(Lewis 1975). A three year study on river health suggested that most nutrient loading 

into the coastal zone is episodic with over 80% of suspended solids, 50% of nitrogen 

and 67% of phosphorus discharged in a two week period (Schultz et al. 2000). 

Results of this study imply infrequent loading on the marine environment during 

large floods every few years. 

 

Spencer Gulf 

Spencer Gulf is a large (length ~ 325 km, mean width ~ 60 km) relatively shallow 

(mean depth ~ 22 m) semi-enclosed sea, with evaporation exceeding precipitation for 

most of the year (Nunes Vaz et al. 1990). There are no significant rivers providing 

runoff into the gulf and groundwater contributions are believed to be minimal. 

Salinity increases with distance from adjacent shelf waters to a maximum of ~ 48 ‰ 

at the head of the gulf in late summer. Gulf temperatures vary considerably between 

seasons with minimums of ~ 10˚C in late winter and rising to 25˚C in late summer. 

Large temperature gradients occur across the mouth of the gulf at summer and winter 

extremes. The low thermal inertia of the gulf means that its annual temperature 

variability (18 ± 7˚C) is much greater than the adjacent shelf seas (17.6 ± 1.8˚C), and 
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the gulf/shelf temperature gradients reverse in spring and autumn (Nunes Vaz et al. 

1990). During summer, temperature gradients reverse at the mouth of the gulf, 

preventing the release of the highly saline fluid and creating a frontal boundary of 

salinity and temperature. Previous research  has found the frontal zone to be a region 

of subsurface convergence and surface divergence, and this separation of gulf and 

shelf vertical circulation acts to inhibit exchange of oceanic water across the mouth 

(Nunes & Lennon 1986). Therefore on a seasonal timescale, the density gradients 

reverse across the mouth of the gulf, assisting water exchange in winter but blocking 

water exchange in summer. 

 

Benthic habitats vary between sandy seabeds, extensive areas of seagrass and algal 

dominated rocky reefs. Large colonies of Plesiastrea versipora have been observed 

on isolated reefs, however large colonies are thought to be rare in Spencer Gulf due 

to long term benthic trawling for prawn fisheries (Edyvane 1995). Primary 

production in Spencer Gulf is sustained by internal recycling of essential plant 

nutrients (C, N, P) by about 90% (Smith & Veeh 1989). The most important primary 

production in this system is by seagrass and the fisheries yield of Spencer Gulf is a 

relatively low proportion of the primary production (Smith & Veeh 1989). 

 

Major industries operate in the region of Spencer Gulf including: iron ore mining, 

steel production, petrochemical processing and food additive production such as beta 

carotene (DEH 2003). The smelter at Port Pirie is one of the largest zinc and lead 

smelters in the world and has been operational since 1889, causing heavy metal 

pollution in the form of particulate emissions from smoke stacks, dust blown from 

sites, spillage from ship loading and discharging of liquid effluent. Heavy metal 

contamination (including zinc, cadmium and lead) within proximity of mines and 

smelters in Spencer Gulf has been the subject of several studies (Ward & Young 

1981; Ferguson 1983; Ward & Young 1983; Harbison 1984; Noye 1984; Harbison 

1986; Maher 1986; Ward 1989; Edwards et al. 2001) with most biota sampled in the 

contaminated areas indicating elevated levels of Zn, Pb and Cd. Seagrass habitats 

near Port Pirie have been monitored in the past for metal accumulation (Ward 1989; 

Edwards et al. 2001) and closures have occurred in shellfish harvesting areas in parts 

of Spencer Gulf. Oil spills have also occurred in Spencer Gulf, the largest recorded 



Geochemical Ecology of Temperate Corals 

 60 

occurred in August 1992 at Port Bonython. During this spill over 300,000 litres of 

bunker oil was released with environmental damage occurring on nearby mangrove 

and seagrass habitat. 

 

 

Australian climate forcing  

Long-term historical studies allow an assessment of the natural variability within 

ecological systems and the response and resilience of systems to environmental 

change. Historical studies also provide a way to interpret the significance of recent 

human driven transformations (Bickford & Gell 2005). Detailed correlations of 

marine and continental paleoclimate records over glacial and interglacial periods at a 

global scale are essential if we are to ascertain climate complexities in the 

Quaternary. There are very few paleoclimate records from the Southern Hemisphere 

in comparison to the Northern Hemisphere. There is also a bias present in the spatial 

distribution of records from Australia with most speleothem, lake core and tree ring 

records clustering in eastern Australia with very few records extending further west 

than the southeast of South Australia. Recent paleoclimate studies have sought to 

address this issue and establish changes in the Australian monsoon in the southern 

and western part of Australia and the strength of different tropical climate 

teleconnections such as ENSO (Treble et al. 2003; Magee et al. 2004; Bickford & 

Gell 2005). Coral records from southern Australia would complement the speleothem 

and lake core records, providing a clearer picture of the environmental variability at 

high-resolution over the last few hundred years. 

 

The southern coastline of Australia is influenced by large-scale climate systems from 

three ocean basins. Therefore El Niño Southern Oscillation, Indian Ocean Dipole, 

Pacific Decadal Oscillation and the Southern Annular Mode can play an influential 

role in local and regional climate in the South Australian gulfs. The northern regions 

of South Australia are part of a large drainage basin, including the Lake Eyre Basin 

which are influenced by latitudinal variations in the extent of the Austral-Asian 

monsoon system. 
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Lake Eyre is the largest ephemeral lake in Australia and lies in the southwest margin 

of a large drainage network dominated by summer monsoon rainfall, in an area with 

Australia's lowest rainfall, which is far exceeded by evaporation (Magee et al. 2004).  

Cores from Lake Eyre provide one of the few paleoclimate archives from South 

Australia and enable comparison to be made with marine isotopic records of 

insolation changes, sea level variation, and  monsoon dynamics the over the last 

150,000 years. The Australian monsoon recorded in Lake Eyre (at the periphery of 

the Southern Hemisphere monsoon) is spatially and temporally erratic, varying 

significantly with tropically driven climate systems such as the Walker circulation 

and the El Niño Southern Oscillation (Magee et al. 2004). On shorter time-scales 

high-resolution lake cores from the Fleurieu Peninsula observed differences in 

vegetation type and cover following European settlement (Bickford & Gell 2005), 

whereas the natural environmental variation throughout the Holocene suggest that 

recent human changes cannot be considered as part of the natural ongoing trajectory 

of environmental change and ecosystem adaptation. Very few studies in Australia 

have examined the anthropogenic impact in the coastal marine environment, however, 

tropical corals have successfully recorded local pollution (Shen & Boyle 1988; 

Esslemont 1999; Esslemont et al. 2004; Inoue et al. 2004). 

 

The El Niño Southern Oscillation (ENSO) is a coupled cycle with atmospheric-

oceanic exchange. ENSO is considered to be the strongest, natural source of global 

interannual climate variability. However, the intensity, frequency and longevity of 

ENSO events have varied through time and are still not well understood (Evans et al. 

1998; Kotwicki & Allan 1998; Correge et al. 2000; Turney et al. 2006). This 

phenomenon alternates between two phases, termed El Niño and La Niña on a 2-7 

year cycle. During an El Niño event, warming of the Central and Eastern tropical 

Pacific Ocean and decreased trade winds suppress rainfall in the western Pacific 

basin. The opposite occurs during a La Niña event with enhanced rainfall in the 

western Pacific and reduced rainfall in the eastern Pacific. The maximum amplitude 

of the Southern Oscillation Index (SOI) generally co-occurs with the Austral summer, 

however the associated anomalies in sea surface temperature, rainfall and wind 

direction differ considerably between different ENSO events (Rasmusson & Wallace 

1983). Teleconnections associated with ENSO events occur at higher latitudes due to 

Hadley Cell circulation, these are known to have varied through time (Charles et al. 
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1997; Marshall & McCulloch 2001; Gagan et al. 2004; D'Arrigo et al. 2005). ENSO 

teleconnections have varied with changing intensity of atmospheric and oceanic 

anomalies during the last 150 years of instrumental monitoring (Mann et al. 1998). 

Since the 1970s, ENSO has altered its dominant signal to El Niño conditions (Allan 

& D'Arrigo 1999) and, any mid-latitude teleconnections may lag equatorial 

anomalies by several months (Power et al. 1999). The dynamic fluctuations of ENSO 

make accurate reconstructions of historical events from paleoarchives problematic 

(Mann 2002).  

 

El Niño and the Southern Oscillation Index have been recorded in several mid-

latitude (D'Arrigo et al. 2005) and high-latitude archives and it is likely that they 

have some influence over regional climate in South Australia. The Southern 

Oscillation Index has been associated with changes in wave dynamics and beach 

rotation on the eastern Australian (New South Wales) coastline (Ranasinghe et al. 

2004). This study found that offshore wave height was positively correlated with the 

SOI, while offshore wave direction was negatively correlated with the SOI. In 

addition, the northern end of this type of beach accretes during the El Niño phases 

while the southern end erodes, resulting in a clockwise rotation of the beach and 

anticlockwise rotations during La Niña phases (Ranasinghe et al. 2004).  

 

While there are strong teleconnections associated with ENSO between the tropics, 

the mid-latitudes and the extra-tropics the mean wave direction is also influenced by 

varying atmospheric circulation associated with the Southern Annular Mode (SAM) 

(Goodwin 2005). The Southern Annular Mode describes the seesaw of atmospherics 

with opposing geopotential height perturbations between the mid-latitudes (~45°S) 

and Antarctica (Gillett et al. 2006). When the Southern Annular Mode index is 

positive, and the mid latitude westerlies (roaring 40’s) are latitudinally displaced 

poleward (towards 60°S). When the index is negative, the westerlies are displaced 

towards the equator (Rogers & van Loon 1982).  

 

An Indian Ocean Dipole (IOD) event begins with anomalous SST cooling along the 

coastline of Java and Sumatra during the Austral winter (May-June). The equatorial 
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westerlies weaken and reverse direction, following the wind reversal, the Indian 

Ocean Dipole event peaks in September-October with anomalously warm SSTs over 

large parts of the western Indian Ocean Basin (Saji et al. 1999). Some Indian Ocean 

Dipole events are coincident with strong ENSO events (Saji et al. 1999) and when 

these events co-occur in an Indian Ocean Dipole positive phase (Figure 3.6), the 

Leeuwin current flows more strongly around Cape Leeuwin and brings anomalously 

warm water east past the south Australian Gulfs (Meyers et al. in press). 

 

 

 

Figure 3.6: Composite averages of SST anomaly for the period of Austral winter-spring (June-

November). (a) and (b) indicate typical SST anomalies for El Niño events including a warm anomaly in 

the eastern Pacific and a cooler SST anomaly in the western Pacific. Southern Australia indicates a 

slight positive SST anomaly. (c) Indicates a positive SST anomaly during negative IOD mode off 

Indonesia and also southern Australia. (d) Displays the normal SST conditions in the southern Pacific 

Basin with no El Niño or IOD. (e) Indicates a positive IOD mode and a cooler SST anomaly in the 

Indonesian Archipelago (f) Indicates a strong negative anomaly in the Indian Ocean, Eastern Pacific 

and southern Australia during a La Niña and IOD- mode. The cool temperature anomaly in southern 

Australia is not replicated during a La Niña event without the IOD (g). Adapted from Meyers et al. (in 

press).  
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Evidence of interdecadal fluctuations in the Pacific known as the Pacific Decadal 

Oscillation (PDO) is documented in oceanic, atmospheric, and sedimentary records 

in the region of the Pacific basin. The Pacific Decadal Oscillation has been defined 

as the low-frequency SST variability across the Pacific basin (Power et al. 1999).  

Previous authors have found a large positive anomaly with the Pacific decadal 

oscillation-SST pattern south of Australia (Figure 3.7), however, details of the 

driving mechanisms of the Pacific interdecadal variability are not well understood 

(Mestas-Nunez & Miller 2006).  

 

 

Figure 3.7: Correlation patterns constructed for the Pacific Decadal Oscillation (PDO)-SST anomaly 

using data sets from (Mantua et al. 1997; Kaplan et al. 1998; Mestas-Nunez & Enfield 2001).  A 

positive temperature anomaly can be observed in southern Australia coincident with the warm anomaly 

in the eastern Pacific Basin, especially with the Mestas-Nunez & Enfield (2001) PDO data set in (b). 

The 5 year running average of the PDO SST anomaly indicates increased warming in the later part of 

the 20th Century. Figure adapted from (Mestas-Nunez & Miller 2006). 



   Chapter 3: Regional Oceanography & Coral Occurrence  

 65 

The large-scale structure of the Pacific Decadal Oscillation is similar to ENSO with 

large amplitudes in the tropical Pacific and out of phase variations in the central mid 

latitude Pacific. Recent work on Australian and South Pacific climate has identified 

interdecadal climate variability described by the Pacific Decadal Oscillation 

modulate into interannual fluctuations described by ENSO with an approximately 15 

to 30 year period (Power et al. 1999).  Studies examining the mean wave direction on 

the New South Wales coastline found that it varies with a strong annual cycle with 

significant multidecadal fluctuations correlating with the periodicity of the Pacific 

Decadal Oscillation (Goodwin 2005). The significant correlation between annual 

mean wave direction and SOI indicates that mid-shelf wave direction behaviour can 

be interpreted in association with ENSO and the multidecadal variability in wave 

direction data suggested a combined influence of both the Pacific Decadal 

Oscillation (15 to 30 year periods) and the Southern Annular Mode (10.5 to 23 

periods) (Goodwin et al. 2004; Goodwin 2005). 

 

 

Figure 3.8: Austral warm season (November-April) temperature reconstruction for Tasmania based on 

ring widths from subalpine Huon Pine indicating a warming trend from the 1960s onwards. Dashed line 

displays a 5 year running average. Figure adapted from Cook et al. (2006).  

 

To date, tree ring temperature proxy reconstructions from Tasmania offer some of 

the only high-resolution temperature reconstructions for southern Australia. A 

Tasmanian summer temperature reconstruction from Huon Pine tree rings (Figure 3.8) 

indicates warming beginning in 1965 with the trend sustained until the end of the 

record in 2001 (Cook et al. 2006). The authors of this study noted that the recent 
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warming period included the warmest temperatures in the last 2000 years of the 

record and only exceeded by 0.2°C three times in the entire 3600 year record. 

However, Tasmania experiences higher frequency variability in the regional climate 

(more oceanic, island-like) compared with continental Australia. A Tasmanian 

speleothem study did not find any significant correlation with published tree-ring 

records, suggesting the regional climate is more variable than the proxy recorded in 

summer growth tree rings (Desmarchelier et al. 2006). Evidence for the observed 

increase in temperature in the last 50 years in the tree ring record has also been 

shown by coral records from the mid-latitudes of Western Australia, with a 1.4°C 

increase over the length of the 200 year record (Kuhnert et al. 1999).  

 

 

 Coral Occurrence 

The original premise of the project included collecting coral samples from the Great 

Australian Bight to assess temporal variations in the summer wind-driven upwelling 

as this is an important nutrient source for several commercial fisheries in the region 

(including Southern Blue Fin Tuna). While massive colonies were found in the GAB 

during towed video transects, none were located during dive surveys and the focus of 

the project shifted to an intra- and inter- gulf comparison as sampling success had 

been achieved in both gulfs. By directly comparing coral proxy records between the 

two gulfs, which have vastly different anthropogenic influences, the scope of the 

project was broadened significantly.  

 

Fieldwork was initially conducted during April-December 2003 in Gulf St. Vincent 

and Spencer Gulf (Figure 3.3). The fieldwork was carried out over an extended 

season as coastal rocky reefs required extensive surveying to find coral colonies 

suitable for coring. Before this study, there were minimal records of colony locations 

and due to lower visibility in temperate waters and the lower depth of Plesiastrea 

colonies; they could rarely be seen from the surface. Four coral colonies were 

revisited in May 2005 and longer cores were taken. The temperature loggers which 

had been placed on Seacliff and Troubridge corals in 2003 were also collected. 
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Figure 3.9: Encrusting form of Plesiastrea versipora colonies from other high-latitude sites. A: 

Batemans Bay, New South Wales, photo by Adrienne Grant. B: Kent Group Islands, Bass Strait, photo 

by Neville Barrett. 

 

 

 

Figure 3.10: Massive forms of Plesiastrea versipora colonies from South Australian gulfs. A: Whyalla, 

Spencer Gulf, colony approximately 15 cm photo by James Brook.  B: Edithburgh colony, Gulf St. 

Vincent, approximately 28 cm. C: Seacliff A colony, Gulf St. Vincent, approximately 150 cm high. D: 

Troubridge colony, Gulf St. Vincent, approximately 180 cm. 
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All fieldwork was conducted with the assistance of South Australian Research and 

Development Institute: Aquatic Science staff and resources from the West Beach and 

Port Lincoln offices. Core samples of up to 750 mm were obtained using an initial 

500 mm core barrel and extension rods to collect longer cores of up to 1500 mm. The 

drill bit is a modified commercial design (developed by the workshop at the Research 

School of Earth Sciences) with tungsten carbide teeth attached to a pneumatic air 

drill. The coring techniques required some modification from Porites coring due to 

the increased density of Plesiastrea and the depth of colonies (2-20 m). Depending 

on the depth of the colony the pneumatic drill was attached to a standard steel dive 

tank, with a second tank set up (including first stage valve) to exchange during the 

one dive. For shallow corals, the drill was connected to a surface supply (hooker 

system) on the dive vessel. 

 

Although Plesiastrea versipora is ubiquitous around the entire coastline of Australia 

(Veron 1986) the most common colony habit is the encrusting form (Figure 3.9). In 

the waters of South Australia, both the encrusting form and the massive form (Figure 

3.10) are present. It remains unknown what environmental or genetic triggers exist in 

juvenile corals to determine which growth habit they will form, impacting coral 

biomineralisation processes. For geochemical studies, only massive colonies with 

sufficient vertical extension to record several decades of climate information are 

useful, and therefore were targeted for sampling. 

 

The Plesiastrea versipora samples collected in 2003 and 2005 are listed in Table 3.1, 

the associated field notes can be found in Appendix B. The deepest location for coral 

collection was on the western side of Taylors Island (Figure 3.3D) in Spencer Gulf. 

Oceanic water enters Spencer Gulf through this channel and currents are 

exceptionally strong with visibility commonly less than 1 m (known as the ‘milk 

run’). Several bioeroded and encrusted corals were observed before two live corals 

were located and core samples collected near Taylors Island. Both of these colonies 

have been heavily bored by barnacles and one colony (Taylors Island B) had rolled 

losing the primary growth axis but continued growing. Severe storms may cause 

corals in the South Australian gulfs to dislodge from the substrate they attached to 

and roll along the seafloor. Most of the Plesiastrea versipora colonies observed 
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during the surveying were located on sandy bottom (Dutton Bay, Taylors Island) or 

seagrass habitat (Edithburgh, Troubridge). The few that were located on rocky reefs 

(Seacliff and Whyalla) had a higher profile than the surrounding unconsolidated reef 

complex. 

 

Table 3.1: Location of coral colonies collected in 2003. Depth and size of colony also listed. All 

colonies had polyps extended during the day except for the Dutton Bay colonies. Corals from 

Edithburgh, Troubridge and both colonies at Seacliff were recored in May 2005. 

Location Gulf Depth Size of 
colony 

Remarks 

Seacliff: Coral A Gulf St. 
Vincent 

12 m ~ 150 cm Very dense coral – short core 
obtained in 2003 

Colony recorded in 2005 till growth 
axis was lost during coring 

Seacliff: Coral B Gulf St. 
Vincent 

12 m ~ 120 cm Coral partially dead on one side. 
Covered with encrusting invertebrates. 
Easy to core. 

Colony recorded in 2005 till growth 
axis was lost during coring 

Broken Bottom Gulf St. 
Vincent 

14 m ~ 20 cm Loose colony on bottom, mostly dead. 
Very large calices 

Edithburgh Gulf St. 
Vincent 

4 m ~ 28 cm Coral to the north of jetty 

Recored in 2005  

Troubridge Gulf St. 
Vincent 

5 m ~ 170 cm Coral partially dead on one side. 
Covered with encrusting invertebrates. 
Easy to core. 

Colony recorded in 2005 till growth 
axis was lost during coring 

Dutton Bay Coffin Bay 2 m ~ 20 cm 

~ 25 cm 

Corals located under jetty, calice 
shape different to other corals. Three 
corals collected 

Taylors Island A Spencer Gulf 22 m ~ 25 cm  Some boring by barnacles 

Taylors Island B Spencer Gulf 21 m ~ 31 cm Heavily bored throughout core, coral 
rolled and axis changed mid way 
through core 

Whyalla Spencer Gulf  < 15 cm Dominant invertebrate on rocky reef. 
Four collected. 
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Two coral cores were collected from Seacliff Reef (Figure 3.3A), a coastal reef near 

a large urban centre (Adelaide) and these corals were the most different in terms of 

their density. Seacliff A was the most dense coral cored, whereas Seacliff B was 

quite easy to core and the northern side of the colony was bioeroded and covered 

with encrusting organisms. The density difference between these two corals is 

surprising as they are located approximately 5 m apart and there are no discernable 

environmental differences on such a short spatial scale. 

 

The coral colony sampled at Troubridge Shoals (Figure 3.3B) was the largest colony 

sampled and also the least dense skeleton. The coral is situated on a seagrass sand 

bar in an open part of Gulf St. Vincent. The northern face of this coral was also 

bioeroded and covered with encrusting invertebrates and algae. The coral cored at 

Edithburgh was located on seagrass and patchy reef less than 50 m away from the 

coastline. 

 

The shallow reefs at Whyalla are well known as the spawning site for the giant 

cuttlefish during winter and Plesiastrea versipora was the dominant encrusting 

organism present on this reef. There is a fishery associated with the cuttlefish. 

Several colonies were collected in this location (Figure 3.3C), and they have the 

potential to contain a record of environmental modification from the lead and zinc 

smelters at Whyalla and Port Pirie. 

 

The shallowest site that cores were collected from was at Dutton Bay (Figure 3.3E), 

a shallow embayment with a long seawater residence time on the Eyre Peninsula. 

Two cores were collected from colonies in this location. The entire bay is very 

shallow (< 10 m) and reaches high salinities in summer. The corals from this location 

were visually the most different to other corals collected and did not have extended 

polyps during the day. 



   Chapter 3: Regional Oceanography & Coral Occurrence  

 71 

References 

Allan RJ & D'Arrigo RD. (1999) Persistent ENSO sequences: how unusual was the 
1990-1995 El Niño? Holocene 9: 101-118. 

Belerio A, VA H, VA G & HA P. (1984) The stratigraphy of coastal carbonate banks 
and Holocene sea levels of northern Spencer Gulf, South Australia. Marine 
Geology 61: 297-313. 

Bickford S & Gell P. (2005) Holocene vegetation change, Aboriginal wetland use 
and the impact of European settlement on the Fleurieu Peninsula, South 
Australia. Holocene 15: 200-215. 

Charles CD, Hunter DE & Fairbanks RG. (1997) Interaction between the ENSO and 
the Asian Monsoon in a coral record of tropical climate. Science 277: 925-
928. 

Cook ER, Buckley BM, Palmer J, Fenwick P, Peterson MJ, Boswijk G & Fowler A. 
(2006) Millennia-long tree ring records from Tasmania and New Zealand: A 
basis for modelling climate variability and forcing, past, present and future. 
Journal of Quaternary Science 21: 689-699. 

Correge T, Delcroix T, Recy J, Beck JW, Cabioch G & Le Cornec F. (2000) 
Evidence for stronger El Nino Southern Oscillation (ENSO) events in a mid-
Holocene massive coral. Paleoceanography 15: 465-470. 

D'Arrigo RD, Cook ER, Wilson RJ, Allan R & Mann ME. (2005) On the variability 
of ENSO over the past six centuries. Geophysical Research Letters 32: doi: 
10.1029/2004GL022055. 

de Silva Samarasinghe JE, Bode L & Mason LB. (2003) Modelled response of Gulf 
St Vincent (South Australia) to evaporation, heating and winds. Continental 
Shelf Research 23: 1285-1313. 

DEH. (2003) Focus: A regional perspective of Spencer Gulf Coast and Marine 
Branch, Department of Environment and Heritage. 

Desmarchelier JM, Hellstrom JC & McCulloch MT. (2006) Rapid trace element 
analysis of speleothems by ELA-ICP-MS. Chemical Geology 231: 102-117. 

Edwards JW, Edyvane KS, Boxall VA, Hamann M & Soole KL. (2001) Metal levels 
in seston and marine fish flesh near industrial and metropolitan centres in 
South Australia. Marine Pollution Bulletin 42: 389-396. 

Edyvane KS. (1995) Marine biogeography and conservation values of the Spencer 
Gulf region, South Australia South Australian Research and Development 
Institute, Primary Industries, South Australia. 

Edyvane KS. (1999) Coastal and marine wetlands in Gulf St. Vincent, South 
Australia: Understanding their loss and degradation. Wetlands Ecology and 
Management 7: 83-104. 

Esslemont G. (1999) Heavy metals in corals from Heron Island and Darwin Harbour, 
Australia. Marine Pollution Bulletin 38: 1051-1054. 

Esslemont G, Russell RA & Maher WA. (2004) Coral record of harbour dredging: 
Townsville, Australia. Journal of Marine Systems 52: 51-64. 



Geochemical Ecology of Temperate Corals 

 72 

Evans MN, Fairbanks RG & Rubenstone JL. (1998) A proxy index of ENSO 
teleconnections. Nature 394: 732-733. 

Ferguson J. (1983) Concentrations and speciation of lead, zinc and cadmium in 
seawater-like smelter effluent and adjacent marine environments, Port Pirie, 
South Australia. Australian Journal of Marine and Freshwater Research 34: 
375-385. 

Gagan MK, Hendy EJ, Haberle SG & Hantoro WS. (2004) Post-glacial evolution of 
the Indo-Pacific Warm Pool and El Nino-Southern oscillation. Quaternary 
International 118-119: 127-143. 

Gaylard S. (2004) Ambient water quality of the Gulf St Vincent Metropolitan coastal 
waters. Report No. 2: 1995-2002 Environment Protection Authority. 

Gillett NP, Kell TD & Jones PD. (2006) Regional climate impacts of the Southern 
Annular Mode. Geophysical Research Letters 33: L23704, 
doi:10.1029/2006GL027721. 

Goodwin ID. (2005) A mid-shelf, mean wave direction climatology for Southeastern 
Australia, and its relationship to the El-Nino - Southern Oscillation since 
1878 A.D. International Journal of Climatology 25: 1715-1729. 

Goodwin ID, van Ommen TD, Curran MAJ & Mayewski PA. (2004) Mid latitude 
winter climate variability in the South Indian and southwest Pacific regions 
since 1300 AD. Climate Dynamics 22: 783-794. 

Harbison P. (1984) Regional variation in the distribution of trace metals in modern 
intertidal sediments of northern Spencer Gulf, South Australia. Marine 
Geology 61: 221-247. 

Harbison P. (1986) Diurnal variations in the chemical environment of a shallow tidal 
inlet, Gulf St Vincent, South Australia: Implications for water quality and 
trace metal migration. Marine Environmental Research 20: 161-195. 

Herzfeld M. (1997) The annual cycle of sea surface temperature in the Great 
Australian Bight. Progress In Oceanography 39: 1-27. 

Inoue M, Suzuki A, Nohara M, Kan H, Edward A & Kawahata H. (2004) Coral 
skeletal tin and copper concentrations at Pohnpei, Micronesia: Possible index 
for marine pollution by toxic anti-biofouling paints. Environmental Pollution 
129: 399-407. 

James NP, Bone Y, Collins LB & Kyser TK. (2001) Surficial sediments of the Great 
Australian Bight: Facies dynamics and oceanography on a vast cool-water 
carbonate shelf. Journal of Sedimentary Research 71: 549-567. 

Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB & Rajagopalan B. 
(1998) Analysis of global sea surface temperatures 1856–1991. Journal of 
Geophysical Research 103: 18,567-18,585. 

Kotwicki V & Allan R. (1998) La Nina de Australia - contemporary and palaeo-
hydrology of Lake Eyre. Palaeogeography Palaeoclimatology Palaeoecology 
144: 265-280. 

Kuhnert H, Patzold J, Hatcher B, Wyrwoll KH, Eisenhauer A, Collins LB, Zhu ZR & 
Wefer G. (1999) A 200-year coral stable oxygen isotope record from a high-
latitude reef off Western Australia. Coral Reefs 18: 1-12. 



   Chapter 3: Regional Oceanography & Coral Occurrence  

 73 

Lewis RK. (1981) Seasonal upwelling along the southeastern coastline of South 
Australia. Australian Journal of Marine and Freshwater Research 32: 843-
854. 

Lewis SA. (1975) Gulf St. Vincent water pollution studies 1972-1975. Report of the 
committee on the effects of land-based discharges from metropolitan 
Adelaide upon the marine environment of Gulf St. Vincent. Engineering and 
Water Supply Department, South Australian Government. 

Magee JW, Miller GH, Spooner NA & Questiaux D. (2004) Continuous 150 k.y. 
monsoon record from Lake Eyre, Australia: Insolation-forcing implications 
and unexpected Holocene failure. Geology 32: 885–888. 

Maher WA. (1986) Trace metal concentrations in marine organisms from St. Vincent 
Gulf, South Australia. Water, Air, & Soil Pollution 29: 77-84. 

Mann ME. (2002) The value of multiple proxies. Science 297: 1481-1482. 
Mann ME, Bradley RS & Hughes MK. (1998) Global-scale temperature patterns and 

climate forcing over the past six centuries. Nature 392: 779-787. 
Mantua NJ, Hare SR, Zhang Y, Wallace JM & Francis RC. (1997) A Pacific 

interdecadal climate oscillation with impacts on salmon production. Bulletin 
of the American Meteorological Society 78: 1069-1079. 

Marshall JF & McCulloch MT. (2001) Evidence of El Nino and the Indian Ocean 
Dipole from Sr/Ca derived SSTs for modern corals at Christmas Island, 
Eastern Indian Ocean. Geophysical Research Letters 28: 3453-3456. 

Mestas-Nunez AM & Enfield DB. (2001) Eastern equatorial Pacific SST variability: 
ENSO and non-ENSO components and their climatic associations. Journal of 
Climate 14: 391-402. 

Mestas-Nunez AM & Miller AJ. (2006) Interdecadal variability and climate change 
in the eastern tropical Pacific: A review. Progress In Oceanography 69: 267-
284. 

Meyers G, McIntosh P, Pigot L & Pook M. (in press) The years of El Nino, La Nina 
and interactions with the tropical Indian Ocean. Journal of Climate. 

Noye J. (1984) Physical processes and pollution in the waters of Spencer Gulf. 
Marine Geology 61: 197-220. 

Nunes RA & Lennon GW. (1986) Physical property distributions and seasonal trends 
in Spencer Gulf, South Australia: An inverse estuary. Australian Journal of 
Marine and Freshwater Research 37: 39-53. 

Nunes Vaz RA, Lennon GW & Bowers DG. (1990) Physical behaviour of a large, 
negative or inverse estuary. Continental Shelf Research 10: 277-304. 

Power S, Casey T, Folland CK, Colman A & Mehta V. (1999) Inter-decadal 
modulation of the impact of ENSO on Australia. Climate Dynamics 15: 319-
324. 

Ranasinghe R, McLoughlin R, Short A & Symonds G. (2004) The Southern 
Oscillation Index, wave climate, and beach rotation. Marine Geology 204: 
273-287. 

