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Abstract

The arithmetical theory EA(I;O) developed by Çağman, Ostrin and Wainer ([18] and

[48]) provides a formal setting for the variable separation of Bellantoni-Cook predicative

recursion [6]. As such, EA(I;O) separates variables into outputs, which are quantified

over, and inputs, for which induction applies. Inputs remain free throughout giving

inductions in EA(I;O) a pointwise character termed predicative induction. The result

of this restriction is that the provably recursive functions are the elementary functions.

An infinitary analysis brings out a connection to the Slow-Growing Hierarchy yielding

ε0 as the appropriate proof-theoretic ordinal in a pointwise sense. Chapters 1 and 2 are

devoted to an exposition of these results.

In Chapter 3 a new principle of Σ1-closure is introduced in constructing a conservative

extension of EA(I;O) named EA1. This principle collapses the variable separation in

EA(I;O) and allows quantification over inputs by acting as an internalised ω-rule. EA1

then provides a natural setting to address the problem of input substitution in ramified

theories.

Chapters 4 and 5 introduce a hierarchy of theories based upon alternate additions of the

predicative induction and Σ1-closure principles. For 0 < k ∈ N, the provably recursive

functions of the theories EAk are shown to be the Grzegorczyk classes Ek+2. Upper

bounds are obtained via embeddings into appropriately layered infinitary systems with

carefully controlled bounding functions for existential quantifiers. The theory EA≺ω,

defined by closure under finite applications of these two principles, is shown to be

equivalent to primitive recursive arithmetic. The hierarchy generated may be considered

as an implicit ramification of the sub-system of Peano Arithmetic which restricts induction

to Σ1-formulae.
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Introduction

Grzegorczyk [29] introduced a proper hierarchy of classes of number-theoretic functions,

Ek for k ∈ N, whose union is the primitive recursive functions. The classes are stratified

using bounded primitive recursion with bounds provided from a backbone hierarchy of

strictly increasing functions Ek. The Grzegorczyk Hierarchy exhibits a strong stability

under various definitions, cf. [43], such as rate of growth, computation limited by time

or space bounds, enumeration, number of recursions and nesting of for-loops in loop

programs. At the lower levels E2 consists of polynomially bounded functions and E3 the

elementary functions which are bounded by fixed iterates of exponentiation. These classes

may be seen as distinguishing between functions considered computationally feasible and

infeasible in terms of their complexity.

Within the setting of formal theories of arithmetic one can seek to classify the strength

of the theory in question by the assignment of an ordinal which seeks to measure

complexity. This program of ordinal analysis dates back to Genzten [24] (translated in

[25]) where transfinite induction up to the ordinal ε0 sufficed to show the consistency

of Peano Arithmetic. Considering the recursive functions definable in such theories

the same ordinal re-appears. The origins of this approach stem from Kreisel [33] who

showed the functions computable in Peano Arithmetic to be precisely those definable by

recursions over well-orderings of N of order-types below ε0. Later work by Löb and

Wainer [37], [38],[39]; Parsons [50]; Schwichtenberg [55] and Wainer [61] for example,

refined this result to sub-hierarchies of Peano Arithmetic. The Schwichtenberg-Wainer
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Fast-Growing Hierarchy of functions provides a backbone of bounding functions in such

analyses. (They extend the Grzegorczyk functions Ek by transfinite ordinal recursions.)

A recent comprehensive treatment is given by Fairtlough and Wainer [19]. In all such

cases the sub-hierarchies of Peano Arithmetic are given by restrictions on the complexity

of formulae occurring in the induction axioms. A hierarchy of theories below primitive

recursive arithmetic whose provably recursive functions correspond to the Grzegorczyk

classes Ek may be given. One simply restricts inductions to bounded formulae and adds

axioms expressing the totality of the Grzegorczyk functionEk, cf. [12]. We consider these

explicit restrictions, using a priori bounds, as the classical approach which corresponds

to defining function classes by bounded primitive recursion.

Simmons [57], and later independently Bellantoni and Cook [6], introduced a new

approach to restricting primitive recursion by ramifying variables thus avoiding recourse

to a priori bounds. The theme in so-called predicative recursion is to use two kinds

of variables: normal and safe. One may use the usual (unbounded) primitive recursion

scheme with the simple restriction that substitutions are only allowed on safe variables

whilst normal variables admit the recursions. This predicative approach provides implicit

bounds and naturally restricts the primitive recursive functions to those considered

feasibly computable, for example PTIME in [6]. The idea proved of great interest

in theoretical computer science spawning a new paradigm of implicit computational

complexity (also termed resource free or machine independent). Many complexity classes

were defined using variable separation schemes, see for example Bellantoni [4]; Clote

[13], [14]; Covino and Pani [16]; Leivant [35], [36] and Oitavem [44], [45]. The mantra

‘substitute at lower levels and recurse at a new higher level’ has been used by Bellantoni

and Niggl [7], Caporaso et al. [9] and Wirz [67] to capture every Grzegorczyk class

Ek by extending variable separation to an arbitrary finite number of levels. The general

approach here exploits the idea of counting the depth of recursions used in generating

primitive recursive functions, see Schwichtenberg [54].

The theory EA(I;O) developed by Çağman, Ostrin and Wainer ([18], [46], [47], [48])
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seeks to incorporate the Bellantoni-Cook/Simmons notion of predicative recursion into

formal arithmetic. It builds upon previous ideas of Leivant’s ramified theories [34].

EA(I;O) possesses two levels of variables: the outputs over which quantifications

(substitutions) apply and the inputs for which inductions (recursions) apply. The induction

axiom used in EA(I;O) may be termed ‘predicative’ since in the antecedent we are

quantifying over numbers from an unrestricted domain of values (the outputs) whilst

in the consequent we introduce a new variable x from a restricted domain of numbers

(the inputs) which then remains free. As such these input variables may be more

accurately termed uninterpreted input constants and induction in this context is pointwise.

Importantly there are no restrictions on the complexity of the formulae allowed within

inductions. Thus the implicit nature of Bellantoni-Cook recursion is retained in opposition

to the classical approach to restricting complexity in arithmetic.

The analysis of EA(I;O) shows that the functions provably recursive are Grzegorczyk’s

class E3, the Kalmár-Csillag ([17],[32]) elementary functions. Sub-hierarchies within

EA(I;O) may be generated by restricting the complexity of induction formulae reflecting

the usual sub-hierarchies of Peano Arithmetic. This yields provably recursive functions

from E2 and the exponential hierarchy between E2 and E3, [46]. In [48] it is noted that over

a binary notation, natural characterizations of PTIME and EXP may be given similarly to

the results of Leivant.

In analysing EA(I;O) we may also see a reflection of the idea that, in both the function

algebras and formal theories, variable separation is a process which collapses the classical

fast-growing to slow-growing or feasible. Adopting the standard infinitary methods,

for example in the analysis of Peano Arithmetic in [19], one finds bounding functions

are now provided by the Slow-Growing Hierarchy and hence the associated proof-

theoretic ordinal is ε0 but in a pointwise sense, cf. [46] or [47]. (Collapsing the Slow-

Growing Hierarchy below ε0 yields the elementary functions.) Likewise, Wirz [68] shows

pointwise transfinite induction up to ε0 is provable in EA(I;O). This lends support to the

established idea that one may assign a theory a pointwise/slow-growing proof-theoretic
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ordinal, for example in the work of Arai [1], [2] and Schmerl [52]. Indeed these results,

and the hierarchy comparison theorem of Girard [26], and later Wainer [62], are seen in

the context of variable separation by the recent work of Wainer and Williams [63] and

Williams [66]. There, EA(I;O) is extended by finitely iterated inductive definitions and

a new context is given in which the Slow-Growing Hierarchy ‘catches up’ with the Fast-

Growing Hierarchy at the ordinal of ID≺ω.

We offer some brief remarks on predicativity as it is a term frequently used in association

with variable separation. The notion of predicativity dates back to Russel and Poincaré,

see Feferman [20]. In proof theory the boundary between predicative and impredicative is

usually considered to be those theories with proof-theoretic strength Γ0. However, in such

a context predicative is taken to mean ‘predicative given the natural numbers’. Feferman

[20] has claimed that predicativity should perhaps be seen as a relative (with respect to a

given foundational scheme) rather than an absolute concept. Along such lines, a stricter

finitistic notion of predicativity is given by Nelson [42]. Regarding the usual induction

axioms of Peano Arithmetic as impredicative he argues:

“It is not correct to argue that induction only involves the numbers from 0 to

n; the property of n being established may be a formula with bound variables

that are thought of as ranging over all numbers [....] A number is conceived

to be an object satisfying every inductive formula; for a particular inductive

formula, therefore, the bound variables are conceived to range over objects

satisfying every inductive formula, including the one in question.” pp.1–2

Nelson then develops a ‘predicative arithmetic’ as one interpretable in Robinson’s theory

Q. He conceives of two sets: a given infinite set of proto-numbers for which induction

does not hold but is closed under successor, addition and multiplication; and a second set

of numbers refined from the proto-numbers by relativisation. Nelson’s central claim is

that by associating predicativity with interpretability in Q, we should regard the totality
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of the exponential function to be an impredicative principle . There are limitations with

this approach. For example, in doubting the consistency of assuming the totality of

exponentiation in predicative arithmetic one is forced to assign the same doubt to the

consistency of predicative arithmetic (and Robinson’s arithmetic) itself by the results of

Visser [60], surmised by Iwan [31]. Furthermore there have been recent results showing

natural number induction to be derivable from a very weak fragment of finite-set theory

(Feferman and Hellman [21]) and without appeal to finite-set induction (Ferreira [22]).

We regard EA(I;O) as at least carrying the predicative theme in its setting. Although

precise correspondence with Nelson’s notion of predicative arithmetic is not an objective

within this thesis the analogy between the input/output separation and the numbers/proto-

numbers is clear. Furthermore, EA(I;O) does not prove the totality of exponentiation in

the usual sense as input constants are not quantified and thus may be finitely limited from

the outset.

We do not aim to offer model-theoretic investigations into the theories presented in this

thesis and this remains an avenue for future research. We will however offer some

ideas on what we envisage the models of such theories to look like by considering a

model for EA(I;O). Define a structure M with signature the non-logical symbols

of EA(I;O). Allow it to have a domain consisting of an infinite set |O| intended to

interpret output variables. The non-logical symbols would be interpreted in the usual

way so that |O| satisfies the arithmetic axioms. Crucially though |O| would not satisfy

the induction axioms. Then join to M a distinguished infinite set of input constants

|I| := {i0, i1, . . . , ik, . . .}. This will be an inductive set, intended to act as assignments to

the input variables xk. Hence the induction axiom says: if A(a) is inductive in a, A(ik)

holds. ThenM would model EA(I;O).

The principle objective of this thesis is to develop a hierarchy of ramified theories

extending EA(I;O) whose provably recursive functions correspond to higher levels of

the Grzegorczyk Hierarchy. We do this through successive alternate applications of two

principles, namely ‘predicative induction for input constants’ and ‘Σ1-closure’. The base
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theory for such applications has only one type of variable and resembles Robinson’s

arithmetic, Q. We begin by reviewing the theory EA(I;O), which under our framework

is viewed as the weak base theory plus predicative induction for input constants. Chapter

1 gives a lower bound on the provably recursive functions of EA(I;O) and Chapter 2

provides a corresponding upper bound using a suitable infinitary theory. In these chapters

we are broadly following previous work of Ostrin [46] and Ostrin and Wainer [48] but for

a classical presentation of EA(I;O) similar to that of Williams [66].

In Chapter 3 we define a new theoryEA1 as the weak base theory (of one type of variable)

which incorporates a Σ1-closure axiom. This axiom allows Σ1 end-sequents of EA(I;O)

derivations to be taken as axioms where the distinction between inputs and outputs is

dropped. Thus quantification now applies to inputs showing the Σ1-closure axiom to

be akin to an internalised ω-rule. Such a theory is (in a restricted sense) conservative

over EA(I;O) thus providing a setting to address the criticism that EA(I;O) is not

intensionally closed under substitution of provably recursive functions. We briefly discuss

how the closure axiom may also be regarded as a fine graduation of, in Nelson’s sense, an

impredicative feature within Peano Arithmetic.

Chapter 4 begins the layering of the two principles. Firstly, a ramified theory EA1(I;O)

is defined as EA1 plus predicative induction for (new) input constants. Its provably

recursive functions are shown to belong to an initial sub-class of Grzegorczyk’s E4.

Secondly, we define EA2 as the weak base theory plus Σ1-closure for EA1(I;O). This

theory has provably recursive functions given by E4. Hence, beyond EA1, the step-by-

step application of the predicative induction and Σ1-closure principles reveals both to be

proper extensions of the previously defined theory.

Chapter 5 extends the layering to finitely many levels. The provably recursive functions of

the single sorted theories EAk for 0 < k ∈ N are shown to be Ek+2. We may then define

a union, the theory EA≺ω, which closes the weak base theory under an arbitrary finite

number of applications of predicative induction for input constants and Σ1-closure. This
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theory is equivalent to primitive recursive arithmetic, PRA. Hence we have produced

a hierarchy below PRA based upon ramification of Σ1-induction in a more implicit

manner than the classical approach. In this hierarchy the two-sorted theories at each

stage use predicative induction so avoid prior restrictions on the complexity of inductive

formulae. According to Tait’s thesis [59], the finitist would therefore accept a potentially

infinite number of applications of both predicative induction and Σ1-closure from a weak

base theory such as Q. In contrast, along Nelson’s lines, the strict finitist only accepts

predicative induction.

We conclude by noting the proof-theoretic analyses employed. For each of the theories we

study, the Slow-Growing Hierarchy is used to provide bounding functions for existential

quantifiers in an infinitary system. Thus one would expect the proof-theoretic ordinals of

the theories EAk to be φ(k, 0) where φ is the Veblen hierarchy of functions. The slow-

growing collapse of these ordinals provides the appropriate number-theoretic functions

for the Grzegorczyk class Ek+2. However, in our analysis we instead find that the layering

of theories gives rise to a k-fold composition of ordinals below ε0 which in turn yield k-

many full iterations of the slow-growing functions. A more natural approach yielding the

‘expected’ pointwise proof-theoretic ordinals would be a first avenue for future research

beyond the present thesis. There have been other different approaches to classifying PRA

by ramified methods (notably the more model-theoretic work of Bellantoni [5]). However,

our aim here is to develop a traditional proof-theoretic approach providing upper bounds

via embeddings into carefully layered infinitary systems and stressing the slow-growing

nature of the bounding functions.
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Chapter 1

EA(I;O) - An Elementary Arithmetic

1.1 Preliminary Definitions

We begin by defining the arithmetic theory EA(I;O) and show that within it the

elementary functions are provably recursive. EA(I;O) is based upon a theory developed

in [18], [46], [47], [48] and [68]. The language of EA(I;O) distinguishes variables into

two sorts: inputs, over which induction applies; and outputs, over which quantification

applies. Our particular formulation closely follows the recent variation ofEA(I;O) given

in [63] and [66]. We work in classical logic using a Tait-style sequent calculus [58]. We

include various arithmetic axioms defining the successor, predecessor, addition, recursive

difference and multiplication functions. We also add axioms allowing the coding of finite

sequences to simplify the task of ‘bootstrapping’ the theory. This will not effect the

overall strength of the theory as all of these function are of sub-elementary growth rate.

In general we are seeking to produce a theory analogous with classical Peano Arithmetic.

Whilst our methods simplify some matters they do incur a cost. Ostrin and Wainer

[48], following Leivant’s approach [34], used Kleene’s equational calculus in EA(I;O).

That is, defining equations for all partial recursive functions are given as axioms leading

to a necessary distinction between basic and general terms. Using minimal logic this
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allows a natural match between formal proofs and computations. These techniques draw

out finer graduations of complexity in the inductive fragments of EA(I;O) including a

characterisation of PTIME. We instead choose to focus on only the full strength of the

theories we introduce and shall not require such refinements at this stage.

Definition 1.1. The language of EA(I;O) has the following logical and non-logical

symbols.

- Quantifiers: existential ∃, and universal ∀.

- Propositional connectives: conjunction ∧, and disjunction ∨.

- The binary relation symbols: equality =, and inequality 6=.

- An infinite supply of variables of two sorts: a, b, c, d, a0, a1, . . . for output variables

and x, y, z, x0, x1, . . . for input variables (or rather, uninterpreted input constants).

- Left and right brackets, ( and ), for unique readability.

- The constant symbol 0.

- Unary function symbols for successor +1 and predecessor ···−1, and the binary

function symbols for addition +, recursive difference ···− and multiplication ·.

- Function symbols for coding of finite sequences of numbers: a binary pairing

function p, a binary projection function u, and the unary function symbols: left

inverse l, right inverse r, and length lh.

Definition 1.2. Terms of EA(I;O), denoted s, t, w, t0, t1, . . ., are defined inductively.

- The constant symbol 0, and any variable symbol aj or xj , is a term.

- Terms are closed under applications of any function symbol.
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Where a term is constructed purely from inputs xj (and the constant 0) we refer to it

as an input term. To each natural number n, we associated a numeral n, defined as n

applications of the successor function to the constant symbol 0. However, we shall not

need to distinguish between numbers n and their corresponding numerals n since it should

be clear by the context which is inferred.

Definition 1.3. Formulae of EA(I;O), denoted by A,B,C,A0, A1, . . ., are defined

inductively.

- Atomic formulae are of the form s = t and s 6= t for any two terms s and t.

- If A and B are formulae and a is an output variable symbol then (A∧B), (A∨B),

∀a(A) and ∃a(A) are all formulae.

Where both inputs and outputs occur within a term or formulae we shall occasionally

emphasise the distinction by using a semi-colon to separate them (placing inputs before

the semi-colon and outputs after). We may wish to single out one or more of the

free variables occurring within a term or formula by writing t(x; a), A(a) or A(x) for

example. Then by A(t) we mean the formula A(a) with t substituted for a throughout.

The shorthand ~a is used to display a vector of variables a0, a1, . . . , aj such as in A(~a).

Hence ∀~aA(~a) means ∀a0∀a1 . . . ∀ajA(a0, a1, . . . , aj). Since the atomic formulae occur

in complimentary pairs we have no need for negation as a proper symbol of the language.

Negation is defined using De Morgan’s laws as follows.