Rasmusson E & Wallace J. (1983) Meteorological aspects of the El Nino/Southern 
Oscillation. Science 222: 1195-1202. 



Geochemical Ecology of Temperate Corals 

 74 

Rochford DJ. (1986) Seasonal changes in the distribution of the Leeuwin Current 
waters off southern Australia. Australian Journal of Marine and Freshwater 
Research 37: 1-10. 

Rogers J & van Loon H. (1982) Spatial variability of sea level pressure and 500 mb 
height anomalies over the Southern Hemisphere. Monthly Weather Review 
110: 1375-1392. 

Saji NH, Goswami BN, Vinayachandran PN & Yamagata T. (1999) A dipole mode 
in the tropical Indian Ocean. Nature 401: 361-363. 

Schultz P, Thomas P & Thompson T. (2000) Monitoring River Health. Final report 
to Torrens Catchment Water Management Board Australian Water Quality 
Centre. 

Shen GT & Boyle EA. (1988) Determination of lead, cadmium and other trace 
metals in annually-banded corals. Chemical Geology 67: 47-62. 

Smith SV & Veeh HH. (1989) Mass balance of biogeochemically active materials (C, 
N, P) in a hypersaline gulf. Estuarine, Coastal and Shelf Science 29: 195-215. 

Treble P, Shelley JMG & Chappell J. (2003) Comparison of high resolution sub-
annual records of trace elements in a modern (1911-1992) speleothem with 
instrumental climate data from southwest Australia. Earth and Planetary 
Science Letters 216: 141-153. 

Turney CSM, Kershaw AP, James S, Branch N, Cowley J, Fifield LK, Jacobsen G & 
Moss P. (2006) Geochemical changes recorded in Lynch's Crater, 
Northeastern Australia, over the past 50 ka. Palaeogeography, 
Palaeoclimatology, Palaeoecology 233: 187-203. 

Veron JEN. (1986) Corals of Australia and the Indo-Pacific. Angus and Robertson. 

Ward TJ. (1989) The accumulation and effects of metals in seagrass habitats. In 
Biology of Seagrass: A treatise on the biology of seagrasses with special 
reference to the Australian region (ed. AWD Larkum, AJ McComb &SA 
Shepherd), pp. 797-807. 

Ward TJ & Young PC. (1981) Trace metal contamination of shallow marine 
sediments near a lead smelter, Spencer Gulf, South Australia. Australian 
Journal of Marine and Freshwater Research 32: 45-56. 

Ward TJ & Young PC. (1983) The depauperation of epifauna on Pinna bicolor near 
a lead smelter, Spencer Gulf, South Australia. Environmental Pollution Series 
A, Ecological and Biological 30: 293-308. 

Ward TM, Sorokin SJ, Currie DR, Rogers PJ & McLeay LJ. (2006) Epifaunal 
assemblages of the eastern Great Australian Bight: Effectiveness of a benthic 
protection zone in representing regional biodiversity. Continental Shelf 
Research 26: 25-40. 

 

 



 

 

 
 
 
 
 
 
 

Chapter 4: 
Validating Annual 

Deposition of Density 
Bands Using U/Th aging 

 
 
 
 



 

 

 



Chapter 4: Validating Density Bands and U/Th Dating 

 77 

Chapter 4: Validating annual deposition of density 

bands in the high-latitude coral: Plesiastrea 

versipora using U/Th aging techniques 

 

Introduction 

Corals record useful information about the environment prevailing at the time of 

growth in their skeletons (Barnes 1970; Dodge & Vaisnys 1975; Weber et al. 1975).  

Massive corals have linear extension rates of 1–30 mm per year, distinctive annual 

skeletal banding, and have life-spans of several centuries. Density bands in the 

skeleton are used to establish annual cycles of growth (Barnes 1972; Hudson et al. 

1976; Highsmith 1979). The annual bands are accreted in couplets and the high-

density portion is usually produced during winter when sea surface temperatures 

(SST) are lowest, however, banding patterns vary not only between species but also 

between colonies. The low-density portion of annual bands accounts for a greater 

portion of the linear growth (Highsmith 1979; Leder et al. 1996). 

 

Hermatypic coral growth rates have been extensively documented for tropical and 

subtropical regions since the early 1970’s (Bak 1974; Hart & Cohen 1996; Alibert & 

McCulloch 1997) and research on growth rates from deep-sea corals is also 

increasing (Squires 1964; Druffel et al. 1990; Adkins et al. 2004). These studies 

show that coral growth rates vary in response to a multitude of factors including; 

temperature, nutrient availability, turbidity, depth and cloud cover. Coral-based 

geochemical proxies provide a mechanism for temporally extending the instrumental 

record for environmental parameters such as water temperature (McCulloch et al. 

1994; Gagan et al. 2000), salinity and turbidity (Alibert et al. 2003), terrestrial runoff 

(McCulloch et al. 2003) and upwelling intensity (Lea et al. 1989).  

 

In some corals luminescent features are sometimes associated with annual bands. 

These features were initially attributed to the incorporation of humic acids from 

terrestrial runoff (Boto & Isdale 1985). However, recent research has suggested that 
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bands result from variations in microporosity and changes in the skeletal architecture 

(Barnes & Taylor 2001; 2005). 

 

There have been few studies of environmental records in corals from temperate 

latitudes. The South Australian continental margin is one of the world’s largest cool-

water carbonate factories (James et al. 1997) and scleractinian corals are well 

positioned to record variability of temperature, salinity, nutrient dynamics and 

oceanic influence from the Southern Ocean.  

 

Large colonies of Plesiastrea versipora (Lamark 1816) were first discovered in 

South Australia near Glenelg, Adelaide almost 100 years ago (Howchin 1909). The 

typical habitat is moderately exposed reef in water-depths of 2–30 m. The two South 

Australian gulfs, Spencer Gulf and Gulf St. Vincent are semi-enclosed ‘inverse 

estuaries’ (Nunes & Lennon 1986), which occur when there is little or no input of 

fresh water from rivers, and high evaporation rates at the head of the estuary/gulf. 

Both gulfs display seasonal reversals in water temperature gradients, the northern 

waters have an annual range of 12-25˚C (Petrusevics 1993), with warm summers and 

cold winter temperatures due to the influence of insolation and heat loss. The 

southern gulfs experience more moderate seasonal variation of ~ 14-19˚C due to a 

strong oceanic influence (de Silva Samarasinghe 1998). 

 

 
Figure 4.1: Distribution map of Plesiastrea versipora throughout the Indo-Pacific adapted from Veron 

(1986).  

 

Plesiastrea versipora is one of two species in the genus Plesiastrea (Edwards and 

Haime 1848), within the family Faviidae. Colonies range from encrusting to massive 

forms (Veron 1974). High-latitude colonies form a distinct geographical subspecies, 

which was formerly considered a separate species, Plesiastrea urvillei (Veron 1986). 
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The level of variability in colour and morphology of the high-latitude colonies of P. 

versipora was described as a distinct ecomorph (Wijsman-Best 1977). P. versipora 

has arguably the broadest latitudinal range of any hermatypic coral (Figure 4.1). The 

distribution of this species contrasts with other hermatypic corals that are restricted 

to warm, high light intensity tropical regions (25˚N – 25˚S). At the highest southern 

latitudes in the habitat range of P. versipora, water temperature minimums in winter 

are ~ 10˚C and light intensity may be 30% of levels observed at low latitude sites 

(Kleypas et al. 1999). The polyps of P. versipora are fully extended during the day, 

almost doubling the surface area of the corallite available for photosynthesis, with 

higher zooxanthellate densities than tropical colonies, a advantageous feature in low 

irradiance environments (Kevin & Hudson 1979). The capacity of this coral to adjust 

to different environments may be due to acclimatisation processes associated with a 

wide phenotypic plasticity or to independent populations adapting to different 

environments (Grant et al. 1998; Rodriguez-Lanetty et al. 2001; Howe & Marshall 

2002; Rodriguez-Lanetty & Hoegh-Guldberg 2002).  

 

In this study, we describe and compare the growth rates of some high-latitude 

colonies of Plesiastrea versipora using the standard density band counting technique. 

The periodicity of growth band formation was validated using U/Th dating 

techniques. Establishing the chronology of P. versipora provides a basis for 

assessing the suitability of this coral as a paleoenvironmental archive for temperate 

environments in the Indo-Pacific region. This paper also demonstrates the usefulness 

of U/Th dating for young carbonate material. 

 

 

Materials and Methods 

Sampling 

Fieldwork was conducted during April-December 2003 and May 2005 in Gulf St. 

Vincent and Spencer Gulf, South Australia. Fieldwork involved surveying coastal 

reefs through SCUBA diving to find coral colonies suitable for coring. Plesiastrea 

versipora colonies (up to 1.7 m in vertical height) were collected from seven sites, 

four in Gulf St. Vincent, two in Spencer Gulf and one colony in Dutton Bay, South-
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western Eyre Peninsula (Figure 3.3). Six cores from four sites were included in this 

study: two from corals on a rocky reef close to the city of Adelaide (Seacliff Reef 12 

m); one from a coral located near a jetty at Edithburgh (4 m); one from a coral on 

sand bar in the middle of GSV known as Troubridge Shoals (5 m); and two from 

corals located on seagrass/patch reefs near Taylors Island (22 m), Spencer Gulf.  

 

 

X-ray density Analysis 

Coral cores collected along the axis of maximum vertical extension were cut into 7-8 

mm slabs for X-ray and luminescence analysis. Coral sections were X-rayed at a 

commercial X-ray medical facility, using an exposure of 55 kV and 5 mA for 15 sec 

with a Kodak CR500. Luminescence photographs were taken under black ultra-violet 

fluorescent lights, with a yellow filter to enhance the differentiation of luminescent 

bands. Linear extension was measured for the (assumed annual) high and low-

density band couplets using an arbitrary measurement feature in the software 

SigmaScan Pro 5. Annual growth increments were calculated for three transects 

across the coral core where the banding was well defined, years were assigned to 

each couplet by counting backwards from the year of collection. 

 

 

U-Th Dating 

Coral samples of 1 g were used for the Th-U isotope ratio analysis to ensure enough 
230Th was present for accurate measurements. A Porites sample (AC-1) from Huon 

Peninsula, Papua New Guinea was used as an internal laboratory standard to check 

for instrument reproducibility. This sample has been analysed an average of six times 

over the past two years and the age from this analysis was consistent with previous 

results.  The coral samples were carefully cleaned and immersed in an ultrasonic bath 

for one hour to remove detrital material. Samples were wetted with HNO3 until 

samples were completely dissolved and spiked with a 229Th/233U mix, to produce the 

desired ratio of 233U/235U of ~ 0.2. Samples were evaporated to a minimum volume 

of <0.5 ml and H2O2 was added to remove organic material, each sample was 

redissolved in 2N HNO3 for TRU ion exchange columns (Luo et al. 1997). 
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For the chemical separation of U and Th from carbonate matrices, the chemical 

procedures of Luo et al. (1997) were applied and further developed as described by 

McCulloch & Mortimer (in press).  Uranium and Th were collected separately from 

TRU.spec ion exchange medium, Th in 0.1M HCl + 0.1M HF, and U in 0.1M HCl + 

0.3M HF.  Both fractions were evaporated and separately re-dissolved in 1 ml 2% 

HNO3.  An aliquot from the U fraction was added to the Th fraction, and diluted to 2 

ml to yield a ~30 ppb Uδ solution for Th analysis. An aliquot from the U fraction 

was diluted to 2 ml to yield a ~30 ppb U solution for U analysis.   

 

 

Mass spectrometry 

U/Th dating has been established for decades using thermal ionisation mass 

spectrometry (TIMS), however, recent advances have improved the precision of 

dates using MC-ICP-MS. Multi-collector ICP-MS offers greater precision in 

measurements with a reduced sample size when compared with TIMS (Seth et al. 

2003). This feature of MC-ICP-MS allows lower concentrations of U to be measured, 

extending U-Th dating to modern corals such as those in this study.  

 

The U and Th solutions were aspirated separately into the plasma of a Finnigan 

Neptune multi-collector ICP-MS system using an APEX desolvator fitted with a 

Teflon PFA flow path and a low-flow Teflon PFA nebuliser operating at ~100 

microlitre per minute uptake. The Neptune MC-ICP-MS is equipped with nine 

moveable Faraday cups and one central secondary electron multiplier (SEM), 

deployed by navigating the ion beam from the central Faraday cup (Eggins et al. 

2005). Amplifier gains and electronic baselines were only measured at start of the 

day, because they were shown to be stable over a 24 hour period. U and Th 

measurements were performed separately. Blank subtractions were determined by 

preceding blank HNO3 analysis.  Washout was facilitated by HNO3+HF and Triton 

surfactant.   

 

The retarding potential quadrupole lens (RPQ) was not utilised for U measurements 

because the SEM/Faraday gain was not stable with RPQ filter engaged. However, the 
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238U tailing is significant without the RPQ lens.  (I)  234.5 in SEM, (II) 238U, 235U 

and 233U and 232Th were measured in Faraday cups at the same time as 234U in SEM, 

(III) 233.5 in SEM. Tail from 238U was subtracted from 234U by linear interpolation 

between 234.5 and 233.5. SEM/FAR gain was calculated by linear interpolation 

between repeat SRM 960 U measurements to bracket the unknown samples. Mass 

fractionation for both U and Th isotopes was corrected using the Step (II) 238U/235U 

ratio. U concentrations were calculated based on isotope dilution measurements of 
233U/235U and delta 234U that were calculated after adjustment for SEM gain. 

 

The RPQ lens was utilised to minimise the 238U (and occasionally 232Th) tailing, and 

the 230Th analytical protocol employed being independent of SEM/Faraday gain. (I) 
238U, 235U and 233U and 232Th were measured in Faraday cups at the same time as 
234U in SEM, (II) 230Th in SEM and 238U in Faraday cup; (III) 229Th in SEM and 238U 

in Faraday cup, (IV) 229.4 in SEM.  Mass fractionation for both U and Th isotopes 

was corrected using the Step (I) 238U/235U ratio.  The 230Th/229Th ratio was calculated 

by dividing the Step II 230Th/238U ratio by the Step III 229Th/238U ratio. 232Th/229Th 

was calculated by dividing Step (I) 232Th/238U by Step (III) 229Th/238U.  SEM 

backgrounds at 230Th and 229Th, due to tailing from 238U (and/or 232Th) were 

determined from the 229.4 measurement.  A scan on the SEM of the mass region 228 

to 235 was performed to assess the contribution of potential near-isobars at ~229.8, 

often accompanied by ~230.8.   

 

 

Results 

Skeletal structural variability and density bands 

Broad morphological variation was observed between colonies collected from rocky 

reefs in water depths of 3-21 m in Spencer Gulf (SG) and Gulf St. Vincent (GSV), 

South Australia. There was high diversity in corallite shape between corals in SG 

(Figure 4.2), GSV and Dutton Bay. Architectural components were better defined in 

the colonies with higher density (Figure 4.2: d-f). The depth of the tissue zone was 

similar (~4 mm) for all corals examined.  
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Figure 4.2: Photographs of morphological variation in corallite structure from different reefs in South 
Australian gulfs. Collection sites are (a), (d) Troubridge colony GSV; (b), (e) Seacliff colony B GVS; (c), 
(f) Seacliff colony A; (g) Broken Bottom Reef, GSV (h) Whyalla colony SG (i) Dutton Bay colony. Scale 
bar = 5 mm for all photographs. Differences in corallite structure can be observed in (a-c) and (g-i) with 
the thickness of the corallite wall (theca) and also the septa. (e) and (f) indicate the depth of the tissue 
zone (arrow) and (d–f) indicate the increasing clarity of skeletal elements with increasing density of the 
coral skeleton. (f) Dissepiments and theca are pronounced compared with (d-e) 
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Figure 4.3: Scanning electron micrographs of Troubridge colony (a) and Seacliff A (b) scale bars = 2 

mm. X-radiographs of low-density/high growth rate coral (c); and high density/low growth rate coral (d). 

Scale bars for c and d = 5 mm. 

 

The different colonies were examined under scanning electron microscope (Figure 

4.3 a-b) to determine the differences in density and calcification. The low-density 

corals have a more fibrous skeleton with no columella and thin theca walls, whereas 

the high density corals have well-established theca walls. The high density skeleton 

was observed to be primary aragonite due to the crystal structure observed under 

scanning electron microscopy (SEM), not thickening from accretion of secondary 

aragonite. Due to the varying morphology and density of each colony, the X-rays 

were highly variable (Figure 4.3 c-d).  

 

The core lengths varied between 280–740mm and band chronology derived from the 

X-rays is summarised in Table 4.1. Age of the coral cores was determined by three 

counts (following corallite walls down different parts of the X-ray), these counts 

were then averaged, and age of the core was divided by the length of the core to 

establish a mean annual extension rate. Mean extension for the six colonies (Figure 

4.4) varied between 1-8 mm yr-1. Replicates from the same coral colony (cores 

extracted in 2003 and 2005) are not shown here. The last band accreted before core 

collection at the end of summer/autumn was a low-density band.  

 
Table 4.1: Ages derived from density band counting (average of 3 counts) and the mean annual 

extension rate per core. 

Coral specimen 
Height of colony 

(mm) 

Length of core 

(mm) 

Ave of 3 x-ray 

counts 

Mean ext from x-

ray (mm) 

Seacliff A03 1500 166 112 ± 4 1.5 

Seacliff A05  1500 650 324 ± 6 2 

Seacliff B03 1600 480 94 ± 2 5 

Seacliff B05 1600 630 108 ± 3 5.8 

Edithburgh 03 280 280 130 ± 4 2.1 

Troubridge 03 1700 490 74 ± 3 6.9 

Troubridge 05  1700 700 89 ± 3 7.8 

Taylors Island 03 245 245 143 ± 4 2 
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There was interannual variation in extension rate within each core and a high level of 

variability between colonies from the same reef (Figure 4.4 b and d) and different 

parts of the gulfs. There was no depth-dependent growth rate observed between 

different colonies, as coral Seacliff B had a mean growth rate of 6 mm yr-1 (Figure 

4.4b) (ranging 4–9 mm yr-1) and coral Seacliff A (Figure 4.4d), averaged 2 mm yr-1, 

(ranging 1–5 mm yr-1). The deepest corals collected near Taylors Island (at 22-24 m) 

were living in a marginal environment, with both corals scarred from boring 

barnacles. Coral Taylors Island B03 (Figure 4.4f) had rolled, most likely in a large 

storm, evident by the loss of vertical growth axis in the X-ray. (~ 85 years ago from 

x-ray chronology). 

 

 
Figure 4.4: X-radiographs of (a) Troubridge; (b) Seacliff B; (c) Edithburgh; (d) Seacliff A; (e) Taylors 

Island A; and (f) Taylor’s Island B. Annual extension rate indicated by black arrows decrease from (a)-

(f) as corals grow in less optimal environments., including loss of primary growth axis in (f) (arrow) 

Horizontal scale is 40 mm per core. Only the top 220 mm of cores is shown for comparison purposes. 
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Luminescent banding and skeletal architecture 

Luminescent bands were present in only one colony Seacliff B, and were associated 

with the high density winter bands. These luminescent bands were a light blue colour, 

with a wavelength emission in the UV range. Other cores displayed irregular, faint 

luminescent lines and were not considered to provide chronological information. The 

strength of the luminescence varied between years in Seacliff B with the strongest 

band recorded in 1982 (a severe El Niño year) and luminescent band frequency 

increased since the 1970s. The luminescent bands in Seacliff B indicate the 

mechanism of coral growth, reflecting the shape of the coral polyp in individual 

calices, with the theca calcified at a different time to the basal plate (Figure 4.5). The 

nearby slow growing coral Seacliff A, only displayed faint luminescent bands and 

had a growth hiatus possible due to boring organisms (Figure 4.5). The slow growing, 

denser coral, indicates the variation in the ‘z direction’ exposing different coral 

calices even though the core was collected on the primary growth axis. Whereas, in 

the fast growing coral (Seacliff B), there is little definition between the septal region 

and corallite wall (theca) region in the skeletal architecture. 

 

 

 
 
Figure 4.5: Photographs of Seacliff A (top) and Seacliff B (bottom) taken under black fluorescent lamps 

to indicate luminescent banding. The tissue zone indicates strong luminescence in both corals. Seacliff 

A has a growth hiatus in the middle of the core, possibly due to boring organisms. The Seacliff A image 

was overexposed to display skeletal architecture and does not represent true luminescent banding. 
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U/Th analyses 

The eleven coral samples dated using U/Th measurements analysed on the MC-ICP-

MS returned dates of colonies between 105-381 years (Table 4.2). Samples were 

taken at the base of the 2003 cores for Seacliff A, Seacliff B, Edithburgh and 

Troubridge, further samples were taken from the 2005 cores at the end of the core or 

the point where the vertical growth axis was lost due to the coral turning or rolling. 

These samples were taken to obtain dates of a known position within the coral cores 

and establish the temporal veracity of the density bands.  

 

 
Table 4.2: U/Th dates for four corals from Gulf St. Vincent and one coral from Spencer Gulf.  

 

Specimen 
Sample 
distance 

(mm) 

U 
(ppm) 

230Th 
(ppt) 

[230Th/238U] 
± 2σ 

[230Th/
232Th] 

Initial Delta 
234U ± 2σ 

Age (yr) 
 ± 2σ 

Detrital 
corrected 

U/Th age(*) 

Seacliff A 
2003  

160 2.6 
0.06 

0.00135 ± 
0.00003 

39 145.3 ± 1.1 129 ± 2 
125 ± 6 

Seacliff A 
2005  

325 2.4 
0.09 

0.00217 ± 
0.00002 

90 148.11 ± 0.8 206 ± 2 
204 ± 5 

Seacliff A 
2005 (t) 

410 2.6 
0.17 

0.00401 ± 
0.00004 

9 147.61 ± 1.1 381 ± 3 
337 ± 28 

Seacliff B 
2003 

500 2.1 
0.03 

0.00095 ± 
0.00002 

13 146.8 ± 1.4 90 ± 2 
83 ± 8 

Seacliff B 
2003 (2) 

500 2.2 
0.04 

0.00110 ± 
0.00002 

14 147.4 ± 2.1 105 ± 2 
97 ± 8 

Seacliff B 
2005 (t) 

560 2.3 
0.05 

0.00126 ± 
0.00002 

11 148.7 ± 0.7 120 ± 2 
108 ± 10 

Edithburgh 
2003 

275 2.9 
0.03 

0.00173 ± 
0.00002 

5 149.1 ± 0.7 164 ± 2 
130 ± 21 

Troubridge 
2003  

470 2.4 
0.03 

0.00073 ± 
0.00002 

58 149.7 ± 0.8 69 ± 2 
68 ± 4 

Troubridge 
2003 (2) 

480 2.3 
0.05 

0.00079 ± 
0.00002 

72 147.2 ± 1.4 75 ± 2 
74 ± 4 

Troubridge 
2005 (t) 

600 2.2 
0.07 

0.00110 ± 
0.00002 

86 145.1 ± 1.4 105 ± 3 
109 ± 9 

Taylors 
Island 2003 

245 2.8 
0.08 

0.00159 ± 
0.00003 

83 146.5 ± 0.9 151 ± 2 
149 ± 5 

 

(2) Replicate sample from same core location 

(t) Vertical growth axis was lost due to coral turning 

(*) The following equation was used: 

[230Thrad/238U] = [230Thmeas/238U] - [232Th/238U] [230Thnr/232Th] exp[-� 230T] 

to determine the non-radiogenic 230Th component (230Thrad) assuming [230Thnr/232Th] =1±1, making a 

conservative assumption of ±100% uncertainty in the correction 
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The initial delta 234U was consistent with present day open-system seawater U values 

(Thompson & Goldstein 2005). Therefore, there was no indication of unusual 

seawater U concentrations or contamination issues in Gulf St. Vincent and Spencer 

Gulf. The 230Th was minimal indicating that there was no issue with contamination 

from older Th samples. The corals used in this study were not subject to higher 

oceanic values of 230Th which complicated the dating of deep-sea corals using this 

technique (Cheng et al. 2000).  

 

 

 
 
Figure 4.6: Change in the U/Th ages (� U/Th) after the correction for initial non-radiogenic 230Th.  (a) 

Higher amounts of 232Th indicate the greatest age offset between corrected and non-corrected ages. 

The observed linear relationship in Figure 4.6A is due to the correction equation. (b) Distribution of 

non-radiogenic detrital corrections and error bars associated with the [230Thnr/232Th] =1±1 assumption. 

 

To assess the variability in the inherited [230Thnon radiogenic/232Th], we calculated the 

value of [230Thnr/232Th] required to account for the difference between the detrital-

corrected age and the age measured in the coral (after blank correction).  The 

[230Thnr/232Th] ratios range from 4.8 to 0.22 and do not correlate with concentration 

of 232Th. We have corrected 230Thrad assuming [230Thnr/232Th] =1±1, making the 

conservative assumption of ±100% uncertainty in the correction. The effect of 

inherited 230Thnr on the ages is shown in Figure 4.6 in a plot of the difference 

between the corrected age and the detrital contaminated age. The sample most 

sensitive to the correction is the oldest sample Seacliff A05 which has a 

concentration of 232Th (3.73 ppb) and Edithburgh 03 (232Th 3.17 ppb), resulting in a 

substantial age uncertainty of ± 33-43 years, or over ten times the blank corrected 
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analytical error. However, for the majority of samples, with much lower 232Th (i.e. < 

1 ppb), the additional uncertainty introduced from 230Thnr is approximately ± 2-3 

years, of similar extent to the age uncertainty with blank corrections only. More 

rigorous procedures to exclude inherited 230Thnr and the associated 232Th would be 

necessary if precision at the sub-annual level was to be achieved. 

 

 
 
Figure 4.7:(a): Correlation regression of U/Th dates compared with density band ages, r2 = 0.98, p < 

0.005; (b) Comparison of annual extension rate with the percentage difference between the two age 

methods. 

 

The U/Th dates were compared with the density band ages generated from x-rays 

(Figure 4.7a) and there was an overall underestimation of age via the band counting 

technique. A regression of the two different techniques provided a high correlation of 

r2 = 0.98, p < 0.001. The underestimation of ages with the x-ray chronology 

technique of 2-19% depended on the annual growth rate of the colony, i.e. there was 

a lower accuracy with the denser, slow growing corals using the counting chronology 

technique (Figure 4.7b). However, for Plesiastrea versipora colonies with a 

moderate extension rate (> 3 mm) assigning chronology from x-rays was all within 

error of the U/Th analyses.  

 

 

Discussion 

During collection of Plesiastrea versipora core samples, a large variation in density 

between colonies was observed. The most conspicuous example of density variation 
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was at Seacliff reef (GSV) where the two cores were collected < 5 m apart. Skeletal 

structure of one colony was fragile with thin septa and theca (Figure 4.3a), taking 

less than 10 min to drill 500 mm, whereas the second colony had a greater density 

and was difficult to drill using pneumatic equipment (> 1 hour for 500 mm core). 

There was a measurable difference in the thickness of interstitial aragonite (between 

corallites) between the two colonies, yet the environmental conditions for the two 

colonies are very similar.  

 

Other workers have noted that density increases with water depth were related to 

increases in the spacing of polyps, that is, fewer polyps per unit area of the coral 

surface (Hughes & Jackson 1980).  This study sees no correlation between numbers 

of polyps per unit area and bulk density, bandwidth or onshore offshore 

environmental trend.  Under scanning electron microscopic examination there are 

striking physical differences in the robustness of skeletal elements between dense, 

high hydraulic energy setting corals and delicate less dense sheltered setting corals.   

 

The Troubridge sample was the fastest growing colony at 105 ± 3 years for a 560 

mm core, this coral would be considered to be living in ideal growing conditions, 

with relatively high light intensities (4 m water depth), and high nutrient potential, 

located on a sand bar towards the middle of Gulf St. Vincent. The next youngest core 

was the Seacliff B coral at 120 ± 2 years for a 540 mm core. As the density of the 

coral increases and the associated extension rate decreases using x-rays alone to 

establish a coral chronology becomes less accurate.  

 

Although there was a high correlation between density bands ages and U/Th ages, 

the chronology derived from density band counting underestimated the age of corals, 

especially in colonies growing at less than 3 mm per year.  Once growth bands 

become narrow there is not enough differentiation in the x-rays to determine the 

annual band couplets and years may not be recorded accurately in all parts of the 

colony.  This led to a greater error between the U/Th dates and the density band 

chronology in the slow growing colonies of up to nineteen percent. 

 

A comparison was made between four of the coral colonies to determine whether 

individual colonies responded to the same environmental conditions regardless of 
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their growth rate (Figure 4.8). There was very little similarity in the average growth 

rate between the corals even on the same reef (Seacliff). Even during years when the 

temperature in South Australia was warmer in summer coinciding with El Niño 

events, the corals did not respond with increased extension rate. 

 

 

 
 

Figure 4.8: Variation about the colony specific mean extension rate for four corals (Seacliff A & B, 

Edithburgh and Troubridge) for the common period 1935-2003. Y axis units are the standard deviation 

for mean growth for each coral colony. Black arrows indicate strong El Niño events, however there is 

no correlation in coral mean annual growth with these events. 

 

The Seacliff B coral is located on a metropolitan reef off the coast of Adelaide (pop: 

> 1,000,000) and may be influenced by local rivers (Onkaparinga and Torrens 

Rivers), which, although they have restricted flows and form water reservoirs, are 
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likely to reflect the higher rainfall and terrestrial runoff (storm water) in winter. The 

luminescence bands may not be present in Seacliff A coral due to the slow growth 

rate, with the tissue zone acting as a smoothing function on the annual extension rate, 

effectively mitigating any periodic or infrequent temporal event.  

 

Annual cycles in light and temperature are the most commonly proposed causative 

signals of annual density bands in massive corals (Barnes & Lough 1993). Seasonal 

changes in irradiance are greater at high latitudes than at the equator with light 

intensities reaching the corals being substantially reduced (Kevin & Hudson 1979; 

Kleypas et al. 1999). Populations of Plesiastrea versipora in high latitudes are 

exposed to highly fluctuating temperature and irradiance regimes varying by over 

50% annually. Tropical coral species such as Porites can grow in high-latitude 

locations with winter minimums lower than 18˚C, but were surviving in this marginal 

environment by including a growth hiatus during the winter minimum temperatures 

(Fallon et al. 1999). However, P. versipora does not exhibit a growth hiatus during 

the winter temperature minimum albeit calcification rates slow during this period 

(Howe & Marshall 2002). Calcification rates in Plesiastrea versipora are 

considerably lower than in reef corals but indicate a similar pattern in temperature 

responses with a trend towards higher rates of calcification at approximately 18°C 

(Howe & Marshall 2002). Increased seasonality at high latitudes may result in a 

lower annual carbonate production, due to an abbreviated growing season with 

calcification/extension rates reduced during winter.   

 

Plesiastrea versipora may be able to adapt to a range of environmental conditions by 

associating with symbionts with differing physiology adapted to particular latitudes, 

densities of these symbionts were amongst the highest reported in the literature 

(Rodriguez-Lanetty 2001). The growth rates of P. versipora determined during this 

study are among the slowest reported for hermatypic corals and the high-density 

colony growth rates of (~1 mm yr-1) are comparable with deep-sea corals such as 

Lophelia pertusa (Mortensen & Rapp 1998) and Desmophyllum dianthus (Lazier et 

al. 1999).  

 

The three larger colonies; Seacliff A, Seacliff B and Troubridge had also rolled, 

potentially during large storm events at separate times. Cores were not taken through 
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the entire colonies since coring was stopped when it became obvious that the core 

was no longer aligned along the vertical growth axis. The high frequency of over 

turned corals in this study (4 corals), may be due to the colony size outgrowing the 

initial coral settlement on small shells or rocks and becoming unstable during large 

disturbances. Usual habitat for these corals included low rocky reef with a mixed 

algal/seagrass facies and a large amount of unconsolidated material. In comparison, 

tropical corals settling on stable calcareous reef platforms. To accurately assign a 

chronology for dense colonies with a lower extension rate, whole colonies would 

provide greater accuracy than bands from a core sample which were not always 

distinctive.  

 

 

Summary 

The ages derived from counting annual density bands and X-ray chronologies made 

it difficult to distinguish an accurate chronology for each coral especially for 

colonies with growth rates of < 3mm yr-1. Density band width varied between 

neighbouring colonies on the same reef as well as between Gulf St. Vincent and 

Spencer Gulf. U/Th dating from MC-ICP-MS analyses provides a high-precision 

chemical technique to assess the annual nature of density bands and establish 

chronology in this coral. Using a second method to verify coral chronologies with 

low growth rates such as U/Th ages indicated that the X-rays varied from an 81-97% 

accuracy of annual extension for Plesiastrea versipora. Caution must be used when 

assigning chronologies to other high-latitude or cooler-environment corals with 

variable growth rates. Furthermore, using density and luminescent bands alone may 

not be a robust enough technique to determine changes in the environmental 

conditions impacting coral growth and extension rates.  

 

The two aging techniques determined that Plesiastrea versipora deposits annual 

density bands. Therefore P. versipora has the potential to record environmental 

information in the annual layers of its skeleton and produce a paleoenvironmental 

archive for temperate-latitude environments where other high resolution archives do 

not occur. 
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Due to the large density variation occurring in neighbouring corals on the same reef, 

the extension rate is unlikely to be driven by environmental conditions. Possible 

hypotheses for explaining the extension rate differences between the Seacliff corals 

may include: genetic variation; different concentrations of zooxanthellae; different 

sub-species of zooxanthellae; or a different reliance on autotrophic versus 

heterotrophic feeding. 

 

The colonies of Plesiastrea versipora examined in this study lived for several 

centuries and may be important in the local ecosystems of the South Australian gulfs. 

Coral abundance has been reduced in the last 40 years due to benthic trawling of soft 

sediment regions for prawn fisheries. Therefore, it is unknown if the loss of these 

long lived colonies has a detrimental effect to other facets of the marine ecosystem. 
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Chapter 5: Evaluating the use of Plesiastrea 
versipora as a new coral archive of temperate 

paleoclimate 
 

Introduction 

There is a general lack of long-term, high resolution records of past oceanic and 

climatic conditions in temperate latitudes of the Southern Hemisphere. Instrumental 

records only date back to the early 1900s for most locations. Some commonly used 

proxy records for temperate latitudes in the Australasian region include: speleothems 

(Treble et al. 2003; McDonald et al. 2004; Treble et al. 2005; Desmarchelier et al. 

2006), tree rings (Cook 1995; D'Arrigo et al. 1996; Cook et al. 2000; Pearson et al. 

2001), lake (Kotwicki & Allan 1998; Johnson et al. 1999; Magee et al. 2004; Gell et 

al. 2005; Johnson et al. 2005) and deep-sea sediment cores (Charles & Fairbanks 

1992; Oppo & Rosenthal 1994; Goldstein et al. 2001; King & Howard 2004). 

However, these proxy archives are often at centennial-millennial scale or only 

represent part of the seasonal cycle (e.g. warm growing months for tree rings). 

Moreover, deep-sea sediment cores predominantly reflect the continental shelf 

environment which may be more stable than coastal sites over timescales of decades 

to centuries. New proxies from long-lived corals growing in temperate waters offer 

the opportunity to produce high-resolution geochemical records from the entire 

annual signal that may extend instrumental archives by several hundred years.  

 

The chemistry of coral aragonitic skeletons has proved to be a useful tool in 

reconstructing various features of the ocean-atmosphere coupled system including 

sea-surface temperature (SST), sea-surface salinity (SSS), and nutrient cycling in 

seawater for example (Dunbar & Wellington 1981; Swart 1983; Wellington & Glynn 

1983; Cole & Fairbanks 1990; Allison & Tudhope 1992; Shen et al. 1992; Urban et 

al. 2000; Montagna et al. 2006). Geochemical tracers can provide otherwise 

unavailable ground-truthed data needed to assess links between local climatic 

processes and global climate patterns. Seawater temperature has been linked to the 

relative concentrations of several elements incorporated into skeletal aragonite, 

including strontium, uranium, magnesium and boron (Smith et al. 1979; Mikkelsen et 
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al. 1982; Beck et al. 1992; McCulloch et al. 1994; Min et al. 1995; Hart & Cohen 

1996; McCulloch et al. 1996; Alibert & McCulloch 1997; Sinclair et al. 1998). 

Oceanic upwelling has been correlated with incorporation of barium and cadmium 

into the skeletal matrix (Lea et al. 1989; Shen et al. 1992; Druffel 1997). Barium has 

also been correlated with a terrestrial signature from flood plumes (Sinclair 1999; 

Alibert et al. 2003; McCulloch et al. 2003; Fleitmann et al. 2007). However, the 

mechanisms that control the incorporation of isotopes and trace elements into coral 

skeletons remain poorly understood. The incorporation of geochemical tracers is 

likely to be influenced by the ionic composition of the calcifying fluid, the 

calcification rate and water temperature (see Chapter 2 for further discussion). Many 

studies have established the advantages of analysing a suite of tracers from the same 

coral, allowing simultaneous determination of a range of environmental variables 

(Hendy et al. 2002; Quinn & Sampson 2002).  

 

The scleractinian genus Porites has to date been the primary coral archive used to 

reconstruct paleoclimate, and is ideally suited to this task due to fast growth rates and 

ubiquitous nature in the tropics of the Pacific Ocean, Indian Ocean and Red Sea  for 

example (Schneider & Smith 1982; Klein et al. 1993; Gagan et al. 1994; Kuhnert et 

al. 1999). Porites records are often temporally limited due to the size of the colonies 

to approximately 100-150 years (Boiseau et al. 1998; Linsley et al. 2000; Urban et al. 

2000), however, some colonies can live for up to 300 years. This limitation in 

addressing climatic variability may be circumvented by stacking records (Hendy et al. 

2002).  

 

There have been several paleoclimate studies conducted using alternative coral 

genera including Acropora (Böhm et al. 2006; Gallup et al. 2006); Diploastrea 

(Watanabe et al. 2003; Bagnato et al. 2004); Diploria (Cardinal et al. 2001; Cohen et 

al. 2004; Goodkin et al. 2005; Hetzinger et al. 2006); Montastrea (Goreau 1977; 

Fairbanks & Dodge 1979; Leder et al. 1991; Swart et al. 2002; Watanabe et al. 2002; 

Reuer et al. 2003; Gischler & Oschmann 2005; Smith et al. 2006); Pavona (Shen et 

al. 1992; Wellington et al. 1996; Meibom et al. 2004); Pocillopora (Dunbar & 

Wellington 1981); Siderastrea (Guzman & Tudhope 1998; Reuer et al. 2003; 

Gischler & Oschmann 2005; Moses et al. 2006); Solenastrea (Swart et al. 1996a); 

and a high-latitude coral from the genus Cladocora (Silenzi et al. 2005; Montagna et 
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al. 2007). Research with deep-sea corals for paleoclimate applications has included; 

Desmophyllum (Adkins 1998; Montagna et al. 2005; Montagna et al. 2006) and 

Lophelia  (Mortensen & Rapp 1998; Spiro et al. 2000; Sinclair et al. 2006) and 

several other genera (Roark et al. 2005; Shirai et al. 2005).  

 

This thesis provides the first geochemical investigation of Plesiastrea versipora, a 

long-lived massive coral with lower thermal tolerance, which enables it to live in 

cooler temperate latitudes. There have been several previous studies since the late 

1970s on this species including aspects of its ecology, such as its: relationship with 

symbiotic zooxanthellae (Kevin & Hudson 1979; Rodriguez-Lanetty et al. 2001), 

phylogeography (Rodriguez-Lanetty 2001; Rodriguez-Lanetty & Hoegh-Guldberg 

2002); metabolism and calcification (Howe & Marshall 2001; 2002) and nutritional 

status with the symbionts (Udy et al. 1993; Grant et al. 1998; Grant et al. 2003; Davy 

et al. 2006; Grant et al. 2006). However, much remains unknown about the ecology 

of this species including its reproductive ecology, plasticity in morphology and 

habitat preferences.  

 

Aims 

The objective of this chapter is to develop paleotemperature records including trace 

element (B/Ca, Mg/Ca, Sr/Ca, Ba/Ca U/Ca) and stable isotope (δ18O) proxies from 

Plesiastrea versipora. This coral species has not been evaluated as a paleoclimate 

archive before and no high resolution proxy records exist for the marine environment 

of southern Australia. The development of a new paleoclimate archive requires the 

establishment of a robust chronology (presented in Chapter 4) and an understanding 

of skeletal architecture as a basis for comparing temperature with geochemical 

records. 

 

Further to this, the study aims to constrain the reproducibility of the SST seasonal 

cycle through multiple samples recorded by trace elements and to determine the 

growth rate dependent fractionation using corals with different annual extension rates. 

The SST proxy records contained within the temperate corals are compared to 

climate indices (such as the Southern Oscillation Index and Southern Annular Mode) 

to further constrain climate influences on this region. 
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Sampling and Analytical Methods 

Regional Setting and Sampling 

The coral sampling methods used in this thesis are described in Chapter 3 and 4. 

Coral cores were cut longitudinally into 7-8 mm slabs for X-ray and luminescence 

analysis to establish chronologies for each colony. Coral sections were X-rayed at a 

commercial X-ray medical facility, using an exposure of 55 kV and 5 mA for 15 sec 

with a Kodak CR500. Coral chronologies were established using a combination of 

the X-ray and U/Th dating techniques described in Chapter 4 and fine-tuned to SST 

proxy data generated by trace element analysis. Chronologies were established by 

correlating the high and low density bands with the maxima and minima SSTs and 

trace element/Ca minima and maxima respectively and linearly interpolating between 

these points. 

 

Instrumental SST 

The SST data used in this paper came from three sources. A fourteen year record 

(1992-2005) came from the jetty at Pt Stanvac, Gulf St Vincent (~ 5 km from 

Seacliff Reef), this was provided by the National Tidal Facility at Flinders University, 

now a component of the Australian Bureau of Meteorology (BOM). Two data 

loggers were placed in situ (next to the coral bommie) in May 2003 at Seacliff Reef 

and November 2003 at Troubridge Shoal, these loggers were collected in May 2005 

and correlate well with the jetty SST data from the BOM.  The IGOSS satellite-

derived SST from 1° latitude (34.5°S and 35.5°S) x 1° longitude (139°E) grided cells 

(weekly from November 1981) was also compared with in situ data (Data source: 

http://iridl.ldeo.columbia.edu/SOURCES/.IGOSS/.nmc/.Reyn_SmithOIv2/.weekly/). 

The IGOSS data sets were not used for temperature calibrations as they did not 

correlate well with the SST data provided by BOM (Figure 5.1). The amplitude of 

the seasonal cycle in the IGOSS data is approximately 6°C, whereas the local 

temperature data set indicates a seasonal cycle with an amplitude of approximately 

10-12°C displaying higher temperatures during known El Niño years (including 1998, 

1999 and 2001). The IGOSS dataset indicates a variable seasonal amplitude during 
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the length of the record and becomes more similar to the local temperature data from 

1996 onwards. Therefore a 13 year temperature calibration dataset was used instead 

of the longer but less reliable satellite-derived data. 

 

 
Figure 5.1: Comparison of IGOSS SST data with SST data from the National Tidal Facility at Port 

Stanvac.  

 

 
Figure 5.2: Comparison of SST data from Port Stanvac, with on site logger data from Seacliff Reef and 

Troubridge Shoals.  
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The fidelity of the in situ temperature records is displayed in Figure 5.2. The two 

logger records correlate very well with each other (r2 = 0.97) and also with the jetty 

temperature record. There is greater temperature variability present in the summer 

maxima in the Troubridge shoals data than the Seacliff reef data because of the 

shallow depth of this site (4 m versus 14 m) with significant cooling occurring during 

the night. 

 

Analytical Methods: Trace element LA-ICP-MS analysis 

Laser ablation (LA) sampling requires very little sample preparation and allows rapid 

analysis of samples. Inductively coupled plasma mass spectrometry (ICP-MS) is able 

to simultaneously analyse a broad suite of trace elements with high sensitivity 

(Eggins et al. 1998; Sinclair et al. 1998). Therefore, LA-ICP-MS can be a valuable 

tool for extracting high-resolution environmental records from paleoclimate archives, 

specifically targeting seasonal variations such as upwelling and high-rainfall events 

that may be difficult to resolve using bulk sampling methods.  
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Figure 5.3: Laser cell containing two pieces of coral and the three standards, NIST 612 for calibrating 

the ICP-MS; NIST 614 for standardising the minor elements in the coral; CORAL – the Porites pressed 

powder in house coral standard from Davies Reef on the Great Barrier Reef and two pieces of Seacliff 

B05 coral – the top of the core and the second 90 mm piece. 

 

Coral slabs were cut into smaller pieces (95 x 25 mm) parallel to the growth axis for 

laser ablation analysis and cleaned using a high-intensity ultra-sonic probe with 

ultrapurified 18 MΩ Milli-Q water. The probe was scanned slowly across the surface 

of the coral slab and the water renewed until no more carbonate particles were 

suspended. Two of the low density colonies (Seacliff and Troubridge) lost 

dissepiments and some septal material during probing, as observed when the 

cleaning method is applied to Porites (Gagan et al. 1994). These samples were also 

cleaned in an ultrasonic bath to dislodge other skeletal material from the large pore 

spaces in Plesiastrea. All samples were dried overnight in an oven at 35°C. 

 

Coral samples were analysed using an ArF excimer laser (193 nm) with a sample cell 

(Eggins et al. 2005) connected to a VG Elemental PQ2 ICP-MS for analyses 

conducted in 2004/2005 and a Varian 820 ICP-MS for analyses conducted in 2006. 

Coral samples were loaded into the sample cell with three standards, two NIST 

glasses and a coral pressed-powder in-house standard (Figure 5.3). Three preablation 

scans were conducted at a frequency of 10 Hz, and energy of 50 mJ. The sample was 

scanned at a rate of 40 µm s-1 with the laser masked to produce a 50 x 500 µm 

rectangle to ensure the surface of the coral was very clean before sample collection. 

Samples were preablated using a larger masking slit (than sample collection) and the 

ablated material transported in a mixed stream of He and Ar to the ICP-MS (Eggins 

et al. 1998).  

 

Sample sections were initially moved under the laser using analytical techniques 

designed for Porites and outlined in (Sinclair 1999; Fallon 2000) with a masking slit 

size of 200 µm x 50 µm at 5 Hz and 50 mJ for continuous profiling. However, due to 

the heterogeneity of the analyses a larger slit (to sample more architectural elements) 

was evaluated. Due to the larger calice size, compared with Porites and lack of 

columellar, compared with other large calice species such as Diploastrea, analysing 

different architectural components was unavoidable.  Due to the architectural 

differences between Porites and Plesiastrea, analysis was trialled with several 
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different masking slit and spot sizes. The rectangular slit was preferred over the spot 

to enable an average ablation over a larger area of coral skeleton (Figure 5.4). 

Smaller spot sizes were evaluated but these produced a high level of heterogeneity in 

the element analysis. Various operating conditions were evaluated (including both 

spot size and laser pulse rate) to establish a balance between spatial resolution, count 

rate and reproducibility. A traverse of the coral sample was mapped out using a 

‘chain of points’ to follow a particular growth element and reduce the variation of 

skeletal architecture in the laser pathway (Figure 5.4). It was determined that ablating 

predominantly thecal material produced greater reproducibility than ablating septal 

material, where more three-dimensional heterogeneity was present. The trace 

element analysis was conducted parallel to the growth axis and scanned at a rate of 

20 µm s-1. Approximately 4 ml min-1 He was included in the cell gas mixture to 

increase sensitivity, reduce oxide production and elemental fractionation (Eggins et 

al. 1998).  

 

 
 
Figure 5.4: Magnified view of the upper portion of two pieces of coral with the lowest and highest 

extension rates (A) Seacliff A; (B) Troubridge. The tissue zone is the same depth 4 mm in both corals. 

Architectural components septa and theca are labelled; laser tracks were mostly confined to the theca 

as the septal region indicated greater variability in analyses. Black rectangle indicates size of sample 

ablation and track down corallite.  Scale bar is 5 mm. 
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The major elements (B, Mg, Sr, Ba, U) were analysed during two traverses of the 

coral piece to ensure no analytical drift. The final laser conditions ablated a 40 x 400 

µm rectangle on the sample at a rate of 5 Hz and energy of 50 mJ. Two analyses for 

minor elements were conducted at 10 Hz and 50 mJ after the ICP-MS had been 

conditioned for several hours to reduce contamination in the instrumental 

background concnetrations. Isotope backgrounds and standards were measured 

before and after sample analysis to correct for instrument drift. The atomic masses 

monitored during analysis included 7Li, 11B, 25Mg, 31P, 43Ca, 46Ca, 51V, 55Mn, 57Fe, 
59Cu, 66Zn, 84Sr, 89Y, 90Zr, 91Zr, 98Mo, 111Cd, 120Sn, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 
208Pb and 238U. The standards used for element calibration included a pressed coral 

powder standard for ‘major elements’ B, Mg, Sr, Ba and U calibrated by isotope-

dilution ICP-MS and TIMS analysis at ANU (Fallon et al. 1999; Fallon 2000) and a 

NIST 614 silicate glass for ‘minor elements’ (Li, P, V, Mn, Fe, Cu, Zn, Y, Zr, Zr, Mo, 

Cd, Sn, La, Ce, Pr, Nd, and Pb using concentrations reported in (Horn et al. 1997). 

All elements were normalised to 43Ca for ‘major elements’ or 46Ca for ‘minor 

elements’ to act as an internal standard and correct for variations in count rate 

resulting from changes in coral porosity and ICP-MS efficiency.  

 

Data processing involved determining the instrument background and standards at 

the beginning and conclusion of an analytical run. Figure 5.5 displays the procedure 

for data processing including: A: average background counts were collected at the 

beginning and end of each analysis for approximately 60 s bracketing the coral 

sample. B: Background was linearly interpolated and subtracted from sample count 

rate. C: Normalisation of all elemental counts to 43Ca or 46Ca to act as an internal 

standard before calibration against a linearly interpolated value between Coral and 

NIST standards collected for 240 s bracketing analysis. D: Concentration of elements 

in coral sample were calculated assuming a constant concentration of Ca of 10 mol 

kgCaCO3
-1. All data were converted from ppm to mmol/mol or µmol/mol. Data was 

smoothed using an 11-point average for corals with growth rates > 5 mm providing a 

resolution of 225-230 µm which represents approximately fortnightly growth. Slower 

growing corals (Seacliff A, Taylors Island, Edithburgh, Whyalla and Dutton Bay) 

were smoothed with a 5 point average to a sampling resolution 100 µm which 

correlated to approximately 2-3 weeks. Although there is still some high-frequency 

variability in the data that can not be linked to temperature or other known 
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environmental factors, further reducing the data would mean short term 

environmental events recorded in the coral may not be apparent.  
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Figure 5.5: Laser data processing first with background levels removed then normalised to 43Ca and 

the in-house coral standard. A. Backgrounds and standards measured at the beginning and end of the 

analysis were averaged and instrumental precision assessed. B. Background subtracted using a value 

linearly interpolated between the initial and final background after analysis. C. Internal standardisation 

using 43Ca for all elements (example of Ba/Ca displayed). D. Calibration with the relevant standard 

(CORAL or NIST 614) using a value linearly interpolated between the standard measured before and 

after analysis. Absolute concentrations of all elements were calculated assuming a constant Ca 

concentration of 10 molkg-1. 

 

The more modern ICP-MS (Varian) enabled a larger suite of elements to be analysed 

(51V, 57Fe, 59Cu, 90Zr, 91Zr, 98Mo, 139La, 140Ce, 141Pr, and 146Nd,) than was previously 

available on the PQ2. The Varian has significant improvements over the PQ2 

including more efficient cycling allowing a longer dwell time on each element, 

greater sensitivity and a lower machine background.  
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Analytical Methods: Stable isotope analysis 

Carbonate samples were milled at a resolution of monthly to five yearly increments 

(200 µm – 6 mm) along the growth axis of coral cores. Milling techniques are similar 

to those described in Gagan et al. (1994). Individual powdered samples were 

analysed for δ18O and δ13C in an automated individual carbonate-reaction Kiel (III) 

device coupled with a Finnigan Mat-251 mass spectrometer at the Research School 

of Earth Sciences, The Australian National University. Powdered coral samples 

weighing 180-220 µg were reacted with two drops of 103% phosphoric acid at 90°C. 

The resulting H2O-CO2 gas was purified by freezing with liquid nitrogen removing 

the water, vaporising the CO2 and trapping it in a cold trap system. The purified CO2 

is then passed through to the inlet system of the mass spectrometer for measurement. 

All isotopic data are measured relative to the National Bureau of Standards NBS-19 

(δ18O =-2.20‰; δ13C =1.94‰) reported as per mil (‰) relative to Vienna Peedee 

Belemnite standard (VPDB). Analytical precision for replicate measurements (n = 

115) of δ13C in NBS-19 was ± 0.02‰ (2σ). The National Bureau of Standards NBS-

18 is also run weekly for instrumental precision (δ18O = -23‰; δ13C = -5.0‰) 

reported as per mil (‰VPDB). 

 

The trace element analyses were conducted down the centre of the coral Seacliff B03 

parallel to the major growth axis and the δ18O analyses were milled approximately 8 

mm away from the laser analyses on the edge of the coral piece. As well as the 

sampling offset on different corallites, there is a difference in sampling resolution 

between the two techniques. The trace elements are ablated at a rate of 16 µm sec -1 

then smoothed to remove the high frequency variability combining an average of 5 

sec of analytical rime. The smoothed data results in an effective resolution of ~ 250 

µm which corresponds to approximately fortnightly resolution, where as the δ18O 

were milled using a sampling resolution of ~ 200 µm, also approximately fortnightly 

resolution (but with a larger amount of carbonate used in analysis). 

 

There is a significant difference in the sample volume analysed between bulk 

sampling of δ18O and trace elements by LA-ICP-MS. The laser sampling rectangle is 

~ 400 x 40 µm x ~ 1 µm per pulse depth, which corresponds to 16,000 µm3 per pulse 

or ~ 20 ng of sample per pulse. The laser data is averaged to an approximate 

resolution of 250 µm, therefore the total sample ablated per data point is ~ 160 ng 
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(assuming 50% coral porosity). The δ18O samples are milled at ~ 200 µm x 2500 µm 

x 3000 µm which equates to 1.5 mm3 or around 2000 µg of sample, of which a 200 

µg sub-sample is analysed. 

 

 

Results and Discussion 

Comparison of LA-ICP-MS systems 

When assessing the potential of a new paleoenvironmental archive it is important to 

assess the quality of data reproducibility, and this study provided an ideal 

opportunity with the replacement of the PQ2 ICP-MS during the course of the project. 

Although previous studies have conducted comparisons between different ICP-MS, 

they have been confounded by other complicating factors such as non-uniform 

sample ablation (different laser-ablation systems or aspirated samples) (Munksgaard 

et al. 2004).  

 

 
 

Figure 5.6: Comparison of data collected on two different ICP-MS within the Earth Environment Mass 

Spectrometry Laboratory, ANU. The data were run on parallel tracks approximately 18 months apart. 

In February 2005 for the PQ2 analyses and May/July 2006 for the Varian analyses. 

 

This study has combined the use of two ICP-MS from the same laboratory at ANU 

connected to the same 193 nm Excimer Compex Laser and demonstrates high 

reproducibility between the two instruments. To check reproducibility, analyses were 

conducted on a piece of coral from Seacliff colony (Seacliff B03 - collected in 2003) 



 Chapter 5: Evaluating Paleotemperature Proxies  

 113 

and run on the PQ2 and the Varian ICP-MS over an 18 month period (Figure 5.6). 

The three analyses were conducted on neighbouring calices on the same piece of 

coral and indicate a similar annual temperature cycle. Some of the disparity between 

the amplitude of the temperature cycle in neighbouring calices, reflect variations in 

coral architecture and calice geometry.  

 

A direct comparison on the same laser track between the two ICP-MS was not 

possible because the track run on the PQ2 was not marked. Due to the three-

dimensional structure of Plesiastrea (compared with Porites) the laser tracks are not 

visible under ultra-violet light. Therefore the differences in Ba/Ca concentration 

between the PQ2 analysis and the Varian analyses in Figure 5.6 are likely to reflect 

coral heterogeneity in architecture, rather than instrumental differences as the 

measured concentrations of Ba are well above detection limits. 

 

 
 
Figure 5.7: Data reproducibility from the Varian ICP-MS on the same track run seven times over three 

months with Ba/Ca on Seacliff B05. Dashed blue line is the mean for the seven analyses and green 

lines are ± 1� . 

 

Reproducibility on the same track from Seacliff B05 (collected in 2005) with seven 

Varian analyses over a three month period was excellent (1σ = 0.2 µmol/mol) (Figure 

5.7). There is more heterogeneity observed between the peaks rather than at trace 

element concentration maxima and minima. A potential cause for this discrepancy 

may be due to the way the laser ablates the coral skeleton on different skeletal 

components. The majority of the trace element (TE) proxy data presented in this 

chapter was generated on the Varian rather than the PQ2 because of a higher level of 
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precision obtained and more efficient cycling allowed a longer dwell time on each 

atomic mass. A comparison between the two ICP-MS was made for calibration of 

one of the coral colonies (Seacliff B) for cores collected in 2003 and 2005. 

 

 

Overview case study: Seacliff B colony 

An initial evaluation of the independent paleotemperature proxies δ18O and the trace 

elements Ba/Ca, Sr/Ca, U/Ca and Mg/Ca indicate systematic variations over the 22 

mm of coral skeleton (Figure 5.8).  

 

 
 

Figure 5.8: Data reproducibility between � 18O analyses and trace metal ICP-MS analyses on Seacliff B 

03. The lighter colour used for Ba/Ca, Sr/Ca and U/Ca and Mg/Ca indicated the second analyses on 

the same laser track. 

 

The average extension for this section of the Seacliff B core is 9 mm yr-1, therefore 

the 22 mm section represents 2 ½ years of growth. Distinct annual variation occurs in 

all elements except Mg/Ca, with the greatest amplitude in concentrations in δ18O and 

Ba/Ca concentrations. There was a small seasonal variation in Mg/Ca concentrations 
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but this signal was overwhelmed by large spikes of concentrations three times usual 

coral values, that were not present on second analytical run on the same laser track. 

 

 

 
 

Figure 5.9: Scanning electron micrographs of Plesiastrea versipora. (A): Individual corallite of Seacliff 

B; (B): Longitudinal section of septa from Seacliff B displaying micro-crenulations of ~ 15-20 � m, 

potentially daily growth bands indicated by black arrows; (C): Arrows point to secondary aragonite in 

pore spaces in colony Seacliff A, none were found on septal surfaces; (D): Magnified section of 

secondary precipitate needles from Seacliff A; (E) and (F): Examples of rhombic crystals that are 

suggested to be high-magnesium calcite from Seacliff A (E) and Troubridge (F). 
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Ba/Ca and δ18O produce a similar signal with winter minima offset between Ba/Ca 

and δ18O due to growth rate differences between the different corallites analysed. 

The Sr/Ca and U/Ca data indicate very similar trends but do not appear to capture the 

three winters in the 22 mm section as coherently as δ18O or Ba/Ca. The Ba/Ca 

concentrations were more reproducible over the same laser track than Sr/Ca and 

U/Ca, which in turn were more reproducible than Mg/Ca.  

 

Mg/Ca was also collected during LA-ICP-MS analyses; however, the data indicated 

a high level of contamination with high-frequency spikes in the laser data which 

were not reproducible (Figure 5.8). There was negligible correlation between Mg/Ca 

and other trace element temperature proxies and δ18O, therefore it was interpreted 

that there was minimal temperature control on Mg incorporation into Plesiastrea 

versipora. The high-resolution nature of laser-ablation ICP-MS may enhance the 

heterogeneity of trace element signals including Mg/Ca, this has been observed in 

other LA studies (Sinclair 1999; Fallon 2000), and ion microprobe analyses (Allison 

& Tudhope 1992; Allison 1996b). Lower temporal resolution sampling (monthly) 

does not record heterogeneity in Mg/Ca and indicates a high correlation with SST 

(Mitsuguchi et al. 1996).  

 

The anomalous Mg spikes occur most frequently when the laser samples aragonite 

next to a pore space or hole in the skeletal matrix. Potential sources of contamination 

masking a possible SST signal include diagenesis (McGregor & Gagan 2003) and 

secondary precipitates including high-Mg calcite. Secondary precipitates were 

revealed during scanning electron microscope examination, including secondary 

precipitates (Figure 5.9: C & D) and also potentially high-Mg calcite rhombs (Figure 

5.9: E & F). No evidence of biological high-Mg crystals was observed, such as 

bacterially-derived brucite, which has been observed in tropical coral skeletons 

(Nothdurft et al. 2005). Concentrations for Mg/Ca have not been included in the rest 

of the chapter, as they were assessed to be reflections of contamination in the coral 

skeleton including secondary precipitates (Figure 5.9) rather than primary Mg/Ca in 

the coral aragonite lattice. 
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Calibrating Trace Element Records to SST 

To accurately compare the laser ablation analyses with in situ SST, the laser data set 

has to be translated from distance to time. This is achieved by first smoothing the 

SST data which was averaged from daily to fortnightly, followed by resampling the 

laser data using a time-series analysis software package. The software Analyseries 

(Paillard et al. 1996) uses linear interpolation to resample a dataset using fixed points.  

The SST data and Ba/Ca laser data were ‘peak matched’ with 2 points per year using 

summer maxima (February) and winter minima (August). Only two marker points 

were used to interpolate the trace element data even though it cannot be assumed that 

linear growth occurred between the summer and winter marker points due to the 

differences in width of the high and low density bands. An example of the distance-

time conversion of laser data is displayed in Figure 5.10. This figure describes the 

sampling of a coral core for laser ablation and stable isotope samples, followed by 

the translation of distance-time by peak matching a trace element record with SST. 

 

 
Figure 5.10: Distance to time translation for trace element analyses. (A): X-ray of Seacliff B indicating 

40 years of growth and transect of milled samples for � 18O analyses and inset B 9 cm piece of coral 

core for LA-ICP-MS analyses. (B): Laser piece for the top of core Seacliff B03, black line indicates 

laser track. (C): Ba/Ca analyses for Seacliff B03_1 (inset B) plotted as distance down coral core (blue 

curve), Ba/Ca axis is inverted. This data is peak matched to in situ SST data (grey curve) and linearly 

interpolated between peaks to convert distance scale to time scale on x axis (green curve). 

C 
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Previous studies have reported that artificially fixing the time series between the 

peaks and troughs can incorporate greater error into your time translation (Sinclair 

1999). After the laser data had been interpolated, the peak shape was different due to 

the greater extension and higher amount of calcification in summer, all trace element 

concentrations have a broad summer and sharper winter trough (Figure 5.10 (A)). 