Definition 1.4. If s and t are terms and A and B are formulae then

¬s = t :≡ s 6= t ¬s 6= t :≡ s = t

¬(A ∨B) :≡ (¬A) ∧ (¬B) ¬(A ∧B) :≡ (¬A) ∨ (¬B)

¬∃a(A) :≡ ∀a(¬A) ¬∀a(A) :≡ ∃a(¬A)

We may also use the connective symbols→ and↔ by defining A→ B :≡ (¬A)∨B and

A↔ B :≡ (A→ B) ∧ (B → A). We may drop some brackets by assuming that→ and

↔ have a wider scope than ∧ and ∨ which in turn have a wider scope than ¬.
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Definition 1.5. A Tait-Style Calculus for EA(I;O).

We use a sequent calculus based upon the simplification by Tait [58] of the one-sided

Gentzen-Schütte sequent calculus. In what follows, capital Greek letters Γ,∆,Γ0,Γ1, . . .

represent finite (possibly empty) sets of formulae. Commas are used to join formulae or

sets of formulae together so that Γ, A means Γ ∪ {A} and Γ,∆ means Γ ∪∆.

A sequent is a set of formulae which is interpreted disjunctively. That is, if Γ ≡

{A0, A1, . . . , Aj} then the sequent Γ is valid if and only if the disjunctionA0∨A1∨. . .∨Aj
is. A rule of inference (or rule) in the calculus takes the form Γ′

Γ
or Γ′ Γ′′

Γ
where Γ′, Γ′′

and Γ are sequents. We call Γ′ and Γ′′ the premises of the rule and Γ the conclusion. We

may view axioms as rules of inference whose premise is empty.

As a consequence of using sets of formulae for sequents we do not require rules for

contraction and exchange. Furthermore, we have no need for a weakening rule since we

may include in the axioms all formulae of interest for a particular derivation. In each

of the rules and axioms given below, the set Γ is an arbitrary set of formulae which we

call the side formulae of the rule. The formula(e) in the premise(s) which are not side-

formulae are termed the minor formula(e) of the rule whilst the corresponding formula in

the conclusion is called the principal formula of the rule. When using sets of formulae

we must, on account of contraction, attend to the possibility that the principal formula in

each rule may already occur within the side formulae Γ in the premise(s).
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The logical axiom of excluded middle is

(L-Ax) Γ, s 6= t, s = t for any terms s and t.

The logical rules are

(∨)
Γ, Ai

Γ, A0 ∨ A1

where i = 0 or 1.

(∧)
Γ, A0 Γ, A1

Γ, A0 ∧ A1

(∀) Γ, A(b)

Γ,∀aA(a)
where b is not free in Γ.

(∃) Γ, A(t)

Γ,∃aA(a)
where t is the witnessing term.

The cut rule is

(Cut)
Γ, C Γ,¬C

Γ
where C is the cut-formula.

The non-logical axioms of EA(I;O).

The equality axioms are, where t is any term:

Γ,∀a(a = a)

Γ,∀a∀b∀c(a = b ∧ b = c→ c = a).

Γ,∀a∀b(a = b→ t(. . . , a, . . .) = t(. . . , b, . . .)).
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The predicative induction rule is, for an arbitrary set of formulae Γ

(P.Ind.)
Γ, A(0) Γ,¬A(a), A(a+ 1)

Γ, A(x)
where a is not free in Γ.

Usually the conclusion of such an induction rule would be A(t(~x)) where t is any input

term. However we shall show this is derivable and it proves more convenient to use the

form of induction given above. Note that since Γ is an arbitrary set of formulae, this

axiom rule is equivalent to the axiom schema Γ, (A(0)∧∀a(A(a)→ A(a+ 1)))→ A(x)

for any formulae A.

The arithmetic axioms are the universal closures of the following (in which we omit the

mention of the side formulae Γ for clarity):

a+ 1 6= 0 (1.1)

a+ 1 = b+ 1→ a = b (1.2)

a = 0 ∨ (a ···−1) + 1 = a (1.3)

0 ···−1 = 0 (1.4)

(a+ 1) ···−1 = a (1.5)

a+ 0 = a (1.6)

a+ (b+ 1) = (a+ b) + 1 (1.7)

a ···−0 = a (1.8)

a ···−(b+ 1) = (a ···−b) ···−1 (1.9)

(a+ b) ···−a = b (1.10)

a · 0 = 0 (1.11)

a · (b+ 1) = a · b+ a (1.12)
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a+ (b+ c) = (a+ b) + c (1.13)

a+ b = b+ a (1.14)

a · (b+ c) = a · b+ a · c (1.15)

(a+ b) · c = a · c+ b · c (1.16)

We include further arithmetic axioms to enable the coding of finite sequences of numbers.

p(a, b) 6= 0 (1.17)

p(0, 0) = 1 (1.18)

p(a, b+ 1) = p(a, b) + a+ b+ 1 (1.19)

p(a+ 1, b) = p(a, b) + a+ b+ 2 (1.20)

l(0) = 0 (1.21)

l(p(a, b)) = a (1.22)

r(0) = 0 (1.23)

r(p(a, b)) = b (1.24)

c = 0, c = p(l(c), r(c)) (1.25)

l0(c) = c (1.26)

l(d+1)(c) = ld(l(c)) (1.27)

lh(0) = 0 (1.28)

lh(c+ 1) = lh(l(c+ 1)) + 1 (1.29)

u(c, d) = r(llh(c) ···−(d+1)(c)) (1.30)
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Definition 1.6. A derivation, deduction or proof-tree in EA1 is a tree D of sequents

satisfying

i. The leaves of D are all either logical axioms or non-logical axioms,

ii. Each sequent in D, except that at the root, is the premise of a rule of inference whose

conclusion is also in D.

We write

EA(I;O) ` Γ

to mean that there is a derivation D whose root node is the sequent Γ.

Coding Finite Sequences

The paring function, p, defined as

p(a, b) =
1

2
(a+ b)(a+ b+ 1) + a+ 1,

is a bijection between N2 and N \ {0}. Letting 0 encode the empty sequence, we use

p to append further numbers to the right of the sequence. The unary functions l and r

give the left and right inverses to the function p. The function lh gives the length of the

sequence. Iterating the left inverse function enables a projection function u to be defined.

Henceforth we shall use the more common notation (c)d for the projection u(c, d). For

example, suppose we wish to find a code number c for the sequence a0, . . . , am, . . . , an,

then

c := p(. . . , p(. . . (p(p(0, a0), a1), . . .)am) . . . , an)

which we denote by c = 〈a0, . . . , am, . . . , an〉. Hence

l(c) = 〈a0, . . . , am, . . . , an−1〉,

r(c) = an,

lh(c) = n+ 1,

(c)m = am.
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Bounded Formulae

Definition 1.7. We may conservatively extend our language to include ≤ and < by

defining

a ≤ b :≡ ∃c(a+ c = b),

a < b :≡ a ≤ b ∧ a 6= b.

We use ∀a ≤ b(A(a)) and ∃a ≤ b(A(a)) as abbreviations for ∀a(a ≤ b → A(a)) and

∃a(a ≤ b ∧ A(a)) respectively. In such cases we say that the quantifiers are bounded. A

bounded formula is one in which all the quantifiers are bounded and we denote the set

of such formulae by ∆0. The rest of the arithmetic hierarchy may be given in the usual

manner. Most importantly is the set of Σ1-formulae whose members have a (possibly

empty) string of existential quantifiers prefixing a bounded formula.

Proof-Tree Notation

We occasionally make use of a proof-tree notation. Solid lines are used for a rule of

inference or derived rules with the rule in question noted on the right-hand side. A

dotted line indicates an equivalence which has been previously defined. Common leaf

abbreviations are [IH] for induction hypothesis, [L-Ax] for a logical axiom, [E-Ax] for an

equality axiom and [Ax] for an arithmetic axiom. Eigenvariables will not be mentioned

unless there is cause for confusion. We use exchange and contraction freely as they are

build into the calculus. We also make free use of weakening by assuming that all formulae

of interest have been joined to the side formulae Γ from the outset although they may not

be explicitly mentioned. In doing so we must take care not to violate any eigenvariable

conditions. We use informal arguments during proofs for brevity or where displayed

proof-trees are too large.
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1.2 Basic Results

It is necessary to derive a number of elementary results to give ourselves more liberal

axioms, some useful derived rules of proof and basic properties of the inequalities ≤ and

<. The proofs of the claims in the following two lemmas are straightforward so we only

provide brief details. We include a fuller exposition in Appendix A.

Lemma 1.8. Letting Γ be an arbitrary set of side formulae, A,A0, A1 be any formulae,

s, t, w be any terms, and i = 0 or 1, we have:

1. The Generalized law of excluded middle. EA(I;O) ` Γ,¬A,A.

2. Conjunction inversion. EA(I;O) ` Γ, A0 ∧ A1 ⇒ EA(I;O) ` Γ, Ai

3. Disjunction inversion. EA(I;O) ` Γ, A0 ∨ A1 ⇒ EA(I;O) ` Γ, A0, A1.

4. Universal quantifier inversion. EA(I;O) ` Γ,∀aA(a) ⇒ EA(I;O) ` Γ, A(t).

5. Symmetry of equality. EA(I;O) ` Γ, s 6= t, t = s.

6. Transitivity of equality. EA(I;O) ` Γ, s 6= t, t 6= w, s = w.

7. Generalized law of equality. EA(I;O) ` Γ, s 6= t,¬A(s), A(t).

8. Substitution. EA(I;O) ` Γ, s = t & EA(I;O) ` Γ, A(s) ⇒ EA(I;O) ` Γ, A(t).

9. Cases. EA(I;O) ` Γ, A(0) & EA(I;O) ` Γ, A(a + 1) ⇒ EA(I;O) ` Γ, A(t),

provided a is not free in Γ.

Proofs.

Part 1 uses induction over the build up of the formula A. Henceforth we use this result as

an axiom still denoted by (L-Ax). The inversions are all given similarly, for example part

4 results from
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[L-Ax]
Γ,¬A(t), A(t)

(∃)
Γ,∃a(¬A(a)), A(t). . . . . . . . . . . . . . . . . . . . . . . . .
Γ,¬∀a(A(a)), A(t)

[Assumption]
Γ,∀aA(a)

(Cut)
Γ, A(t).

We use inversions in proof-trees as derived rules in their own right with the notations

(∧-inv), (∨- inv) and (∀-inv) respectively. They may be used to give more liberal equality

and arithmetic axioms such as Γ, s 6= t, t 6= w,w = s. We still denote such sequents

as [E-Ax] or [Ax]. Parts 5 and 6 are simple derivations from equality axioms and 7 uses

induction over the build up of A. We shall now use the leaf abbreviation [E-Ax] to also

refer to instances of parts 5, 6 and 7. From part 7, part 8 follows. Part 9 results from the

inclusion of arithmetic axiom a = 0 ∨ (a ···−1) + 1 = a and we give the proof here:

Firstly we have

[Assumption]
Γ, A(0)

[Part 7]
Γ, t 6= 0,¬A(0), A(t)

(Cut)
Γ, t 6= 0, A(t).

Secondly

[Assumption]
Γ, A(a+ 1)

[Part 7]
Γ, a+ 1 6= t,¬A(a+ 1), A(t)

(Cut)
Γ, a+ 1 6= t, A(t)

(∀)
Γ, ∀a(a+ 1 6= t), A(t).

Forming the conjunction of the two derivations above we obtain

Γ, t 6= 0 ∧ ∀a(a+ 1 6= t), A(t)

[Ax (1.3)]
Γ, t 6= 0 ∨ (t ···−1) + 1 = t

(∨-inv)
Γ, t 6= 0, (t ···−1) + 1 = t

(∃)
Γ, t 6= 0,∃a(a+ 1 = t)

(∨)
Γ, t 6= 0 ∨ ∃a(a+ 1 = t).

(Cut)
Γ, A(t).
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We also now use parts 8 and 9 as derived rules within proof-trees adopting the notation

(Sub.) or (Cases) respectively.

2

From this point forward we may reduce the clutter by omitting the mention of side

formulae Γ although they are assumed to be present.

Lemma 1.9. In EA(I;O) we may derive the universal closures of:

1. a ≤ a.

2. a ≤ 0→ a = 0.

3. a ≤ b+ 1→ a ≤ b ∨ a = b+ 1.

4. a ≤ b→ a ≤ b+ 1.

5. a+ 1 ≤ b→ a ≤ b.

6. a ≤ b→ a+ 1 ≤ b+ 1.

7. a ≤ b ∧ a′ ≤ b′ → a+ a′ ≤ b+ b′.

8. a ≤ b ∧ a′ ≤ b′ → a · a′ ≤ b · b′.

9. ¬0 < a.

10. a < a+ 1.

11. a < b→ a+ 1 ≤ b.

12. a < b→ a+ 1 < b+ 1.

13. a < b→ a < b+ 1.

14. a < b+ 1→ a < b ∨ a = b.

Proofs.

These results are given by straightforward derivations from the arithmetic axioms and

may be found in Appendix A.
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2

Definition 1.10. A formula A is said to be progressive in variable a, written ProgaA(a),

if and only if it is inductive. That is,

ProgaA(a) :≡ A(0) ∧ ∀a(A(a)→ A(a+ 1)).

Thus our predicative induction axiom rule is equivalent to the axiom schema

EA(I;O) ` Γ, P rogaA(a)→ A(x)

for any formulae A.

In EA(I;O), once an input variable x is introduced it remains free since quantification

only applies to outputs. Hence we may see these variables as being input constants.

This feature is crucial in restricting the strength of the theory. However, it is also the

source of the key drawback of working within a theory such as EA(I;O): there is no

natural method for substitution on inputs within the theory. This is a criticism we address

directly in Chapter 3. For now we shall present some of the ways in which variations

on the predicative induction rule may be derived. We follow the techniques in Ostrin

and Wainer [48] and Williams [66]. These will include ‘input bounded output induction’

and ‘induction up to any polynomial input term’. We refer the reader to Wirz [68] for

a generalized analysis of extensions to the predicative induction rule including an input

substitution rule.

Lemma 1.11. For any formula A(a)

EA(I;O) ` ProgaA(a)→ Progb∀a(a ≤ b→ A(a)).

Proof.

Firstly we have

[L-Ax]
¬ProgaA(a), P rogaA(a)

(∧-inv)
¬ProgaA(a), A(0)

[E-Ax]
a 6= 0,¬A(0), A(a)

(Cut)
¬ProgaA(a), a 6= 0, A(a)



Chapter 1. EA(I;O) - An Elementary Arithmetic 21

from which we deduce

¬ProgaA(a), a 6= 0, A(a)

[Lemma 1.9 part 2]
¬a ≤ 0, a = 0

(Cut)
¬ProgaA(a),¬a ≤ 0, A(a)

(∨)
¬ProgaA(a),¬a ≤ 0 ∨ A(a)

(∀)
¬ProgaA(a),∀a(¬a ≤ 0 ∨ A(a)).

This sequent contains the first conjunct of Progb∀a(a ≤ b → A(a)), the base case of

progressiveness.

To find the second conjunct let us put B(b) :≡ ∀a(a ≤ b→ A(a)). We start with

[L-Ax]
¬ProgaA(a), P rogaA(a)

(∧-inv)
¬ProgaA(a),∀a(¬A(a) ∨ A(a+ 1))

(∀-inv)¬ProgaA(a),¬A(b) ∨ A(b+ 1)
(∨-inv)

¬ProgaA(a),¬A(b), A(b+ 1)

and

[L-Ax]
¬B(b), B(b)

(∀-inv)¬B(b),¬b ≤ b ∨ A(b)
(∨-inv)

¬B(b),¬b ≤ b, A(b)

[Lemma 1.9 part 1]
b ≤ b

(Cut)
¬B(b), A(b).

which combined via a cut yield ¬ProgaA(a),¬B(b), A(b + 1). By one further cut with

the equality axiom a 6= b+ 1,¬A(b+ 1), A(a) we continue with

¬ProgaA(a),¬B(b), a 6= b+ 1, A(a)

[Lemma 1.9 part 3]
¬a ≤ b+ 1, a ≤ b, a = b+ 1

(Cut)
¬ProgaA(a),¬B(b),¬a ≤ b+ 1, a ≤ b, A(a)

and then
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¬ProgaA(a),¬B(b),¬a ≤ b+ 1, a ≤ b, A(a)

[L-Ax]
¬B(b), B(b)

(∀-inv)¬B(b),¬a ≤ b ∨ A(a)
(∨-inv)

¬B(b),¬a ≤ b, A(a)
(Cut)

¬ProgaA(a),¬B(b),¬a ≤ b+ 1, A(a)
(∨)

¬ProgaA(a),¬B(b),¬a ≤ b+ 1 ∨ A(a)
(∀)¬ProgaA(a),¬B(b), B(b+ 1).

This provides the second conjunct of Progb∀a(a ≤ b → A(a)) by disjunction and

universal quantification over b. Hence

EA(I;O) ` ProgaA(a)→ Progb∀a(a ≤ b→ A(a)).

2

Lemma 1.12. For any formula A(a)

EA(I;O) ` ProgaA(a)→ Progb∀a(A(a)→ A(a+ b)).

Proof.

We show the base case for progressiveness in b of ∀a(A(a)→ A(a+ b)) as follows:

[L-Ax]
¬ProgaA(a),¬A(a), A(a)

[Ax (1.6)]
a+ 0 = a

(Sub.)
¬ProgaA(a),¬A(a), A(a+ 0)

(∨)
¬ProgaA(a),¬A(a) ∨ A(a+ 0)

(∀)
¬ProgaA(a),∀a(¬A(a) ∨ A(a+ 0))

The inductive step begins with

[L-Ax]
¬ProgaA(a), P rogaA(a)

(∧-inv)
¬ProgaA(a),∀a(¬A(a) ∨ A(a+ 1))

(∀-inv)¬ProgaA(a),¬A(a+ b) ∨ A((a+ b) + 1)
(∨-inv)

¬ProgaA(a),¬A(a+ b), A((a+ b) + 1).
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A use of substitution with the arithmetic axiom a+ (b+ 1) = (a+ b) + 1 yields

¬ProgaA(a),¬A(a+ b), A(a+ (b+ 1)). (1.31)

Now, putting B(b) :≡ ∀a(¬A(a) ∨ A(a+ b)), we have

[L-Ax]
¬B(b), B(b)

(∀-inv)¬B(b),¬A(a) ∨ A(a+ b)
(∨-inv)

¬B(b),¬A(a), A(a+ b) [(1.31)]
(Cut)

¬ProgaA(a),¬B(b),¬A(a), A(a+ (b+ 1))
(∨)

¬ProgaA(a),¬B(b),¬A(a) ∨ A(a+ (b+ 1))
(∀)

¬ProgaA(a),¬B(b), B(b+ 1).

Hence by disjunction, universal quantification and finally conjunction with the base case

we find

EA(I;O) ` ¬ProgaA(a), P rogb∀a(A(a)→ A(a+ b)).