Other studies have observed a similar asymmetry in trace element seasonal cycles, 

suggesting that growth is not constant throughout the year at a range of latitudes and 

extension rates and calcification vary seasonally (Fallon et al. 1999; Cardinal et al. 

2001; Cohen et al. 2004; Montagna 2004). Other high-latitude studies conducted on 

both tropical (Fallon et al. 1999) and non-tropical (Montagna et al. 2007) coral 

species have concluded that the coral reaches a certain temperature threshold and 

stops growing, however this was not observed in the Plesiastrea versipora colonies 

from Gulf St. Vincent or Spencer Gulf. Studies on the calcification of Plesiastrea 

versipora colonies from Port Phillip Bay (Victoria) with similar temperature ranges 

to the South Australian gulfs concluded that massive forms of Plesiastrea continue to 

calcify at low temperatures (Howe & Marshall 2002). Howe and Marshall (2001) 

observed considerable variation in skeletal deposition between individual corallites 

with reduced crystal organisation in skeletal material deposited at 10°C.  

 

Five of the Plesiastrea versipora cores collected in this study were calibrated for a 

10-12 year period (12 years for cores collected in 2005) with a composite SST 

dataset from 1992-2005 (Figures 5.11-5.16) including in situ logger data from two 

coral colony locations and the National Tidal Facility data from Port Stanvac (Gulf 

St. Vincent). Seasonal cycles of both Sr/Ca and Ba/Ca were used to construct time 

series for all corals. Ba/Ca concentrations displayed the most regular seasonal cycle. 

However, because Ba/Ca is known to be influenced by other environmental factors 

including upwelling and river discharge (Lea et al. 1989; Sinclair 1999), Sr/Ca was 

also used to verify the regularity of the seasonal cycle. The seasonal cycles in the 

laser data were also compared to density bands in the skeleton, and summer peaks (or 

low concentrations) in the Ba/Ca data corresponded to low density bands in the coral 

core. 
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To assess the reproducibility within a coral colony, SST calibrations were conducted 

for two cores from Seacliff B; collected in 2003 and 2005. The SST/coral calibration 

comparison conducted on Seacliff B03: PQ2 (Figure 5.11) and Seacliff B05: Varian 

(Figure 5.12) yielded better correlations between the trace element proxy and SST 

for the Varian analyses. The difference in SST calibrations between Figure 5.10B 

and Figure 5.11B may be predominantly a function of differences in individual 

corallites between the 2003 and 2005 cores.  

 

In contrast to the Seacliff B cores, the Troubridge coral (Figure 5.13) has lower 

Ba/Ca concentrations, the summer peaks are at a similar concentration of 5 µmol/mol, 

however the winter troughs are 6.4 µmol/mol compared with 6.8-7 µmol/mol. This 

corresponds to a lower slope in the Ba/Ca SST calibration than Seacliff B coral. The 

seasonal cycle is not clear in concentrations of Sr/Ca and U/Ca throughout the 

calibration period and change from 2003-2005 with higher concentrations. This 

feature in the trace element data produces a bimodal distribution in the calibration 

regressions for Sr/Ca and U/Ca in Figure 5.13B.  

 

The denser corals with much slower extension rates, Seacliff A, Edithburgh and 

Taylors Island (Figures 5.14-5.16) did not exhibit an obvious seasonal cycle in Sr/Ca 

and U/Ca for part of the calibration period, when compared with coral colonies with 

a more rapid extension rate such as Seacliff B and Troubridge (Figures 5.12-5.13). 

None of the coral colonies exhibited a very strong temperature dependency for B/Ca 

although the r2 values indicate a correlation with SST of greater than 50%, the slope 

of the calibration is very low for all corals. The lack of temperature dependence 

driving the B/Ca concentrations is reflected in the trace element derived temperature 

values producing anomalous results. 

 

The El Niño year in 1998 corresponds to lower concentrations in Ba/Ca, Sr/Ca and 

U/Ca (reflecting warmer temperatures) for Seacliff A and B corals. The Sr/Ca and 

U/Ca concentrations did not display clear seasonal cycles for three years after the El 

Niño in Seacliff B. A similar response was observed following the 2002 El Niño, 

however, no reduction in skeletal extension was observed during or after El Niño 

years (Figure 4.8) discussed in Chapter 4. 
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Figure 5.11 (A): Seacliff B03 comparison with in situ SST from Pt Stanvac. Average extension rate of 
Seacliff B03 is 6 mm yr-1. Data collected on the PQ2. Grey lines indicate SST maxima in February 
each year and corresponding low density bands. (B): Regressions of the trace element ratios with in 
situ SST from Port Stanvac.  
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Figure 5.12 (A): Seacliff B 05 comparison with in situ SST from Pt Stanvac. Average extension rate of 
Seacliff B05 is 6 mm yr-1. Data collected on the Varian. (B): Regressions of the trace element ratios 
with in situ SST.  
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Figure 5.13 (A): Troubridge 05 comparison with in situ SST from Pt Stanvac. Average extension rate of 

Troubridge 05 is 8 mm yr-1. (B): Regressions of the trace element ratios with in situ SST.  
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Figure 5.14 (A): Seacliff A05 comparison with in situ SST from Pt Stanvac. Average extension rate of 

Seacliff A05 is 2 mm yr-1. (B): Regressions of the trace element ratios with in situ SST.  
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Figure 5.15 (A): Edithburgh 03 comparison with in situ SST from Pt Stanvac. Average extension rate of 

Edithburgh 03 is 2 mm yr-1. (B): Regressions of the trace element ratios with in situ SST.  



 Chapter 5: Evaluating Paleotemperature Proxies  

 125 

 

Figure 5.16 (A): Taylors Island A03 comparison with in situ SST from Pt Stanvac. Average extension 

rate of Taylors Island A03 is 1.5 mm yr-1. (B): Regressions of the trace element ratios with in situ SST.  
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The remaining Plesiastrea versipora SST calibrations in Figures 5.14-5.16 are from 

corals growing less than 3 mm yr-1 and do not indicate clear seasonal cycles in any of 

the trace element concentrations. Although some of the SST calibrations have a 

reasonably good r2 value, this may be due to the data clustering tightly and therefore 

appearing to artificially correlate with temperature, without any direct role of SST in 

the concentration of Sr/Ca or U/Ca in the coral skeleton. Previous studies have 

observed ambiguous seasonal cycles, despite a variable temperature range indicating 

a sinusoidal cycle (Marshall & McCulloch 2001). 

 

Table 5.1: Trace element/SST transfer functions for five Plesiastrea versipora cores. 

 

 B/Ca (mmol/mol)  Sr/Ca (mmol/mol) 

 a b r2  a b r2 

Seacliff B03 PQ2 0.96 -0.013 0.55  10.55 -0.059 0.59 

Seacliff B05 Varian 0.81 -0.011 0.54  11.38 -0.089 0.66 

Seacliff A05 0.76 -0.001 0.01  11.85 -0.099 0.72 

Troubridge 05 0.77 -0.007 0.41  11.40 -0.076 0.53 

Edithburgh 03 0.70 -0.0002 0.0005  10.41 -0.023 0.39 

Taylors Island A03 0.54 0.008 0.28  10.95 -0.035 0.36 

MEAN 0.76 -0.0067   11.09 -0.0635  

        

 Ba/Ca (µmol/mol)  U/Ca (µmol/mol) 

 a b r2  a b r2 

Seacliff B03 PQ2 8.35 -0.132 0.64  2.31 -0.046 0.62 

Seacliff B05 Varian 7.54 -0.101 0.67  3.28 -0.089 0.72 

Seacliff A05 8.40 -0.103 0.54  3.25 -0.069 0.67 

Troubridge 05 6.40 -0.033 0.42  2.99 -0.063 0.52 

Edithburgh 03 6.33 -0.034 0.52  2.19 -0.021 0.34 

Taylors Island A03 6.69 -0.045 0.69  2.88 -0.037 0.39 

MEAN 7.23 -0.0637   2.81 -0.0542  

* Using the transfer function y = a + b*SST(°C), r2 is the correlation coefficient using a least squares 

regression. Seacliff B regression equations are generated from the 2003 core using the PQ2 ICP-MS 

and the 2005 core using the Varian ICP-MS 

 

The corals with the fastest growth rates such as Seacliff B and Troubridge appear to 

record seasonal variation with the most consistency, whereas the slower growing 
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corals (Seacliff A, Edithburgh and Taylors Island; Figure 5.14-5.16) do not 

accurately resolve the seasonal cycle and may calcify too slowly to record the large 

SST range (10-26°C) of the South Australian gulfs in their skeleton. All Plesiastrea 

versipora colonies did not display a coherent seasonal cycle in B/Ca, Sr/Ca and U/Ca 

in the last two years of growth, this may be related to smoothing associated with the 

tissue zone, although Seacliff B and Troubridge are growing at a rate of twice the 

tissue thickness (~ 4 mm) per year. The potential tissue smoothing effect was also 

observed in Ba/Ca for the slow growing corals as the slope is reduced for colines 

with lower extension rates. 

 

Ba/Ca exhibited a less ambiguous seasonal cycle than B/Ca, Sr/Ca and U/Ca for all 

corals analysed even though the ‘degree of fit’ in the trace element – SST 

correlations were similar. The transfer functions associated with SST/coral 

calibrations are listed in Table 5.1, although there is a high degree of variability in 

the slope of the transfer function (b values from table), this has been observed in 

previous review studies (Correge 2006) and temperature calibration equations from 

other published studies listed in appendix A.  

 

 

 

Figure 5.17: Comparison of Ba/Ca (blue) record from Seacliff B05 with rainfall record (black) from Kent 

Town, Adelaide. Rainfall data provided by the Bureau of Meteorology. 

 

Other environmental factors were examined to see if they contributed to the 

incorporation of Ba into the coral skeleton. Rainfall (measured in Adelaide) was 

compared with one of the metropolitan coastal corals and only described 28% of the 

annual variability (Figure 5.17). The high Ba/Ca winter peak often lags the rainfall 

peaks by several months, and where a correlation does occur between the two 

variables, this may be explained by the time of year, with rainfall predominantly 
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occurring in winter and more Ba incorporated with cooler seawater temperatures. 

The concentrations of Ba/Ca in both the coastal and open gulf Plesiastrea versipora 

colonies were comparable, and the open gulf corals could not be influenced by 

rainfall or higher Ba from river discharge, suggesting the Ba concentration is stable 

throughout the gulfs. Recent studies examining Ba/Ca concentrations in fish otoliths 

in temperate Australian waters have suggested that Ba/Ca is a conservative tracer of 

fish movement, and ambient Ba in coastal waters is 5-6 g L-1  compared with Ba 

enriched estuarine sites of > 10 µg L-1 (Elsdon & Gillanders 2003; Hamer et al. 

2006). 

 

Sr/Ca has been the most studied paleotemperature proxy apart from δ18O (Swart & 

Grottoli 2003; Correge 2006). A wide range exists between published Sr/Ca-SST 

calibrations, with equivalent Sr/Ca concentrations deriving temperature differences 

of 2-4°C for example (Beck et al. 1992; McCulloch et al. 1994; Shen et al. 1996; 

Alibert & McCulloch 1997; Gagan et al. 1998), see Appendix A for a more complete 

list of Sr/Ca-SST calibrations. Several hypotheses have been suggested to explain the 

variability in Sr/Ca calibrations, including; coral species collection, seawater 

concentrations, sampling size, instrumental variability and inter-laboratory spikes 

(Gagan et al. 2000). The slopes of the Sr/Ca calibrations in this study for corals with 

extension rates greater than 3 mm yr-1 and the % change per °C are comparable to 

published studies. However, the error associated with the LA-ICP-MS technique 

corresponds to approximately 2°C, implying that calibrations generated in this study 

have an error too great for precise paleotemperature reconstructions, but are adequate 

to compare this species of coral with calibrations derived from tropical corals. 

 

The calibrations for the five corals between trace element/Ca-SST described in Table 

5.1 are similar to the range of published literature calibrations (Appendix A). 

Temperature dependence of Sr/Ca for Plesiastrea versipora at 0.06 mmol/mol/°C has 

been observed both in Porites and other species (Smith et al. 1979; de Villiers et al. 

1994; McCulloch et al. 1999; Fallon et al. 2003). The U/Ca was also comparable to 

published calibrations 0.05 µmol/mol/°C (Min et al. 1995; Fallon et al. 1999; Fallon 

et al. 2003). Very little temperature dependence was observed in B/Ca although a 

previous laser-ablation study by Fallon et al. (2003) observed similar slopes. The 

Ba/Ca ratio measured on Plesiastrea versipora ranged from 4.5µmol – 7.3 µmol, a 
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greater range than ranges observed in Caribbean and East Pacific corals (Shen & 

Boyle 1988; Lea et al. 1989; Shen et al. 1992), this may be due to the lower 

temperatures experienced in the South Australian gulfs. A study conducted on a 

high-latitude faviid coral from the Mediterranean also observed a large range in 

Ba/Ca concentrations and has a comparable large annual temperature range of over 

15°C (Montagna 2004).   

 

 
 

Figure 5.18: Comparison of Ba/Ca records from three corals. The first panel compares the Seacliff B 

cores from 2003 and 2005; the second panel compares Seacliff B05 with Seacliff A05 and the third 

panel compares Seacliff B05 with Troubridge 05. 

 

Figure 5.18 compares the reproducibility between the two Seacliff B cores from 2003 

and 2005. Although there is a high coherency between the two records, there are 

differences in the expression of the winter minima, due to differences in individual 

calice growth. Therefore, a linear regression between the two records results in a low 

correlation, due to the differences in seasonal amplitude in some years. A 

comparison of Seacliff B and Seacliff A clearly demonstrates the reduced seasonal 
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cycle recorded by Seacliff A. The comparison between the two colonies with 

comparable extension rates, Seacliff B and Troubridge record a similar amplitude in 

the seasonal cycle but indicate variability in sub-seasonal scale Ba/Ca concentrations.  

 

The SST calibrations indicate that Plesiastrea versipora does record seasonal 

variability using the well established trace element proxies Sr/Ca and U/Ca. In 

addition, Ba/Ca, shows a strong correlation with SST, which was first hypothesised 

to have a temperature control on elemental substitution in the skeleton by Lea et al. 

(1989) and subsequently observed in experimental studies (Dietzel et al. 2004). The 

Plesiastrea versipora colonies growing at less than 3 mmyr-1 have low temperature 

dependence in Sr/Ca, U/Ca and B/Ca concentrations and converting concentrations 

to temperature using the equations for each coral from Table 5.1 does not result in 

realistic temperatures. The SST correlations calculated in this study indicate that 

temperature does play a significant role in the trace element variation in Plesiastrea 

versipora colonies growing at > 3 mmyr-1, although there are also other factors such 

as vital effects which are influencing the trace element chemistry (Gaetani & Cohen 

2006; Sinclair et al. 2006).  

 

 

Trace Element Intercorrelation 

Sr/Ca and U/Ca exhibited a strong linear correlation when regressed together for all 

corals examined (Figure 5.19). Most corals were very significantly correlated (r2 > 

0.93) (see Tables 5.2-6), and the lowest correlation between the two elements was for 

the Whyalla and Dutton Bay coral (r2 = 0.85 (Table 5.7) and r2 = 0.88 (Table 5.8)). 

One important observation is that Sr/Ca and U/Ca always appear to correlate on both 

an intra- and inter annual time scale regardless of the elemental ability to track 

temperature. The relationship between these two elements appears more robust 

between sites than other elemental correlations (Figure 5.19). There was also a 

significant correlation observed between Sr/Ca and Ba/Ca, however, the scatter plot 

comparison between Ba/Ca and U/Ca indicate more variability in the data. The 

relationship between these three elements suggests a degree of temperature control 

on skeletal incorporation.  
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The tight coupling between Sr/Ca and U/Ca for all Plesiastrea versipora colonies 

may be indicative of similar incorporation mechanisms for these two elements. A 

brief review of calcification models was described in Chapter 2, and the model 

thought to describe calcification in Plesiastrea versipora most accurately is based on 

a membrane bound pocket of supersaturated fluid (Howe & Marshall 2002). The 

composition of the calcifying fluid is thought to be actively controlled by the coral 

polyp, with the chemistry of the seawater modified by transport of ions across the 

basal epithelium (Cohen et al. 2006; Gaetani & Cohen 2006). One hypothesis to 

describe the difference in the correlations between the elements may be that Sr and U 

enter the calcification fluid through the same chemical pathway and are therefore 

subject to a similar partition coefficient.  
 

 
Figure 5.19: Correlations between B/Ca, Sr/Ca, Ba/Ca and U/Ca for five Plesiastrea colonies. The 

different colours represent different coral cores. Units for B/Ca and Sr/Ca are mmol/mol; units for 

Ba/Ca and U/Ca are µmol/mol. B/Ca shows the least temperature dependence and least similarity with 

other trace metal paleothermometers.  
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By contrast Ba may enter the calcification pore space through a different chemical 

pathway to Sr and U. Even though all three elements substitute for Ca2+ and produce 

an isomorph of aragonite (witherite (BaCO3) (Speer 1983; Lea et al. 1989); 

strontianite (SrCO3) (Kinsman 1969; Amiel et al. 1973a; Cross & Cross 1983; Speer 

1983); rutherfordine (UO2CO3) (Christ et al. 1955; Amiel et al. 1973b; Min et al. 

1995)). Although temperature has been known to play an important role in the 

partitioning of boron into aragonite (Ichikuni & Kikuchi 1972) the boron species 

B(OH)4
– most likely substitutes for the CO3

2- site (Hemming & Hanson 1992) and 

therefore may be more dependent on the pH of the calcification fluid rather than SST. 

B/Ca does not show a strong correlation with SST in Plesiastrea compared with 

previous studies (Hart & Cohen 1996; Sinclair et al. 1998; Fallon et al. 1999; 

Montagna et al. 2006). 

 

A recent study by Sinclair et al. (2006) suggested that an inverse relationship 

between U/Ca and Mg/Ca was a universal feature of all corals. It is not surprising 

that Mg/Ca has an inverse relationship with other trace elements as it has a positive 

correlation with SST compared with B/Ca, Sr/Ca and U/Ca which have a negative 

correlation with SST. The negative correlation suggests that in warmer temperatures 

it is harder for cations to replace Ca2+ and therefore have lower concentrations. The 

Mg/U relationship observed by Sinclair et al. (2006) in one shallow water species 

and three deep-water or azooxanthellate species is not supported by the results of this 

study. All Plesiastrea versipora colonies analysed indicated anomalous spikes in Mg 

that could not be correlated to a seasonal cycle. Mg/Ca has been shown to be more 

complex than other trace elements due to different concentrations of Mg in different 

carbonate lattice structures (Allison 1996a; 1996b). The coherency between Sr/Ca 

and U/Ca observed in Plesiastrea versipora was higher than the anti correlation 

between U and Mg observed by Sinclair et al. (2006). These authors also suggest that 

there is a single chemical process fractionating trace elements which can be 

influenced by environmental parameters such as SST but is dominantly controlled by 

physiological parameters (Sinclair 2005). The trace element behaviour observed in 

Plesiastrea versipora suggests that there is biological control influencing the 

temperature dependent fractionation, however not all trace elements are subject to 
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the same level of physiological fractionation, possibly due to different ionic 

pathways into the calcification fluid. 

 

All corals can calcify different shaped aragonitic crystals depending on a range of 

environmental conditions including temperature and daylight (Coles & Jokiel 1978; 

Kleypas et al. 1999). A thorough investigation of the calcification in Plesiastrea 

versipora was conducted by Howe and Marshall (2002), and three dominant crystal 

forms were observed in a temperature dependent diel pattern. These forms included 

two forms during daytime light calcification, small spheroid crystals and at higher 

temperatures small needle-shaped crystals (Howe & Marshall 2002). The dark 

calcification deposition was described as an amorphous sheet-like cementation 

(Howe & Marshall 2002) and it is likely that these three forms of crystal structure 

have different abilities to substitute other cations for Ca2+. 

 
 

Long Timescale Trace Element Records – Fast Growing Corals 

The differences in trace element systematics observed between the Plesiastrea 

versipora colonies with fast extension rates (> 4 mm yr-1) and those with slow 

extension rates (< 3 mm yr-1) will be discussed separately in different sections. The 

trace element analyses presented in this section are shorter than the length of the 

coral core extracted (determined in Chapter 4), due to the loss of the primary growth 

axis. As described in the methods, LA-ICP-MS analyses are conducted down the 

main growth axis to provide the most reproducible concentrations (Sinclair 1999; 

Fallon 2000). Trace element data not collected on the main growth axis displays an 

irregular or skewed seasonal cycle and has not been presented here. 

 

To examine the long term temperature changes recorded in the Plesiastrea versipora 

cores a combination of Ba/Ca and Sr/Ca ratios were used. Ba/Ca was chosen because 

it indicated the most coherent seasonal cycle and has a greater percentage change per 

°C than U/Ca. A linear trend was fitted to the length of each of the P. versipora 

records to assess the change through time in the temperature record and whether any 

obvious trends could be determined.  
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The high coherency between Sr/Ca and U/Ca was observed throughout the long 

records of all coral cores. The Seacliff B record (Figure 5.20) extends for 63 years 

before the primary growth axis was lost. The Ba/Ca record displayed variable 

amplitude over the seasonal cycle on a multi-year scale. Greater variation was 

observed with the winter minima than summer maxima. The B/Ca record indicated a 

shift in the mean value in ~ 1978, however given the low coherency of B/Ca with 

SST, this may be a vital effect or an artefact in changing calcification rather than a 

real environmental signal. The Sr/Ca and U/Ca records did not display an apparent 

seasonal cycle for all years. The Seacliff B coral indicated a temperature increase of 

1°C over the last 53 years in the Ba/Ca and Sr/Ca signals.  
 

 

 

Figure 5.20: Trace element profiles for Seacliff B05 from Seacliff Reef, Gulf St Vincent. Average 

extension rate of Seacliff B05 is 7 mm yr-1. Resolution of running average is approximately fortnightly 

(250 µm). 
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Table 5.2: Correlation coefficients of Seacliff B05 coral at 250 µm resolution (p< 0.001) 

  B/Ca Sr/Ca Ba/Ca 

Sr/Ca 0.29   

Ba/Ca 0.46 0.59  

U/Ca 0.27 0.94 0.45 

 

 

 
 

Figure 5.21: Trace element profiles for Troubridge 05, Gulf St Vincent. Average extension rate of 

Troubridge 05 is 7 mm yr-1. Resolution of running average is approximately fortnightly (250 µm). 

 

Table 5.3: Correlation coefficients of Troubridge coral (p< 0.001). 

  B/Ca Sr/Ca Ba/Ca 

Sr/Ca -0.25   

Ba/Ca 0.29 0.46  

U/Ca -0.28 0.95 0.42 



Geochemical Ecology of Temperate Corals 

 136 

The record from the Troubridge coral (Figure 5.21) spans 69 years and the Ba/Ca 

signal displays a variable amplitude to the seasonal signal throughout the record. 

B/Ca displays a decreasing trend from the early 1990s. The Sr/Ca and U/Ca have the 

lowest concentrations in the tissue zone and do not display a coherent seasonal cycle. 

 

The Troubridge coral (Figure 5.21) indicated a larger temperature change over the 

length of the core compared with Seacliff B of 3-4°C. This colony also displays a 

slight cooling trend over the 1950-1960s and the 1980s. The temperature trend may 

be unreliable due to the low concentration change per °C in the trace element-SST 

calibrations or the SST data set from Port Stanvac may not be accurate in recording 

seasonal maxima and minima.  

 

Long Timescale Trace Element Records – Slow Growing Corals 

The longest trace element record for the South Australian gulfs generated in this 

study was approximately 200 years and was from the coral Seacliff A (1818-2005; 

Figure 5.22); the second longest record was from the Taylors Island coral in Spencer 

Gulf (1874-2003; Figure 5.23). All three of the long slow growing coral cores 

(Seacliff A, Edithburgh (Figure 5.24) and Taylors Island) and 2 shorter colonies from 

Whyalla (Figure 5.25) and Dutton Bay (Figure 5.26) display a bimodal distribution 

in the trace elements. The bimodal behaviour in Sr/Ca and U/Ca was reproducible 

down the same laser track, and also between neighbouring tracks on different calices 

with an offset when concentrations changed, but with a similar magnitude. Potential 

mechanisms to explain the trace element behaviour will be discussed below. 

 

The Ba/Ca signal in Seacliff A (Figure 5.22) also displays a certain degree of 

bimodal behaviour, with large shifts occurring throughout the record. This is 

reflected in stronger correlations between Ba/Ca, Sr/Ca and U/Ca. If the temperature 

calibration was precise then these shifts would correlate to a temperature shift of 

almost 20°C. The amplitude of the seasonal cycle in all trace elements is reduced to 

what would be expected with a temperature range of 12°C throughout the year. It is 

apparent that the trace elements in Seacliff A are not accurately recording SST and 

are reflecting a calcification/precipitation process that is physiologically controlled 

by the coral polyp rather than external environmental conditions. 
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Figure 5.22: Trace element profiles for Seacliff A05 from Seacliff Reef, Gulf St Vincent. Average 

extension rate of Seacliff A05 is 2 mm yr-1. Resolution of running average is approximately fortnightly 

(100 µm). 

 

 

Table 5.4: Correlation coefficients of Seacliff A05 coral  

  B/Ca Sr/Ca Ba/Ca 

Sr/Ca -0.55   

Ba/Ca -0.29 0.77  

U/Ca -0.54 0.97 0.73 
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Figure 5.23: Trace element profiles for Taylors Island A03, Spencer Gulf. Average extension rate of 

Taylors Island A03 is 1.5 mm yr-1. Resolution of running average is approximately fortnightly (100 µm). 

 

 

Table 5.5: Correlation coefficients of Taylors Island coral at 100 µm resolution. 

  B/Ca Sr/Ca Ba/Ca 

Sr/Ca -0.79   

Ba/Ca -0.24 0.36  

U/Ca -0.82 0.96 0.25 

 

 



 Chapter 5: Evaluating Paleotemperature Proxies  

 139 

 

 

 

 

 
 

Figure 5.24: Trace element profiles for Edithburgh 03 from Edithburgh, Gulf St. Vincent. Average 

extension rate of Edithburgh 03 is 2.5 mm yr-1. Resolution of running average is approximately 

fortnightly (100 µm). 

 

 

Table 5.6: Correlation coefficients of Edithburgh coral at 100 µm resolution 

  B/Ca Sr/Ca Ba/Ca 

Sr/Ca -0.41   

Ba/Ca -0.17 0.57  

U/Ca -0.45 0.93 0.44 
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Figure 5.25: Trace element profiles for Whyalla A03 from Point Lowly, Whyalla, Spencer Gulf. Average 

extension rate of Whyalla A03 is 1.2 mm yr-1. Resolution of running average is approximately 

fortnightly (100 µm). 

 

 

Table 5.7: Correlation coefficients of Whyalla A03 coral at 100 µm resolution 

  B/Ca Sr/Ca Ba/Ca 

Sr/Ca -0.69   

Ba/Ca -0.14 0.48  

U/Ca -0.67 0.86 0.35 
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Figure 5.26: Trace element profiles for Dutton Bay A03 from Dutton Bay, Coffin Bay. Average 

extension rate of Dutton Bay A03 is 3 mm yr-1. Resolution of running average is approximately 

fortnightly (150 µm). 

 

          Table 5.8: Correlation coefficients of Dutton Bay A03 coral at 150 µm resolution 

  B/Ca Sr/Ca Ba/Ca 

Sr/Ca -0.69   

Ba/Ca 0.077 0.29  

U/Ca -0.58 0.89 0.28 

 

The Taylors Island trace element data spans 125 years. The Ba/Ca record in Taylors 

Island (Figure 5.23) indicates several extremely cool winters in the early part of the 
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record. Using the temperature calibration derived in Figure 5.15 implies these 

winters were much lower than the SST in this region in modern times and the signal 

is unlikely to be related to an environmental or temperature record alone. The trace 

element data becomes more stable from 1940, with fewer fluctuations in Ba/Ca, 

Sr/Ca and U/Ca. It is unknown why the coral calcification changed during that period. 

The overall trend for the Ba/Ca data indicates gradual warming over the length of the 

record. However, as the calibration for this coral is not considered to be primarily 

influenced by SST, it may be a vital effect rather than due to environmental change. 

 

The Edithburgh record (Figure 5.24) spans 105 years and is similar to the other slow 

growing corals, with a bimodal distribution in Sr/Ca and U/Ca. The Ba/Ca record for 

this coral indicates a variable amplitude in the height of the seasonal cycle, with 

more cool winters than warmer summers. The trend from Ba/Ca in this coral is of 

gradual warming of ~ 2°C, with a mean Ba/Ca derived temperature of 17.5°C at the 

start of the coral record increasing to 19.5°C. This correlates to 2°C above the 

modern mean SST at Port Stanvac of 17.5°C. 

 

The Whyalla (Figure 5.25) and Dutton Bay (Figure 5.26) records span 62 and 39 

years respectively. Both of these corals are from shallow sites with large fluctuations 

in salinity throughout the year. Calibrations were not conducted for these corals 

because the temperature dependence of Ba/Ca, Sr/Ca and U/Ca suggested very low 

concentration change per °C and therefore little temperature dependence on the 

incorporation of these trace elements. This hypothesis was supported by the long 

trace element records which indicate a variable average concentration of trace 

elements and little apparent seasonal cycle. 

 

The slow growing corals gave evidence of different trace element behaviour to the 

Plesiastrea versipora cores growing at greater than 3 mm yr-1. Corals with more 

rapid extension rates display regular seasonal variation, and calibrations for Sr/Ca 

and U/Ca are comparable to published trace element-SST calibrations. However, 

several of the slow growing corals do not display a high degree of temperature 

dependence in their trace element fluctuations on a seasonal time scale. Variations in 

the fidelity of corals with different growth rates to accurately record SST has been 

observed in other high-latitude, slow-growing corals (Cardinal et al. 2001). However, 
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previous authors have suggested that complete resolution of the entire amplitude of 

the annual cycle is not necessary to determine interannual to interdecadal climate 

variations (Quinn et al. 1996b; Bagnato et al. 2004). 

 

Such extreme disparity between the trace element calibrations for colonies of 

Plesiastrea versipora growing within the same reef, or under similar environmental 

conditions in the same gulf, cannot be neglected when assessing the reliability of 

fossil colonies. The seasonal amplitude reduction observed in the trace element 

concentrations in the slow growing corals may be a function of growth rate 

dependent fractionation combined with seasonally variable growth rate. The effects 

of growth rate on trace elements values is well known (de Villiers et al. 1994), and 

the distortion of the sinusoidal shape of trace element records is also well-established 

(Barnes et al. 1995), but the combined effect of these two factors on the amplitude of 

trace element concentrations over a seasonal cycle is not well understood (Cardinal 

et al. 2001). 

 

 

Bimodal Trace Element Behaviour 

The ‘bimodal’ or ‘stepped’ trace element behaviour is reproducible both over the 

same track and on nearby tracks in neighbouring corallites and is a distinctive feature 

of the coral lattice in the slow growing Plesiastrea versipora colonies. 

 

Unfortunately, the mechanisms driving the trace element behaviour in the slow 

growing corals was not able to be determined during the course of this study. The 

bimodal behaviour in Sr/Ca and U/Ca is considered to be driven by the coral rather 

than any external environmental influences because there is no correlation in the 

‘mode-switching’ from high to low concentrations between corals in different sites.  

 

A frequency analysis conducted on four Plesiastrea versipora cores including 

Seacliff B, Seacliff A, Taylors Island and Edithburgh displays the bimodal 

distribution of Sr/Ca and U/Ca clearly in Seacliff A and Taylors Island (Figure 5.27). 

The Seacliff B coral has a ‘normal’ trace element distribution in a bell curve which 

centres on the mean SST value of 17.5°C. The Edithburgh core indicates a slight 
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bimodal distribution, but it is not as coherent as the behaviour of Sr/Ca and U/Ca 

observed in Seacliff A or Taylors Island.  

 

 

 
 

Figure 5.27 Frequency distribution of Ba/Ca, Sr/Ca and U/Ca for four corals; Seacliff B, Seacliff A, 

Taylors Island and Edithburgh. Bimodal distribution of trace elements is apparent in Sr/Ca and U/Ca 

concentrations in Seacliff A and Taylors Island corals. 

 

One potential hypothesis for this variation is Edithburgh may be on the verge of the 

threshold for slow growing versus fast growing trace element incorporation 

behaviour. The average extension rate of Edithburgh is between 2-3 mm yr-1; where 

as both Seacliff A and Taylors Island are less than 2 mm yr-1. The most probable 
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explanation for the different behaviour of Ba/Ca compared with Sr/Ca and U/Ca in 

the slow growing cores is that it enters the calcification fluid in a different ion 

transport pathway. If this hypothesis is correct then the Ba ion transport pathway 

may be subject to a different level of biological control from the coral polyp. 

 

There was no observed correlation between analysing different skeletal elements and 

jumps in the Sr or U concentrations in the ICP-MS while viewing the laser scanning 

on the video monitor. A visual correlation between skeletal elements and data would 

be difficult to determine during analysis as data is collected on a log scale on the 

ICP-MS, so observing shifts of 1-2 mmol/mol or µmol/mol is unlikely. However, the 

differences in skeletal structure between the slow growing corals and the fast 

growing corals (Figure 4.3; Figure 5.4) would suggest that a laser track is likely to 

encounter more architectural elements on the fast growing corals than on the slow 

growing corals. There was no correlation observed between the bimodal behaviour of 

Sr/Ca and U/Ca with minor trace elements in the slow growing corals (data presented 

in Chapter 6). An examination of the slow growing corals using other micro-

analytical techniques such as nano-SIMS may be able to establish the influence of 

different architectural components of the coral skeleton.  

 

It is unlikely that the bimodal distribution of elements is due to slow coral 

calcification. Calcification only at certain times of the year would bias the 

temperature recorded in the skeleton, and this feature would be consistent between 

different coral colonies. A study conducted by Howe and Marshall (2002) 

determined that Plesiastrea versipora from Victoria continued growing throughout 

the year, but given the large differences in extension rate in the South Australian 

corals, not all colonies may continue calcifying throughout the year.  

 

The incorporation of trace elements into coral aragonite is not a simple reaction only 

controlled by temperature. At the crystal scale, trace elements such as Sr may not be 

distributed homogenously (Hart & Cohen 1996; Greegor et al. 1997; Allison et al. 

2001). During the biomineralisation process, trace element fractionation can be 

effected by a number of mechanisms (a more detailed description is in Chapter 2) 

related to coral growth rate (de Villiers et al. 1995), degree of autotrophy or 

heterotrophy, or environmental parameters including sea water salinity and alkalinity 
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(Shen & Dunbar 1995). A recent study examining trace elements on a nanometre 

scale concluded that biological processes drive trace element incorporation into coral 

skeletons and seasonal variations in trace elements that correlate with SST are 

indicative of a secondary process (Meibom et al. 2007). 

 

Recent discussions in the literature (Allison et al. 2005; Sinclair et al. 2006; Meibom 

et al. 2007) suggest that the majority of micro-scale analytical studies have observed 

a strong biological influence over small spatial scales. When the high frequency 

heterogeneity is smoothed, which is usual practice with high resolution studies such 

as LA-ICP-MS, the correlation with several trace elements and SST becomes 

apparent. The observation that on a seasonal time scale trace elements and stable 

isotopes correlate with environmental factors such as SST, but on a micro-structural 

scale there is no correlation due to high-frequency ‘noise’ implies that seasonal 

variations in environmental conditions are not the only mechanism controlling trace 

element incorporation into coral skeletons. The pathways that transport different 

chemical elements into coral skeletons may take place across protein mediated 

pathways (Cohen & McConnaughey 2003) that may also be sensitive to temperature. 

 

 

Stable Isotopes 

Stable isotopes were analysed in three colonies of Plesiastrea versipora, Seacliff A, 

Seacliff B and Edithburgh to assess the paleoenvironmental archive recorded by δ18O 

and δ13C. This section assesses δ18O and its potential as a paleothermometer in 

Plesiastrea versipora; the δ13C data is presented in Chapter 7. One of the first 

observations from the stable isotope data was the large spread in the δ13C data 

(Figure 5.28) compared with other coral studies. The Seacliff A colony displayed a 

range in δ18O values from -1.8 to 0.8‰, the Seacliff B colony had δ18O values 

ranging from -2.3 to -1.3‰ and the Edithburgh colony had δ18O values ranging 

between -2.4 to -1.4‰. The difference in δ18O values between the two Seacliff 

colonies may be related to growth rate dependent fractionation (McConnaughey 

1989). The difference in δ18O values between the Seacliff corals and the Edithburgh 

coral cannot be explained by this mechanism, as the growth rate of Edithburgh coral 

is ~ 3 mm yr-1 and situated between the growth rates of the two Seacliff corals. 
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However, the Edithburgh colony is located on the western side of Gulf St. Vincent 

and may have different zooxanthellae species or symbiont concentrations in the coral 

polyps, which could change the metabolic fractionation of the stable isotopes 

(Grottoli & Wellington 1999). 

 

 
 

Figure 5.28: Cross plot of δ13C and δ18O for the three corals analysed. Seacliff B is dark blue circles; 

Seacliff A is aqua squares and Edithburgh is red diamonds. The Edithburgh coral is situated on the 

western coastline of Gulf St. Vincent at ~ 4 m water depth, whereas the Seacliff corals are on the 

eastern coastline of Gulf St. Vincent at ~ 14 m water depth.  

 

 

The δ18O values were significantly more enriched compared with tropical coral 

values (Weber & Woodhead 1972; Gagan & Chivas 1995). One possible explanation 

for the variability in the stable isotope values may be related to the difference in 

extension rate and skeletal density between the three corals (discussed in Chapter 4). 

Both amount of light and growth-rate dependent isotopic fractionation are known to 

influence isotopic composition of coral skeletons (McConnaughey 1989; Swart et al. 

1996b). McConnaughey (1989) demonstrated a distinct spatial structure in the 
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equilibrium offsets from inorganic aragonite in coral skeletons. This offset is referred 

to as a ‘vital effect’ and may be related to both metabolic and kinetic fractionation in 

coral skeletons. 
 

 
 

Figure 5.29: Comparison of δ18O analyses from Seacliff B for an 8 year calibration period with in situ 

SST from Pt Stanvac. Extension rate for Seacliff B is 6 mm yr-1. 

 

 
Figure 5.30: Comparison of δ18O analyses from Seacliff A for a 14 year calibration period with in situ 

SST from Pt Stanvac. Extension rate for Seacliff A is 2 mm yr-1. 

 

The relationship between δ18O and SST is illustrated for the two Seacliff corals in 

Figure 5.29 and 5.30. Isotopic samples were milled every 100 µm down the growth 

axis for both colonies. The sampling resolution for Seacliff B was 400 µm (every 

fourth sample analysed) to achieve approximately fortnightly resolution. The 
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sampling resolution for Seacliff A was 100 µm which equated to one sample every 

two-three weeks. The coral chronology was established by correlating SST maxima 

and minima with δ18O minima and maxima, respectively, and linearly interpolating 

between these points. The seasonal cycle of Seacliff B shows a good correlation with 

SST (Figure 5.29) but Seacliff A only displays approximately half the seasonal 

amplitude you would expect from this site (Figure 5.30).  

 

 

 

 

Figure 5.31: Fortnightly-monthly resolution δ18O analyses for two periods in the Seacliff corals. The 

upper panel is Seacliff B and the lower panel is Seacliff A.  

 

The reduced amplitude in the seasonal cycle expressed by the δ18O values in Seacliff 

A is similar to the reduced amplitude observed in trace element concentrations in this 

coral. Figure 5.30 indicates a greatly reduced seasonal amplitude in the first three 

years of sampling near the top of the coral and this reduced signal was also apparent 

in the trace element data and was suggested to be a function of tissue zone smoothing. 

 

A δ18O – SST calibration equation was developed using regression analysis on the 

Seacliff B coral to calibrate the δ18O paleothermometer for this coral. The Seacliff A 

colony was not used for the calibration because it did not record the complete 

seasonal cycle.  
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The calibration equation is: 

 

  δ18O = -0.9 – 0.16 x SST°C 

 

The calibration equation for Plesiastrea versipora has a lower slope than many 

calibrations for Porites in tropical regions (Gagan et al. 2000), but is comparable to 

mid-latitude Porites studies (Quinn et al. 1996a; Suzuki et al. 1999) and shows a 

higher slope than other mid-latitude studies (Mitsuguchi et al. 1996; Ayling et al. 

2006).  

 

The general arch-shape of the δ18O seasonal profiles mimics the results of the trace 

element profiles presented earlier in this chapter. This seasonal shape is in agreement 

with numerical models of skeletal growth with variable inter-annual extension rates 

(Taylor et al. 1993; Barnes et al. 1995; Taylor et al. 1995). The calibration equation 

derived from the Seacliff B δ18O analyses was applied to δ18O values from Seacliff A 

and Edithburgh to assess temperature/salinity variations over longer records through 

time. However, because the calibration has been derived from only one coral; 

applying the transfer function to δ18O values from the two other corals will increase 

the error in interpreting δ18O derived temperature variations over time.  

 

 
 

Figure 5.32: Low resolution δ18O analyses for Seacliff B (annual samples - orange) and Edithburgh 

(biennial samples - blue). 



 Chapter 5: Evaluating Paleotemperature Proxies  

 151 

 

The mean of the δ18O values for the low resolution analyses in all three corals is 

similar to the average SST in Gulf St. Vincent of 17.5°C at the start of the three low 

resolution records. Both the high-resolution sampling for the two Seacliff corals 

(Figure 5.31) and the annual-biannual sampling for two corals (Figure 5.32) from 

Gulf St. Vincent indicate gradual warming in the gulf over the last 150 years. Using 

the calibration equation (above) the warming suggested by Seacliff B is 

approximately 1.8°C and Edithburgh is 1.5°C. This trend in seawater warming is 

very similar to the trend suggested by the trace element data. The large shifts 

between analyses in the three long records are likely to be an artefact of not obtaining 

a homogenous sub-sample for the annual/biannual sample, rather than real 

environmental variations. An example of this feature is in Figure 5.32, between 

1930-1935 the Edithburgh δ18O values suggest a shift of 6°C – which may be a 

combination of salinity and temperature changes, but it is more likely to be an 

artefact of sampling. Due to instrumental usage constraints, more replicate analyses 

to establish the heterogeneity in the record were not possible. 

 

 
Figure 5.33: Three hundred year record of δ18O analyses for the Plesiastrea versipora colony Seacliff 

A. Samples were the equivalent of 5 years of growth. 

 

The long-term isotopic record from Seacliff A generated by 5-year samples (Figure 

5.33) does not suggest the same degree of warming as the shorter records. This 300 

year record suggests a more stable temperature with cooling during the late 

1700s/early 1800s and also in the 1970s. However, the high resolution samples from 

this colony did not reflect the full seasonal amplitude so it is likely that there are 

biological or vital effects confounding the temperature signal recorded in this colony. 

Interestingly, cool periods were observed in both the Seacliff A and the Edithburgh 
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δ18O records during the late 1850s and the 1970s. Other cooler periods expressed in 

the Edithburgh coral during the late 1800s and 1930s was not observed in the 

Seacliff A record. Variation in salinity in Gulf St. Vincent over the last century may 

also contribute to the trends observed in Figure 5.32 and 5.33. There was not time 

during the analytical component of this thesis to analyse bulk samples of Ba/Ca or 

Sr/Ca to establish the salinity signal from temperature in the δ18O records.  

 

 

A tale of two corals from Seacliff: Variable growth rates impacting 

proxy calibrations 

The current understanding of coral skeletal structure suggests that errors in the 

interpretation of environmental proxies may arise as a result of the complex 

architecture of coral skeletons (Taylor et al. 1993; Lough & Barnes 1997). Individual 

corallites can reflect large variations in the environmental record due to different 

calcification rates (McConnaughey 1989; de Villiers et al. 1995), variation within 

skeletal elements (Patzold et al. 1992), colony topography (Alibert & McCulloch 

1997; Cohen & Hart 1997) and sampling resolution (Leder et al. 1996). Variables 

which have been invoked as controlling influences on skeletogenesis include light 

intensity and duration (Marshall & Wright 1998; Reynaud et al. 2007), temperature 

(Cohen & McConnaughey 2003; Marshall & Clode 2004), sedimentary suspension 

(Shen et al. 1996), turbidity, hydraulic energy (Cohen & Hart 1997) and nutrients 

(Meibom et al. 2007).   

 

Coral samples that include multiple skeletal elements formed at different times may 

obscure the reconstructed environmental proxy. Previous studies on corals with large 

corallites have focused on one skeletal element such as the columella (Watanabe et al. 

2003) to overcome this problem. It was not possible to focus on one skeletal element 

in Plesiastrea versipora for either the high-resolution LA-ICP-MS sampling or the 

milled stable isotope samples due to the architectural complexity of the skeleton and 

the different densities between colonies. The approach used in this study was to 

determine the robustness of new coral proxy using independent paleothermometers 

prior to paleoclimate reconstructions. This may have introduced error in the ability to 

capture the full amplitude of the seasonal cycle. Previous studies have observed that 
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the theca, columellar and septa grow at different times and contain a different 

temporal record (Watanabe et al. 2003), whereas other studies on the same species 

observed no variation in the temporal record between different architectural elements 

(Bagnato et al. 2004). 

 

A study examining the effect of extension rate on δ18O, indicated a significant impact 

on SST correlations when the extension rate was below a threshold of 6 mm per year 

(Felis et al. 2003). Uptake of Sr2+ has been shown to be dependent on growth rate as 

well as temperature and light conditions (Reynaud-Vaganay et al. 2001). The amount 

of smoothing which occurs during coral calcification is not well understood.  

 

A recent study on the slow growing coral Diploria labyrinthiformis from Bermuda, 

with extension rates of 2-6 mm yr-1 evaluated a multi-coral calibration method to 

determine a universal Sr/Ca-SST calibration equation (Goodkin et al. 2007). 

Goodkin et al. (2007) suggest that using a multiple-colony calibration yields greater 

precision and accuracy relative to instrumental SST datasets than single colony 

calibrations to enable higher confidence when extrapolating to fossil coral 

reconstructions. The Diploria study combined three colonies for their Sr/Ca-SST 

calibration with growth rates of 3.2-4.2 mm yr-1 and discard Sr/Ca information from 

one colony with an extension rate of 2 mm yr-1 (Goodkin et al. 2007). Given the 

results of the present study examining corals with very different growth rates and 

consequently very different Sr/Ca-SST (or other trace element-SST calibrations) it 

appears unlikely that combining calibrations from several different colonies would 

improve the accuracy of trace element-SST calibrations. Until more is understood 

about the processes involved in calcification including: 1). how cations are 

incorporated into coralline aragonite; 2). what control the polyp has in determining 

rates of cation substitution for Ca2+; 3). concentration variability in seawater over 

temporal and spatial scales, combining calibrations derived from colonies with 

different growth rates may not improve precision.  

 

Two corals presented in this thesis, Seacliff A and Seacliff B are from the same reef 

and the same depth, are located very close together (less than 10 m), on a spatial 

scale with minimal variability in environmental conditions, yet not only do they 

display very different extension rates (2mm yr-1 versus 7 mm yr-1), the calibrations 
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derived from both trace elements and stable isotopes are very different. The 

concentrations of trace metal incorporation is also different, this is discussed further 

in Chapter 6. 

 

There is only one recorded species of Plesiastrea in the Indo-Pacific region (Veron 

1986), however, there may be differences in the zooxanthellae clades (Rodriguez-

Lanetty & Hoegh-Guldberg 2003) which can impact the rate of calcification. Genetic 

differences between colonies cannot be discounted, but was not within the scope of 

this thesis to determine. The level of autotrophy compared with heterotrophy is also 

not well understood in temperate corals. Howe & Marshall (2001) suggested that 

Plesiastrea versipora may be dependent on heterotrophic feeding, but this may also 

be variable between different colonies. 

 

 

Correlations between Independent Proxies 

 
 

Figure 5.34: Comparison of Ba/Ca and δ18O analyses for Edithburgh. Ba/Ca analyses were binned to 

a two year average. A four year lag is present between the two proxy records, this may be due to 

incorrect smoothing of Ba/Ca and the variation in initial sample size between the two techniques. 
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Similar warming trends were observed between Ba/Ca concentrations and δ18O 

analyses in two Plesiastrea versipora colonies, Seacliff B and Edithburgh. The 

Edithburgh colony indicated a warming trend of 1.5°C over the last 150 years. Other 

coral studies have observed warming trends of a similar magnitude (Kuhnert et al. 

1999; Cole et al. 2000). Direct comparisons between the laser ablation ICP-MS trace 

element records and stable isotope analyses are difficult due to the difference in 

initial sample size. To circumvent the sample resolution issue, the trace element data 

from the Edithburgh colony was smoothed to an average biennial value to compare 

with the δ18O record from the same coral. This comparison (Figure 5.34) produced 

interesting results. Deviations from the mean value observed in the δ18O record were 

also observed in the Ba/Ca record. These deviations around the mean in both proxy 

records represent similar temperature variations. Although there was an offset 

between the two proxy records, with Ba/Ca leading δ18O by approximately three 

years, this is likely to be due to inaccuracies in the smoothing of the Ba/Ca. A more 

accurate comparison would be to conduct isotope dilution ICP-MS analyses on the 

same milled samples that the stable isotope analyses were conducted; however, this 

was not possible during the time frame of this thesis. The cyclicity observed in both 

proxy records should be subject to further exploration and future investigations using 

frequency analysis may be able to establish fluctuations in regional climate 

influences present in these records. 

 

 

Climate Events Manifested in Plesiastrea versipora Proxy-records 

The southern coastline of Australia is influenced by large-scale climate systems from 

three ocean basins. Therefore El Niño Southern Oscillation, Indian Ocean Dipole, 

Pacific Decadal Oscillation and the Southern Annular Mode may play an influential 

role on regional climate in South Australia and be recorded in paleoenvironmental 

proxies derived from Plesiastrea versipora. Due to the complexities in the trace 

element and δ18O records from Plesiastrea versipora, it was difficult to ascertain 

regional climate forcing in the coral records with any degree of certainty.  

 

Tree ring studies based on Huon Pine from Tasmania have found significant multi-

decadal and centennial time scale variability in the warm-season temperature 
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reconstruction that may be related to slow changes in ocean circulation dynamics in 

the southern Indian Ocean (Cook et al. 2006). A robust ENSO signal has been 

observed in New Zealand kauri ring-width chronologies, suggesting New Zealand 

also experiences large-scale SST variability associated with ENSO from the tropical 

Pacific (Fowler et al. 2004; Cook et al. 2006). However, it is not understood whether 

ENSO paleoreconstructions based on one proxy or archive calibrated to a single 

component of ENSO such as SST would be sufficient to fully characterise the 

intensity and duration of the ENSO event (Gergis et al. 2006). 

 

 
Figure 5.35: Comparison of the Southern Oscillation Index with δ18O records from Seacliff B and 

Edithburgh. All data has been normalised and presented as anomaly data. SOI index from 

http://www.bom.gov.au/climate/current/soi2.shtml and coral records were normalised using the period 

1975-2005.  

 

An initial evaluation of the Southern Oscillation Index and δ18O records from 

Seacliff B and Edithburgh corals (Figure 5.35) indicated coherence over parts of the 

record. The δ18O records are presented as anomaly data and were normalised relative 

to a twenty year period in the modern part of the record. El Niño events were 
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observed in several Plesiastrea versipora cores in the trace element temperature 

proxies, Ba/Ca, Sr/Ca and U/Ca. The El Niño events during 1970, 1982 and1998 

were represented by a warmer summer, usually followed by a reduced winter 

minimum the next year. The correlation between SOI and the South Australian corals 

is reduced during the 1990s.  

 

 

Summary 

The results of this chapter demonstrate that colonies of Plesiastrea versipora with 

extension rates greater than 2 mm yr-1 may be useful as a paleoclimate archive in 

temperate Australian waters. Ba/Ca was evaluated to be the most reliable 

paleotemperature trace element measured in these corals, and may be useful in other 

high-latitude environments where upwelling and terrestrial influences do not effect 

Ba/Ca concentrations. 

 

Unfortunately, the colonies with higher extension rates suitable for climate 

reconstruction on a sub-annual scale do not have a columellar or architecture suitable 

for analysing a single component of the skeleton, which may reduce the ability to 

capture the full amplitude of a seasonal cycle. Both the stable isotope and trace 

element SST proxies indicated a high level of reproducibility when moving over 

different regions of the coral architecture but remaining in a single calice.  

 

The colonies with very low extension rates have skeletal components with enough 

aragonite to analyse a single component (theca), but only record approximately 50% 

of the seasonal SST range due to growth related fractionation and tissue smoothing. 

The colonies with growth rates lower than the width of the tissue zone (< 4 mm) are 

unsuitable for seasonal-scale reconstructions, and are more useful for decadal and 

centennial scale climate reconstructions. However, these colonies displayed 

‘bimodal’ distributions in Sr/Ca and U/Ca which suggests a complex biologically 

mediated incorporation into coralline aragonite. 

 

The length of the paleoclimate reconstruction was not fully realised compared with 

the size of the colonies due to colonies rolling and losing their primary growth axis 
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during storm events. This issue is related to the temperate coral habitat and the fact 

that colonies attach to small rocks and shells on rocky reefs rather than securely 

cement on carbonate reef platforms.  

 

This species presents a valuable new paleoclimate archive in a range of temperate 

environments, as the geographical range of Plesiastrea versipora is extensive 

throughout the Pacific and Indian Oceans in both the Northern and Southern 

Hemisphere. 
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 Chapter 6: Evaluating anthropogenic signals from 

Plesiastrea versipora  

 

Introduction 

Urban, industrial and agricultural developments may significantly alter the marine 

environment. Such mechanisms may include increased sediment runoff though land 

use changes and waterways modification. For example, increased sediment in the 

coastal zone has the potential to cause ecological shifts from species requiring high 

light intensities such as corals to species able to cope with reduced water quality such 

as algae. Reduced water quality from suspended sediments also contains higher 

nutrient levels causing regime shifts from carbonate reefs to algal dominated reefs 

(Koop et al. 2001; Hughes et al. 2003). Urban and industrial runoff into coastal 

environments can contain organic and inorganic (trace metal) pollutants. Increased 

metal concentrations in coastal waters and sediments can bioaccumulate into marine 

organisms and metal concentrations increase with increasing trophic levels (i.e. 

predatory fish have higher concentrations of heavy metals than invertebrates). Heavy 

metals such as Pb, Cd and Hg are toxic to marine organisms at very low levels. 

Increasing nutrient concentrations in coastal environments can produce extreme 

consequences including; ecosystem regime shifts, red tides and fish death (Pandolfi 

et al. 2003). Thus, it is important to determine whether long term trends in pollution 

are driving the ecosystem towards a regime shift. Monitoring studies only assess the 

recent impact of pollution on facets of ecosystems including mangroves, seagrass, 

kelp, molluscs, fish and corals.  

 

In tropical environments, corals have been used as biomonitors of environmental 

pollution as they provide a continuous record of the level of impact of pollution over 

time. Massive corals also have the ability to record the local environment in a 

pristine condition before anthropogenic development and other forms of monitoring 

were set in place (e.g. regular monitoring of water quality). Corals not only have the 

ability to record signals of anthropogenic pollution in their skeletons, but increased 

concentrations of trace metals can also reflect natural perturbations in climate 
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systems such as El Niño Southern Oscillation events (Linn et al. 1990), trade wind 

regime shifts (Shen et al. 1992; Shinn et al. 2000) or seasonal upwelling (Shen et al. 

1987; Lea et al. 1989; Reuer et al. 2003; Ourbak et al. 2006). 

 

The potential of corals to act as a sentinel of environmental degradation has been the 

subject of many studies since the 1970s examining eutrophication and pollution 

contained in coral tissue and skeleton (Veeh & Turekian 1968; Livingston & 

Thompson 1971; Barnard et al. 1974; St John 1974). Incorporation of trace metals 

into corals can be the result of coral feeding (Hanna & Muir 1990; Ferrier-Pages et al. 

2005), zooxanthellae uptake (Reichelt-Brushett & McOrist 2003), organic matter 

from coral tissue (St John 1974; Glynn et al. 1989), particulate matter trapped within 

skeletal cavities (Howard & Brown 1984; Hanna & Muir 1990) or incorporation (via 

substitution for Ca) into the aragonite crystal lattice (Dodge & Gilbert 1984; Shen et 

al. 1987; Delaney et al. 1993; Esslemont 1999; Fallon et al. 2002; David 2003; 

Wyndham et al. 2004). Studies which have examined both the coral tissue and 

skeleton have observed higher concentrations of trace metals in the tissue, and the 

trace metal concentrations recorded in the skeleton were consistent with changes in 

seawater composition (Dodge et al. 1984; Hanna & Muir 1990; McConchie & 

Harriott 1992; Reichelt-Brushett & McOrist 2003). Hanna and Muir (1990) found 

little variation between three coral species within contaminated sites and concluded 

that trace metals are present in coral skeletons due to both geochemical (substitution 

of metal cations for calcium) and physiological processes. Although early studies 

observed increased metal concentrations in coral tissue, analyses of coral skeleton 

allow a long term record of environmental modification to be established. 

 

Climatic changes must also be considered when investigating anthropogenic impacts 

on a local or regional environment. The growing body of literature on coral 

bleaching suggests that corals living in degraded environments are more susceptible 

to bleaching during El Niño events and take longer to recover from physiological 

stress (Hoegh-Guldberg 1999; Lough 2000; McClanahan et al. 2001) The summer of 

1997/1998 experienced a strong El Niño and this caused higher water temperatures 

in South Australian gulfs (2-5°C hotter) coinciding with lower sea levels. This 

resulted in the disruption of the recruitment of several macroalgal species (Turner & 

Cheshire 2002). Corals are known to have temperature sensitive juvenile phases 
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(Edmunds et al. 2001), however, there is limited understanding of how the ecology 

of temperate corals will be effected during higher temperatures (Harriott & Banks 

2002; Edmunds 2004).  

 

The most common pollution elements and associated tracers analysed include Al, P, 

V, Cr, Mn, Fe, Cu, Zn, Cd, Sn, Ba, Hg, Pb and a range of rare earth elements (REEs) 

and anthropogenic radioactive isotopes such as 90Sr (Brown & Holley 1982; Dodge 

& Gilbert 1984; Dodge et al. 1984; Howard & Brown 1984; Toggweiler & Trumbore 

1985; Shen & Boyle 1987; Shen & Boyle 1988; Hanna & Muir 1990; Scott 1990; 

Brown et al. 1991; Shen et al. 1991; Guzman & Jimenez 1992; Allison 1996; 

Guzman & Jarvis 1996; Scott & Davies 1997; Bastidas et al. 1999; Bastidas & 

García 1999; Esslemont 1999; Fallon et al. 2002; Inoue et al. 2004; Ramos et al. 

2004; Wyndham 2005). The range of trace elements investigated has increased in 

recent years due to advancements in analytical capabilities.  

 

New advances in micro-analytical techniques such as laser-ablation ICP-MS allow 

pollution events on a sub-weekly scale to be analysed (Fallon et al. 2002; Runnalls & 

Coleman 2003; Wyndham et al. 2004). Although these advances in instrument 

precision have enabled a larger suite of elements to be analysed, many studies have 

noted high frequency variation (~ monthly) not related to environmental 

concentrations. Several suggestions have been put forward to explain the small scale 

heterogeneity including: metal-binding organic matrix unevenly distributed 

throughout the skeleton (Allison 1996); biological or kinetic processes impacting 

skeletal deposition (Cohen et al. 2001; Allison & Finch 2004; Sinclair 2005a; 2005b; 

Meibom et al. 2006); and changes in the saturation state of the calcifying fluid 

impacting the ‘precipitation efficiency’ (Cohen et al. 2006; Gaetani & Cohen 2006).  

 

 

Aims 

The primary aim of this chapter is to present analyses of a range of trace elements 

from eight colonies of Plesiastrea versipora in both Gulf St. Vincent and Spencer 

Gulf to assess the level of anthropogenic pollution recorded in the coral skeletons. 

The coral analyses are then compared to known industrial and urban development 
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and local environmental conditions to establish the likely sources for trace metal 

contamination in the coral skeleton. A secondary aim of this chapter is to reconstruct 

seawater heavy metal concentrations from the distribution coefficients of metals 

incorporated into coral skeletons. This was attempted to establish the degree of 

anthropogenic pollution from the pre-European baseline established from corals (in 

the absence of measured seawater chemistry). 

 

 

Human impacts in the South Australian Gulfs 

Environmental modification has occurred since European settlement in South 

Australia. The point source of anthropogenic pollution is substantially different 

between the gulfs with mining and other heavy industry focused in northern Spencer 

Gulf, whereas the dominant urban areas (including metropolitan Adelaide population 

> 1,000,000 people) are located on the eastern shore of Gulf St. Vincent. To provide 

greater clarity to the data presented in this chapter; the data will be divided into three 

subheadings relating to the type of environmental modification. These are urban 

impacts, industrial impacts and land use changes or agricultural impacts. Industrial 

and urban development information has been reviewed below to assist with 

chronological control of the trace metal concentrations observed in Plesiastrea 

versipora. 

 

Urban Impacts 

Sewage and Stormwater 

Discharge from rivers in Gulf St. Vincent increases the local coastal turbidity by 

carrying suspended solids, which can settle out on the seafloor or be resuspended by 

wave action and winds. Turbid water can originate from both natural and 

anthropogenic sources. Stormwater runoff contains dissolved and particulate matter 

from soil erosion, decayed organic matter from catchment regions and pollutants 

from urban areas. Infrequent storm events with higher than average rainfall can 

produce large sediment plumes into Gulf St. Vincent, similar to flood plumes 

observed from tropical rivers (Figure 6.1). Estimates of suspended solids input for 
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the 2000/2001 period into coastal waters include 3000 t from the Torrens River 

catchment, 2000 t from the Patawolonga catchment and 234 t from the Glenelg waste 

water treatment plant (Gaylard 2004).  

 

Turbid water is regularly observed along the Adelaide metropolitan coastline for 

extended periods during the winter months, corresponding with onshore winds and 

fine grained sediment which often coats coastal reefs during August/September 

(personal observation). It is still unquantified how much impact urban development 

has had on coastal turbidity. A regression analysis indicated that there was not a 

positive correlation between Torrens River discharge, waste water treatment plants 

and observations of suspended sediments at SeaWIFS stations due to the dominant 

north-south tidal regime (Petrusevics 2005). Algal blooms can form in summer 

through a combination of elevated nutrient levels, high solar radiation, local 

oceanographic features including dodge tides and low winds. 