2

Lemma 1.13. Let t(~x) be any polynomial term on inputs. That is t only uses +1,+, · on

inputs xk or the constant 0. Then for any formula A(a)

EA(I;O) ` ProgaA(a)→ A(t(~x)).

Proof.

We use induction over the build up of the term t.

1. If t is the constant 0 then ProgaA(a) entails A(0) by conjunction inversion. When t is

x the result follows from the predicative induction rule.

2. Assume the result holds for t0 where t := t0 + 1. We have

[L-Ax]
¬ProgaA(a), P rogaA(a)

(∧-inv)
¬ProgaA(a), ∀a(¬A(a) ∨ A(a+ 1))

(∀-inv)¬ProgaA(a),¬A(t0) ∨ A(t0 + 1)
(∨-inv)

¬ProgaA(a),¬A(t0), A(t0 + 1)

[IH]
¬ProgaA(a), A(t0)

(Cut)
¬ProgaA(a), A(t0 + 1).
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3. Now let t := t0 + t1 and assume the result holds for the sub-terms. We make use of the

Lemma 1.12 letting B(b) :≡ ∀a(¬A(a) ∨ A(a + b)) and the induction hypothesis for t1

on B(b) as follows:

Lemma 1.12
¬ProgaA(a), P rogbB(b)

[IH]
¬ProgbB(b), B(t1)

(Cut)
¬ProgaA(a), B(t1).

Inverting the universal quantifier inB(t1) at the term t0 and using the induction hypothesis

on t0 gives

¬ProgaA(a),¬A(t0), A(t0 + t1)

[IH]
¬ProgaA(a), A(t0)

(Cut)
¬ProgaA(a), A(t0 + t1).

4. Finally let t := t0 · t1 with the result holding for t0 and t1. Then define B(b) as above.

Firstly

Lemma 1.12
¬ProgaA(a), P rogbB(b)

[IH]
¬ProgbB(b), B(t0)

(Cut)
¬ProgaA(a), B(t0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

¬ProgaA(b), ∀a(¬A(a) ∨ A(a+ t0))
(∀-inv)¬ProgaA(a),¬A(t0 · b) ∨ A((t0 · b) + t0)).

Then by the substitution t0 · (b+ 1) = (t0 · b) + t0 and universal quantification we leave

¬ProgaA(a),∀b(¬A(t0 · b) ∨ A(t0 · (b+ 1))).

Also, since ProgaA(a) entailsA(0), we have ¬ProgaA(a), A(t0 ·0). Thus by conjunction

¬ProgaA(a), P rogbA(t0 · b).

Finally we make use of the induction hypothesis for t1 by an application to the formula

A(t0 · b).

¬ProgaA(a), P rogbA(t0 · b)
[IH]

¬ProgbA(t0 · b), A(t0 · t1)
(Cut)

¬ProgaA(a), A(t0 · t1)
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Hence we see

EA(I;O) ` ProgaA(a)→ A(t(~x))

provided t is a polynomial input term.

2

Corollary 1.14. Given any polynomial term t(~x) and any formula A(a)

EA(I;O) ` ProgaA(a)→ ∀a ≤ t(~x)A(a).

Proof.

We use the previous result in conjunction with Lemma 1.11.

2

This form of input bounded predicative induction may be used to establish that for any

input term s(~x),

EA(I;O) ` ProgaA(a)→ A(s(~x))

by proving any such term will always be bounded by some polynomial t(~x). However,

for our purposes it will suffice to know that predicative induction up to any polynomial

input term holds.

1.3 Exponentiation in EA(I ;O)

The principal result of this section is that the exponential function is provably recursive

in EA(I;O). We must first begin with a definition of what it means for a function to be

provably recursive in our context.

Definition 1.15. A function f is said to be provably recursive in the theory EA(I;O)

if its graph can be defined by a Σ1-formula (that is there is a Σ1-formula ∃cCf (~a, b, c),
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where Cf is ∆0, and for which f(~n) = m if and only if ∃c(Cf (~n,m, c)) is true) such that

for inputs ~x

EA(I;O) ` ∃b∃c(Cf (~x; b, c))

EA(I;O) ` ∀b∀b′(∃c(Cf (~x; b, c)) ∧ ∃c(Cf (~x; b′, c))→ b = b′).

We call these requirements the existence and the uniqueness conditions for f . We denote

the class of functions provably recursive in EA(I;O) by ProvRec(EA(I;O)).

We call Cf (~x; b, c) the computational formula for f . The idea is that c is a code for the

sequence computing successive values of f(~x). The existence condition is the principal

requirement for a function to be provably recursive as the uniqueness condition is usually

a corollary of existence. Note that normally such a definition would require existence

and uniqueness conditions to hold for every x. However we cannot prove a suitable Π2-

formula since inputs remain free in EA(I;O). This subtle distinction shall be expanded

on in Chapter 3.

Definition 1.16. We define a computational formulaE(a, b, c) for the exponential function

2a = b as follows:

E(a, b, c) :≡ lh(c) = a+ 1 ∧ (c)0 = 1 ∧ r(c) = b ∧ ∀d < a((c)d+1 = (c)d + (c)d).

This definition determines a sequence code c :≡ 〈1, 2, 4, . . . , 2a〉. Hence 2n = m if and

only if ∃cE(n,m, c) is true.

In order to prove ∃b∃cE(x; b, c) and ∀b∀b′(∃cE(x; b, c) ∧ ∃cE(x; b′, c)) → b = b′) we

first need a preliminary lemma regarding sequence codes.

Lemma 1.17.

EA(I;O) ` ∀c∀b∀d < lh(c)((c)d = (p(c, b))d).

Proof.

Using axiom (1.10) we are able to show

(((d+ 1) + a) ···−(d+ 1)) + 1 = a+ 1 = ((d+ 1) + (a+ 1)) ···−(d+ 1).
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Hence by equality and associativity of addition

(d+ 1) + a 6= lh(c), (lh(c) ···−(d+ 1)) + 1 = (lh(c) + 1) ···−(d+ 1).

By universally quantifying a this is equivalent to

d+ 1 ≤ lh(c)→ (lh(c) ···−(d+ 1)) + 1 = (lh(c) + 1) ···−(d+ 1).

We know by (1.22) that l(p(c, b)) = c. Furthermore p(c, b) is non-zero by (1.17). Hence

by (1.29) we have lh(p(c, b)) = lh(c) + 1. Substituting in we have

d+ 1 ≤ lh(c)→ (lh(c) ···−(d+ 1)) + 1 = lh(p(c, b)) ···−(d+ 1).

By a cut with an equality axiom

d+ 1 ≤ lh(c)→ r(l(lh(c) ···−(d+1))+1(p(c, b))) = r(llh(p(c,b)) ···−(d+1)(p(c, b))).

Then, using l(p(c, b)) = c and with axiom (1.27),

d+ 1 ≤ lh(c)→ r(l(lh(c) ···−(d+1))(c)) = r(llh(p(c,b)) ···−(d+1)(p(c, b)))

which is, by the defining axiom for the projection function (1.30),

d+ 1 ≤ lh(c)→ (c)d = (p(c, b))d.

A final cut with part 11 of Lemma 1.9 leaves

d < lh(c)→ (c)d = (p(c, b))d.

Applying universal quantifiers over d, then b and finally c will complete the derivation.

2

Lemma 1.18.

EA(I;O) ` Proga(∃b∃cE(a, b, c)).
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Proof.

We shall make extensive use of the coding axioms provided on page 14 and argue inside

EA(I;O) using an informal natural deduction style. Recall the definition of E(a, b, c) is

E(a, b, c) :≡ lh(c) = a+ 1 ∧ (c)0 = 1 ∧ r(c) = b ∧ ∀d < a((c)d+1 = (c)d + (c)d).

We start with the base case of progressiveness. We look to prove each of the four conjuncts

in E(0, 1, p(0, 1)) from which existential quantifications will leave ∃b∃cE(0, b, c).

i. By axioms (1.18) and (1.19) we find p(0, 1) = 1 + 1. Hence axioms (1.22), (1.28) and

(1.29) give lh(p(0, 1)) = lh(l(p(0, 1)) + 1 = 0 + 1.

ii. Axiom (1.24) ensures r(p(0, 1)) = 1 and by (1.26) l0(p(0, 1)) = p(0, 1). Since

lh(p(0, 1)) = 0 + 1, we have by (1.5), lh(p(0, 1)) ···−1 = 0. Hence by (1.30) we see

(p(0, 1))0 = r(l0(p(0, 1))) = r(p(0, 1)) = 1.

iii. r(p(0, 1)) = 1 is an instance of axiom (1.24).

iv. Lastly by Lemma 1.9 part 9, ¬d < 0. Hence the fourth conjunct follows by weakening.

Now we move on to the inductive step. Assume that we are given b and c such that

E(a, b, c) holds. We show the conjuncts in E(a+ 1, b+ b, p(c, b+ b)) hold.

i. Firstly p(c, b+ b) is non-zero by (1.17). By axioms (1.22) and (1.29) we find

lh(p(c, b + b)) = lh(l(p(c, b + b))) + 1 = lh(c) + 1. Then lh(p(c, b + b)) = (a + 1) + 1

by our assumption for c.

ii. Under the assumption for c we know (c)0 = 1 and lh(c) = a + 1 hence r(la(c)) = 1

by axiom (1.30). Since l(p(c, b + b)) = c by (1.22) and lh(p(c, b + b)) = (a + 1) + 1 by

part i, it follows that using (1.5), (1.27) and (1.30)

(p(c, b+ b))0 = r(la+1(p(c, b+ b))) = r(la(l(p(c, b+ b))) = r(la(c)) = 1.

iii. r(p(c, b+ b)) = b+ b is an instance of axiom (1.24).
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iv. If d < a + 1 then d = a or d < a by part 14 of 1.9. Firstly assume that d = a. Then

since ((a+1)+1) ···−((a+1)+1) = 0 by (1.6) and (1.10) and lh(p(c, b+b)) = (a+1)+1

by part i, axioms (1.24), (1.26), (1.30) imply

(p(c, b+ b))a+1 = r(l0(p(c, b+ b))) = r(p(c, b+ b)) = b+ b.

By the assumption b = r(c) in E(a, b, c) we find, using (1.10), (1.22), (1.27) and (1.30),

b = r(l(p(c, b+ b)) = r(l1(p(c, b+ b)) = (p(c, b+ b))a

Hence

(p(c, b+ b))a+1 = b+ b = (p(c, b+ b))a + (p(c, b+ b))a. (1.32)

Now assume that d < a. By the preceding Lemma 1.17, since lh(c) = a + 1 we have

∀d < a + 1((c)d = (p(c, b + b))d). Inverting at d and using part 13 of Lemma 1.9 yields

(c)d = (p(c, b + b))d. Whilst inverting at d + 1 and using part 12 of Lemma 1.9 gives

(c)d+1 = (p(c, b + b))d+1. Recall that since d < a the assumption E(a, b, c) informs us

that (c)d+1 = (c)d + (c)d. Bringing these observations together we find

(p(c, b+ b))d+1 = (c)d+1 = (c)d + (c)d = (p(c, b+ b))d + (p(c, b+ b))d. (1.33)

Hence from (1.32) and (1.33)

d < a+ 1→ (p(c, b+ b))d+1 = (p(c, b+ b))d + (p(c, b+ b))d

and universal quantification gives the final conjunct.

Taking the conjunction of i.-iv. above we have E(a + 1, b + b, p(c, b + b)). Hence we

existentially quantify with witnesses p(c, b+ b) and b+ b to leave ∃b∃cE(a+1, b, c). That

is we have shown

∃b∃cE(a, b, c)→ ∃b∃cE(a+ 1, b, c).

Finally bringing into conjunction the base case and the universally quantified inductive

step we conclude

EA(I;O) ` ∃b∃cE(0, b, c) ∧ ∀a(∃b∃cE(a, b, c)→ ∃b∃cE(a+ 1, b, c)).
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2

Lemma 1.19.

EA(I;O) ` Proga(∀b∀b′(∃cE(a, b, c) ∧ ∃cE(a, b′, c)→ b = b′)).

Proof.

We follow the style of the previous proof.

For the base of progressiveness we prove ∃cE(0, b, c) ∧ ∃cE(0, b′, c) → b = b′. Firstly

assume that we are given a c such that E(0, b, c) and secondly that we are given a c′

such that E(0, b′, c′). From the first assumption, since lh(c) = 1, by equality with axiom

(1.5) and (1.30) we find (c)0 = r(l0(c)). Using (1.26) this is (c)0 = r(c). Appealing to

E(0, b, c) again we know (c)0 = 1 and r(c) = b. Hence by equality b = 1. By the same

argument applied to the second assumption we find b′ = 1. Hence by equality we are left

with b = b′.

To verify the inductive step we firstly assume

∀b∀b′(∃cE(a, b, c) ∧ ∃cE(a, b′, c)→ b = b′) (1.34)

and then secondly assume

∃cE(a+ 1, b, c) ∧ ∃cE(a+ 1, b′, c) (1.35)

in order to deduce that b = b′.

We shall start with the assumption that there exists a c such that E(a+ 1, b, c). We recall

that

E(a+1, b, c) :≡ lh(c) = (a+1)+1∧(c)0 = 1∧r(c) = b∧∀d < a+1((c)d+1 = (c)d+(c)d).

Our aim is to prove that E(a, r(l(c)), l(c)) holds. There are four conjuncts to check.

i. Under the assumption for c we have lh(c) = (a + 1) + 1 thus c is non-zero. Hence

lh(l(c)) = a+ 1 by axiom (1.29).
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ii. Since lh(c) = (a+ 1) + 1 by the assumption for c, we use equality and substitution on

axioms (1.5), (1.27), (1.29) and (1.30) to deduce

(l(c))0 = r(llh(l(c)) ···−1(l(c))) = r(la(l(c))) = r(la+1(c)) = r(llh(c) ···−1(c)) = (c)0.

Hence, as (c)0 = 1 by the assumption for c, we deduce (l(c))0 = 1.

iii. r(l(c)) = r(l(c)) is an axiom.

iv. The assumption for c gives ∀d < a + 1((c)d+1 = (c)d + (c)d). As c is non-zero

c = p(l(c), r(c)) by axiom (1.25). We shall show ∀d < a((l(c))d+1 = (l(c))d + (l(c))d).

Using appropriate inversions Lemma 1.17 reads ∀d < lh(l(c))((l(c))d = (p(l(c), r(c)))d).

Then since c = p(l(c), r(c)) and lh(l(c)) = a+ 1 by part i, this is

∀d < a+ 1((l(c))d = (c)d).

Recall that parts 12 and 13 of Lemma 1.9 show that d < a implies both d+ 1 < a+ 1 and

d < a + 1. Hence by inverting at d + 1 and then d, if we assume d < a we have by cuts

both (l(c))d = (c)d and (l(c))d+1 = (c)d+1. Likewise from the assumption for c if d < a

then (c)d+1 = (c)d + (c)d.

Together this gives, if d < a then

(l(c))d+1 = (c)d+1 = (c)d + (c)d = (l(c))d + (l(c))d.

That is d < a → (l(c))d+1 = (l(c))d + (l(c))d. Universal quantification leaves what we

require for the fourth conjunct of E(a, r(l(c)), l(c)).

We have now established, by parts i.-iv. above, that E(a, r(l(c)), l(c)) follows from the

first conjunct of assumption (1.35). By the same argument applied to the second conjunct

of assumption (1.35) we may also deduce E(a, r(l(c′)), l(c′)). Existential quantifications

give

∃cE(a, r(l(c)), c) ∧ ∃cE(a, r(l(c′)), c). (1.36)
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Now we look to use (1.34). By inverting the universal quantifiers at r(l(c)) and r(l(c′))

respectively we may cut with (1.36) above to conclude r(l(c)) = r(l(c′)). We shall use

this to show b = b′.

We know ∀d < a + 1((c)d+1 = (c)d + (c)d) and ∀d < a + 1((c′)d+1 = (c′)d + (c′)d)

from assumption (1.35). As a < a + 1 is provable by Lemma 1.9 part 10, inverting at

a allows us to conclude (c)a+1 = (c)a + (c)a and (c′)a+1 = (c′)a + (c′)a. However as

r(l(c)) = r(l(c′)) it is easy to show (c)a = (c′)a using axioms (1.10) and (1.30) since

lh(c) = lh(c′) = (a+ 1) + 1. We now deduce by equality (c)a+1 = (c′)a+1. But (c)a+1 is

r(c) and (c′)a+1 is r(c′) by axiom (1.30), hence r(c) = r(c′). From assumption (1.35) we

know r(c) = b and r(c′) = b′. Therefore b = b′.

Having deduced b = b′ from assumptions (1.34) and (1.35) we know

∀b∀b′(∃cE(a, b, c) ∧ ∃cE(a, b′, c)→ b = b′)

→ ∀b∀b′(∃cE(a+ 1, b, c) ∧ ∃cE(a+ 1, b′, c)→ b = b′).

Universal quantification over a and conjunction with the base case yields

Proga(∀b∀b′(∃cE(a, b, c) ∧ ∃cE(a, b′, c)→ b = b′)).

2

Corollary 1.20. The function 2x is provably recursive in EA(I;O).

Proof.

Applying predicative induction to each of the last two lemmas, 1.18 and 1.19, satisfies the

requirements of Definition 1.15 for the function 2x.

2
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1.4 The Elementary Functions Are Provably Recursive

in EA(I ;O)

The main result of this chapter is that the Kalmár-Csillag elementary functions, E3 in the

Grzegorczyk Hierarchy, are provably recursive in EA(I;O). We follow the approach laid

out in [48]. We further extend the predicative induction rule to apply up to any finite

iterate of the exponential function on inputs. The argument used dates back to Gentzen

([24],[25]) but with numbers in place of ordinals. We then use the fact that any elementary

function is computable in a number of steps bounded by a finite iterate of the exponential

function. Alternative approaches to reaching this result are given in [46] and [66] based

on different characterizations of the elementary functions.

Definition 1.21. Let 2k(x) for a fixed k ∈ N denote the k-times iterate of 2x. That is

20(x) := x and 2k+1(x) := 22k(x). Then for any formula A(a) we define

A(2a) :≡ ∃b(∃cE(a, b, c) ∧ A(b)), A(2k+1(x)) :≡ A(22k(x))

and

A′(d) :≡ ∀a(A(a)→ ∃b(∃cE(d, b, c) ∧ A(a+ b))).

Lemma 1.22.

EA(I;O) ` ProgaA(a)→ ProgdA
′(d).

Proof.