 

 
 

Figure 6.1: Photograph of Torrens River outflow into Gulf St. Vincent during a flood in October 1974. 

Sediment plume travels northwards (towards head of gulf) due to longshore drift. Photograph from 

(Lewis 1975). 

 

Stormwater and waste water treated effluent are contributors to heavy metal 

contamination along the Adelaide coastal zone (Figure 6.2). Discharge of this water 

to the marine environment has varied through time. Waste water treatment products 

contributed approximately 45% of the water discharged annually from land based 
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sources (Wilkinson et al. 2003). The first piped discharge from the Glenelg waste 

water treatment plant to the coastal zone occurred in 1943 with an outfall discharging 

350 m offshore. A second outfall was commissioned in 1958 to cope with an 

increasing population and a digested sewage sludge outfall piped 3.2 km offshore 

began operating in 1962. Changes in the seagrass species density were observed in 

the late 1960s along the metropolitan coastline (Wilkinson et al. 2003). Heavy metal 

concentrations in the waste water discharge have been reduced since the 1970s, and a 

concerted effort to reduce heavy metal contamination in waste water by 75-95% 

occurred in the early 1990s for Zn (from 4818 kgyr-1 to 1460 kgyr-1) and Pb (from 

2130 kgyr-1 to 54 kgyr-1) (Wilkinson et al. 2003).  

 

 
 

Figure 6.2: Map of the South Australian Gulfs, with inset A, the corals located at Seacliff Reef. Seacliff 

seawater chemistry may be influenced by the oil refinery at Port Stanvac; treated waste water 

discharged at Glenelg and stormwater run off from Adelaide. 
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Oil refinery 

Construction of the refinery and port facilities at Port Stanvac was initiated in 1961 

and the refinery opened in 1976 and ceased production in late 2003. During optimal 

production, the Adelaide refinery produced more than 8, 500 000 L day-1 of refined 

products, supplying 90% of South Australian fuel and 10% of Australian petroleum 

requirements. Little documentation was available on oil spills in the South Australian 

gulfs. However, figures provided by the Environment Protection Authority (EPA) 

estimate that between 1973 and 1996 there were at least 108 oil spill incidents 

involving at least 600,000 L. Records of at least 26 oil spill incidents occurred at Port 

Stanvac refinery between 1977 and 1997. The impacts of oil contamination on coral 

colonies are not well understood, however, oil contamination has a detrimental effect 

on other marine organisms including sea-birds, fish and benthic communities. Coral 

colonies may be smothered by oil, resulting in death of colonies or reduced growth. 

 

Several large spills have occurred at Port Stanvac including in January 1982 the oil 

tanker Esso Gippsland, leaked a large quantity of industrial fuel oil, and produced a 

slick five miles offshore. In September 1991 a 22 km slick was found near 

Troubridge Island in Gulf St Vincent. Three oil spills were reported at Port Stanvac 

refinery in 1992. In September 1996 10,000 L of light crude oil was spilled from a 

floating, high tensile ship-to-shore hose. Oil from the spill was reported to have 

covered reefs and beaches from Port Stanvac to Seaford (http://www.mlssa.asn.au/). 

In November 1997, an unknown quantity of light crude oil was spilled at Port 

Stanvac from a Malaysian charter vessel. In June 1999, 25,000 L of crude oil was 

spilt from the tanker Chanda, producing a 1.5km-long oil slick. This was due to a 

split in the floating hose connecting the vessel to the oil refinery.  

 

 

Industrial Impacts 

Industries contributing to the majority of heavy metals entering the northern region 

of Spencer Gulf include a lead-zinc smelter at Port Pirie and steelworks at Whyalla 

(Figure 6.3). The steelworks has been operating since 1937 and produces 

approximately 1.2 million tonnes of raw steel annually (http://www.onesteel.com).  
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The smelter at Port Pirie is one of the largest zinc and lead smelters in the world and 

has been operational since 1889, causing heavy metal pollution in the form of 

particulate emissions from smoke stacks, dust blown from sites, spillage from ship 

loading and discharging of liquid effluent. Waste water treatment plants also 

discharge treated effluent containing heavy metals into the local gulf waters. 

Estimated annual metal emissions from the Whyalla steelworks for the period 

2001/2002 include 3000 kg Zn, 215 kg Pb and 170 kg Cu (Corbin & Wade 2004). 

 

 
 

Figure 6.3: Map of the South Australian Gulfs, with inset C, indicating the corals located at Point Lowly, 

Upper Spencer Gulf. Local seawater chemistry may be influenced by the smelters located at Port Pirie 

and Whyalla. 

 

 

Land Use Changes 

Regional scale events that are a by-product of anthropogenically modified landscapes 

may also be present in coral skeletons. Deforestation and agriculture increase the 

amount of aeolian transport to coastal environments and excess fertilizer may 

increase phytoplankton blooms. Figure 6.4 displays two examples of regional scale 

dust storms and phytoplankton blooms captured by satellite images in the last few 

years.  
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Figure 6.4: Satellite images from LandSat (http://modis.gsfc.nasa.gov/). A: Dust storm on Eyre 

Peninsula on 17th March 2000 blowing sediments into Spencer Gulf. B: Phytoplankton bloom in both 

Spencer Gulf and Gulf St Vincent on 20th October 2001.  

 

 

Sampling and Analytical Methods 

Coral coring methodology was described in Chapter 3 and LA-ICP-MS methodology 

was described in more detail in Chapter 5. Briefly, all data presented in this chapter 

was collected on the Varian 820 ICP-MS collected between March 2006 and August 

2006. In contrast to the stepwise pre-treatments used by Shen and Boyle (1988) this 

study employed an oxidative step to remove organic material with H2O2 and three 

deionised water baths combined with sonic agitation prior to laser ablation analyses. 

Rigorous cleaning was conducted with the laser ablation system and instrument 

conditioning before measuring trace heavy metals. Three preablation scans were 

conducted at 10 Hz, 50 mJ and 40 µm s-1 prior to data collection, with the laser 

masked to produce a 50 x 500 µm rectangle to ensure that a new surface of the coral 

was exposed before sample collection.  
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Two analyses for trace elements were conducted at 10 Hz and 50 mJ and the laser 

beam is masked to produce a 40 x 400 µm rectangle after the ICP-MS had been 

operational for several hours. Trace metal analyses were conducted after the ICP-MS 

had been operational for several hours in a stable instrumental atmosphere, to reduce 

potential contamination in the system from prior analyses of other material which 

may have contained higher concentrations of trace metals, such as igneous rocks. 

The replicate provided a check for analytical drift between analyses. The isotopes 

monitored were 7Li, 11B, 31P, 43Ca, 51V, 55Mn, 57Fe, 59Cu, 66Zn, 89Y, 90Zr, 91Zr, 98Mo, 
111Cd, 120Sn, 137Ba, 139La, 140Ce, 141Pr 146Nd, 208Pb and 238U. All analyses were blank 

corrected (using the instrumental gas background blank and duplicate analyses of the 

calibration standards were assessed to correct for instrument drift during analysis. 

The standard used for minor element calibration included a NIST 614 silicate glass 

(Horn et al. 1997). Ba, Sr and U were also collected during the minor element 

analyses to establish chronological control over trace metal spikes.  

 

 

Results  

Pre-European Baseline 

Before assessing impacts of environmental modification from anthropogenic sources, 

an environmental baseline for the local region needs to be established. The 

concentrations of Mn/Ca, Zn/Ca, Sn/Ca, Cd/Ca and Pb/Ca were assessed from three 

corals. Two corals located in well-flushed, open gulf positions in Spencer Gulf 

(Taylors Island coral) and Gulf St. Vincent (Troubridge coral) were used to establish 

a baseline for heavy metals for South Australian seawater (Figure 6.5).  
 

Table 6.1: Coral chemistry baseline values for three colonies: Troubridge, Taylors Island for the period 

1945-2000 and Seacliff A for the period 1820-1875. All trace element/Ca ratios are in µmol/mol. 
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Concentrations from Seacliff A were also evaluated to ascertain potential differences 

between open-gulf sites and coastal sites. Trace metal concentrations from Seacliff A 

were only used for the period 1820-1875, prior to European arrival in South 

Australia.  

 

 
 

Figure 6.5 Concentrations of Mn/Ca, Zn/Ca, Sn/Ca, Cd/Ca and Pb/Ca for the period of 1945-2000 from 

Taylors Island coral and Troubridge corals as the baseline chemistry for open gulf seawater 

concentrations in Spencer Gulf and Gulf St. Vincent, respectively. Concentrations of the same trace 

metal ratios included from Seacliff A as the pre-European baseline for the period 1820-1875. Seacliff A 

data are in the lighter colours and display coastal enrichment in all concentrations, especially Mn/Ca 

and Cd/Ca. 
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All elements indicated baseline concentrations between 0.05-2 µmol/mol, average 

concentrations over the 50 year period for the three corals are listed in Table 6.1. 

Concentration differences were observed between the Troubridge and Taylors Island 

corals, with higher concentrations of V/Ca, Cu/Ca, Cd/Ca, Sn/Ca and Pb/Ca in the 

Taylors Island coral. Previous studies on trace metal incorporation have suggested 

that different coral growth rates may affect the distribution coefficient (KD) of trace 

metals incorporated into coralline aragonite (Shen & Boyle 1987; Reuer et al. 2003). 

The difference in growth rates and coral specific KD between Troubridge (8 mm yr-1) 

and Taylors Island (1.5 mm yr-1) may be the cause of the different concentrations 

measured in the corals rather than actual differences in seawater chemistry between 

the gulfs.  

 

Trace element concentrations from the coastal coral Seacliff A, suggested 

significantly higher concentrations in all elements except V/Ca for the pre-European 

time period. The higher concentrations in the coastal coral may imply coastal 

enrichment of the ‘nutrient-type’ elements including Mn/Ca, Cu/Ca, Zn/Ca, Cd/Ca, 

Sn/Ca and Pb/Ca, especially Sn/Ca which is 58 times higher in Seacliff A than 

Troubridge. However, Seacliff A also has a slow growth rate (2 mm yr-1) and may 

have higher distribution coefficients than the Troubridge coral. 

 

 

Tissue Zone Effects 

The most recently calcified portion of the skeleton (containing the tissue zone) 

indicated increased concentrations of some trace elements including P/Ca and Cd/Ca 

(Figure 6.6) in all corals compared with older coralline aragonite. Higher 

concentrations of trace element in the tissue zone has been observed in previous 

studies (Dodge & Gilbert 1984; Scott 1990; McConchie & Harriott 1992; Esslemont 

et al. 2000), symptomatic of the organic tissue accumulating more trace metals than 

the inorganic skeleton. Smoothing of the seasonal cycle in B/Ca, Sr/Ca and U/Ca in 

the tissue zone was discussed in the previous chapter (Chapter 5). The oxidative pre-

treatment cleaning step submerging the coral cores in H2O2 has removed artefacts of 

remnant organic material from the tissue zone. Evidence of the effectiveness of this 
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technique can be observed in the low concentrations in the Troubridge and Taylors 

Island corals in Figure 6.5. 

 

 
 

Figure 6.6: Increased concentrations of P/Ca and Cd/Ca from a ten year profile in the upper portion of 

skeleton containing the tissue zone in the Plesiastrea versipora colony Seacliff B. Tissue zone is 

indicated by grey hatched region. 

 

 

Trace Metal Reproducibility 

All trace metals analysed are presented in Figures 6.7-6.9 for a 20 year period from 

the Seacliff B coral. Ba/Ca is included in these figures to provide a temporal 

constraint for other elemental concentrations. A replicate analysis conducted down 

the same laser track is included for all elements (Figure 6.7-6.9) in black. The small 

offset between the two analyses is indicative of a difference in the temporal/spatial 

scale as the laser ablates new coralline aragonite. The high level of reproducibility in 

the trace metal/calcium ratios suggests that the trace metal concentration variation 

through time is recorded in the coral skeleton rather than instrumental artefacts. 
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Li/Ca ranged between 6-14 µmol/mol on a 3-5 year periodic cycle in Seacliff B 

(Figure 6.7), and this multi-year cycle was observed in all coral colonies. Although 

Li/Ca has indicated a temperature dependence in some tropical corals (Marriott et al. 

2004), no temperature sensitivity was observed in this study.  

 

P/Ca ranged between 0.05-0.6 mmol/mol, and concentrations varied on a seasonal 

scale. Higher concentrations of P/Ca usually occurred during late summer/autumn 

and may be coincident with phytoplankton blooms developing when the gulf waters 

are warmer. Higher concentrations of P/Ca were not observed during winter so it is 

unlikely that terrestrial runoff (which predominantly occurs during winter rains) is 

the cause of increased P concentrations. Mn/Ca concentrations (Figure 6.7) ranged 

between 0.1-1.2 µmol/mol, and varied on a seasonal timescale, with higher 

concentrations occurring in spring/summer/autumn. No relationship was observed 

between P/Ca and Mn/Ca (Table 6.2), therefore it is unlikely that P and Mn have the 

same source of enrichment. Cd/Ca concentrations ranged between 0.01-1.5 µmol/mol 

with variations in concentration occurring on both an intra and inter annual timescale. 

Seacliff B incorporated more Cd/Ca in the early 1980s than in the late 1990s, 

therefore the source of the Cd/Ca enrichment may have reduced over this time period. 

However, no regular seasonality was displayed or evidence of variability associated 

with El Niño events (Linn et al. 1990; Delaney et al. 1993). V/Ca concentrations 

ranged between 0.1-0.3 µmol/mol, with higher concentrations occurring 

intermittently, and not limited to a particular season. Several of the V/Ca peaks 

correlate temporally with Cd/Ca peaks although the amplitude of change observed 

was different. 

 

Cu/Ca concentrations ranged between 0.05-8 µmol/mol (Figure 6.8). Higher 

concentrations of Cu were recorded by Seacliff B coral in the 1980s, with 

concentrations decreasing to < 2 µmol/mol from the mid 1990s. Zn/Ca 

concentrations ranged between 1-10 µmol/mol and indicated annual seasonal 

variations. Peaks in Zn/Ca did not correlate with concentration spikes in any other 

trace metals (Table 6.2) and occurred during late summer/autumn. Concentrations of 

Mo/Ca in the Seacliff B coral skeleton ranged between 0.02-0.3 µmol/mol, and 

higher concentrations were more frequent in the mid/late 1980s than other times in 

the record. Mo/Ca concentration spikes temporally correlate with V/Ca and Sn/Ca. 
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Concentrations of Sn/Ca were higher in the 1980s than in the late 1990s and ranged 

between 0.02-1.3 µmol/mol. The decrease in concentrations of Cu/Ca, Mo/Ca and 

Sn/Ca (Figure 6.8) occurs at approximately the same time in the early 1990s, 

therefore the enrichment source of these trace metals may be similar. Concentrations 

of Pb/Ca range between 0.005-0.4 µmol/mol, with more variation in concentrations 

in the early part of the record (1980s). Higher concentrations of Pb/Ca occur during 

winter/spring and do not appear to coincide with enrichment of other trace metals.  

 

Very little fractionation was observed between the light rare earth elements (LREE) 

Y/Ca, La/Ca, Ce/Ca, Pr/Ca and Nd/Ca (Figure 6.9). Concentrations of Y/Ca ranged 

between 20-70 nmol/mol, with higher concentrations generally during the 

winter/spring months. La/Ca ranged between 3-22 nmol/mol, Ce/Ca ranged between 

4-25 nmol/mol, Pr/Ca ranged between 0.5-5 nmol/mol and Nd/Ca ranged between 3-

15 nmol/mol during the 20 year record from Seacliff B coral. The highest 

concentrations during this period occurred in winter 1986 and spring 1991 (Figure 

6.9). Variations in the LREE signal also correlated strongly with U/Ca (Table 6.2). 

Concentrations of Zr/Ca ranged between 5-20 nmol/mol, and enrichment was 

observed during the winter/spring period, although the regression analysis correlation 

between Zr and the LREEs was poor (Table 6.2). Two large concentration spikes 

occurred during the 20 year record of > 50 nmol/mol, although the spikes were 

reproducible down the same laser track, it is unlikely that this concentration increase 

represents lattice bound Zr/Ca.  
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Figure 6.7: Behaviour of minor elements recorded in the Seacliff B colony for a 20 year period. Ba/Ca 

has been included to display seasonal cycle (note that Ba/Ca axis has been inverted to reflect SST). 

The units for P/Ca are mmol/mol all other elements are in µmol/mol. 
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Figure 6.8: Behaviour of minor elements recorded in the Seacliff B colony for a 20 year period. Ba/Ca 

has been included to display seasonal cycle (note that Ba/Ca axis has been inverted to reflect SST). 

The units for all elements are in µmol/mol. 
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Figure 6.9: Behaviour of yttrium, zirconium and light rare earth elements recorded in the Seacliff B 

colony for a 20 year period. Ba/Ca has been included to display seasonal cycle (note that Ba/Ca axis 

has been inverted to reflect SST). The units for Ba/Ca are µmol/mol all other elements are in nmol/mol. 
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Table 6.2: Trace element correlation table for Seacliff B colony. Correlation coefficients between 

elements greater than 50% are marked in black, below 50% are in grey. Correlation tables for other 

Plesiastrea versipora colonies in Appendix G. 
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Eastern Gulf St. Vincent - Urban Impacts 

The two Seacliff corals recorded increased concentrations of Cu/Ca, Zn/Ca, Sn/Ca 

and Mn/Ca (Figure 6.10) throughout the temporal span of the records. Seacliff reef is 

a metropolitan reef located 3 km offshore from the city of Adelaide and any 

enrichment in trace metal concentrations is likely to be from urban development. 

Cu/Ca and Sn/Ca indicate an increase in the 1930s for the Seacliff A coral from 

background levels (0-0.05 µmol/mol) observed in other corals to peaks of 3 

µmol/mol for Sn/Ca and 12 µmol/mol for Cu/Ca. The concentration of Cu and Sn 

was observed to increase at approximately 1960 in the Seacliff B coral, 

concentrations of both elements fluctuated for a 30 year period, potentially in a series 

of pulse events before indicating lower concentrations in the 1990s.  

 

Seacliff A colony displays an initial increase in Zn/Ca concentrations in 1920-1935, 

followed by a sustained increase from the 1960s. The early 1930s peak in Zn/Ca and 

Cu/Ca concentrations in Seacliff A are coincident with Pb/Ca peaks (Figure 6.11). 

Zn/Ca concentrations in the Seacliff B colony also display an increase in the 1960s, 

with no reduction in concentrations during the 1990s as observed with Cu/Ca and 

Sn/Ca. Concentrations of Mn/Ca increased in both of the Seacliff corals throughout 

the skeletal record (1820-2000), but did not display a similar peak in concentrations 

in the 1970s-1980s, when compared with Cu/Ca, Sn/Ca and Zn/Ca.  

 

Potential sources of copper and tin may include marine paints previously used as an 

antifoulant to prevent fouling of ships by encrusting organisms. Following a series of 

toxicity studies of organotin compounds (tributyltin - TBT) in the 1980s; controls 

were introduced to limit usage. Reduction in the usage of TBT compounds may be 

why the concentrations of Cu and Sn reduce in the 1990s, however, the initial 

increase in Cu and Sn observed in the Seacliff A colony is likely to be before TBT 

was widely used in South Australian waters. The ratio of Cu and Sn in this study 

differs markedly from a previous study examining corals from Micronesia and 

concluding that the source of heavy metal increases was from antifoulant coatings 

with Cu/Ca concentrations 20 times higher than Sn/Ca concentrations (Inoue et al. 

2004).  
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Figure 6.10: Concentrations of Cu, Zn, Sn and Mn (normalised to Ca) for the Seacliff corals. Seacliff A 

(lighter colours) is the long record extending back to 1820. Seacliff B is a shorter record (dark colours) 

and is from 1945-2000. Differences in trace metal maximum concentration observed between the two 

colonies may reflect different KD due to different growth rates. Concentration increases are observed to 

be coincident with development of treated sewage outflow into Gulf St. Vincent. 

 

A more likely source of the heavy metal contamination observed in the coastal corals 

may be from treated sewage released into Gulf St. Vincent at two locations along the 

metropolitan coastline of Adelaide. Copper, zinc and to a lesser extent tin are utilised 

in the treatment process for sewage in waste water treatment plants. The first direct 

discharge of sewage into the gulf occurred in the early 1940s at Glenelg (Wilkinson 

et al. 2003) located ~ 10 km from Seacliff. The highest concentrations in both Cu/Ca 

and Sn/Ca were observed in the 1940s and 1950s. The digested sludge outfall at 

Glenelg was shut down in 1993 (Wilkinson et al. 2003), which improved water 

quality in the metropolitan coastal region and reduced the waste water impacts on the 
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coastline. The trace metal concentrations in both Seacliff corals reduce in the early 

1990s supporting the hypothesis that the source of the elevated trace metals may be 

the discharge of sewage at piped outfalls in close proximity to the location of the 

corals. 

 

The behaviour of trace metals differs between the two Seacliff colonies, with 

concentrations of Cu and Sn three times higher in Seacliff A than Seacliff B. These 

corals are located less than 10 m apart (discussed in Chapter 3) and were collected 

from the same depth and similar environmental conditions, however, the growth rates 

differ significantly and the annual extension rate of Seacliff A is substantially lower 

(2 mm yr-1) compared with Seacliff B (6 mm yr-1). Previous studies have suggested 

that coralline metal distribution coefficients may be affected by kinetic fractionation 

and may vary depending on the coral species and annual extension rate (Shen & 

Boyle 1987). 

 

Distribution coefficients for trace metals were not able to be established during this 

study as water analyses were not conducted. However, differences observed in trace 

metal concentrations between the two Seacliff corals suggest that there is a 

difference of approximately two-three fold in the KD between the corals. The Mn/Ca 

background concentrations varied from 0.2 µmol/mol for Seacliff B and 0.6 

µmol/mol for Seacliff A and Cu/Ca background concentrations was 1 µmol/mol for 

Seacliff B and 2 µmol/mol for Seacliff A.  

 

A potential mechanism for establishing the distribution coefficient of trace metals in 

Plesiastrea versipora is to compare concentrations derived from LA-ICP-MS in this 

study with concentrations and coral growth rates in published studies to determine a 

potential KD. Linn et al (1990) suggested a distribution coefficient for Pavona clavus 

in Galapagos corals of KD = ~ 0.3 for Cu and KD = ~ 1 for Mn. It is unknown if 

Plesiastrea versipora would have a similar distribution coefficient to KD derived for 

other coral species. However, if we assume the faster growing coral, Seacliff B has a 

comparable KD to previous studies, due to a more similar growth rate, then the 

Seacliff A KD may potentially be DCu = ~ 0.6-1 and DMn = ~ 2. 
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Lead – Industrial Flux and Vehicle Emissions 

Pb/Ca concentrations (Figure 6.11) range between 0.02-0.8 µmol/mol for Seacliff A 

colony and 0.02-0.6 µmol/mol for Seacliff B. The concentration difference between 

the two corals during the highest concentrations in the 1970/80s suggests there is a 

different distribution coefficient for Pb in Plesiastrea versipora dependent on growth 

rate.  

 

 
 
Figure 6.11: Pb/Ca concentrations for three corals from Gulf St. Vincent. Both Seacliff A and B exhibit 

large increases in Pb concentrations, whereas the Troubridge coral in open gulf waters contains very 

little Pb. 

 

Pb/Ca concentrations in Seacliff A remain at background concentrations until a series 

of ‘pulsed’ Pb concentration increases during 1914-1920, 1925-1931, 1932-1938 and 

1946-1949. The higher concentrations of Pb in the early part of the twentieth century 

are too early for the proliferation of vehicles, and may be related to other industrial 

processes or urban development. The exact source cannot be determined as growth 

patterns for many large scale industries during the industrial revolution were similar 

and there are many industries with lead emissions. Lead is used in the sewage 

treatment process and the higher concentrations in the 1930s and 1940s may be 

caused by the sewage discharge at Glenelg.  
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Figure 6.12: Pb/Ca concentrations for the period of vehicle proliferation from 1960-2000 in Seacliff A 

and Seacliff B.  

 

Both Seacliff corals record a gradual increase in Pb/Ca from the mid 1960s, followed 

by a decline initiated in the late 1980s (Figure 6.12). There are differences in the 

maximum concentration and temporal record of the Seacliff corals and this may be 

related to the different growth rates observed between the two corals. The high Pb 

concentrations in the latter part of the twentieth century has been observed in other 

coral studies and has been linked to the development and proliferation of the 

automobile industry (Shen & Boyle 1987). The peak Pb concentrations in the 1980s 

are a decade later than the peak Pb consumption in the USA (Shen & Boyle 1987), 

and this may reflect slower growth and proliferation of vehicles in South Australia 

compared with the Northern Hemisphere. The reduced concentrations of Pb/Ca 

observed in the 1990s are consistent with the reduction of lead-based fuels. The 

phase out of lead-based petrol was initiated in the USA earlier than in Australia, with 

South Australia using lead-based petrol into the 1990s. 

 

 

Oil Spills 

V/Ca concentrations varied between 0.01-0.5 µmol/mol for all Plesiastrea versipora 

colonies analysed, however, concentrations of V/Ca in Seacliff B displayed a linear 

increase over the temporal record (Figure 6.13) and this trend was not observed in 

the Seacliff A colony. Due to elevated concentrations observed in the fast growing 

coral (Seacliff B) and not in the slow growing coral (Seacliff A), the V and Mo 

enrichment may be derived from pulse event enrichments. It is likely that the 

increase in V/Ca over time indicates an anthropogenic source rather than a natural 

source from continental weathering.  
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Figure 6.13: Concentrations of Mo/Ca and V/Ca from the two colonies at Seacliff. Seacliff B indicates 

enrichment in Mo/Ca (purple) and V/Ca (green) from the early 1970s compared with Seacliff A Mo/Ca 

(red) and V/Ca (orange) concentrations. 

 

One of the principal sources for anthropogenic V in the marine environment includes 

fossil fuels, especially crude oil. A study on Caribbean corals associated high V 

concentrations with evidence of oil in coral tissue and skeletons (Guzman & Jarvis 

1996).  Molybdenum is known to be in elevated concentrations in oil products and 

together V and Mo may signify evidence of oil contamination recorded in the coral 

skeletons. Mo/Ca exhibits elevated concentrations in the Seacliff B colony, but this 

increase was not observed in the Seacliff A coral. Evaluation of the V/Ca and Mo/Ca 

concentrations in Seacliff B indicated a temporal correlation between the two 

elements in the elevated concentration spikes (Figure 6.14). However, the amplitude 

of concentration increase was different between the two elements and V is known to 

be preferentially excluded from coralline lattice due to the charge imbalance between 

V4+ and Ca2+ (Shen & Boyle 1988). The enriched concentrations of V and Mo 

occurred as pulse-type enrichment and were not limited to a particular season, 

suggesting the source is likely to be anthropogenic.  
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Figure 6.14: Concentrations of V/Ca and Mo/Ca from Seacliff B coral compared with luminescent 

bands for the period 1980-2000. The strong luminescent band in 1982 was a severe El Niño year, with 

higher temperatures recorded in South Australia. 

 

Seacliff B is the only coral collected in this study with strong luminescent bands and 

several of the luminescent bands appear to correlate with the elevated concentrations 

of V and Mo. There is still debate in the literature about whether coral luminescent 

bands represent skeleton with a different porosity due to a stress event such as a 

flood plume or if the luminescence is caused by inclusions of humic acids and other 

organic material in the coral skeleton (Isdale 1984; Barnes & Taylor 2001; Lough et 

al. 2002; Barnes & Taylor 2005). Although the Seacliff corals are in close proximity, 

the growth rate of Seacliff B is three times faster than Seacliff A and this may 

explain why ‘pulsed events’ are not recorded in the trace metal records from Seacliff 

A.  

 

Seacliff reef is located less than 5 kilometres from the oil refinery at Port Stanvac. 

Several oil spills have occurred at Port Stanvac, discussed in the introduction to this 

chapter, and the elevated concentrations of V and Mo in Seacliff B may be a record 

of oil contamination near Seacliff. Known oil spills that appear to be coincident with 
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elevated concentrations of V/Ca and Mo/Ca and luminescent lines occurred in 1982, 

1991, 1992 and 1996. Luminescent bands do not occur throughout the entire core of 

the Seacliff B colony, and the luminescent bands become much more frequent in the 

1970s. Therefore, it is likely that the luminescent bands in Seacliff B are caused by 

environmental modification of either increased fresh water into the gulf region from 

the Torrens or Patawolonga Rivers or through contamination. 

 

Western Gulf St. Vincent – Zn Enrichment 

This study observed elevated levels of trace metals in environments where there was 

no obvious anthropogenic source (Figure 6.15). For example, the Plesiastrea 

versipora colony from Edithburgh exhibits regular seasonal variations of Zn/Ca in 

late summer/autumn of 3-4 times the background concentration (Figure 6.16). 

Potential sources of Zn in the gulfs include treated sewage and galvanised products 

from urban storm water, however, Edithburgh is a small coastal town with a 

relatively limited impact on the local environment compared with larger urban 

centres. The enriched Zn/Ca signal occurs in summer, so it is unlikely to be from an 

anthropogenic source with fluvial transport. If some of the coral colonies utilise more 

heterotrophic feeding in the warmer months, then one possible hypothesis for the 

high Zn concentrations may be a phytoplankton signature (Howe & Marshall 2001).  

 

 
Figure 6.15: Map of the South Australian Gulfs with inset B: indicating coral locations from Edithburgh 

and Troubridge. 
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Figure 6.16: Zinc, Manganese and Cadmium concentrations in coral skeletons from Edithburgh 

(coastal) and Troubridge (open gulf) from relatively pristine sites in Gulf St. Vincent. 

 

Zinc is an important biological element for phytoplankton growth, and a previous 

study measuring elevated concentrations of Zn in coral tissue suggested it may 

signify increased phytoplankton consumption (Ferrier-Pages et al. 2005). 

Phytoplankton blooms predominantly made up of the blue-green algae 

Trichodesmium have been observed in trace element evidence in tropical coral cores 

(Jones et al. 1986; Wyndham 2005). To test this hypothesis, the elevated Zn/Ca 

concentrations were compared with Mn/Ca and Co/Ca, as these elements are also 

known to be in high concentrations in phytoplankton. There was a correlation in the 

temporal scale of enrichment in both Zn and Mn in the Edithburgh colony (Figure 

6.16), however, the amplitude of the concentration peaks were different which 

reduced the correlation. Concentrations of cobalt was not observed in any corals (i.e. 

analytical concentrations were the same as the instrument background) suggesting 

that there is little Co available in the South Australian Gulfs or it is not easily 

incorporated into coralline lattice.  
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Upper Spencer Gulf - Industrial Impacts 

Two corals from Whyalla were assessed to determine the extent of trace metal 

contamination from steel smelters in upper Spencer Gulf. Figure 6.17 displays 

concentrations of seven trace metals (Li/Ca, P/Ca, Mn/Ca, Zn/Ca, Sn/Ca, Cd/Ca and 

Pb/Ca) analysed from two colonies from Whyalla in Spencer Gulf. Both corals lived 

for approximately 50 years but were not old enough to predate the smelter 

(operations began in the 1890s) and provide background concentrations of trace 

metals in the region. However, metal concentrations in the Whyalla corals can be 

compared with the pre-European background concentrations derived from the 

Taylors Island coral (Southern Spencer Gulf). There is a high degree of variability 

between the two corals and both had low growth rates of less than 2 mm yr-1. The 

cause of the variations in trace metal concentrations between the two colonies may 

be related to non-lattice bound material or local variations in trace metal 

concentrations. The trace metal enrichment is unlikely to be due to sediment trapped 

in the coral lattice as the elevated concentrations occur for a period of several years.  

 

The most likely explanation for the concentration differences observed between the 

corals is localised variability in trace metal concentrations due to sediment 

resuspension. Both corals were collected in ~ 4 m water depth and are subject to high 

salinities > 40‰ in summer, which may influence the behaviour of trace metals. The 

corals were located ~ 100 m apart and previous studies on sediment profiles in upper 

Spencer Gulf have observed heterogeneity on a small spatial scale due to complex 

local oceanography in the region (Ward & Young 1981). 

 

Concentrations of Zn/Ca, Sn/Ca and Pb/Ca are higher in the Whyalla corals than 

those observed for Seacliff corals, by an order of magnitude for Pb/Ca. 

Concentrations of Cd/Ca and Sn/Ca were observed to return to background 

concentrations for part of the coral record, whereas concentrations of Zn/Ca and 

Pb/Ca remain enriched. The higher concentrations of Zn and Pb compared with other 

heavy metals (Sn, Cd) may be due to the lead-zinc smelter at Port Pirie (upper 

Spencer Gulf) or due to higher distribution coefficients of these elements (Shen & 

Boyle 1988). 
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Figure 6.17: Trace metal concentrations (Li/Ca, P/Ca, Mn/Ca, Zn/Ca, Sn/Ca, Cd/Ca and Pb/Ca) from 

two corals Whyalla A03 and Whyalla B03, collected from Point Lowly near Whyalla (Spencer Gulf). 

Ba/Ca has been included as a seasonal control and the axis is inverted. 
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Land Use Changes 

Aeolian Dust 

 
 

Figure 6.18: Light rare earth elements analyses from two corals Seacliff B and Edithburgh. The shorter 

record from 1945-2000 in lighter colours is the Seacliff B colony. The two corals display greater 

coherency in the period 1970-2000. 

 

The rare earth elements (REE) Y, La, Ce Pr and Nd displayed very little fractionation 

between the elements in all coral cores analysed (Appendix H). The coherent nature 

of the LREEs is displayed in Figure 6.18, with each element reproducing the same 

pattern in the elevated concentrations. Similarities were observed in the LREE 

concentrations in the Seacliff B and Edithburgh corals with less LREE incorporated 
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into the skeleton from the late 1970s to 2000. The time series variations do not 

appear to be associated with increased runoff from urban areas as corals on both 

sides of Gulf St. Vincent indicate elevated LREE concentrations and only the eastern 

coastline has rivers. LREEs have been shown to be incorporated into coral skeletons 

in proportion to seawater REE concentrations (Sholkovitz & Shen 1995). The 

distribution coefficients for La and Ce derived by Sholkovitz & Shen (1995) suggest 

enrichment in the coralline lattice relative to seawater DLa = 1.6 and DCe = 2.9. The 

differences observed between the frequency of elevated LREE concentrations 

between the Seacliff B and Edithburgh corals may be due to the corals growth rates. 

The Edithburgh coral has a growth rate of ~ 3 mm yr-1 and may be growing too 

slowly to capture heterogeneity over short time scales. Extrapolating concentrations 

of coral REE to seawater may be difficult due to potential differences in species or 

growth rate specific KD.  

 

 

 

Figure 6.19: Light rare earth elements analyses for a 20 year period from Seacliff B. LREE 

concentrations were compared with wind and rainfall records from Adelaide Airport. Environmental 

data provided by the Bureau of Meteorology. 
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The range of measured concentrations of REE from Plesiastrea versipora were 

similar to concentrations observed in previous coral studies (Sholkovitz & Shen 1995; 

Fallon et al. 2002; Wyndham et al. 2004). The source of LREE entering Gulf St. 

Vincent is likely to be weathering from local country rock and may be transported 

through aeolian or fluvial mechanisms. To assess the mechanism for elevated LREEs 

the Seacliff B coral record was compared with rainfall and wind speed data from the 

Bureau of Meteorology in Adelaide (Figure 6.19). The coherency between the REE 

concentrations and rainfall was very low, suggesting that riverine transport was not 

the source of REE enrichment. Although wind speed did not correlate well with 

peaks in REE, it is considered to be a more likely transport mechanism due to the 

elevated LREE concentrations on both sides of Gulf St. Vincent. Combining wind 

direction data may help establish whether wind is the dominant mechanism of REE 

transport into the gulfs.  

 

 

Discussion 

Metal concentrations were significantly different between different colonies in 

different parts of both gulfs, indicating a spatially and temporally variable pattern of 

metal sources within both gulfs. Possible pollution sources in the region include 

point sources of pollution such as storm water, waste water treated sewage, industrial 

effluent, by-products from vehicles, ports and dockyards, oil and metal refineries; 

and non-point source pollution including agricultural wastes (fertilizers, herbicides 

and pesticides) and soil erosion. As two of the corals (Seacliff A and B) are from a 

metropolitan reef off the coast of Adelaide it may not be possible to identify the 

contaminants from a particular source as storm water, vehicle emissions, industrial 

chemicals, antifouling and anticorrosive paints and treated sewage all contain heavy 

metals. However, these corals provide a long-term record (pre-European arrival) of 

anthropogenic impacts on water quality in the South Australian gulfs. This study 

provides the first long-term records of anthropogenic impacts in South Australia.  

 

The two Seacliff corals reinforce the hypothesis that distribution coefficients are 

growth rate dependent. However, due to the variability in maximum concentrations 
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recorded by each coral, it was not possible to extrapolate coral trace metal 

concentrations to seawater concentrations.  

 

The role of environmental factors impacting metal incorporation into corals still 

needs to be established, apart from the well established effects of local metal 

concentration in seawater (Shen & Sanford 1990). When analysing trace metals 

which have temporally highly variable concentrations (e.g. increased metal 

concentrations associated with pollution events such as river flood plumes) it is 

difficult to accurately assess how changes in salinity and sea surface temperature 

effect skeletal incorporation. The role of SST is well recognised for the incorporation 

of Sr and other elements such as B, Mg, U and Ba but it is not known how corals 

incorporate other transition metals into their skeleton with different temperatures. For 

example, this study has found a strong temperature influence on the substitution of 

Ba for Ca, which was also observed by Lea et al. (1989) in a site with regular oceanic 

upwelling and supported by inorganic precipitation experiments by Gaetani and 

Cohen (2006). Barium has also been related to terrestrial sources, McCulloch and co-

authors (2003) used Ba/Ca concentrations to document the anthropogenic impact in 

northern Queensland through deforestation and livestock grazing. The changes in Ba 

concentration observed during flood plume events in McCulloch et al (2003) were 

three times greater than the variable concentration attributed to temperature 

discussed in Chapter 5. A strong Ba/Ca signal has also been observed in Kenyan 

flood plumes (Fleitmann et al. 2007). However, large Ba/Ca spikes do not always 

relate to flood events (Sinclair 2005b) and flood events may occur without an 

associated Ba/Ca peak (Sinclair & McCulloch 2004). 

 

It is difficult to compare the ranges of trace metal between different studies due to 

different techniques utilised with the cleaning methodology and analysis (including 

technical instrumental advancements over the last decade). However, the trace metal 

concentrations observed in Plesiastrea versipora are comparable to other 

contaminated sites around the world. Most of the trace metal levels measured in 

Plesiastrea coral skeletons by LA-ICP-MS were lower than ranges observed in 

corals from Thailand (Brown & Holley 1982; Brown & Howard 1985; Allison 1996), 

the Red Sea (Hanna & Muir 1990), Hong Kong (Scott 1990), Costa Rica and Panama 

(Guzman & Jimenez 1992), and Japan (Ramos et al. 2004) but higher than northern 



Chapter 6: Anthropogenic Tracers in Temperate Corals 

 205 

Australian sites (Zn, Pb (St John 1974; Esslemont 1999; Esslemont et al. 2000). The 

corals indicating trace metal concentrations higher than those observed in this study 

are from severely impacted coastal sites with much higher population and industrial 

densities (Central America, Hong Kong and Thailand).  

 

Understanding the transport mechanisms distributing anthropogenic pollutants to the 

coastal environment is crucial to establish the source of contamination, and provide 

effective environmental management. Previous studies on tropical corals have 

determined that the suspended sediment load in rivers is the most important transport 

mechanism (Guzman & Jimenez 1992; Fallon et al. 2002; Ramos et al. 2004). The 

South Australian gulfs experience a Mediterranean style climate with low rainfall. 

Although sediment plumes can occur in Gulf St. Vincent (Figure 6.1), they occur 

sporadically and therefore aeolian transport of trace metals may play a more 

significant role than it does in tropical environments with high annual rainfall. 

 

Urban Pollution 

Treated Sewage 

 
Figure 6.20: Comparison of enrichment of Zn/Ca in Seacliff B and Seacliff A, normalised to a pre-

European baseline concentration for Zn.  
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The enrichment of Zn/Ca, Cu/Ca, Sn/Ca and Mn/Ca observed in the Seacliff corals 

appears to coincide with development of the waste water treatment processing plant 

at Glenelg. Concentrations of Sn/Ca and Cu/Ca increase in the 1940s when treated 

sewage was first discharged into Gulf St. Vincent and again in the 1960s with the 

first outfall built at Glenelg (Figure 6.20, 6.21). Therefore, it is suggested that 

elevated levels of these trace metals may reflect the population growth and urban 

development of the regional city (Adelaide).  

 

 
 

Figure 6.21: Comparison of the magnitude of enrichment for Cu and Sn in Seacliff B and Seacliff A, 

normalised to a pre-European baseline concentration.  
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An offset is present between the timing of the peak enrichment of Sn and Cu in 

Seacliff B and Seacliff A (Figure 6.21). This suggests that the chronology of Seacliff 

A may be out of temporal alignment by approximately 5 years. Seawater 

concentrations of Zn/Ca, Cu/Ca, Sn/Ca and Mn/Ca could not be extrapolated from 

the coral skeleton concentrations, due to the variability in trace metal distribution 

coefficients between the corals with different growth rates. However, the magnitude 

of enrichment above the pre-European baseline could be established for Seacliff B 

(Figure 6.20) and Seacliff A (Figure 6.21) corals. The magnitude of change was 

determined by normalising the trace metal/Ca concentrations with the pre-Europeans 

baseline derived from the early part of the Seacliff A record (1820-170). Tin was 

observed to have the greatest enrichment of over 150 times above baseline levels. 

 

 
 
Figure 6.22: Comparison of the magnitude of enrichment for Mn in Seacliff B and Seacliff A, 

normalised to a pre-European baseline concentration.  

 

Suggested processes controlling seasonal variations in Mn concentrations include an 

increase in photoreductive dissolution of suspended sediment Mn-rich particulates 

which increases in spring with increasing solar radiation (Fallon 2000; Alibert et al. 

2003) or a diagenetic release of Mn due to reductive conditions resulting from 

decaying organic matter of Mn at the seawater-sediment interface (Alibert et al. 

2003). Mn appears to be discriminated against in the coralline lattice and distribution 
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coefficients have been determined to be DMn ~ 0.1-0.5 (Shen et al. 1991). The 

variation in Mn KD implies that extrapolation back to seawater concentration would 

not be very accurate. However, the behaviour of Mn is different to the other trace 

metals in the Seacliff corals. Concentrations of Mn remain higher than preindustrial 

backgrounds, whereas other trace metals return to background concentrations after 

‘pulse events’ of elevated concentrations (Figure 6.22). 

 

Lead 

The background Pb/Ca levels recorded in the two Seacliff corals are 0.02-0.03 

µmol/mol, these values are higher than concentrations of Pb/Ca observed in other 

coral studies of 10 nmol/mol (Dodge & Gilbert 1984; Shen & Boyle 1987; Linn et al. 

1990; Reuer et al. 2003). The highest concentrations observed in this study (800 

nmol/mol) are an order of magnitude higher than concentrations observed in other 

studies (70 nmol/mol), (Shen & Boyle 1987). The anthropogenic enrichment of Pb in 

South Australian coastal waters is over 30 fold baseline concentrations compared to 

the 6-8 fold enrichment observed by Shen & Boyle (1988). The coral colonies used 

in this study are more proximal to the source of anthropogenic lead, compared to the 

corals from Bermuda recording anthropogenic contamination from the USA in the 

Shen & Boyle (1987) study.   

 
 

Figure 6.23: Comparison of the magnitude of enrichment for Pb in Seacliff B and Seacliff A, normalised 

to a pre-European baseline concentration.  
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The higher concentrations of Pb recorded in this study  may be due to several reasons 

including; (1) closer proximity to Pb source, (2) higher concentrations in the local 

environment, (3) contamination from tissue was present, (4) not-only lattice bound 

Pb was measured or, (5) different distribution coefficients in Plesiastrea versipora 

compared with tropical coral species. 

 

Several studies from the Northern Hemisphere have examined Pb increases in corals 

and sclerosponges with industrialisation and observed concentration increases in the 

mid-1800s due to industrialisation (Dodge & Gilbert 1984; Shen & Boyle 1987; Wu 

& Boyle 1997; Lazareth et al. 2000). Corals in Atlantic sites such as Bermuda and St 

Croix record the global augmentation of environmental lead levels by 

industrialisation (Dodge & Gilbert 1984; Shen & Boyle 1987; Shen & Boyle 1988). 

Cadmium concentrations analysed in corals from Bermuda have also recorded 

industrialisation with higher concentrations due to aeolian transport from North 

America (Shen et al. 1987). However, no correlation between Pb/Ca and Cd/Ca 

concentrations were observed in the South Australian corals. These studies 

contributed high Pb concentrations to industrial atmospheric fallout. Although 

industrialisation occurred later in Australia than in the USA and Europe, there 

appears to be little evidence of aeolian transport as the corals from the western 

coastline of Gulf St. Vincent and in open gulf waters do not exhibit an increase in Pb 

concentrations. In the South Australian environment, the lead enrichment is 

dominated by local pollution. 

 

During evaluation of background trace metal concentrations, it was observed that the 

coastal coral Seacliff A had higher concentrations than the open gulf corals, 

suggesting a local source of trace metals from river outflow or coastal sediments. 

The higher background concentration of Pb observed in Plesiastrea versipora 

compared with other coral studies suggests there is more lead present in the gulfs 

than in open ocean environments where other coral studies were located (Linn et al. 

1990). The cleaning techniques used in this study included an oxidative step with 

H2O2, sonification and ablating a ‘fresh’ aragonite surface before analyses were 

conducted, reductive steps with acid leaching or heating to remove oxides were not 

included in this study. Therefore, it is possible that some of the measured Pb may be 
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from small particles trapped in the lattice rather than true lattice bound Pb. The 

difference in Pb/Ca concentrations between this study and measurements conducted 

at MIT (Shen & Boyle 1988; Reuer et al. 2003) are likely to be a combination of the 

different cleaning methodology, combined with local oceanography and the variable 

growth rates of corals used in this study. 

 

 

Oil 

Little is known about the incorporation of hydrocarbons and other organic molecules 

into coral skeletons, and whether complex molecules are fractionated against lighter 

more soluble elements, which may be preferentially taken up into the coral skeleton. 

A recent study examining hydrocarbons in coral cores from Saudi Arabia to assess 

the exposure of corals to the 1991 oil spill only found evidence of oil exposure in one 

coral core and no correspondence with other stress indicators such as reduced growth 

(Poulsen et al. 2006).  

 

Previous studies have detected coral growth responses to oil spills and differences in 

trace metal chemistry (Burns & Knap 1989; Guzman & Holst 1993; Guzman et al. 

1994; Guzman & Jarvis 1996; Readman et al. 1996). Guzman and Jarvis (1996) used 

vanadium (an abundant element in crude oil) as a long term tracer of oil pollution in 

corals from Panama. The distribution coefficient for V has been determined for 

corals from Bermuda DV = 0.027 (Shen & Boyle 1988). 

 

To accurately determine whether the luminescent bands observed in Seacliff B may 

be due to oil contamination, further research would need to be conducted. Organic 

geochemical analyses targeting the luminescent bands may be able to determine any 

trace of hydrocarbons (Burns & Knap 1989). Skeletal tomography examining 

structural variations between luminescent bands and normal Plesiastrea versipora 

skeleton would also establish the role of organic inclusions versus different crystal 

structure causing the luminescence (Carricart-Ganivet & Barnes 2007). 
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Industrial Pollution 

Heavy metal contamination of marine sediments and aquatic organisms has been the 

subject of several studies (Ward & Young 1981; Ferguson 1983; Ward & Young 

1983; Harbison 1984; Noye 1984; Harbison 1986; Maher 1986; Ward 1989; Edwards 

et al. 2001). Metals such as Fe, Cu and Zn have biological functions and are essential 

elements for many organisms. However, other metals such as Cd and Pb have no 

known biological function and are toxic at very low concentrations (WHO 1992). 

Studies conducted on the ecosystems of northern Spencer Gulf have indicated that 

contamination in this region has adversely affected biodiversity (Ward & Young 

1983). The seagrass ecosystems in this region have a high storage capacity for heavy 

metal contamination with 73 t Cd, 51 t Pb and 571 t Zn estimated from seagrass 

leaves in a survey conducted over a 2 km2 area (Ward & Young 1981). Several 

organisms found in this region were analysed for heavy metal tissue content 

(including crustaceans, bivalves, prawns, crabs and fish), with results indicating 

elevated concentrations of toxic metals. Furthermore, most species exceeded health 

guidelines for human consumption. However, no distinct relationship was observed 

between metal concentration and distance from the Whyalla steelworks in 

contaminated sediments and shellfish (Harbison 1984). Seasonal patterns in currents 

and variability in turbidity in this region of the gulf may mask gradients in 

concentration (Harbison & Wiltshire 1998).  

 

 

Land-use Change 

REE abundance of seawater is largely controlled by scavenging processes where 

LREE are preferentially adsorbed onto surface particles and REEs are incorporated 

into coral skeletons in proportions similar to seawater concentrations (Wyndham et al. 

2004). Large aeolian input has been suggested as the major contributing factor to the 

death of Holocene reefs in the Gulf of Carpentaria (DeDeckker et al. 1991; Marshall 

2006) and the demise of modern reefs in the Caribbean and Africa (Shinn et al. 2000; 

Garrison et al. 2003; McClanahan et al. 2004). 
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Summary 

The results from this chapter add to the growing literature on coral pollution studies. 

This study analysed a broad suite of elements and observed some elemental 

relationships that have not been revealed in previous studies. Coral baseline 

chemistry was established for both Spencer Gulf and Gulf St. Vincent using corals 

from open gulf locations. Changes in trace element concentrations observed from 

Plesiastrea versipora indicate local environments that have been heavily modified by 

anthropogenic influences. The corals from the metropolitan reef (Seacliff) off the 

coast of Adelaide record the progress of urban development over the last 70 years. 

The sources of point source pollution measured in P. versipora were correlated to 

historical information including discharge of treated sewage, oil contamination, 

vehicle proliferation and heavy metal smelters. 

 

European settlement occurred in the region over 150 years ago and the South 

Australia gulfs contain a large metropolitan city and heavy industry. The corals 

analysed in this chapter exhibit a broad range of environmental degradation from 

anthropogenic influences including: 

1. Coastal water degradation from waste water treatment plants 

2. Historical increases in urban coral lead chronologies reflecting industrial 

development 

3. Records of oil spills from an oil refinery 

4. Heavy metal contamination from ore and steel smelters 

5. Land use changes recorded by changes in LREE concentrations in coral 

skeletons. 
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Chapter 7: Records of the Suess Effect in South 

Australian corals 

 

Introduction 

Human activities such as the burning of fossil fuels and land-use changes have 

emitted anthropogenic CO2 that is strongly depleted in 13C due to the preferential 

uptake of 12C during photosynthetic carbon fixation by plants.  The resulting 

depletion of the atmospheric 13C/12C by anthropogenic CO2 emissions is known as 

the 13C Suess effect (Revelle & Suess 1957; Suess 1980).  The oceanic 13C Suess 

effect i.e. the decrease of δ13C in dissolved inorganic carbon (DIC) has recently 

attracted interest because it provides a means for estimating the ocean’s uptake rate 

of fossil fuel CO2 (Broecker & Peng 1982).  In addition, the oceanic Suess effect is 

potentially a constraint on the magnitude of gross carbon exchange fluxes between 

the atmosphere and the terrestrial biosphere (Keir et al. 1998). Direct observation of 

anthropogenic changes in DIC and δ13C of DIC are hampered by significant site-

specific variations, as well as seasonal and inter-annual variability (Quay et al. 1992). 

Equilibration times for DIC and δ13C between the surface ocean and atmosphere 

differ by an order of magnitude and variability in surface water residence time and 

circulation with respect to gas exchange results in spatial variability of the oceanic 

δ13C/DIC perturbation ratio (Körtzinger et al. 2003). Understanding the ocean’s role 

in the uptake and storage of anthropogenic CO2 provides important constraints for 

our understanding of the modern carbon cycle and our predictions of future climate 

change. 

 

However, determination of oceanic δ13C changes has been difficult due to the 

scarcity of oceanic δ13C data from the past (Quay et al. 1992).  Recent ocean 

geochemical studies during the GEOSECS surveys in the 1970s (Ostlund & Stuvier 

1980) and the WOCE surveys of the 1990s (Key et al. 1996) have sought to 

determine the magnitude of oceanic uptake of atmospheric CO2. Many of these 

studies have centred around the change in δ13C of the surface oceans (Keeling et al. 

1979; Quay et al. 1992; Bacastow 1996; Gruber et al. 1996; Heimann & Maier-
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Reimer 1996). The atmospheric δ13C composition has become depleted by ~1.5‰ 

since the industrial revolution due to the burning of 13C-depleted fossil fuels (Keeling 

et al. 1995). The global mean δ13C change in the surface ocean is estimated at -0.16 

±0.02 ‰ per decade between the 1970s-1990s (Quay et al. 2003).  However, the δ13C 

depletion in the upper part of the water column varies depending on the ocean basin; 

the eastern Atlantic displays a depletion of ~0.62‰  (Beveridge & Shackleton 1994), 

and the Arctic Ocean of ~ 0.9‰ (Bauch et al. 2000), whereas the Subantarctic Zone 

south of Australia indicates a depletion during the last 20 years of ~0.32‰ (McNeil 

et al. 2001), highlighting the importance of this region as a sink for atmospheric CO2.  

One of the most direct means of determining the oceanic δ13C Suess effect is from 

time series of individual station data, i.e. Bermuda station data (32°N) indicates 

considerable (~0.2‰) seasonal variability and interannual variability in temperature 

that biased the high rate of change of δ13C DIC of -0.25 (±0.02‰) per decade for the 

last 20 years (Gruber et al. 1999).  Another way to estimate the oceanic 13C Suess 

effect is to compare δ13C of DIC data from open ocean measurements sufficiently far 

apart in time to resolve relatively small long-term δ13C changes from seasonal and 

interannual variability.  This approach has afforded rough estimates of the δ13C Suess 

effect in the Pacific (Gruber et al. 1999; Sonnerup et al. 2000; Quay et al. 2003) and 

the Indian (Gruber et al. 1999) Oceans; however data may be aliased by seasonal, 

spatial, and interannual variability in δ13C and is sensitive to potential long-term 

changes in circulation and biological remineralization rates.   

 

Time series of δ13C generated from biogenic organisms (corals and sclerosponges) 

have provided an archive of δ13C in DIC when corrected for mass dependent 

fractionation (Nozaki et al. 1978; Druffel & Benavides 1986; Böhm et al. 1996; 

Fallon et al. 2003). Analyses of the δ13C of aragonite incorporated into Jamaican 

sclerosponges (18°N, 78°W) in the Caribbean imply that local surface water δ13C 

DIC values decreased by 0.5 ‰  during 1910-1970 (Druffel & Benavides 1986) and 

that the δ13C decrease rate during 1970-1990 was approximately -0.18 ‰ per decade 

(Böhm et al. 1996).  Interpreting long-term trends in the δ13C signal from massive 

scleractinian corals is confounded by several physiological and environmental 

signals including depth (Swart et al. 1996), light intensity (Reynaud-Vaganay et al. 

2001), photosynthesis, mass spawning (Gagan et al. 1996), heterotrophic feeding 

(Grottoli & Wellington 1999), and cloud cover (McConnaughey 1989). 
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In this study, we present δ13C measurements for three coral cores from the cold-water 

faviid Plesiastrea versipora collected from Gulf St Vincent (35ºS), South Australia. 

We compare the δ13C archive generated from these temperate corals with previously 

published records from massive Porites corals to examine the ocean-atmosphere 

mixing regime and fidelity of this archive. 

 

 
Figure 7.1: Location of coral cores collected and analysed for δ13C in Gulf St Vincent, South Australia. 

 

Methods 

Cores were drilled from live colonies of the faviid coral Plesiastrea versipora during 

November 2003 and May 2005 in Gulf St Vincent, South Australia (Figure 7.1). The 

pneumatic coring techniques required some modification from the Porites coring 

technique (Sinclair et al. 1998; Fallon et al. 1999) used in tropical environments due 

to the increased density of P. versipora. Once the core sample was extracted from the 
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coral colony the core hole was capped with a cement plug to prevent borers and other 

organisms from attacking the coral internally. Two cores were collected from 

Seacliff reef in 14 m of water and one core collected from a subtidal rocky reef at 

Edithburgh in 4 m water at low tide. 

 

Coral cores collected along the axis of maximum vertical extension were cut into 7 

mm slabs for X-ray analysis. Coral sections were X-rayed at a commercial X-ray 

medical facility, using an exposure of 55 kV and 5 mA for 15 sec with a Kodak 

CR500. The chronology of the coral cores were assessed using X-rays and U/Th 

dating techniques. Carbonate samples were milled at a sampling resolution of 

monthly to five yearly increments (200 µm – 6 mm) along the growth axis of coral 

cores. Milling techniques are similar to those described in Gagan et al. (1994) and 

Hendy et al. (2002). Analyses presented in this chapter include annual samples from 

Seacliff B, biennial samples from Edithburgh and five-yearly samples from Seacliff 

A and following the sampling procedure described in the stable isotope methodology 

in Chapter 5. Powdered samples were analysed for δ18O and δ13C in an automated 

individual carbonate-reaction Kiel (III) device coupled with a Finnigan Mat-251 

mass spectrometer at the Research School of Earth Sciences, the Australian National 

University.  Powdered coral samples weighing 180-220 µg were reacted with two 

drops of 103% phosphoric acid at 90° C.  The resulting H2O-CO2 gas was purified by 

freezing and removing the water then vaporising the CO2 in a double trap system 

using liquid nitrogen, and then passed through to the inlet system of the mass 

spectrometer for measurement.  All isotopic data are reported as per mil (‰) 

deviations relative to the Vienna Peedee Belemnite standard (VPDB), based on 

measurements of the National Bureau of Standards NBS-19 (δ18O =-2.20‰; δ13C 

=+1.95‰).  Analytical precision for replicate measurements (n = 40) of δ13C in 

NBS-19 was ± 0.02‰ (2σ).   

 

 

Results and Discussion 

The dominant feature of the three coral δ13C records (shown in Figure 7.2) is the 

curved trend towards lower δ13C beginning in the late 19th century with the slopes 

steepening towards the present day. The Suess effect has been recorded in the 
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Atlantic subtropical surface ocean as ~0.8‰ (Gruber et al. 1999). However, records 

of the Suess effect in biogenic organisms have the depletion ranging between 0.5‰ 

from 1820-1972 (Druffel & Benavides 1986) 0.9‰ from 1800-1990 for the 

Caribbean and 0.7‰ for the same time period for the Coral Sea (Böhm et al. 1996), 

and 0.9‰ from 1953-1999 (Fallon et al. 2003).  

 

 

 
 

Figure 7.2: Raw δ13C data for the three South Australian coral cores. (A) X-ray of the Edithburgh core 

showing 155 years growth. (B) SeA05 core δ13C record. (C) Ed03 δ13C record, this data is more 

depleted in 13C as the coral was growing at much shallower depths. (D) SeB δ13C record for the last 50 

years.  

 

The depletion shown in this study (Figure 7.2) of 0.82‰ and 0.74‰ for two coral 

records from 1850-2005 is comparable to the previous studies. The shorter coral 

record from 1953 -2005 δ13C decreased by 0.9‰, which although faster than the two 
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records from more slow growing corals is comparable to a sclerosponge (Fallon et al. 

2003). Although the scale of δ13C is comparable to sclerosponges (approximately 2.5 

‰) there is a large offset due to isotopic fractionation incorporating 13C into the 

coralline aragonite. 

 

 
 

Figure 7.3: (A) Two long (150 year) coral δ13Crecords from this study compared with atmospheric δ13C 

records from an Antarctic ice core (Law Dome) and Cape Grim weather station (Tasmania) (Francey et 

al. 1999). (B) Comparison of three published δ13C records (data from NOAA’s National Climatic Data 

Center: http://www.ncdc.noaa.gov/paleo/ftp-coral.html) compared with the Francey et al. (1999) record. 

 

Preindustrial atmospheric CO2 levels from Antarctic ice cores (Law Dome) were in 

the range of 275-284 ppm, with the lower end of the range during the Little Ice Age 

1550-1800 (Etheridge et al. 1996). However, it may be inappropriate to refer to a 

single preindustrial atmospheric CO2 level due to natural variations in biosphere 
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contribution or cooling in global climate. The atmospheric CO2 record stabilized at ~ 

310-312 ppm for just over a decade (~ 1940-1955) before increasing the rate of 

change to the 2005 CO2 level of 375 ppm (MacFarling Meure et al. 2006). The total 

change in atmospheric δ13C from preindustrial to modern time is 1.2 ‰ (estimated 

from Antarctic firn, Etheridge et al. 1996). The change in the δ13C of the surface 

ocean is approximately half that of the atmospheric δ13C change (Quay et al. 1992). 

The mid 20th century δ13CO2 record suggests an additional oceanic sink rather than 

lower fossil fuel emissions or a biospheric sink (Etheridge et al. 1996).   

 

The three coral records have large decadal-scale oscillations in the time series, not 

related to the oceanic Suess effect, but probably due to a complex interaction 

between δ13C fractionation in corals and photosynthesis-light/insolation variability. 

These decadal scale oscillations are not present in atmospheric records from Cape 

Grim station data or Antarctic ice core records (Francey et al. 1999). 

 

The Plesiastrea δ13C records in this study record the oceanic Suess effect with high 

fidelity but with strong modulation compared with other coral studies which 

underestimate the depletion in δ13C for the last 150 years (Figure 7.3) (Quinn et al. 

1998; Kuhnert et al. 1999; Zinke et al. 2004). These published studies were used as 

comparisons due to their regional proximity (West Coast of Australia, Madagascar 

and New Caledonia) of the records generated in this study and the length of the coral 

records. Previously published Porites δ13C values may reflect the complex 

interaction of different environmental variables influencing δ13C fractionation in 

tropical corals, and localised oscillations in oceanic DIC. One previous study on the 

slow-growing coral Diploria from Bermuda concluded the Suess effect was the cause 

of the depletion in δ13C of 0.5‰ from 1900-1974 (Nozaki et al. 1978). 