We argue informally in a natural deduction style. Assume ProgaA(a).

i. We first show A(a) → ∃b(∃cE(0, b, c) ∧ A(a + b)) from which A′(0) follows by

universal quantification over a.

Assume A(a). Then by ProgaA(a) we have A(a + 1). From the proof of Lemma 1.18

we know ∃cE(0, 1, c) is derivable. Hence by conjunction and existential quantification

∃b(∃cE(0, b, c) ∧ A(a+ b)).
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ii. Now assume A′(d). We show A(a) → ∃b(∃cE(d + 1, b, c) ∧ A(a + b)) which entails

A′(d+ 1) by universal quantification over a. We shall require two appeals to A′(d).

Assume A(a). Then by inverting the universal quantifier in A′(d) at a, we know there

exists a b such that ∃cE(d, b, c) ∧ A(a + b). Firstly, for this b we may again invert the

universal quantifier in A′(d) at a+b so that from A(a+b) we find A(a+b+b). Secondly,

within the proof of Lemma 1.18 we showed, given a b and a c such that E(d, b, c), it

follows that E(d+ 1, b+ b, p(c, b+ b)). Hence ∃cE(d+ 1, b+ b, c).

Forming the conjunction ∃cE(d+1, b+ b, c)∧A(a+ b+ b) we may existentially quantify

at the witness b+ b to leave ∃b(∃cE(d+ 1, b, c) ∧ A(a+ b)).

2

Lemma 1.23. Given any polynomial term t(~x) and any formula A(a), for each k ∈ N

EA(I;O) ` ProgaA(a)→ A(2k(t(~x)))

Proof.

We use a meta-induction on k. If k := 0 the result is given by Lemma 1.13.

Now assume the result holds for k. Applying the induction hypothesis to the formula

A′(d) we have ProgdA′(d)→ A′(2k(t(~x))). By a cut with the previous lemma we deduce

ProgaA(a)→ A′(2k(t(~x))). Recalling Definition 1.21, this is

ProgaA(a)→ ∀a(A(a)→ ∃b(∃cE(2k(t(~x)), b, c) ∧ A(a+ b))).

We invert the universally quantified a at 0 and then cut A(0) by appealing to ProgaA(a).

This leaves

ProgaA(a)→ ∃b(∃cE(2k(t(~x)), b, c) ∧ A(b)))

which is, by Definition 1.21,

ProgaA(a)→ A(2k+1(t(~x))).
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2

Note how the previous result relies upon successive increases in the complexity of the

induction formulae. Thus the restriction in predicative induction is an implicit one in

opposition to the usual explicit restrictions in weak theories of arithmetic.

Theorem 1.24. A Lower Bound for ProvRec(EA(I;O)).

ProvRec(EA(I;O)) ⊇ E3.

Proof.

We follow the approach in [48]. Let M be an unlimited register machine. We may choose

a register machine model which works in unary notation using only the instructions

"successor", "predecessor", and "jump". Let f be any elementary function and let P

be a program for M which computes f on inputs ~x. Since f is an elementary function we

may assume P computes f in a number of steps bounded by 2k(t(~x)) for a fixed k ∈ N

and polynomial t (cf. [14] or [43] for example).

We may choose some scheme to encode the computation by P . Let d be the number

of steps performed in the computation and let j be the number of registers used by the

program. By convention the computation starts with the inputs ~x = x1, . . . , xl occupying

registers r1, . . . , rj (with zeros filling empty registers when l < j) and terminates with

output b in register r1. The state of the computation at stage i may be described by the

j+1-tuplem(i), r1(i), . . . , rj(i) wherem(i) is the number of the next machine instruction

for stage i + 1 and r1(i), . . . , rj(i) are the values of the registers r1, . . . , rj . Let c be a

sequence code of length d such that (c)i := 〈m(i), r1(i), . . . , rj(i)〉. Let t be the term

〈1, x1, . . . , xl, 0, . . . , 0〉 for the initial state. We define a bounded formula CM(~x; d, b, c)

as

lh(c) = d+ 1 ∧ (c)0 = t ∧ ((c)d)1 = b ∧ ∀i < dA((c)i, (c)i+1))

where A((c)i, (c)i+1) specifies the change in the state of the machine from one stage to

the next according to the given program P .
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Then ∃b∃cCM(~x; d, b, c) will be progressive in d. The base case is simple to show given

the term t for the initial state. For the inductive step, given (c)d, we may choose a term

for (c)d+1 according to the instruction m(d) in the program P such that A((c)d, (c)d+1)

holds and thus ∀i < d+ 1A((c)i, (c)i+1) follows. Where the instruction is "successor" or

"predecessor" this is simple to do since those functions are given as terms in our language.

Where the instruction is "jump" we may make a case distinction using the cases rule

(Lemma 1.8 part 9) and modify m(d+ 1) accordingly.

P computes f in a number of steps bounded by 2k(t(~x)) for a fixed k ∈ N. We may, for

this k, choose the following instance of the previous lemma:

Progd∃b∃cCM(~x; d, b, c)→ ∃b∃cCM(~x, 2k(t(~x)); b, c).

As the antecedent is provable we deduce ∃b∃cCM(~x, 2k(t(~x)); b, c) by a cut. Hence we

have an existence condition for f . The uniqueness condition will follow similarly by an

induction on d. Therefore f is provably recursive in EA(I;O).

2
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Chapter 2

An Infinitary Theory for EA(I;O)

2.1 Introduction

We now aim to prove that the provably recursive functions of EA(I;O) are at most the

elementary functions. This result has appeared before in [18], [46], [47], [48], [68] but

only for our particular presentation of EA(I;O) in [66]. (There, unlike the analysis in

this chapter, finitary methods are used.) We provide a comprehensive treatment of the

result here since the methods we employ provide the groundwork for later chapters. The

technique we use is based on a standard proof-theoretic approach where one defines a

suitable infinitary calculus into which an arbitrary EA(I;O)-proof may be embedded.

This new system incorporates an infinitary ω-rule for universal quantifications and deals

with inductions as potentially transfinite sequences of cuts. As such the system allows for

full cut-elimination at the cost of moving to transfinite proof heights. In doing this we

are able to provide a uniform measure on the complexity of any EA(I;O)-proof and thus

calculate the complexity of any provably recursive function in EA(I;O). The process of

attaching an ordinal to a theory which in some way measures the strength of the theory

dates back to Gentzen’s proof of the consistency of Peano Arithmetic [24],[25]. Schütte,

[53], later developed methods of analysis using an ω-rule. Our particular approach relates
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closely to that of Wainer and Fairtlough [19] in their analysis of Peano Arithmetic. In the

setting of EA(I;O) we are broadly following the work of Ostrin [46] and also Ostrin and

Wainer [47]. It is interesting to note that since inputs in EA(I;O) are never quantified

over, EA(I;O) in fact lends itself neatly to a finitary analysis of the type given by

Williams in [66]. We shall briefly remark the connections between the two methods in

this chapter. Our choice of an infinitary paradigm is driven by the desire to give uniform

ordinal bounds on derivations and hence develop a clear comparison between our slow-

growing theories and the classical fast-growing case. Such an approach also serves to

simplify matters when we consider the more complex theories in later chapters.

The Infinitary Theory EA∞(I;O).

EA∞(I;O) is formulated using a Tait-style sequent calculus. We have the same language,

term structure and standard definition of numerals as that ofEA(I;O) in Chapter 1 except

that EA∞(I;O) has no free variables. Hence every term t in EA∞(I;O) will evaluate to

a specific numeral k and all formulae are closed. Thus Γ,Γ′, . . . are now sets of closed

formulae. The atomic formulae in EA∞(I;O) are just equality and inequality between

terms. The logical axioms ofEA∞(I;O) will be those sets of formulae containing at least

one true atom. As such this will incorporate all of the logical and arithmetical axioms on

EA(I;O).

We annotate the left of the proof gate with two distinct natural number declarations n and

m corresponding to an assumption of two separate domains of numbers. A typical logical

sequent in EA∞(I;O) takes the form

n : I;m : O `α Γ.

This is intended to be read as ‘given fixed natural number parameters ≤ n from the input

domain and given values ≤ m from the output domain the truth of Γ (in the standard

model) can be established in α-many steps.’ For clarity we shall henceforth always use

n;m as a shorthand for n : I;m : O. We use n or n′ for input parameters and m,m′ or k

for output values and separate them using a semi-colon.
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We require a way to formally evaluate numerals to use as witnesses for existential

quantifiers and must measure the cost involved. For this purpose we include in the

calculus computation rules. As will be seen the computational fragment of the theory

is an independent calculus in its own right since it does not involve any logical formulae

or logic cuts. However, the logical fragment of the theory will depend upon incorporating

such computations. We shall distinguish computations from logical sequents by using a

different notation for the proof gate. A typical computation sequent shall take the form

n;m α k.

This should be read as ‘given fixed natural number parameters≤ n from the input domain

and given values ≤ m from the output domain we have a computation of the numeral k

in α-many steps.’ To ease the clutter of notation we shall not from this point forward

distinguish numerals using the notation k since it should always be clear from the context

what is intended: numerals always occur on the right of ` and  proof gates whilst natural

number declarations only occur on the left.

Structured Tree-Ordinals

We use structured tree-ordinals to measure proof height. Tree-ordinals originate from

a constructive or intensional approach to representing countable ordinals dating back to

Brouwer and Kleene. The important difference to the usual set-theoretic presentation

is that limit ordinals carry additional structure: they are defined by assigning specific

fundamental sequences to them. Thus any primitive recursive definition of a number-

theoretic function can be given over tree-ordinals by extending the definition continuously

at limit stages. This is the principal reason for our choice of tree-ordinals. We may

add, multiply and exponentiate these ordinals without being tied to normal forms such as

Cantor Normal Form. For example our cut-reduction lemma later in the chapter involves

simply adding ordinals rather than defining a Hessenberg commutative natural sum.

Tree-ordinals may only be partially ordered since different fundamental sequences may

give rise to the same set-theoretic ordinal. For example, if ω is defined by the sequence
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1, 2, 3, . . . and ω′ by 0, 1, 2, . . .. Therefore we must impose some extra structure on the

fundamental sequences which is where the notion of a structured tree-ordinal comes into

play. A structured tree-ordinal α can be seen as the directed union of

α[0] ⊆ α[1] . . . ⊆ α[n] ⊆ α[n+ 1] . . .

where for each n, α[n] is a finite subset of α. This will ensure that functions defined

over such ordinals really will grow. Then in our theory, following a rule of inference from

proofs of height β we assign the conclusion a height α provided β belongs to α[n] where

n is the input number parameter in the sequent.

Here we see why EA(I;O) may lend itself neatly to a finitary analysis. Since inputs

are not quantified over, n may be considered as a fixed parameter. This gives rise to a

pointwise ordinal assignment by the condition β ∈ α[n]. The proof heights α, with fixed

input parameter n, may be replaced by the finite cardinality of α[n]. Hence our system

really is slow-growing since the Slow-Growing function Gα(n) is equal to the cardinality

of α[n] (see Lemma 2.9). However, by using an infinitary measure α we retain uniformity

of our results for all possible input parameters n. This will also be beneficial for the

analysis in the following chapter.

A possible disadvantage associated with tree-ordinals is sensitivity to the choice of

fundamental sequence for limits. When collapsing ordinals using the Slow-Growing

Hierarchy we may find particular choices of fundamental sequences give rise to much

faster or much slower growing functions than we would desire. This problem is

exemplified by Weiermann [64]. However we fix the fundamental sequence associated

with the limit ordinals we use to be a ‘standard’ one. Indeed we shall use a restricted set

of structured tree-ordinals in which we only need to choose a fundamental sequence for

ω and we choose the successor function.

The following material comes from [19] to which we direct the reader for a more thorough

treatment of the topic including proofs of the facts we quote.
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Definition 2.1. The set Ω of countable tree-ordinals is inductively generated as follows:

0 ∈ Ω,

α ∈ Ω⇒ α + 1 := α ∪ {α} ∈ Ω,

∀n ∈ N, λn ∈ Ω⇒ λ := 〈λn〉n∈N ∈ Ω.

The sub-tree ordering ≺ is defined by the transitive closure of α ≺ α + 1 and for all n,

λn ≺ λ.

We reserve λ to always refer to ‘limit ordinals’ and use the less formal notation λ =

supnλn instead of λ = 〈λn〉n∈N.

Definition 2.2. Each ordinal α ∈ Ω has, for every n ∈ N, a finite set α[n] of n-

predecessors defined recursively as:

0[n] := ∅,

(α + 1)[n] := α[n] ∪ {α},

λ[n] := λn[n].

Note that our choice of the successor function as the fundamental sequence for ω

determines n ∈ ω[n] since we have ω[n] = (n+ 1)[n] = {n, n− 1, . . . , 1, 0}.

Definition 2.3. The set ΩS of structured tree-ordinals contains those α ∈ Ω for which

∀λ � α(∀n ∈ N(λn ∈ λ[n+ 1])).

Facts 2.4. Given any α ∈ ΩS:

1. β ≺ α⇒ β ∈ ΩS,

2. α[0] ⊆ α[1] ⊆ . . . ⊆ α[n] ⊆ α[n+ 1] ⊆ . . . ,

3. β ≺ α⇔ β ∈ α[n] for some n ∈ N,

4. For α 6= 0, the set {β : β ≺ α} is well-ordered by ≺ and β ≺ α⇒ β + 1 � α.
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Definition 2.5. Addition, multiplication and exponentiation are defined over Ω by the

following recursions:

α + 0 := α α + (β + 1) := (α + β) + 1 α + λ := supn(α + λn),

α · 0 := α α · (β + 1) := (α · β) + α α · λ := supn(α · λn),

α0 := 0 + 1 α(β+1) := (αβ) · α αλ := supn(αλn).

Facts 2.6. Arithmetic on tree-ordinals preserves structuredness. Given any α, β and

γ ∈ ΩS:

1. γ ∈ β[n]⇒ α + γ ∈ (α + β)[n].

2. γ ∈ β[n]⇒ α · γ ∈ (α · β)[n] if 0 ∈ α[n].

3. γ ∈ β[n]⇒ αγ ∈ (αβ)[n] if 1 ∈ α[n].

4. α + β ∈ ΩS .

5. α · β ∈ ΩS provided 0 ∈ α[1].

6. αβ ∈ ΩS provided 1 ∈ α[1].

Hence, the ordinal functions given above are well-defined on ΩS .

Definition 2.7. The Infinitary Theory EA∞(I;O).

We are now in a position to define inductively the sequents of EA∞(I;O) as follows:
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Logical Rules

(L-Ax) n;m `α Γ
for any α, if Γ

contains a true atom.

(∨)
n;m `β Γ, Ai

n;m `α Γ, A0 ∨ A1

if β ∈ α[n] and

where i = 0 or 1.

(∧)
n;m `β0 Γ, A0 n;m `β1 Γ, A1

n;m `α Γ, A0 ∧ A1

if β0, β1 ∈ α[n].

(∀) {n; max(m, k) `βk Γ, A(k)}k∈N
n;m `α Γ,∀aA(a)

if for all k ∈ N

βk ∈ α[n].

(∃) n;m β0 k n;m `β1 Γ, A(k)

n;m `α Γ,∃aA(a)

if β0 ∈ β1[n]

and β1 ∈ α[n].

(L-Cut)
n;m `β0 Γ,¬C n;m `β1 Γ, C

n;m `α Γ
if β0, β1 ∈ α[n].

(C-Cut)
n;m β0 k n; k `β1 Γ

n;m `α Γ
if β0, β1 ∈ α[n].

Computational Rules

(O-Ax) n;m α k for any α, if k ≤ p(m).

(O-Cut)
n;m β0 m′ n;m′ β1 k

n;m α k
if β0, β1 ∈ α[n].
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Remarks

The (∃) and (C-Cut) rules are where  computations influence ` derivations. We call the

(C-Cut) rule a computational cut whilst the (L-Cut) rule is a logical cut. The polynomial

in the computational axiom (O-Ax) is chosen to bound the values of the term constructors

of EA(I;O) on the output value m. As such it is easy to see that the quadratic 2(m+ 1)2

will suffice. We note that in the existential rule we have made a stronger requirement

on the tree-ordinal conditions in an approach taken from Williams [66]. By insisting

β0 ∈ β1[n] as well as β1 ∈ α[n] we put in place additional structure which simplifies the

cut-reduction lemma later in the chapter. This has no significant effect on the length of

derivations.

At this point we may note the similarities between the system we are presenting and other

approaches we cited at the start of the chapter. EA∞(I;O) bears a close resemblance

to the analysis given by Ostrin [46] and Ostrin and Wainer [47]. There are only minor

differences such as the separation of the computation and logic rules which seeks to

provide clarity. We may also make comparisons with the calculus of Fairtlough and

Wainer [19] p.166 in their analysis of Peano Arithmetic and its fragments. Roughly

speaking if we were to drop the distinction between input and output parameters we are

left with their system. However we note that this leads to a fast-growing system since the

parameter n changes in their universal quantification rule rather than staying fixed in ours.

Our ω-rule requires β ∈ α[n] for a fixed n rather than β ∈ α[max(n, k)]. This is crucial

in restricting the strength of the theory.

The Slow-Growing Nature of EA∞(I;O)

We briefly return to a comment made earlier that the system EA∞(I;O) really is a slow-

growing infinitary theory.
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Definition 2.8. For α ∈ ΩS the Slow-Growing Hierarchy of functions Gα : N→ N are

defined by Gα(n) := card α[n] and hence

G0(n) = 0,

Gα+1(n) = Gα(n) + 1,

Gλ(n) = Gλn(n).

For any α ∈ ΩS note that Gα(n) is simply the function result from replacing ω by n + 1

throughout α. This follows from our choice of the successor function as the fundamental

sequence for ω. The following lemma justifies the claim that proof heights α, with fixed

input parameter n, may be replaced by the finite cardinality of α[n].

Lemma 2.9.

n;m `α Γ ⇒ n;m `Gα(n) Γ.

Proof.

We use induction over the derivation of Γ with a case distinction according to the final

rule of inference used. If n;m `α Γ is an instance of (L-Ax) then the tree-ordinal α is

arbitrary. Hence n;m `Gα(n) Γ is also an instance of (L-Ax). Otherwise we have some

rule of inference from premise(s) of the form n;m′ `βi Γ′ where βi ∈ α[n] for each i.

Applying the induction hypothesis yields n;m′ `Gβi (n) Γ′. Then as βi ∈ α[n] implies

βi[n] ⊂ α[n] we find Gβi(n) < Gα(n) and thus Gβi(n) ∈ (Gα(n))[n]. Hence we may re-

apply the same rule concluding n;m `Gα(n) Γ. Note that where a computational sequent

is present in the premises of the rule we shall need a sub-induction to show a computation

of height α entails one of height Gα(n). The argument is exactly the same.