 

The corals (Plesiastrea versipora) assessed in this study appear to record surface 

ocean δ13C depletion with higher fidelity than tropical corals, which may be caused 

by two different effects. Firstly, the coral position in the water column affects the 

δ13C fractionation into the coral skeleton. As temperate corals grow much more 

slowly (~2-6 mm yr-1) than their tropical counterparts (up to 30 mm yr-1), and are 

generally found at greater depths, their position in the water column does not change 

as they grow. However, Porites colonies may change the growing depth and 
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therefore light intensity reaching the colony by up to 5 m during the growth of a 

single colony. The second factor influencing δ13C fractionation relates to the 

dependence on autotrophic versus heterotrophic feeding. Tropical corals are 

dependent on photosynthesis through their symbiotic zooxanthellae which causes 

enrichment of δ13C in the DIC of the calcification reservoir (Swart 1983; 

McConnaughey 1989). Due to increased turbidity and reduced water clarity in 

temperate systems, cold-water corals have polyps extended during daylight hours to 

provide heterotrophic nutrition. Plesiastrea versipora has a larger calyx than Porites 

and potentially more live tissue, and therefore may require more heterotrophic 

feeding in general. Therefore, these corals may have less dependence on their 

symbiotic algae for nutrition and associated carbon isotope fractionation. 

 

 

South Australian Gulf Carbon Cycling 

The long record generated from Seacliff A indicates a high level of periodicity, with 

an amplitude of approximately 1 ‰ (Figure 7.4). In the 300-year record, there are 

approximately eight cycles. Spectral analysis verifies that the cyclicity has a period 

of approximately 40-50 years (Figure 7.5). A previous study on tropical corals in the 

Great Barrier Reef observed a cyclicity with a period of approximately 50 years in 

δ13C and δ11B, which was related to the Pacific Decadal Oscillation (Pelejero et al. 

2005). 

 

 
 

Figure 7.4: δ13C record from Seacliff A. Data was collected in 5 year bulk samples. 
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Figure 7.5: Continuous wavelet frequency analysis of the δ13C record from Seacliff A, potentially 

reflecting changes in DIC cycling on a 40-50 year frequency. Wavelet spectrum was created using a 

Gaussian derivative filter in the AutoSignal® software. 

 

The changes in dissolved inorganic carbon in the South Australian Gulfs are likely to 

be related to changes in upwelled shelf slope water entering the gulfs, or changes in 

the intensity of upwelling in the eastern Great Australian Bight on a decadal scale. It 

is speculated that the 50-year periodicity in δ13C observed in this study may be 

related to the Pacific Decadal Oscillation, or decadal-scale changes in the Southern 

Annular Mode. Modelling the δ13C data collected in this study with Δ14C analyses 

would establish changes in carbon cycling in the South Australian Gulfs through 

time. Corals located in the eastern Great Australian Bight may enable differentiation 

between upwelling intensity or entrance of nutrient-rich deep water into the gulfs. 

Unfortunately, no large corals suitable for long-term proxy reconstructions were 

located in this area during the surveying for this project, and should be a focus for 

any future work. 
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Summary 

Plesiastrea versipora colonies in the South Australian Gulfs record the Suess effect. 

δ13C records from these corals document the surface ocean δ13C depletion more 

clearly than records from tropical records, which frequently underestimate the 

anthropogenic δ13C depletion. Two coral cores recorded a depletion in δ13C of 

~0.8‰ from 1850-2005, which is almost equal to estimates of the oceanic Suess 

effect. The δ13C records presented from these temperate corals are less complicated 

than carbon isotope records from faster-growing tropical corals. This is inferred to be 

due to a more consistent position in the water column compared with tropical corals 

which may increase their light intensity by over 100% during the course of fifty 

years growth, and less impact from vital affects. The cold-water corals experienced 

large-scale multidecadal oscillations which may be related to DIC cycling caused by 

changes in upwelling or insolation effects. Temperate corals may be used as a high-

resolution archive of anthropogenic impacts on the marine environment where other 

biogenic calcifying organisms such as tropical corals and sclerosponges do not occur. 
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Chapter 8: Conclusions and Future Directions 

Summary and Conclusions 

The field work component of this study located twelve colonies of Plesiastrea 

versipora in the South Australian Gulfs and core samples were collected from eight 

colonies. Whole colonies were collected from a reef complex in northern Spencer 

Gulf (Whyalla) as the colonies were too small to easily core. All colonies contained 

zooxanthellae and coral colour ranged between beige, green and purple. Most of the 

P. versipora colonies had extended polyps during the day and therefore may rely on 

both autotrophic and heterotrophic nutrition. The only exception was the corals in 

Dutton Bay which had retracted polyps during daylight hours, and these corals were 

from the shallowest site of 2 m. All reefs surveyed contained both encrusting and 

massive forms of Plesiastrea versipora. This study has not shed any light on the 

mechanism controlling coral habit formation after settlement of juvenile corals. Since 

both growth forms co-occurred on a small spatial scale, the mechanism controlling 

growth habit in P. versipora is more likely to be genetically-controlled rather than 

controlled by environmental conditions. 

 

Large skeletal density variations were observed between the different coral colonies, 

including colonies sampled from the same reef (Seacliff). The growth histories of 

five colonies of Plesiastrea versipora from Gulf St Vincent and Spencer Gulf were 

examined using X-ray band counting and 238U/230Th dating techniques. Density 

bands of varying widths (0.5 mm – 7 mm) and definition were present in each coral, 

and often there was greater density variation between different architectural elements 

(e.g. septal region versus corallite wall) than between proposed summer and winter 

calcification. The U/Th dating was used to verify that the density bands were annual 

high-low density band couplets in all corals examined. Average annual extension 

rates of colonies varied between 1.2 and 8 mm yr-1. These extension rates are among 

the slowest growth rates reported for hermatypic corals and are more comparable to 

growth rates of deep-sea corals. Estimated ages derived from the density bands 

ranged from 90 to 320 years, whereas ages derived from the U/Th dating were 

between 105 and 381 years. Differences in age estimation from the two techniques 

ranged from 2-19% suggesting that the age of P. versipora cannot be determined 
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accurately from density bands alone. However, both dating techniques contain 

inaccuracies biasing the derived age. It is difficult to accurately assign a calendar 

year to bands that are less than 1 mm wide, and have more density variation within a 

corallite than between summer and winter seasons. Two of the older samples 

analysed for U/Th ages have contamination from non-radiogenic 232Th (in the order 

of ~ 3 ppb) which introducing an error ten-fold higher than the blank-corrected 

analytical error. While the detrital 232Th error remained at approximately 10% of the 

U/Th derived age for the older colonies, the radiometric dating was considered to 

give a more accurate age approximation than the band counting. 

 

There were few luminescent bands observed in Plesiastrea versipora. Only one 

colony, Seacliff B had significant luminescent banding and the bands became more 

frequent in the 1960s, suggesting an environmental change occurred, recorded by the 

coral skeleton. The lack of luminescent banding in the other coastal corals (Seacliff 

A, Edithburgh and Whyalla) suggests that luminescent banding is not an accurate 

chronological marker in the South Australian corals.  

 

The potential of Plesiastrea versipora to capture the full seasonal cycle of SST 

variation (10-24°C) in the South Australian gulfs was assessed by comparing skeletal 

chemistry with in situ SST data. Both trace elements and stable isotopes were 

measured in this study to allow simultaneous evaluation of Plesiastrea versipora’s 

value as a paleoclimate archive and the reproducibility of the independent tracers in 

temperate latitudes. Analyses of the trace element paleotemperature proxies 

produced some surprising results. Proxy/SST calibrations generated from the fast 

growing corals (> 6 mm yr-1) of Sr/Ca, U/Ca and δ18O were comparable to published 

SST calibrations for other species. Very little temperature dependence was observed 

for B/Ca and Mg/Ca, and concentrations of these elements were amplified by 

secondary precipitates and other sources of contamination, and did not reflect 

temperature dependent fractionation in P. versipora.  

 

The trace element which captured the full amplitude of the seasonal cycle with 

highest fidelity was Ba/Ca. Although Lea et al. (1989) suggested a temperature 

dependence in the incorporation of Ba/Ca in corals from the Galapagos, this was due 

to temperature variation between coastal water and upwelled water rather than a 
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reflection of variation in seasonal SST. The majority of studies examining Ba/Ca 

concentrations in coral have observed greater influence from river flood plumes 

carrying high levels of suspended sediment to the coastal zone (Sinclair 1999; 

McCulloch et al. 2003; Fleitmann et al. 2007) or upwelling of nutrient rich water 

(Lea et al. 1989; Fallon et al. 1999; Reuer et al. 2003; Montaggioni et al. 2006; 

Ourbak et al. 2006). The seawater concentrations of Ba in the South Australian gulfs 

are unlikely to be influenced by either terrestrial or deep water sources. There is very 

little fresh water discharge to the gulfs due to the low rainfall and the gulfs are 

thermally stratified and exchange little with shelf water when summer upwelling 

occurs off the coast of the Western Eyre Peninsula. Concentrations of Ba/Ca are 

constant in both the coastal corals which may be influenced by land runoff, and the 

open gulf corals which are unlikely to be influenced by fresh water. Another faviid 

species from the Mediterranean (Cladocora caespitosa) also displayed temperature 

dependence in the incorporation of Ba/Ca (Montagna et al. 2007), with a comparable 

slope to the calibration generated in this study for the fast growing corals (Seacliff 

and Troubridge). Furthermore, experimental studies on Ba/Ca concentration uptake 

in inorganic aragonite found a high temperature dependence on the fractionation 

(Dietzel et al. 2004; Gaetani & Cohen 2006).  

 

Corals with a very slow extension rate (less than 2 mm per year) did not capture the 

full amplitude of the seasonal cycle in either the trace elements or δ18O analyses and 

may only be useful for decadal-centennial scale climate reconstructions, if at all. 

Sr/Ca and U/Ca concentrations were observed to behave with a ‘bimodal’ 

distribution in the coral skeleton which was reproducible down the same laser track, 

but offset between adjacent tracks. The bimodal distribution in Sr and U was only 

observed in the corals with an extension rate of less than 2 mm yr-1. This behaviour 

has implications for coral studies on other species with low extension rates, because 

it suggests that the coral polyp is mediating the fractionation of Sr and U (i.e. 

biological fractionation) rather than the thermodynamic relationship exhibited by 

inorganic aragonite and fast growing coral species such as Porites. The high 

coherency exhibited between Sr and U suggests that they may be incorporated 

through the same ionic pathway (using the McConnaughey Ca2+ -ATPase 

calcification pump model) and therefore subject to the same biological or ‘vital’ 

effects. Additionally, because Sr and U may be incorporated into the carbonate 
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lattice via different mechanisms (direct substitution of Ca2+ by Sr2+, compared with 

substitution of UO2(CO3)2- for the CO3
2-) suggests that the bimodal distribution is a 

primary feature, as it is unlikely that both components of the aragonite lattice may be 

replaced in equal proportion. 

 

The trace metal analyses conducted on Plesiastrea versipora revealed substantial 

contamination in several sites in Spencer Gulf and Gulf St. Vincent. Trace metal 

contamination was associated with changes in urban and industrial development and 

land use changes. The coastal corals from Seacliff reef recorded increased 

concentrations of lead, most likely due to the proliferation of automobiles in the 

1960s. Increased concentrations of other heavy metals including Cu, Sn, Zn and Mn 

may be related to the discharge of treated sewage at a coastal site less than 10 km 

away. Vanadium and Mo (high concentrations in petroleum products, particularly oil) 

have enriched concentrations in pulse events which are recorded by the fast growing 

Seacliff coral (Seacliff B), with higher concentrations correlating with luminescent 

bands in this colony and were coincident with known oil spills in the region. The 

corals from Whyalla indicated higher concentrations in the heavy metals Zn, Sn and 

Pb and the source of the contamination is likely to be nearby smelters. 

 

The maximum concentrations of several metals including Cu, Mn, Zn, Sn and Pb 

were different for the two coastal corals, implying different distribution coefficients 

for different coral colonies because the seawater chemistry is unlikely to change on 

such a small spatial scale. This suggests that distribution coefficients for trace metals 

in Plesiastrea versipora is dependent on growth rate. Therefore, seawater 

concentrations of trace metals can not be estimated from the coral trace metal 

concentrations. Although Shen & Boyle (1988) proposed that distribution 

coefficients show little variation between different coral species and growth rates, the 

results of this study suggest that distribution coefficients do vary within a species, 

and are dependent on growth rate or another colony specific mechanism. Caution 

should be used when applying published distribution coefficients to different species 

and growth rates. 

 

Long-lived, slow-growing faviids such as Plesiastrea versipora can potentially 

provide geochemical proxy archives two-three times longer than Porites corals of the 
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same colony size. Biological and physiological characteristics of the coral 

Plesiastrea versipora making it a useful indicator species of environmental change 

include: 

1. High tolerance to a range of temperature and salinity fluctuations 

2. Relatively low growth rate producing colonies spanning several centuries 

3. Efficient suspension feeding combined with zooxanthellate nutrition 

4. Broad geographical expanse 

 

 

Ecological Perspective 

Populations of Plesiastrea versipora in the South Australian gulfs have been severely 

impacted by trawling conducted for prawn fisheries and it is unknown what 

ramifications this has had on the local ecosystems. The trace element records 

generated during this study imply that some regions in both Spencer Gulf and Gulf St. 

Vincent have been contaminated by anthropogenic sources for most of the last 

century.  

 

The fast growing coral at Seacliff reef appears to be recording seawater chemistry 

changes or point source pollution events from sources located both to the north 

(waste water treatment plant and urban runoff) and to the south (oil refinery at Port 

Stanvac) of the reef. The unique oceanography in the South Australian gulfs with 

very little mixing with shelf waters in summer when the gulfs are thermally stratified 

may enable the Seacliff corals to record environmental impacts from the surrounding 

region with greater fidelity. Further studies on local seawater chemistry should be 

conducted to determine the length of time contaminants stay in the coastal 

environment. 

 

Little is known about the effects of water quality on the recruitment of organisms on 

to temperate reefs and the associated impacts on community structure. Research 

conducted on tropical reefs suggests that corals and other encrusting invertebrates are 

replaced by algal species (Hughes & Tanner 2000; Hughes et al. 2003). Impacts 

associated with declining water quality along metropolitan coastlines have been 

demonstrated in macro-algae (Shepherd & Womersley 1970; Turner & Cheshire 
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2002) and seagrass (Neverauskas 1987) communities which indicate an increase in 

opportunistic and turfing species. The coral colonies located on urban reefs in South 

Australia record a significant anthropogenic impact over the last 70 years with 

concentrations of heavy metals over 30 times pre-industrialisation levels. At this 

stage, we do not have a clear understanding of the impact of higher metal 

concentrations on coral growth and recruitment. Continued research into temperate 

reef health especially in coastal regions undergoing increasing urbanisation should be 

established to detect changes in structure, function and recruitment of corals.  

 

 

Future Directions 

The results of this thesis advocate that fast growing colonies of Plesiastrea versipora 

are useful archives of paleotemperature, and all colonies examined contained detailed 

records of changes in seawater chemistry from anthropogenic pollution. Several 

questions have arisen during the course of this thesis that were not able to be 

addressed due to time constraints.  

 

One of the most obvious avenues of further research is to determine why the trace 

element and stable isotope records are so different between neighbouring corals with 

different growth rates. A better understanding of the mechanisms of coral 

calcification and the role of thermodynamic (inorganic) fractionation versus 

biologically mediated fractionation will substantially improve the accuracy and 

extend potential applications of coral proxy generated records. The trace element 

relationships observed during this study suggest that Ba may be incorporated into the 

coralline lattice through a different ionic pathway to Sr and U. Furthermore, the 

variation in trace metal concentrations suggest that a different level of control is 

exerted over different ionic pathways and this may be due to biological mediation or 

chemical speciation due to environmental conditions in the calcification fluid, such 

as pH changes.  

 

Further collections of Plesiastrea versipora colonies may establish which extension 

rate is the dominant growth form, from the corals surveyed in this study it appears 

that temperate corals usually calcify less than 3 mm yr-1. The extension rate of 
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Plesiastrea versipora colonies from temperate latitudes in the northern hemisphere 

remains unknown. Combining biological growth experiments (tank experiments) 

with geochemical analyses would improve our understanding of summer/winter 

calcification and the role of genetics or zooxanthellae on mean annual extension rate. 

Tank experiments could also include radiogenic spikes or supersaturated conditions 

(in Mg, Sr, Ba, U) to advance our knowledge of cation substitution in the aragonite 

lattice. 

 

Isotope-dilution ICP-MS analyses conducted on the milled samples would be a more 

accurate comparison between the trace elements and δ18O paleotemperature records. 

An initial examination of the influence of ENSO on δ18O records in Plesiastrea 

versipora was inconclusive. Frequency analysis of the long records of trace element 

and stable isotope paleotemperature proxy data would be very useful to establish the 

role of climate dynamics from different ocean basins, including ENSO, Indian Ocean 

Dipole, Pacific Decadal Oscillation and the Southern Annular Mode.  

 

Combining in situ seawater chemistry analyses with coral geochemical analyses 

would enhance our understanding of water chemistry and trace metal cycling in the 

South Australian gulfs. Specifically whether trace elements with a ‘nutrient style’ 

behaviour such as Ba have constant concentrations in the gulfs between seasons. 

Knowledge of seawater chemistry would also enable the distribution coefficients of 

trace metals to be established for corals with different growth rates.  

 

The δ13C analyses from Plesiastrea versipora, recorded the Suess effect and 

indicated a cyclicity in dissolved inorganic carbon (DIC), possibly due to mixing 

with upwelled shelf/slope water entering the gulfs. To establish the variability of DIC 

through time, analyses of Δ14C combined with the δ13C may enable accurate 

modelling of carbon cycling in temperate latitudes. It is well established that the 

surface oceans are becoming more acidic due to absorption of anthropogenic CO2 

from the atmosphere (Kleypas et al. 1999; Orr et al. 2005; Pelejero et al. 2005). 

However, the impact of ocean acidification on marine ecosystems, particularly 

calcifying organisms remains unclear (Langdon & Atkinson 2005), temperate 

latitudes are considered to be more sensitive to changes in oceanic pCO2 (Kleypas et 

al. 1999). A pilot study of δ11B negative TIMS analyses conducted during this thesis 
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indicated a 0.2 pH change from 1945-2003 in the Seacliff B coral. Continuous high 

resolution δ11B analyses from the Seacliff A coral would complement the δ13C signal 

and ascertain if large scale fluctuations in pH occur in temperate latitudes, as has 

been observed in tropical coral records (Pelejero et al. 2005). 

 

Trace metal analyses of Plesiastrea versipora colonies in other regions of Australia 

would provide a more complete picture of anthropogenic change since European 

settlement and industrialisation. For example, colonies of P. versipora are known to 

occur in Port Phillip Bay (G. Parry pers comm.) and are likely to record urban and 

industrial development in Victoria. 

 

Fossil corals present a unique archive of information on climate variability in the 

Quaternary and Plesiastrea versipora is commonly preserved in Quaternary beach 

dunes along the eastern coast of Australia (I. Goodwin pers comm.). Several studies 

have used fossil tropical corals to provide information on past SST changes, 

hydrological balance (Gagan et al. 1998; Abram et al. 2007), global ice volume 

(Guilderson et al. 1994) and ocean mixing (Edwards et al. 1993). Geochemical 

analyses on well preserved fossil colonies of Plesiastrea versipora may improve our 

understanding of Quaternary climate dynamics at temperate latitudes. 
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Appendix A 
Table 1: Published δ18O calibration equations 

Species Location Intercept Slope Reference 
Porites sp Ryukyu Islands, Japan -1.21 0.134 (Mitsuguchi et al. 1996) 
Porites sp Ryukyu Islands, Japan -0.611 0.165 (Suzuki et al. 1999) 
Porites sp South China Sea -1.02 0.174 (Yu et al. 2005) 
Porites sp Pacific, various 0.45 0.20 (Juillet-Leclerc & Schmidt 2001) 
Porites sp Fiji -0.03 0.17 (Le Bec et al. 2000) 
Porites sp Eilat, Red Sea 0.54 0.16 (Felis et al. 2003) 
Porites  lobata Galapagos 0.59 0.21 (McConnaughey 1989) 
Porites lutea Tahiti  -0.42 0.15 (Boiseau et al. 1998) 
Porites  lobata Costa Rica 1.36 0.22 (Carriquiry et al. 1994) 
Porites  lobata Galapagos 0.89 0.22 (Wellington et al. 1996) 
Porites sp Guam, NW Pacific -0.86 0.150 (Asami et al. 2004) 
Porites sp Guam, NW Pacific -1.09 0.140 (Asami et al. 2004) 
Porites sp Panama -0.026 0.196 (Wellington & Dunbar 1995) 
Porites sp Orpheus Is, GBR 0.002 0.174 (Gagan et al. 1998) 
Porites sp Orpheus Is, GBR 0.447 0.189 (Gagan et al. 1998) 
Porites sp Pandora Reef, GBR 0.183 0.180 (Gagan & Chivas 1995) 
Porites sp New Caledonia 1.23 0.133 (Stephans et al. 2004) 
Porites sp New Caledonia -0.91 0.151 (Quinn et al. 1998) 
Porites sp New Caledonia 0.004 0.189 (Quinn et al. 1996) 
Porites sp Oeno Atoll, SE Pacific -0.304 0.132 (Ayling et al. 2006) 
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Table 2: Published Sr/Ca vs SST calibrations for inorganic aragonite, Porites and other coral 
species. 

Species Location Intercept Slope Reference 

Inorganic aragonite  10.99 0.045 (Kinsman & Holland 1969) 
Inorganic aragonite  11.27 0.043 (Dietzel et al. 2004) 
Pocillopora damicornis Hawaii 11.01 0.071 (Smith et al. 1979) 
Montipora verrucosa Hawaii 11.64 0.089 (Smith et al. 1979) 
Porites  sp. GBR 10.94 0.07 (Smith et al. 1979) 
Pocillopora eydouxi Hawaii 11 0.076 (de Villiers et al. 1994) 
Pavona clavus Galapagos 10.646 0.0675 (de Villiers et al. 1994) 
Diploria labyrinthiformis Bermuda 10.03 0.045 (Cardinal et al. 2001) 
Montastrea annularis Florida 9.994 0.0377 (Swart et al. 2002) 
Diploastrea heliopora Indonesia 10.57 0.06 (Correge et al. 2004) 
Goniopora sp. South China Sea 9.6 0.0305 (Yu et al. 2004) 
Porites  sp. Eilat, Red Sea 10.78 0.0597 (Felis et al. 2004) 
Porites  lutea Ryukyu, Japan 10.5 0.0608 (Mitsuguchi et al. 1996) 
Cladocora caespitosa Adriatic Sea 10.33 0.066 (Montagna et al. 2006) 
Porites lobata Shirigai  Bay, Japan 10.76 0.063 (Fallon et al. 1999) 
Porites lobata Hawaii 10.96 0.079 (de Villiers et al. 1994) 
Porites lobata Taiwan 10.27 0.0505 (Shen et al. 1996) 
Porites  lobata  Taiwan 10.32 0.0528 (Shen et al. 1996) 
Porites lutea South China Sea 9.84 0.0424 (Yu et al. 2005) 
Porites  lutea South China Sea 10.6 0.0504 (Wei et al. 2000) 
Porites  lutea Fiji 10.65 0.053 (Linsley et al. 2004) 
Porites Rabaul, PNG 10.64 0.061 (Quinn et al. 2006) 
Porites  lutea Java, Indonesia 10.78 0.066 (Gagan et al. 1998) 
Porites  lutea Alor, Indonesia 10.51 0.062 (Correge et al. 2004) 
Porites  sp. Christmas Is (Indian) 10.38 0.0593 (Marshall & McCulloch 2001) 
Porites  lutea Galapagos 10.55 0.0514 (Schrag 1999) 
Porites lobata Hawaii 10.965 0.067 (Allison & Finch 2004) 
Porites lobata Hawaii 10.86 0.08 (Allison & Finch 2004) 
Porites sp Davies Reef GBR 10.48 0.0615 (Alibert & McCulloch 1997) 
Porites  lutea Myrmidon Reef, GBR 10.40 0.0575 (Marshall & McCulloch 2002) 
Porites lutea Orpheus Is, GBR 10.73 0.0639 (Gagan et al. 1998) 
Porites  sp Flinders Reef, GBR 10.11 0.451 (Calvo et al. 2007) 
Porites sp Havannah Is, GBR 10.11 0.0412 (Fallon et al. 2003) 
Porites sp Pandora Reef, GBR 10.62 0.0652 (Fallon et al. 2003) 
Porites sp Orpheus Island, GBR 10.23 0.052 (Fallon et al. 2003) 
Porites sp Davies Reef, GBR 10.39 0.0602 (Fallon et al. 2003) 
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Porites sp Davies Reef, GBR 10.73 0.0707 (Fallon et al. 2003) 
Porites sp Myrmidon Reef, GBR 10.42 0.0565 (Fallon et al. 2003) 
Porites sp Wheeler Reef, GBR 10.35 0.0595 (Fallon et al. 2003) 
Porites  lutea Dampier, Western Aust. 10.68 0.0616 (Gagan et al. 1998) 
Porites lobata New Caledonia 10.48 0.0625 (Beck et al. 1992) 
Porites  lutea New Caledonia 10.073 0.052 (Quinn & Sampson 2002) 
Porites  lutea New Caledonia 10.12 0.057 (Quinn & Sampson 2002) 
Porites  lutea New Caledonia 10.38 0.061 (Quinn & Sampson 2002) 
Porites lutea New Caledonia 10.73 0.0657 (Correge et al. 2000) 
Porites lobata New Caledonia 8.94 0.0532 (Min et al. 1995) 
Porites lutea New Caledonia 10.51 0.062 (Correge et al. 2004) 
Porites  lutea New Caledonia 10.38 0.0614 (Crowley et al. 1999) 
Porites lutea Rarotonga 11.57 0.0823 (Linsley et al. 2000) 
Porites lobata Madagascar 10.011 0.037 (Zinke et al. 2004) 
Porites sp Oeno Atoll, SE Pacific 10.086 0.0495 (Ayling et al. 2006) 
Porites mayeri GBR 10.8 0.07 (Sinclair et al. 1998) 
Porites  sp. Kiritimati 10.7 0.0614 (Evans et al. 1999) 
Porites  sp. Huon Peninsula, PNG 10.7 0.062 (McCulloch et al. 1999) 
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Table 3: Published B/Ca calibration equations 
Species  Location  Intercept  Slope  Reference 
Porites sp Havannah Is, GBR 0.5238 0.004436 (Fallon et al. 2003) 
Porites sp Pandora Reef, GBR 0.9093 0.01707 (Fallon et al. 2003) 
Porites sp Orpheus Island, GBR 0.819 0.01457 (Fallon et al. 2003) 
Porites sp Davies Reef 2, GBR 0.9247 0.01805 (Fallon et al. 2003) 
Porites sp Davies Reef 8, GBR 0.1098 0.02609 (Fallon et al. 2003) 
Porites sp Myrmidon Reef 2, GBR 0.8952 0.0165 (Fallon et al. 2003) 
Porites sp Wheeler Reef, GBR 0.788 0.01288 (Fallon et al. 2003) 
Porites lobata Japan 0.766 0.00933 (Fallon et al. 1999) 
Cladocora caespitosa Adriatic Sea 1.239 0.024 (Montagna 2004) 

 

 

 

Table 4: Published Mg/Ca calibration equations 
Species  Location  Intercept  Slope  Reference 
Cladocora caespitosa Adriatic Sea 1.68 -0.12 (Montagna et al. 2006) 
Porites lobata Shirigai  Bay, Japan 1.38 -0.0879 (Fallon et al. 1999) 
Porites sp Ryukyu, Japan 1.15 -0.129 (Mitsuguchi et al. 1996) 
Porites sp Havannah Is, GBR 0.104 -0.116 (Fallon et al. 2003) 
Porites sp Pandora Reef, GBR -0.603 -0.1155 (Fallon et al. 2003) 
Porites sp Orpheus Island, GBR 1.044 -0.1123 (Fallon et al. 2003) 
Porites sp Davies Reef , GBR 1.338 -0.08934 (Fallon et al. 2003) 
Porites sp Davies Reef 8, GBR 0.7037 -0.1321 (Fallon et al. 2003) 
Porites sp Myrmidon Reef 2, GBR 3.73 -0.00661 (Fallon et al. 2003) 
Porites sp Wheeler Reef, GBR 0.759 -0.1161 (Fallon et al. 2003) 
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Table 5: Published U/Ca calibration equations 
Species  Location  Intercept  Slope Reference 
Porites sp  2.386 0.053 (Min et al. 1995) 
Cladocora caespitosa Adriatic Sea 1.47 0.024 (Montagna 2004) 
Porites lobata Japan 2.215 0.04539 (Fallon et al. 1999) 
Porites sp Havannah Is, GBR 2.165 0.0294 (Fallon et al. 2003) 
Porites sp Pandora Reef, GBR 2.36 0.0431 (Fallon et al. 2003) 
Porites sp Orpheus Island, GBR 2.001 0.0351 (Fallon et al. 2003) 
Porites sp Davies Reef , GBR 1.806 0.0286 (Fallon et al. 2003) 
Porites sp Davies Reef , GBR 2.02 0.0398 (Fallon et al. 2003) 
Porites sp Myrmidon Reef, GBR 1.46 0.01469 (Fallon et al. 2003) 
Porites sp Wheeler Reef, GBR 2.03 0.0364 (Fallon et al. 2003) 
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Table 6: Published maximum values of heavy metals from pollution studies in Thailand, Red 
Sea, Japan, Central American and Northern Australia most elemental concentrations in ppm 
except for values marked with ^ = ppb  # = μmol/mol; * = nmol/mol. Values obtained during 
this study are in the last row in bold. 
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Appendix B 
 

Location Gulf Depth Size of 
colony 

Date 
collected 

Remarks 

Seacliff: Coral 1 Gulf St Vincent 12 m ~ 150 cm 23/06/03 Very dense coral – 
only 17 cm core 
obtained in 2003 

Seacliff: Coral 2 Gulf St Vincent 12 m ~ 120 cm 24/06/03 Coral partially 
dead. Easy to core. 
Temperature 
logger placed at 
site 07/05/03 

Edithburgh Gulf St Vincent 4 m ~ 28 cm 27/11/03 Coral to the north 
of jetty 

Troubridge Gulf St Vincent 5 m ~ 170 cm 27/11/03 Temperature 
logger placed at 
site 27/11/03 

Dutton Bay Coffin Bay 2 m ~ 20 cm 01/08/03 Temperature 
logger placed at 
site 05/08/03 

 Coffin Bay 2 m ~ 25 cm 01/08/03 Corals located 
under jetty 

Taylors Island Spencer Gulf 22 m ~ 25 cm  29/07/03  
 Spencer Gulf 21 m ~ 31 cm 13/11/03 Heavily bored 

throughout core, 
coral rolled and 
axis changed mid 
way through core 

Moonta Bay Spencer Gulf 4 ~ 140 cm 17/12/03 Teeth on core 
barrel broke so 
only 5 cm core 
collected. Colony 
mostly dead. 
Temperature 
logger placed at 
site. 

Whyalla Spencer Gulf  < 15 cm 19/11/03 Only small, 
massive colonies 
found 4 collected 

Cowell Spencer Gulf ?? ~ 40 cm 1980/1981 Coral dumped 
under jetty from a 
prawn trawler – 
not sure of death 
date 

Pt Broughton Spencer Gulf ?? ~ 40 cm April 1981 Neil’s garden 
ornament 
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