2

Note that the converse is not necessarily true. For example n + 1 ∈ (Gω+1(n))[n] but

n + 1 /∈ ω + 1[n]. Thus using a tree-ordinal measure of height produces uniformity in n

and this will be crucial for analyses in later chapters.
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2.2 Computations in EA∞(I ;O)

We look to find a suitable bounding function for the computation rules in EA∞(I;O).

Then where an existential rule has been used we may estimate an upper bound on the

value of the witnessing term.

Definition 2.10. The set of exponential tree-ordinals denoted by E(ω) are generated

inductively by

0 ∈ E(ω),

ω ∈ E(ω),

α, β ∈ E(ω) ⇒ α + β ∈ E(ω),

α ∈ E(ω) ⇒ 2α ∈ E(ω).

All tree-ordinals in the set E(ω) are structured by Facts 2.6 and E(ω) is clearly closed

under successors and multiplication by a finite tree-ordinal. Gα(n) is the function

obtained from replacing ω by n + 1 throughout α. Hence, if α ∈ E(ω) then Gα(n)

is an exponential polynomial in n and therefore an elementary function in n.

Definition 2.11. For α ∈ ΩS the functions Bα : N2 → N are defined using the following

recursion scheme:
B0(n;m) := p(m),

Bα+1(n;m) := Bα(n;Bα(n;m)),

Bλ(n;m) := Bλn(n;m).

where p(m) := 2(m+ 1)2 is the same polynomial as used in the (O-Ax) rule.

Note in the definition of Bα that substitution at successor stages occurs after the semi-

colon whilst diagonalisation uses the argument before the semi-colon. This is clearly in

keeping with the spirit of Bellantoni-Cook recursion schemes.

Lemma 2.12. Define the iterates of p(m) as p0(m) = m and pk+1(m) = p(pk(m)). Then

for α ∈ ΩS we have

Bα(n;m) = pk(m) where k := 2Gα(n).
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Hence if α ∈ E(ω) then Bα(n;m) is an elementary function in n;m.

Proof.

The first claim follows by induction on α. The zero case and limit cases are trivial by

the definitions of Gα(n) and Bα(n;m). When α is a successor the induction hypothesis

implies

Bα+1(n;m) = Bα(n;Bα(n;m)) = pk(pk(m)) = pk+k(m)

where k := 2Gα(n). As 2Gα(n) + 2Gα(n) = 2Gα+1(n) the result follows.

For the second claim we know Gα(n) is an exponential polynomial in n for α ∈ E(ω).

The function p(m) is sub-elementary thus the iterate pk(m) is an elementary function in

k and m (cf. [51]). Then Bα(n;m), for α ∈ E(ω), may be defined by composition of two

elementary functions and hence is an elementary function in n and m.

2

We shall require these functions to have certain majorization properties. Given a function

f(n) we say f is positive if n ≤ f(n) and strictly positive if n < f(n). For n < n′ we

say f is increasing if f(n) ≤ f(n′) and strictly increasing if f(n) < f(n′).

Lemma 2.13. For α, β ∈ ΩS and m,n ∈ N:

1. If β ∈ α[n] then Gβ(n) < Gβ+1(n) ≤ Gα(n).

2. Gα(n) is increasing in n, strictly so if α is infinite.

3. Gα(n) ≤ Gβ+α(n).

4. If β ∈ α[n] then Bβ(n;m) < Bβ+1(n;m) ≤ Bα(n;m).

5. Bα(n;m) is strictly increasing in m and increasing in n, strictly so if α is infinite.

6. Bα(n;m) ≤ Bβ+α(n;m).

Proof.

Recall that Gα(n) := card α[n]. Since β ∈ α[n] implies β[n] ⊂ β + 1[n] ⊆ α[n]
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part 1 follows. When n < n′ we have α[n] ⊂ α[n′] if α is infinite and α[n] ⊆ α[n′]

otherwise. This gives part 2. For part 3 note that as addition extends continuously at

limits: Gβ+α(n) = Gβ(n) +Gα(n).

Recall p(m) := 2(m+1)2. Then since p(m) is both strictly increasing and strictly positive

the function pk(m) is strictly increasing in m and k. Parts 4, 5 and 6 will then follow as

Bα(n;m) = pk(m) with k := 2Gα(n).

2

Lemma 2.14. Bounding for EA∞(I;O).

n;m α k ⇔ k ≤ Bα(n;m).

Proof.

Tackling the left to right implication first we use induction over the derivation of the

computational sequent.

If the derivation is an instance of (O-Ax) then k ≤ p(m) = B0(n;m). If α is zero we are

done. Otherwise 0 ∈ α[n] and we apply Lemma 2.13 part 4 which shows B0(n;m) ≤

Bα(n;m).

The only other possibility is that the derivation results from (O-Cut) such as

n;m β0 m′ n;m′ β1 k

n;m α k

where β0, β1 ∈ α[n]. By the structure imposed on the tree-ordinals we know from β0, β1 ∈

α[n] that either β0 ∈ β1[n] or β1 ∈ β0[n] or β0 = β1. Letting β := max(β0, β1) the

induction hypothesis for α and Lemma 2.13 part 4 give

k ≤ Bβ1(n;m′) ≤ Bβ(n;m′) and m′ ≤ Bβ0(n;m) ≤ Bβ(n;m).

Now appealing to Lemma 2.13 parts 4 and 5 and the definition of Bα we conclude

k ≤ Bβ(n;m′) ≤ Bβ(n;Bβ(n;m)) = Bβ+1(n;m) ≤ Bα(n;m).
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We may now turn to the right to left implication using induction over α. Assume that

α = 0. Then k ≤ B0(n;m) = p(m). The result follows immediately by (O-Ax).

Now assume that α is the successor β + 1 so that k ≤ Bβ+1(n;m) = Bβ(n;Bβ(n;m)).

Letting m′ := Bβ(n;m) the induction hypothesis for α gives us two derivations

n;m β m′ and n;m′ β k.

Since β ∈ α[n] the result follows by applying (O-Cut).

Finally assume that α is a limit supn(λn) so that k ≤ Bλ(n;m) = Bλn(n;m). Then for

every n we may apply the induction hypothesis to give

n;m λn k

and the result follows using a simple sub-induction to change the proof height from λn

to λ. The axiom case is self-evident. Now assume an application of (O-Cut) gives proof

height λn from premises of heights βi. Then since βi ∈ λn[n] = λ[n] we may have in

each case taken the new height to be λ. Hence

n;m λ k.

2

Corollary 2.15. Weakening for Computations. If we have the computation

n;m α k

and if n ≤ n′,m ≤ m′, k′ ≤ k and α[n] ⊆ α′[n] then for any γ ∈ ΩS we also have the

computation

n′;m′ γ+α′ k′.

Proof.

From the bounding result above we know k ≤ Bα(n;m). If α[n] ⊆ α′[n] then
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Gα(n) ≤ Gα′(n). Hence, given the assumptions, applying Lemma 2.12 and Lemma

2.13 we find k′ ≤ k ≤ Bα(n;m) ≤ Bγ+α′(n
′;m′). Applying the bounding result again

gives n′;m′ γ+α′ k′.

2

We shall now look at how to compute specific values of terms from EA(I;O). We define

the notion of the height |t| of a term t as the natural number corresponding to how many

applications of the term constructors are applied to base terms 0, xj or aj .

Definition 2.16. We define the height of term t in EA(I;O), denoted |t| inductively as

|t| := 0 if t = 0, t = a or t = x.

|t| := max(|ti|) + 1 if t results from applying a function symbol to sub-terms ti.

Lemma 2.17. For any term t(~x;~a) in EA(I;O) and any numbers m and n, if the value

of the term upon substituting mi ≤ m for each ai and ni ≤ n for each xi is the number k

we have in EA∞(I;O) the computation

n;m ω·(|t|+1) k.

Proof.

We use induction on |t| to show that k ≤ Bω·(|t|+1)(n;m) whence the result follows by

applying the bounding lemma (2.14). Recall that p(m) bounds the values of the term

constructors and is strictly positive. Hence, if |t| = 0 then

k ≤ max(n;m) ≤ p2n+1

(m) = Bω(n;m).

Now assume |t| > 0. Then the result holds for max(|ti|) where ti are the immediate

sub-terms of t. Let m′ := Bω·(max(|ti|)+1)(n;m) = Bω·|t|(n;m). Then as the values of the

sub-terms are less than or equal to m′ we find k ≤ p(m′). Applying Lemma 2.13

p(m′) ≤ Bω·|t|(n;m′) = Bω·|t|(n;Bω·|t|(n;m)) = Bω·|t|+1(n;m) ≤ Bω·(|t|+1)(n;m).

2
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2.3 Structural Rules for EA∞(I ;O)

In this section we provide structural rules for weakening, conjunction inversion and

universal inversion which are required for the cut-elimination and embedding processes

later.

Lemma 2.18. Weakening for Logical Rules. If we have a derivation

n;m `α Γ

and if n ≤ n′,m ≤ m′,Γ ⊆ Γ′ and α[n] ⊆ α′[n] then for any γ ∈ ΩS we also have the

derivation

n′;m′ `γ+α′ Γ′.

Proof.

We shall use induction over the derivation of Γ with a case distinction according to which

rule is applied last. We shall only need to look in detail at particular cases since the others

use exactly the same reasoning. Throughout we make use of the fact that β ∈ α[n] ⇒

γ + β ∈ (γ + α)[n] for any β, α and γ ∈ ΩS , cf. 2.6.

1. (L-Ax). If Γ contains a true atom then any Γ′ for which Γ ⊆ Γ′ also contains that

atom. The tree-ordinal height in the (L-Ax) rule is arbitrary so may be taken to be γ +

α′. Likewise the numerical values in the declarations may be increased and the atom in

question is still true. Hence n′;m′ `γ+α′ Γ′ is also an instance of the (L-Ax).

2. (∨), (∧), (∀) and (L-Cut). These four cases are almost identical. For each we seek

to apply the induction hypothesis to the premise(s) and then re-apply the relevant rule.

For example, in the case of (∨) let us assume that Γ :≡ Γ0, A0 ∨ A1. After applying the

induction hypothesis to the premise of the rule we have the derivation

n′;m′ `γ+β Γ′, Ai
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for i = 0 or 1 and some β ∈ α[n]. Hence as β ∈ α[n] ⊆ α′[n] ⊆ α′[n′] we may conclude

that γ + β ∈ (γ + α′)[n′]. We re-apply the rule deriving

n′;m′ `γ+α′ Γ′, A0 ∨ A1.

Since A0 ∨ A1 ⊆ Γ ⊆ Γ′ this is equivalent to

n′;m′ `γ+α′ Γ′.

3. (∃) and (C-Cut). We follow the same reasoning as above with two minor differences.

Firstly both these rules have a computation as the left-hand premise. Hence we only apply

the induction hypothesis to the right-hand premises. To deal with the left-hand premises

we use Corollary 2.15.

In the case of (C-Cut) the required conditions on the proof heights to re-apply the rule

follow the reasoning of the previous case. From the original premises of the rule we have

n;m β0 k

[Corollary 2.15]
n′;m′ γ+β0 k

n; k `β1 Γ

[IH]
n′; k `γ+β1 Γ′

(C-Cut)
n′;m′ `γ+α′ Γ′

The second difference comes in the case of the existential rule where there is extra

structure on the conditions governing the proof heights. That is we have β0 ∈ β1[n]

and β1 ∈ α[n]. Since n ≤ n′ we find β1[n] ⊆ β1[n′] and hence γ + β0 ∈ (γ + β1)[n′]. We

also find, as before, that β1 ∈ α[n] ⊆ α′[n] implies γ + β1 ∈ (γ + α′)[n′]. Hence letting

Γ :≡ Γ0, ∃aA(a) we find

n;m β0 k

[Corollary 2.15]
n′;m′ γ+β0 k

n;m `β1 Γ0, A(k)

[IH]
n′;m′ `γ+β1 Γ′, A(k)

(∃)
n′;m′ `γ+α′ Γ′

2
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Lemma 2.19. Conjunction inversion.

n;m `α Γ, A0 ∧ A1 ⇒ n;m `α Γ, Ai where i = 0 or 1.

Proof.

Again we use induction over the derivation of Γ, A0 ∧ A1 . There are two main cases

where either A0∧A1 is the principal formula in the last rule applied or where the last rule

applied is on Γ with A0 ∧ A1 a side formula.

1. Firstly note that if the derivation is an axiom then Γ contains a true atomic formula.

Hence n;m `α Γ, Ai is also an axiom where i = 0 or 1.

2. Assume the last rule in the derivation has principal formula in Γ with A0 ∧ A1 a side

formula. Inductively from the premise(s) we have a derivation or derivations of the form

n;m′ `βk Γ′, Ai

where i = 0 or 1 and βk ∈ α[n]. From here we may simply re-apply the rule replacing Γ′

by Γ.

3. The only other possibility is that the last rule applied is (∧) in which A0 ∧ A1 is the

principal formula. Then we would have the premises

n;m `β0 Γ′, A0 n;m `β1 Γ′, A1

where β0, β1 ∈ α[n]. In these derivations Γ′ may contain A0 ∧ A1 itself since contraction

may occur after the rule is applied. Hence we must apply the induction hypothesis to the

relevant premise in order to invert A0∧A1 and then contract any addition instances of Ai.

Then since βi[n] ⊆ α[n] we have the required result by weakening 2.18. If Γ′ does not

contain A0∧A1 then simply applying weakening to the tree-ordinal bound on the relevant

premise gives the result.

2
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Lemma 2.20. Universal quantifier inversion.

n;m `α Γ, ∀aA(a) ⇒ n; max(m, k) `α Γ, A(k) for every k ∈ N.

Proof.

We follow the same approach as 2.19. In the axiom case or in the case of any rule of

inference with principal formula within Γ the argument is essentially the same. The only

minor difference occurs in the case of a computational cut. From the premises, with

β0, β1 ∈ α[n], we have

n;m β0 k′

[Corollary 2.15]
n; max(m, k) β0 k′

n; k′ `β1 Γ,∀aA(a)

[IH]
n; max(m, k, k′) `β1 Γ, A(k)

(C-Cut)
n; max(m, k) `α Γ, A(k)

Where the last rule applied is (∀) and ∀aA(a) is principal we have a premise for each

k ∈ N of the form

n; max(m, k) `βk Γ′, A(k)

where βk ∈ α[n]. Two sub-cases occur dependant upon whether or not Γ′ contains the

principal formula ∀aA(a). In the first case we must apply the induction hypothesis in

order to replace Γ′ by Γ and then weaken the tree-ordinal bound by Lemma 2.18 since

βk ∈ α[n]. In the second case we may simply use weakening to change the tree-ordinal

height to α.

2

2.4 Cut-Elimination for EA∞(I ;O)

We now show how to eliminate logical cuts from a proof in EA∞(I;O) at the cost of

successive exponential increases in the proof height. The methods used in this section are
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standard and we refer the reader to either Fairtlough and Wainer [19] or Ostrin [46] in the

setting of a two sorted theory.

Definition 2.21. The height of a formula A, denoted |A|, is defined inductively as:

|A| := 1 if A is atomic.

|A03A1| := max(|A0|, |A1|) + 1 if 3 is ∨ or ∧.

|3A(a)| := |A|+ 1 if 3 is ∃a or ∀a.

Definition 2.22. The cut-rank r of a derivation in EA∞(I;O) is defined to be the

supremum of all the heights |C| of the cut-formulas C occurring in the derivation in

question.

The cut-rank r is noted as a subscript to the right of the proof gate thus: `αr . Note that a

cut-free proof inEA∞(I;O) denoted by `α0 only means that there are no (L-Cuts) present.

We may still have many computational (C-Cut) rules present. The computational proof

gate need not mention the cut-rank since there are no (L-Cuts) involved in  derivations.

Also note that the structural rules given in the previous section do not have any effect on

the cut-rank of derivations. The same is true of the following lemma.

Lemma 2.23. False Atom. If C is atomic and true so that ¬C is false then

n;m `α Γ,¬C ⇒ n;m `α Γ.

Proof.

We use induction over the derivation of Γ,¬C. Note that no rule, other than cut, may

conclude ¬C since C is atomic. Where the principal formula of the last rule applied

is contained within Γ or where the rule is (L-Cut) we may simply apply the induction

hypothesis to the premise(s) and re-apply the same rule. The only other possibility is that

Γ,¬C itself is an instance of (L-Ax). Then the axiom must occur inside Γ because ¬C is

false. Hence the result follows from another instance of (L-Ax).

2
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Lemma 2.24. Cut-Rank Reduction. Assume that in EA∞(I;O) we have the derivations

n;m `αr Γ0, C and n;m `βr Γ1,¬C

where C is either an atom or of the form C0 ∨ C1 or ∃aC0(a) with |C|=r+1. Further

assume that α[n] ⊆ β[n]. Then

n;m `β+α
r Γ0,Γ1.

Proof.

We proceed by induction over the derivation of Γ0, C in the first assumption.

1. Consider the case where C is a side formula of the last rule applied so that the principal

formula resides within Γ0.

i. Assume that

n;m `αr Γ0, C

is an instance of (L-Ax). Then since C is a only a side formula the required result is also

an instance of (L-Ax).

ii. Otherwise we have a rule of inference with premise(s) of the form

n;m′ `γr Γ′0, C (2.1)

where γ ∈ α[n]. Such a derivation may have involved a computational sequent as a left-

hand premise. Furthermore, m′ may be greater than or equal to m if the rule is (∀) or

(C-Cut) or we may find that m′ < m in the case of (C-Cut).

Assume m′ ≥ m. Then applying weakening to the second assumption of the lemma to

increase the output declaration

n;m′ `βr Γ1,¬C. (2.2)

Having assumed that α[n] ⊆ β[n] we have γ[n] ⊆ β[n] and may apply the induction

hypothesis to (2.1) and (2.2) giving

n;m′ `β+γ
r Γ′0,Γ1.
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Then since β+ γ ∈ β+α[n] we re-apply the rule (using the computational sequent again

if necessary) giving

n;m `β+α
r Γ0,Γ1.

If it is the case that m′ < m then the rule must have been (a vacant application of)

a computational cut and Γ′0 ≡ Γ0. We apply weakening first to change the output

declaration in (2.1) to m. Then by the induction hypothesis with the second assumption

of the lemma we have

n;m `β+γ
r Γ0,Γ1.

All that remains is to apply weakening to change the proof height from β + γ to β + α.

2. Now we consider the cases where C is the principal formula of the last rule applied.

We only have three sub-cases where C is atomic or of the form C0 ∨ C1 or ∃aC0(a).

i. Where C is atomic and principal, ¬C is false so we may appeal to Lemma 2.23 above

for the second assumption which shows

n;m `βr Γ1,¬C ⇒ n;m `βr Γ1.

The result now follows by weakening: changing the height to β + α and adding the

formulae Γ0.

ii. Now assume the last rule applied is (∨) so that we have the following premise to the

first assumption with γ ∈ α[n]:

n;m `γr Γ0, C0 ∨ C1, Ci for i = 0 or 1.

Here, like the following case, we explicitly include the possibility that the principal

formula C0 ∨ C1 occurs in the premise or else add the principal formula by weakening.

At this point, since γ ∈ α[n] ensures γ[n] ⊆ β[n], we apply the induction hypothesis with

the second assumption of the lemma. This gives

n;m `β+γ
r Γ0,Γ1, Ci for i = 0 or 1. (2.3)
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Looking again at the second assumption of the lemma we have

n;m `βr Γ1,¬C0 ∧ ¬C1.

Now using Lemma 2.19 to invert the conjunction and adding Γ0 through weakening we

obtain

n;m `βr Γ0,Γ1,¬Ci for i = 0 or 1. (2.4)

Since γ ∈ α[n], we have both β + γ ∈ (β + α)[n] and β ∈ β + α[n]. Hence by (L-Cut)

on 2.3 and 2.4, knowing that the cut-rank will remain r since |Ci| ≤ r,

n;m `β+α
r Γ0,Γ1.

iii. If C :≡ ∃aC0(a) is principal in an (∃) rule, then the premises to the first assumption

of the lemma are

n;m γ0 k n;m `γ1r Γ0,∃aC0(a), C0(k)

with γ0 ∈ γ1[n] and γ1 ∈ α[n]. We apply the induction hypothesis to the right-hand

premise of the rule together with the second assumption of the lemma to find

n;m `β+γ1
r Γ0,Γ1, C0(k). (2.5)

The second assumption reads

n;m `βr Γ1,∀a¬C0(a).

Using weakening and universal inversion we obtain, for all k ∈ N,

n; max(m, k) `βr Γ0,Γ1,¬C0(k). (2.6)

Since we have the computation n;m γ0 k as a premise to the (∃) rule and by 2.15

n;m γ0 m, we have by our bounding result

n;m β+γ0 max(m, k). (2.7)
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Recalling that γ0 ∈ γ1[n] from the finer conditions on the existential rule, a (C-Cut) on

2.6 and 2.7 gives

n;m `β+γ1
r Γ0,Γ1,¬C0(k) (2.8)

since β, β + γ0 ∈ β + γ1[n]. Finally using β + γ1 ∈ β + α[n] we apply (L-Cut) on 2.5

and 2.8 with cut-formula C0(k) of height r:

n;m `β+α
r Γ0,Γ1.

2

Theorem 2.25. Cut-Elimination.

n;m `αr+1 Γ ⇒ n;m `2α

r Γ.

Proof.

Again by induction over the derivation of n;m `αr+1 Γ.

1. If Γ is an axiom then the result follows trivially since the ordinal bound and cut-rank

are arbitrary in the axiom rule.

2. If Γ comes about via a rule of inference which is not a cut of rank r + 1 then assume

the premise(s) have height(s) βi. These derivations may have cuts of rank r+1. We apply

the induction hypothesis giving proof height(s) 2βi and reducing the rank by 1. Now since

βi ∈ α[n] we have 2βi ∈ 2α[n] by 2.6 part 3. Hence the same rule may be re-applied to

give the result.

3. If Γ comes about via a cut on C with |C| = r + 1 we have for β0, β1 ∈ α[n]

n;m `β0r+1 Γ, C n;m `β1r+1 Γ,¬C.

Letting β := max(β0, β1) ∈ α[n] and weakening one of the premises accordingly we

apply the induction hypothesis to give

n;m `2β

r Γ, C n;m `2β

r Γ,¬C.
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Now the cut-reduction lemma (2.24) applies because by symmetry one of C or ¬C must

be of the required form. This leaves

n;m `2β+2β

r Γ.

Now either 2β + 2β = 2α else we may apply weakening to change the height to 2α since

(2β + 2β)[n] ⊆ 2α[n].

2

Corollary 2.26. Full Cut-Elimination. If we define 20(α) := α and 2r+1(α) := 22r(α)

then letting δ := 2r(α) we have

n;m `αr Γ ⇒ n;m `δ0 Γ.

Proof.

We use induction over r. If r = 0 there is nothing to do. For the successor case assume

r = r′ + 1. We apply the cut-elimination theorem above to reduce the rank by 1 and then

apply the induction hypothesis. Since 2r′(2
α) = 2r′+1(α) we attain the required result.

Hence we may fully eliminate logical cuts of maximum rank r from a given derivation in

EA∞(I;O) at the cost of a r-times iterated exponential increase in the proof height.

2

2.5 Embedding of EA(I ;O)

In this section we show that any EA(I;O) derivation may be embedded into EA∞(I;O)

at the cost of moving to a transfinite height where inductions are replaced by sequences

of cuts. Henceforth, given an EA(I;O) formula A(a) with distinguished free variable a

we shall write A(m) for A(a := m). We may refer to this as an assignment of a numeral

to a variable.
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Theorem 2.27. Embedding of EA(I;O). Assume that

EA(I;O) ` Γ(x0, . . . , xl; a0, . . . , ak)

where all the free variables are displayed.

Then this derivation determines numbers d, r ∈ N such that, for all n0, . . . , nl and all

m0, . . . ,mk, if n ≥ max(n0, . . . , nl) and m ≥ max(m0, . . . ,mk) then

n;m `ω·dr Γ(n0, . . . , nl;m0, . . . ,mk).

Proof.

We proceed by induction on the height of the finite proof in EA(I;O). Let ~n :=

n0, . . . , nl and ~m := m0, . . . ,mk.

1. Axioms. Assume that EA(I;O) ` Γ(~x;~a) where Γ contains any logical or arithmetic

axiom. Then any instantiation of the free variables to numerals assures a true closed atom

in Γ. Hence

n;m `ω·00 Γ(~n; ~m)

by the (L-Ax) rule of the infinitary calculus.

2. (∨). If EA(I;O) ` Γ where the last rule applied is (∨) we have the premises

EA(I;O) ` Γ′, Ai

for i = 0 or 1. Applying the induction hypothesis gives us

n;m `ω·dir Γ′, Ai

for i = 0 or 1. Now to apply the equivalent rule in the infinitary system we let d :=

max(di) + 1. Since (ω · d)[n] = ω · di + (n+ 1)[n] we have ω · di ∈ (ω · d)[n] and obtain

n;m `ω·dr Γ.
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3. (∧). Now assume EA(I;O) ` Γ where the last rule applied is (∧). The premises are

EA(I;O) ` Γ′, A0 and EA(I;O) ` Γ′, A1.

We apply the induction hypothesis to give derivations of heights ω · d0 and ω · d1 in

EA∞(I;O). Then letting d := max(d0, d1) + 1 we apply (∧) in the infinitary system

giving

n;m `ω·dr Γ.

4. (∀). If we have a derivation in EA(I;O) resulting from (∀) then the premise is, for b

not free elsewhere in the sequent,

EA(I;O) ` Γ′, A(b).

Applying the induction hypothesis for each possible assignment of k to the free output

variable b gives

{n; max(m, k) `ω·d′r Γ′, A(k)}k∈N.

We can therefore apply (∀) in the infinitary theory straight away with d := d′ + 1. This

gives

n;m `ω·dr Γ,∀aA(a).

5. (∃). This time the premise to the rule in EA(I;O) is of the form

` Γ′, A(t(~x;~a))

where t is some term which may contain any number of the free variables ~x and ~a and

possibly other variables ~y;~b. In applying the induction hypothesis we assign these other

variables the numeral 0. Therefore we find

n;m `ω·d0r′ Γ′, A(t(~n, ~m)). (2.9)

In order to apply the existential rule inEA∞(I;O) we must both compute the value of the

term and substitute this value for t(~n, ~m) in A. Let us assume that t(~n, ~m) takes the value
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k. That means t(~n, ~m) = k is now a true atom in EA∞(I;O). Hence using (L-Ax) gives

n;m `0
0 t(~n, ~m) = k. Also using (L-Ax), by induction over the build-up of the formula

A, we may show

n;m `ω·d10 ¬A(t(~n, ~m)), A(k) (2.10)

for some d1 ∈ N depending upon the complexity of A. We use these derivations to give

(L-Ax)
n;m `0

0 t(~n, ~m) = k

(2.10) and Weakening

n;m `ω·d10 t(~n, ~m) 6= k,¬A(t(~n, ~m)), A(k)
(L-Cut)

n;m `ω·(d1+1)
1 ¬A(t(~n, ~m)), A(k)

From here we perform another cut with (2.9) on A(t(~n, ~m)). Letting r := max(r′, |A|)

and d′ : max(d0, d1 + 1) + 1 this leaves

n;m `ω·d′r Γ′, A(k). (2.11)

The existential rule may be re-applied once we have computed the value k using Lemma

2.17. Letting d′′ := max(d′, |t|+ 1) + 1 and d := d′′ + 1 we have

[Lemma 2.17]
n;m ω·(|t|+1) k

(2.11)
n;m `ω·d′r Γ′, A(k)

Weakening

n;m `ω·d′′r Γ′, A(k)
(∃)

n;m `ω·dr Γ,∃aA(a)

Note how the conditions on tree-ordinals are satisfied since ω · (|t|+ 1) ∈ (ω · d′′)[n] and

ω · d′′ ∈ (ω · d)[n].

6. (L-Cut). Where we have an (L-Cut) in EA(I;O) the induction hypothesis will apply

to the premises to give

n;m `ω·d0r0
Γ,¬C n;m `ω·d1r1

Γ, C

where any extraneous variables have been assigned 0. We may re-apply the cut rule

straight away with d := max(d0, d1) + 1 and r := max(r0, r1, |C|) to leave

n;m `ω·dr Γ.
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7. (P-Ind.). EA∞(I;O) contains no induction rule so we look to replace the induction in

EA(I;O) by potentially ω-many cuts in EA∞.

Assume that in EA(I;O) we have a derivation of ` Γ, A(x) and the last rule applied is

induction. We must show that in EA∞(I;O)

n;m `ω·dr Γ, A(k)

where importantly k is less than or equal to the input declaration n since it is an

assignment on an input variable.

In EA(I;O) the premises of such a derivation would have been

` Γ′, A(0) ` Γ′,¬A(a), A(a+ 1))

where a is not free elsewhere in Γ′. We apply the induction hypothesis to both of these to

arrive at

n;m `ω·d0r0
Γ′, A(0)

and for every m′ ∈ N

n; max(m,m′) `ω·d1r1
Γ′,¬A(m′), A(m′ + 1).

We look to apply (L-Cut) k times on the cut-formulae A(0), A(1), . . . , A(k − 1). Letting

d′ := max(d0, d1) and r := max(r0, r1, |A|) we will obtain, for any k:

n; max(m, k) `ω·d′+kr Γ, A(k). (2.12)

The numeral k is to be an assignment to the free input x. Its value may be computed by

Lemma 2.17 as

n;m ω k. (2.13)

Furthermore we know k ≤ n. Hence by putting d := d′ + 1 we have ω · d′ + k ∈

ω · d′+ ω[n] = ω · d[n] and ω ∈ ω · d[n]. Applying the computation cut rule to (2.12) and



Chapter 2. An Infinitary Theory for EA(I;O) 65

(2.13) in order to remove the declaration k will then give

n;m `ω·dr Γ, A(k).

2

2.6 The Provably Recursive Functions of EA(I ;O)

Definition 2.28. A closed Σ1-formula of the form

∃a0, . . . ,∃aiB(a0, . . . , ai)

where B is a bounded formula is said to be true at w ∈ N if there exist witnesses

w0, . . . , wi ≤ w such that B(w0, . . . , wi) is true in the standard model.

The property of Σ1-persistence is that if a Σ1-formula is true at w, it is also true at any

w′ ≥ w. A set of Σ1-formulae is true at w if at least one formula within the set is true at

w. Bounded formulae which are true will be true for any witness w.

Lemma 2.29. Let ∆ be a set of Σ1-formulae. Assume that in EA∞(I;O) we have a

derivation

n;m `α0 ∆.

Further assume that |t| is the maximum of the heights of any term t in ∆. Then ∆ is true

at Bω·(|t|+1)+α(n;m).

Proof.

We use induction over the height of the derivation of ∆. In what follows we put β′ :=

ω · (|t| + 1) + β and α′ := ω · (|t| + 1) + α. Then by Lemma 2.13 part 6 we find

Bβ(n;m) ≤ Bβ′(n;m). Furthermore since β ∈ α[n] implies β′ ∈ α′[n] we find by part 4

of the same lemma that if β ∈ α[n] then Bβ′(n;m) < Bβ′+1(n;m) ≤ Bα′(n;m).
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1. (L-Ax). If the derivation is an instance of (L-Ax) then ∆ contains a true atom. Hence

∆ is automatically true for any witness so it is certainly true at Bα′(n;m).

2. (∨). Where the last rule applied is (∨) we have the premise

n;m `β0 ∆′, Ai

for i = 0 or 1 and β ∈ α[n]. Then inductively ∆′, Ai is true at Bβ′(n;m). If it is ∆′ that

is true, then ∆ will also be true at Bβ′(n;m). Otherwise, if Ai is true at Bβ′(n;m) then

A0 ∨ A1 and hence ∆ will be true at Bβ′(n;m). In both cases, by persistence ∆ is true at

Bα′(n;m).

3. (∧). The conjunction case gives us premises of the form

n;m `β00 ∆′, A0 and n;m `β10 ∆′, A1.

Inductively ∆′, A0 is true at Bβ′0
(n;m) and ∆′, A1 is true at Bβ′1

(n;m). If ∆′ is true, then

∆ will be true at max(Bβ′0
(n;m), Bβ′1

(n;m)). Otherwise A0 is true at Bβ′0
(n;m) and A1

is true at Bβ′1
(n;m). Therefore A0 ∧ A1 is true at max(Bβ′0

(n;m), Bβ′1
(n;m)). Either

way, by persistence, ∆ is true at Bα′(n;m).

4. (∀). The last rule applied could have been (∀) but since the formulae in question are

Σ1 the ∀ quantifier must be bounded. Letting ∆ be ∆′,∀a(¬a ≤ t′ ∨ A(a)) where A is a

bounded formula we have for βk ∈ α[n] the premises

{n; max(m, k) `βk0 ∆′,¬k ≤ t′ ∨ A(k)}k∈N.

By applying the induction hypothesis ∆′,¬k ≤ t′∨A(k) is true at Bβ′k
(n; max(m, k)) for

every k ∈ N.

Now consider two sub-cases. Firstly suppose that ∀a(¬a ≤ t′ ∨ A(a)) is true. Then as a

true bounded formula it is automatically true at Bα′(n;m) and hence so is ∆. Otherwise

we have that ∀a(¬a ≤ t′ ∨ A(a)) is false. Then there exists some k ≤ t′ such that A(k)

is false. For this k, from the induction hypothesis, it must be the case that ∆′ is true
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at Bβ′k
(n; max(m, k)) and hence ∆ is true at Bβ′k

(n; max(m, k)). By Lemma 2.15 and

Lemma 2.17, as k ≤ t′, we find k ≤ Bω·(|t′|+1)(n;m). Recall that β′k is ω · (|t| + 1) + βk

and |t| is the maximum of the heights of any term in ∆. Hence k ≤ Bβ′k
(n;m) and

Bβ′k
(n; max(m, k)) ≤ Bβ′k

(n; max(m,Bβ′k
(n;m))) ≤ Bβ′k+1(n;m) ≤ Bα′(n;m).

Therefore by persistence ∆ is true at Bα′(n;m).

5. (∃). In the existential case, letting ∆ be ∆′,∃aA(a), we have the premises

n;m β0 k n;m `β10 ∆′, A(k).

The induction hypothesis applied to the right-hand premise implies that ∆′, A(k) is true

at Bβ′1
(n;m). If ∆′ is true at Bβ′1

(n;m) then ∆ is true at Bβ′1
(n;m) and by persistence ∆

is true at Bα′(n;m).

Otherwise A(k) is true at Bβ′1
(n;m). Then k is a witness for ∃aA(a) so ∆ will be true at

max(k,Bβ′1
(n;m)). Using our bounding lemma (2.14) we know from the computation of

k that k ≤ Bβ0(n;m). Hence ∆ is true at max(Bβ0(n;m), Bβ′1
(n;m)). As Bβ0(n;m) ≤

Bα′(n;m) andBβ′1
(n;m) ≤ Bα′(n;m) we find by persistence that ∆ is true atBα′(n;m).

6. (C-Cut). From the premises

n;m β0 k n; k `β10 ∆

we inductively deduce that ∆ is true at Bβ′1
(n; k). From the bounding lemma (2.14) we

deduce from the left-hand premise that k ≤ Bβ0(n;m), hence k ≤ Bβ′0
(n;m). Letting β′

be the maximum of β′0 and β′1 we see that ∆ is true at Bβ′(n;Bβ′(n;m)) = Bβ′+1(n;m).

Then since β′ ∈ α′[n], we find ∆ is true at Bα′(n;m) by persistence.

2
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Theorem 2.30.

ProvRec(EA(I;O)) ⊆ E3

Proof.

Assume that a function f is provably recursive in EA(I;O). Then we must have a

derivation in EA(I;O) of the existence condition for such a function to be provably

recursive. That is,

EA(I;O) ` ∃b∃c(Cf (~x, b, c))

where C is some bounded computational formula involving a computational code c and

the output b of the function f applied to ~x.

Applying the embedding theorem (2.27) assigning ~x := ~n we find that EA∞(I;O) will

prove

n; 0 `ω·dr ∃b∃c(Cf (~n, b, c))

for some d, r ∈ N and n := max(~n).

Now appealing to Full Cut-Elimination 2.26 we find

n; 0 `α0 ∃b∃c(Cf (~n, b, c))

where α := 2r(ω · d).

Then by Lemma 2.29 above we see that ∃b∃c(Cf (~n, b, c)) is true at Bα′(n; 0) where α′

is the exponential tree-ordinal ω · (k + 1) + 2r(ω · d) for fixed d, k, r ∈ N and n :=

max(~n). By 2.12, Bα′(n; 0) is an elementary function. Hence Cf (~n,m0,m1) is true

when m0 and m1 are bounded by the elementary function Bα′(n; 0). The function f(~n)

may be computed by finding the least pair m0 and m1 such that Cf (~n,m0,m1) is true.

The formula Cf involves only bounded quantifiers and propositional connectives and the

bounds on finding m0 and m1 are elementary. Hence f(~n) is elementarily definable from

the elementary function Bα′(n; 0). Therefore f(~n) itself is an elementary function.

2
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Corollary 2.31.

ProvRec(EA(I;O)) = E3

Proof.

The left to right inclusion is given above whilst the right to left inclusion is Theorem 1.24

in Chapter 1.

2
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Chapter 3

EA1 - A Conservative Closure of

EA(I;O)

3.1 Introduction and Definitions for EA1

This chapter begins an investigation into how we might extend the strength of EA(I;O)

so that we arrive at theories whose provably recursive functions belong to higher levels of

the Grzegorczyk Hierarchy. The approach we explore is to define a hierarchy of theories

where each successive theory is strictly layered upon the preceding one. To this end we

begin by defining a new theory layered overEA(I;O) which has more natural substitution

properties by collapsing the distinction between input and output variables.

Definition 3.1. The theory EA1.

The language of EA1 contains just one type of variable, which we call output variables,

using the notation of Chapter 1: a, b, c, a0,~a, . . .. The rest of the language is the same

as that of EA(I;O). The definitions of terms and formulae are standard and we again

adopt a Tait-style sequent calculus. We have axioms for excluded middle and equality,

and the standard rules for disjunction, conjunction, existential quantification, universal
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quantification and cut. All the arithmetic axioms listed in Chapter 1 are included. There is

no induction rule in EA1. We do however give the theory additional strength by including

a closure axiom. It allows certain end sequents of derivations in EA(I;O) to be taken as

axioms in EA1 on two provisos. Firstly we require that the sequent is a Σ1-formula.

Secondly we drop the distinction between input and output variables in the sequent.

The Σ1-closure axiom of EA1 reads,

(C-Ax) EA1 ` Γ(~c), A(~a,~b) if EA(I;O) ` A(~x;~b).

whereA is a Σ1-formula, Γ is an arbitrary set of formulae, and where all the free variables

of Γ, A are indicated (with ~a,~b and ~c disjoint).

Remarks

The (C-Ax) rule replaces the uninterpreted (arbitrary) input constants ~x in the original

EA(I;O) derivation by ‘proper’ variables inEA1. The change of symbols to~a is intended

to indicate that a collapse of the variable separation has taken place. Following the

application of the rule we may apply universal quantification to the variables ~a. Thus

(C-Ax) resembles a formalized ω-rule in EA1 for Σ1-formulae. We shall discuss this

further at the conclusion of this section.

Note that derivations such as EA(I;O) ` ProgaA(a) → A(x) cannot be carried across

(C-Ax) unless A is a bounded formula. Hence we may deduce a form of induction by

showing EA1 ` ProgaA(a) → ∀aA(a) but only for bounded formulae. Since our term

structure is still limited to sub-elementary functions, bounded induction does not increase

the strength of the theory. If we allowed formulae of higher complexity to pass through

(C-Ax) we would find functions of much greater complexity than the elementary functions

to be provably recursive.

By including a set of arbitrary side-formulae Γ(~c) we ensure that EA1 admits weakening.
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It should be clear that the basic results (Lemma 1.8, Lemma 1.9 as well as Lemma 1.17)

from Chapter 1 are provable in EA1.

Definition 3.2. A function f is said to be provably recursive in the theoryEA1 if its graph

can be defined by a Σ1-formula ∃cCf (~a, b, c), where Cf is ∆0, such that

EA1 ` ∀~a∃b∃c(Cf (~a, b, c))

EA1 ` ∀~a∀b∀b′(∃c(Cf (~a, b, c)) ∧ ∃c(Cf (~a, b′, c))→ b = b′).

We denote the class of functions provably recursive in EA1 by ProvRec(EA1).

Note how we now have two subtly different notions of provably recursive: one for two-

sorted theories such as EA(I;O) (Definition 1.15) and the one given above for a single-

sorted theory like EA1. The former defines a function as provably recursive for any

arbitrary input constants ~x. The latter now defines a function as provably recursive for all

variables ~a from within the theory via a universal quantifier. This matches the usual Π2

definition of a provably recursive function.

Proposition 3.3. If the function f is provably recursive in EA(I;O) then f is also

provably recursive in EA1. Hence the elementary functions are provably recursive in

EA1.

Proof.

For any provably recursive function inEA(I;O) we have for some computational formula

Cf (~x; b, c)

EA(I;O) ` ∃b∃c(Cf (~x; b, c)) (3.1)

and

EA(I;O) ` ∀b∀b′(∃c(Cf (~x; b, c)) ∧ ∃c(Cf (~x; b′, c))→ b = b′). (3.2)

From (3.1) we may immediately apply (C-Ax) and universal quantification to give the

existence condition

EA1 ` ∀~a∃b∃c(Cf (~a, b, c)).
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Using (3.2) we deduce in EA(I;O) by inversions and disjunction

¬Cf (~x; b, c) ∨ ¬Cf (~x; b′, c′) ∨ b = b′.

Now that we have a Σ1-formula, applying (C-Ax) gives us

EA1 ` ¬Cf (~a; b, c) ∨ ¬Cf (~a; b′, c′) ∨ b = b′.

Applying quantifications yields the uniqueness requirement:

EA1 ` ∀~a∀b∀b′(∃c(Cf (~a, b, c)) ∧ ∃c(Cf (~a, b′, c))→ b = b′).

Hence f is a provably recursive function in EA1.

2

As Wirz notes in [68], "It is a common criticism that EA(I;O) doesn’t provide a

direct mechanism for substitute terms for input variables. That is, its provably total

functions aren’t intensionally closed under (predicative) composition." Of course, we

know the provably recursive functions are extensionally closed under composition since

the elementary functions are. Wirz [68] was able to circumvent this problem by

generalizing the approaches of Ostrin and Wainer [48] and deducing an input substitution

rule for any provably recursive function. In EA1 we may use (C-Ax) to quantify over

variables which were fixed as free input constants in a particular EA(I;O) derivation.

Using logical cuts and the coding machinery we may then easily compose provably

recursive functions. As a result we argue that EA1 may appeal as a more natural theory

to work in whilst remaining, in terms of provably recursive functions, conservative over

EA(I;O). The following theorem motivates our view of EA1 as a theory of closure over

EA(I;O).

Theorem 3.4. ProvRec(EA1) is closed under Composition.

That is, for j, k > 0 if the j-ary function h and the k-ary functions g1, . . . , gj are all

provably recursive in EA1 then for ~a := a1, . . . , ak the composition function f defined as

f(~a) := h(g1(~a), . . . , gj(~a))
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is also provably recursive in EA1.

Proof.

Without loss of generality let j := 2. We may assume that we are given suitable

computational formulae Cg1 , Cg2 , Ch for each of the functions g1, g2 and h. Then define

the computational formula for the composition function f as

Cf (~a, b, c) :≡ lh(c) = 3 ∧ (c)0 6= 0 ∧ (c)1 6= 0 ∧ (c)2 6= 0 ∧ l((c)2) = b

∧Cg1(~a, l((c)0), r((c)0)) ∧ Cg2(~a, l((c)1), r((c)1))

∧Ch(l((c)0), l((c)1), l((c)2), r((c)2)). (3.3)

Then clearly f(~n) = m if and only if ∃cCf (~n,m, c) is true.

We begin by deriving the existence condition for f to be provably recursive in EA1. Let t

be the term 〈p(b1, d1), p(b2, d2), p(b, d)〉. Then from the definition of Cf , using the coding

axioms, it is straightforward to derive in EA1

¬Cg1(~a, b1, d1),¬Cg2(~a, b2, d2),¬Ch(b1, b2, b, d), Cf (~a, b, t).

Hence by quantification

(
∀~a∃b1∃d1Cg1(~a, b1, d1) ∧ ∀~a∃b2∃d2Cg2(~a, b2, d2) ∧ ∀b1∀b2∃b∃dCh(b1, b2, b, d)

)
→ ∀~a∃b∃cCf (~a, b, c). (3.4)

Appealing to the assumptions that g1, g2 and h are provably recursive in EA1, we have

from the existence conditions, a derivation of each of the three conjuncts in the antecedent

of (3.4). Hence by three uses of cut we have the existence condition for f :

EA1 ` ∀~a∃b∃cCf (~a, b, c).

The uniqueness condition is also easily derived and we argue informally. Let us assume

firstly that we are given a c such that Cf (~a, b, c) and secondly that we are given a c′

such that Cf (~a, b′, c′) in order to show b = b′. From the definition of Cf we find
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Cg1(~a, l((c)0), r((c)0)) by the first assumption and Cg1(~a, l((c
′)0), r((c′)0)) by the second.

Since the uniqueness property holds for g1 we deduce l((c)0) = l((c′)0). Likewise, with

respect to g2, we see l((c)1) = l((c′)1). Now by substitution on the uniqueness of h we

may deduce l((c)2) = l((c′)2). But from our first assumption l((c)2) = b and from our

second assumption l((c′)2) = b′ hence b = b′.

2

Remarks

We conclude this section with some brief remarks on a semantic interpretation of (C-Ax)

and on predicativity. Although not a central concern of this thesis, a model-theoretic

consideration of the (C-Ax) rule is useful here. One imagines constructing a modelM

of EA(I;O) by starting with a structure 〈O, 0M,+1M,+M, ·M, . . .〉 and adjoining a set

of input constants I := {i0, i1, . . . , ik, . . .} assigned to the inputs xj . When the values

assigned to the xj are arbitrary values in O, the closure axiom becomes a valid principle.

We claimed in the introduction that EA(I;O) might be regarded as predicative in

Nelson’s sense [42] because induction up to input ‘numbers’ avoids impredicative

quantification over all such numbers. We informally argue that EA1 may be seen

as a impredicative extension of EA(I;O) by seeing (C-Ax) as a type of internalised

ω rule: from A(x) for each x := ik we may derive ∀aA(a). It is clear that EA1

does not satisfy Nelson’s requirements for a predicative arithmetic since the exponential

function is provably total within the theory. In fact our (C-Ax) rule, in collapsing the

variable separation of EA(I;O), mirrors what Nelson objects to in his remarks on the

impredicativity of standard theories of arithmetic, p.14 [42]. In EA(I;O), if A(a) is

progressive in a we may conclude A(x). We may interpret this along Nelson’s lines as

‘if n is a number then A(n).’ In EA1 we make the impredicative step in (C-Ax) to claim

∀aA(a) or ‘for all numbers A(n).’

For a given EA(I;O) derivation of a Σ1-formula A(~x) (such as that defining a provably

recursive function) the closure axiom followed by universal quantification gives in EA1 a
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derivation of ∀~aA(~a). The universal quantifiers ∀~a are thus to be regarded as quantifiers

‘with computational content’ in the sense of Schwichtenberg [56] (originating from the

work of Berger [8]).

3.2 Bounded Arithmetic and EA1

We have already alluded to the fact that EA1 admits bounded induction. This leads to

simple correspondence between bounded arithmetic and EA1.

I∆0 is the sub-theory of Peano Arithmetic in which induction is restricted to only apply

to bounded formulae. In [23] it is shown that in I∆0 there exists a ∆0 formula, we call

exp(a, b), which defines the graph of exponentiation, 2a = b. But by Parikh’s Theorem

[49] one cannot show that the exponential function is provably recursive since b cannot be

bounded by a term in the language. I∆0 +exp is the extension of I∆0 obtained by adding

an axiom asserting that the exponential function is total. The system is sufficient to prove

a number of important results in number theory and has many equivalent formulations in

all of which the elementary functions are provably recursive, see for example [12], [30]

or [65].

We present I∆0 + exp using a Tait-style sequent calculus giving the induction axiom

schema as a rule of inference. The logical symbols are the same as EA1. The non-logical

symbols are the constant symbol 0 and the function symbols +1,+, ·. The relation ≤ is

defined by a ≤ b :≡ ∃c(a + c = b). The logical axioms rules governing ∨,∧, ∃,∀ and

Cut are standard.

Definition 3.5. The non-logical axioms of I∆0 + exp.

I∆0 + exp includes the usual equality axioms as well as (universal closures of) the

following arithmetic axioms (with arbitrary side-formulae Γ omitted)

a+ 1 6= 0 (3.5)
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a+ 1 = b+ 1→ a = b (3.6)

a = 0 ∨ ∃b(b+ 1 = a) (3.7)

a+ 0 = a (3.8)

a+ (b+ 1) = (a+ b) + 1 (3.9)

a · 0 = 0 (3.10)

a · (b+ 1) = a · b+ a (3.11)

Letting exp(a, b) be some ∆0 formula expressing the fact that 2a = b, for arbitrary side-

formulae Γ we add the axiom

Γ,∀a∃b exp(a, b) (3.12)

The bounded induction rule is, for any B ∈ ∆0 and arbitrary set of formulae Γ where a

is not free in Γ:

(∆0-Ind.)
Γ, B(0) Γ,¬B(a), B(a+ 1)

Γ,∀aB(a).

Proposition 3.6. Embedding I∆0 into EA1.

I∆0 + exp ` Γ ⇒ EA1 ` Γ.

Proof.

We use induction over the derivation of Γ inside I∆0 + exp with a case distinction

according to the last rule applied.

1. For the basis of the induction firstly assume that I∆0 + exp ` Γ where Γ contains

a logical, equality or arithmetic axiom other than (exp). Then as all such axioms are

available to us in EA1 clearly EA1 ` Γ.

If the derivation is the axiom Γ,∀a∃b exp(a, b) we may prove directly an appropriate

translation in EA1. Recall from Chapter 1, EA(I;O) ` ∃b∃cE(x, b, c) where E(a, b, c)
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is a bounded formula expressing that c is a sequence code for the computation 2x = b.

Then by (C-Ax), and universal quantification we have EA1 ` Γ,∀a∃b∃cE(a, b, c). We

take this derivation to be the EA1 translation of the I∆0 + exp axiom where exp(a, b) is

replaced by the Σ1-formula ∃cE(a, b, c).

2. It is clear that for the rules of inference ∨,∧, ∃,∀ and Cut, we may take the premises

of the rule in I∆0 + exp, apply the induction hypothesis and then re-apply the same rule

in EA1.

3. Assume the derivation results from an application of (∆0-Ind.) with Γ :≡ Γ′,∀aB(a)

where B is a bounded formula. Then from the premises Γ′, B(0) and Γ′,¬B(a), B(a+1)

we apply the induction hypothesis to giving derivations of the same sequents in EA1.

Then by universal quantification and conjunction

EA1 ` Γ′, B(0) ∧ ∀a(B(a)→ B(a+ 1)). (3.13)

From the predicative induction rule in EA(I;O) we may show

EA(I;O) ` (B(0) ∧ ∀a(B(a)→ B(a+ 1))→ B(x).

Then as B is a bounded formula this sequent is a Σ1-formula. We apply (C-Ax) to yield,

for b not free in Γ′,

EA1 ` Γ′, (B(0) ∧ ∀a(B(a)→ B(a+ 1))→ B(b).

Applying a cut with (3.13) followed by universal quantification leaves the required result:

EA1 ` Γ′,∀aB(a).

2

This result gives as a corollary another proof of Proposition 3.3 since the elementary

functions are provably recursive in I∆0 + exp.
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3.3 An Infinitary Theory for EA1

It still remains to show that EA1 is indeed a conservation extension of EA(I;O) in terms

of its provably recursive functions. To this end we need to eliminate cuts from EA1

derivations. This is straightforward except where (C-Ax) is used since we would we need

to assume the original EA(I;O) derivation is cut-free. However this can be achieved in

the setting of EA∞(I;O). Hence we shall develop an infinitary theory for EA1 which via

a closure axiom incorporates derivations from EA∞(I;O). Then following the methods

of Chapter 2 we look to embed EA1 in this new infinitary theory and deduce that the

provably recursive functions of EA1 are at most the elementary functions.

Definition 3.7. The infinitary theory EA1
∞.

EA1
∞ is based upon the approach used for EA∞(I;O) in the previous chapter. The proof

gate carries an elementary tree-ordinal α and also a finite parameter d to measure height

written d, α. We may view the height of a derivation as the ‘composition’ d ◦ α. This

is because, other than its introduction in the closure axiom, α remains fixed in the rules

of inference whilst d increases. Hence a derivation in EA1
∞ is seen as one of height α

followed by one of height d.

As there is only one type of variable in EA1 we only require one natural number

declaration to the left of the proof gate from a single assumed domain of numbers. Thus

sequents in EA1
∞ take the form

m `d,αr Γ.

We read this as ‘given fixed natural number values≤ m from the output domain, the truth

of Γ can be established in (d ◦ α)-many steps using cuts on formulae whose rank is ≤ r.’

These sequents are defined inductively in the following.
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Logical Rules

(C-Ax) max(n0,m0) `d,α0 Γ
for any d, if in EA∞(I;O) we

already have n0;m0 `α0 Γ.

(L-Ax) m `d,αr Γ
for any d, α and r, if Γ

contains a true atom.

(∨)
m `di,αri

Γ, Ai

m `d,αr Γ, A0 ∨ A1

if di < d and ri ≤ r where i = 0 or 1.

(∧)
m `d0,αr0

Γ, A0 m `d1,αr1
Γ, A1

m `d,αr Γ, A0 ∧ A1

if d0, d1 < d and r0, r1 ≤ r.

(∀) {max(m, k) `dk,αr′ Γ, A(k)}k∈N
m `d,αr Γ,∀aA(a)

if for all k ∈ N, dk < d and r′ ≤ r.

(∃)
m d0,α k m `d1,αr1

Γ, A(k)

m `d,αr Γ,∃aA(a)
if d0 < d1 < d and r1 ≤ r.

(L-Cut)
m `d0,αr0

Γ,¬C m `d1,αr1
Γ, C

m `d,αr Γ
if d0, d1 < d and |C|, r0, r1 ≤ r.

(C-Cut)
m d0,α k k `d1,αr1

Γ

m `d,αr Γ
if d0, d1 < d and r1 ≤ r.

Computational Rules

(O-Ax) max(n0,m0) d,α k for any d, if k ≤ Bα(n0;m0).

(O-Cut)
m d0,α m′ m′ d1,α k

m d,α k
if d0, d1 ≤ d.
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Remarks

The (C-Ax) rule plays the same role as the corresponding rule inEA1 allowing derivations

from EA∞(I;O) to be brought in as axioms. Such derivations must be cut-free so that

EA1
∞ possesses cut-elimination. However we have no need for any restriction on the

complexity of the formulae in Γ. This is possible since our interest will ultimately be in

cut-free derivations of Σ1-sets. Following uses of (C-Ax), α remains fixed throughout

applications of other EA1
∞ rules.

Aside from the (C-Ax) rule we have essentially the same rules as EA∞(I;O). We may

now allow a finite number d to control the height of derivations involving these rules. This

is because there are no inductions in EA1 which must be embedded in EA1
∞ and hence

no diagonalisation across the parameter m.

The computation rules are also set up to layer on top of those in EA∞(I;O). We have an

axiom ensuring access to a computation of any numeral less than Bα(n0;m0) and a cut

rule enabling composition. Again the measure d is finite since we need not diagonalise.

Cut-elimination will involve only a finite increase in d thus the bounding function required

in EA1
∞ will only require finite compositions on output values.

3.4 Computations in EA1
∞

Recall the definition of the bounding function Bα(n;m) given in 2.11 on page 46. In

order to define a suitable bounding function for EA1
∞ we must consider finite iterations

of Bα(n;m).

Definition 3.8. For α ∈ ΩS and fixed d ∈ N the functions Bd,α : N→ N are defined by

recursion over d:
B0,α(m) := Bα(m;m),

Bd+1,α(m) := Bd,α(Bd,α(m)).
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From the definition we see Bd,α(m) iterates 2d-times, on both arguments, the function

Bα(m;m).

Corollary 3.9. Given α ∈ E(ω) and d ∈ N the function Bd,α : N→ N is elementary.

Proof.

In Lemma 2.12 of Chapter 2 we determined that Bα(n;m) is an elementary function in

n,m for any elementary tree-ordinal α. Hence the one place function, B0,α(m), is an

elementary function in m. If d ∈ N is fixed, Bd,α(m) is a finite number of compositions

of an elementary function. Therefore it is also an elementary function in m.

2

Lemma 3.10. For any α ∈ ΩS and d,m ∈ N, Bd,α(m) is strictly increasing in m and d.

Proof.

Recall the majorization properties for Bα(n;m) given in Lemma 2.13 on page 47. Since

Bα(n;m) is strictly increasing in m and increasing in n we find Bd,α(m) is strictly

increasing in m by a simple induction on d. Furthermore, Bα(n;m) is strictly positive

in m. Hence Bd,α(m) is strictly increasing in d, again using induction on d.

2

Lemma 3.11. Bounding for EA1
∞.

m d,α k ⇔ k ≤ Bd,α(m).

Proof.

We use induction over the height of the computation of k. If the computation is an (O-Ax)

then k ≤ Bα(n0;m0) where max(n0,m0) = m. Hence, as Bα(n0;m0) ≤ Bα(m;m) ≤

Bd,α(m) for any d by the previous lemma, the result follows. Else, the computation

results from (O-Cut) and the induction hypothesis applied to the premises of the rule
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gives k ≤ Bd0,α(m′) and m′ ≤ Bd1,α(m) where d0, d1 < d. Let d′ := max(d0, d1). Then

the lemma above immediately gives k ≤ Bd′,α(Bd′,α(m)) ≤ Bd,α(m).

For the right to left implication we use induction over d. If d = 0 we simply use (O-Ax)

as k ≤ B0,α(m) = Bα(m;m). If d = d0 + 1 then letting m′ := Bd0,α(m) we have

k ≤ Bd0,α(m′) and m′ ≤ Bd0,α(m). Applying the induction hypothesis allows the use of

the (O-Cut) rule to obtain the required result.

2

Lemma 3.12. Weakening for Computations. If we have the computation

m d,α k

and if m ≤ m′, k ≥ k′ and d ≤ d′, α[m] ⊆ α′[m] then for any γ ∈ ΩS then we also have

the computation

m′ d′,γ+α′ k′.

Proof.

We use induction over the height of the computation of k. Assume that the computation

is an (O-Ax). Hence k ≤ Bα(n0;m0) where max(n0,m0) = m. Then from the proof

of 2.15 we know k′ ≤ k ≤ Bα(n0;m0) ≤ Bα(m;m) ≤ Bγ+α′(m
′;m′). The result will

follow by another (O-Ax).

Now assume the computation results from an application of (O-Cut). We have premises

of the form

m d0,α m0 m0 
d1,α k.

We apply the induction hypothesis to obtain

m′ d0,γ+α′ m0 m0 
d1,γ+α′ k′.

Hence applying (O-Cut) again will give m′ d′,γ+α′ k′.
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2

Recall the definition of the height of term t notated by |t| in 2.16.

Lemma 3.13. For any term t(~a) in EA1 and any number m, if the value of the term upon

substituting mi ≤ m for each ai is the number k then in EA1
∞

m 0,ω·(|t|+1) k.

Proof.

Directly from the corresponding Lemma 2.17 in Chapter 2, k ≤ Bω·(|t|+1)(m;m). The

result then follows from (O-Ax).

2

3.5 Cut-Elimination for EA1
∞

The bulk of the work for the results in this section will follow the approach of the

corresponding results in Chapter 2 for EA∞(I;O) since the lemmas are essentially the

same. Indeed matters are made easier here since, except in the (C-Ax) rule, only the finite

measure d increases asEA1
∞ rules are applied. We deal with cases of (C-Ax) by appealing

to the analogous results for EA∞(I;O).

Lemma 3.14. Weakening for Logical Rules. If we have a derivation

m `d,αr Γ

and if m ≤ m′,Γ ⊆ Γ′ and d ≤ d′, α[m] ⊆ α′[m] then for any γ ∈ ΩS we also have the

derivation

m′ `d′,γ+α′

r Γ′.

Proof.

Using induction on the height of the derivation let us first assume that the sequent in
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question is an instance of (C-Ax). Then we have anEA∞(I;O) derivation of n0;m0 `α0 Γ

where max(n0,m0) = m. Applying weakening in EA∞(I;O) using Lemma 2.18 gives

m′;m′ `γ+α′

0 Γ′. But then by (C-Ax) in EA1
∞ we arrive at m′ `d

′,γ+α′

0 Γ′.

If the sequent is a logical axiom then the result is given immediately as another logical

axiom. The remaining cases are also straightforward. For each rule of EA1
∞ we apply the

induction hypothesis to the premises of the rule and look to re-apply the rule. Where we

have a computational sequent as a premise we appeal to computational weakening using

Lemma 3.12 above. For example consider a use of the existential rule. The premises in

this case would be of the form

m d0,α k m `d1,αr Γ, A(k)

where d0 < d1 < d. Using the induction hypothesis on the right and 3.12 on the left gives

m′ d0,γ+α′ k m′ `d1,γ+α′

r Γ′, A(k)

from which we just re-apply the rule with d0 < d1 < d′.

2

Lemma 3.15. Inversions.

m `d,αr Γ, A0 ∧ A1 ⇒ m `d,αr Γ, Ai where i = 0 or 1.

m `d,αr Γ,∀aA(a) ⇒ max(m, k) `d,αr Γ, A(k) for every k ∈ N.

Proof.

We use induction over the height of the derivation in both cases.

1. If the derivation is a (C-Ax) then we have a derivation in EA∞(I;O) of n0;m0 `α0
Γ, A0∧A1 for max(n0,m0) = m. Thus by applying conjunction inversion in EA∞(I;O)

we may use (C-Ax) again to provide a derivation in EA1
∞ of m `d,α0 Γ, Ai for i = 0 or

1. The (L-Ax) case is trivial. If the last rule applied were conjunction and A0 ∧ A1 is
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principal we apply the induction hypothesis to the premises and use weakening. All other

cases are straightforward by the induction hypothesis.

2. The (C-Ax) case follows similarly to that above by making use of the corresponding

universal inversion lemma (2.20) inEA∞(I;O). Ifm `d,αr Γ, ∀aA(a) is an instance of (L-

Ax) then clearly so is max(m, k) `d,αr Γ, A(k) for every k ∈ N. Now assume universal

quantification is the last rule applied where ∀aA(a) is the principal formula. We have

premises of the form max(m, k) `dk,α Γ,∀aA(a), A(k) for each k ∈ N where dk < d.

Applying the induction hypothesis and then weakening the bound dk to d provides the

required result. The remaining cases follow the usual pattern. For example consider an

application of the existential quantification rule from premises

m d0,α k′ m `d1,αr Γ, B(k′),∀aA(a)

where d0 < d1 < d. We require the induction hypothesis on the right and computational

weakening on the left to obtain

max(m, k) d0,α k′ max(m, k) `d1,αr Γ, B(k′), A(k)

for every k ∈ N. The result follows by re-applying the rule.

2

Lemma 3.16. False Atom. If C is atomic and true so that ¬C is false then

m `d,αr Γ,¬C ⇒ m `d,αr Γ.

Proof.

If the derivation of Γ,¬C is an instance of (C-Ax) then in EA∞(I;O) we have n0;m0 `α0
Γ,¬C for max(n0,m0) = m. By the false atom lemma for EA∞(I;O) (2.23) we obtain

n0;m0 `α0 Γ and the result follows by (C-Ax) again. For all other cases we may simply

follow the lines of the corresponding lemma for EA∞(I;O).
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2

Lemma 3.17. Cut-Rank Reduction. Assume in EA1
∞ we have

m `d,αr Γ0, C and m `d′,αr Γ1,¬C

where C is either an atom or of the form C0 ∨ C1 or ∃aC0(a) with |C|=r+1. Then

m `d′+d,αr Γ0,Γ1.

Proof.

The proof proceeds by induction over the height of the derivation of Γ0, C with cases

according to the last rule applied.

1. If m `d,αr Γ0, C is an instance of (C-Ax) then r = 0 and |C| = 1. Hence C must be

atomic. If C is false then the false atom lemma applies to give m `d,α0 Γ0 and the result

follows by weakening. Else we find C is true and thus ¬C is false so apply the false atom

lemma to the second assumption instead. This yields m `d
′,α

0 Γ1 and again the result

follows by weakening.

2. All the remaining cases follow the pattern of reasoning given in the corresponding

cut-rank reduction lemma for EA∞(I;O). Hence we shall only highlight two particular

cases.

i. Assume that the last rule applied to the derivation is universal quantification with

C a side formula. Then we have the premises max(m, k) `dk,α Γ′0, A(k), C for each

k ∈ N where dk < d. We apply weakening to the numerical declaration on the second

assumption of the lemma to obtain max(m, k) `d′,α Γ1,¬C. The induction hypothesis

applied to these two sequents gives max(m, k) `d′+dk,αr Γ′0, A(k),Γ1. We may then re-

apply universal quantification for the result as d′ + dk < d′ + d.

ii. Now assume that the final rule of application is existential quantification with C :≡

∃aC0(a) the principal formulae. The premises of such a rule take the form

m d0,α k m `d1,αr Γ0,∃aC0(a), C0(k)
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where d0 < d1 < d. Applying the induction hypothesis to the right-hand premise with

the second assumption of the lemma gives

m `d′+d1,αr Γ0,Γ1, C0(k). (3.14)

Meanwhile we may use universal inversion and weakening on the second assumption to

find

max(m, k) `d′,αr Γ0,Γ1,¬C0(k).

Using our bounding result and the computation of k in the left-hand premise of the ∃-rule

we see that m d0,α max(m, k). Thus by (C-Cut)

m `d′+d1,αr Γ0,Γ1,¬C0(k). (3.15)

Since |C0(k)| ≤ r we may apply (L-Cut) to (3.14) and (3.15) deducing as required

m `d′+d,αr Γ0,Γ1.

2

Theorem 3.18. Cut-Elimination.

m `d,αr+1 Γ ⇒ m `2d,α
r Γ

hence letting d′ := 2r(d) we find

m `d,αr Γ ⇒ m `d
′,α

0 Γ.

Proof.

The first part uses induction over the height of the derivation. Note that there is no (C-Ax)

case. The inductive steps are straightforward. We illustrate the most important case: an

application of (L-Cut) on cut-formula with rank r + 1. The premises will have the form

m `d0,αr+1 Γ, C m `d1,αr+1 Γ,¬C
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for d0, d1 < d and |C| = r + 1. We apply the induction hypothesis to obtain

m `2d0 ,α
r Γ, C m `2d1 ,α

r Γ,¬C.

For convenience we let d′ := max(d0, d1) and match up the height of the sequents using

weakening. We may now use the cut-rank reduction lemma (3.17) given above since one

of the sequents will have the required form. We are left with m `2d
′+1,α

r Γ. As d′ < d

implies 2d
′+1 ≤ 2d we use weakening to leave the required form.

The full cut-elimination result now follows by a simple induction on r.

2

3.6 Embedding of EA1

Theorem 3.19. Embedding of EA1. Assume that

EA1 ` Γ(a0, . . . , ak)

where all the free variables are displayed.

Then this derivation determines some α ∈ E(ω) and some d, r ∈ N such that, for all

m0, . . . ,mk, if m ≥ max(m0, . . . ,mk) then

m `d,αr Γ(m0, . . . ,mk).

Proof.

We use induction on the height of the EA1 proof. The (L-Ax) case is straightforward.

The inductive cases for disjunction, conjunction and cut follow easily from applying the

induction hypothesis and re-applying the appropriate rule in EA1
∞. Note that as there are

two premises to the rules for conjunction and cut we will require weakening to change α′
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and α′′ to α′ + α′′ in the proof heights so that they match before re-applying the rule. We

shall expand on three remaining cases.

1. (C-Ax). Let ~a := ~b,~c, ~d and assume Γ(~a) :≡ Γ′(~c), A(~d,~b) where A is a Σ1-formula

and the final rule of inference is (C-Ax). Then we know EA(I;O) ` A(~x;~b). We may

apply the embedding theorem of Chapter 2 on page 61 to obtain in EA∞(I;O)

n;m `ω·hr A(n0, . . . , nl,m0, . . . ,mj)

for some fixed h, r ∈ N where n ≥ max(n0, . . . , nl) and m ≥ max(m0, . . . ,mj).

Applying cut-elimination from 2.26 we obtain

n;m `α0 A(n0, . . . , nl,m0, . . . ,mj)

for α := 2r(ω · h). Now we are in a position to use the (C-Ax) rule of EA1
∞. It will give

max(n,m) `0,α
0 A(n0, . . . , nl,m0, . . . ,mj).

Finally, we use weakening for

m `0,α
0 Γ(m′0, . . . ,m

′
p, n0, . . . , nl,m0, . . . ,mj)

where m ≥ max(m′0, . . . ,m
′
p, n0, . . . , nl,m0, . . . ,mj).

2. (∀). The premise of the EA1 derivation will be of the form Γ′, A(b) for b not free in

Γ′. We apply the induction hypothesis for each possible assignment k to the free variable

b and obtain

max(m, k) `d′,αr Γ′, A(k)

for some fixed α ∈ E(ω) and d′, r ∈ N. Immediately applying universal quantification

in EA1
∞ gives for d := d′ + 1

m `d,αr Γ.

3. (∃). In this case we would have a premise such as Γ′, A(t(~b)). The variables ~b may

include any number of the variables ~a in Γ as well as other extraneous variables not
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amongst ~a. We apply the induction hypothesis assigning 0 to these extraneous variables

deducing

m `d0,α
′

r′ Γ′, A(t(~m)). (3.16)

Now assume that t(~m) has value k. We may show from (L-Ax), by induction over the

build-up of A,

m `d1,α
′

0 ¬A(t(~m)), A(k) (3.17)

for some finite d1 dependent on the complexity of A. Then

(L-Ax)

m `0,α′

0 t(~m) = k

(3.17) and Weakening

m `d1,α
′

0 t(~m) 6= k,¬A(t(~m)), A(k)
(L-Cut)

m `d1+1,α′

1 ¬A(t(~m)), A(k).

Now by one further cut with (3.16), letting r := max(r′, |A|) and d′ := max(d0, d1+1)+1

m `d′,α′r Γ′, A(k). (3.18)

Now put d := d′ + 1 and α := ω · (|t|+ 1) + α′ where |t| is the height of the term t.

[Lemma 3.13]
m 0,ω·(|t|+1) k

weakening
m 0,α k

(3.18)
m `d′,α′r Γ′, A(k)

weakening

m `d′,αr Γ′, A(k)
(∃)

m `d,αr Γ

2

3.7 EA1 Is Σ1 Conservative over EA(I ;O)

Lemma 3.20. Let ∆ be a set of Σ1-formulae. Assume that in EA1
∞ we have a derivation

m `d,α0 ∆.

Then if |t| is maximum of the heights of any terms t in ∆ and α′ := ω · (|t| + 1) + α we

find ∆ is true at Bd,α′(m).
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Proof.

The proof follows in the same manner as the corresponding result forEA∞(I;O) on page

65 using induction over the height of the derivation.

1. (C-Ax). If the derivation is a (C-Ax) then in EA∞(I;O) we know n0,m0 `α0 ∆ for

max(n0,m0) = m. By Lemma 2.29 we find ∆ is true at Bα′(n0;m0). The result follows

by persistence since Bα′(n0;m0) ≤ Bα′(m;m) = B0,α′(m) ≤ Bd,α′(m).

2. (L-Ax). This case is trivially satisfied.

3. (∨) and (∧). Given that d′ < d implies Bd′,α′(m) ≤ Bd,α′(m) these cases follow just

as in the proof of 2.29.

4. (∀). Since ∆ is Σ1 any universal quantifier must be a bounded quantifier. Let ∆ :≡

∆′,∀a(¬a ≤ t′ ∨ A(a)). Then our premises are of the form

{max(m, k) `dk,α0 ∆′,¬k ≤ t′ ∨ A(k)}k∈N

where dk < d. Inductively ∆′,¬k ≤ t′ ∨ A(k) is true at Bdk,α′(max(m, k)) for every

k ∈ N.

If ∀a(¬a ≤ t′ ∨ A(a)) is true, then as a bounded formula it is automatically true at

Bd,α′(m). Hence ∆ is true at Bd,α′(m).

Else ∀a(¬a ≤ t′ ∨ A(a)) is false. Then by the induction hypothesis there exists

some k ≤ t′ such that ∆ is true at Bdk,α′(max(m, k)). By 3.13 and 3.12 we find

k ≤ B0,ω·(|t′|+1)(m) ≤ Bdk,α′(m). Hence by persistence ∆ is true at

Bdk,α′(max(m, k)) ≤ Bdk,α′(max(m,Bdk,α′(m)) ≤ Bd,α′(m).

5. (∃). Assume that ∆ :≡ ∆′,∃aA(a) and we have premises

m d0,α k m `d1,α0 ∆′, A(k)

where d0 < d1 < d. Then inductively ∆′, A(k) is true at Bd1,α′(m). If ∆′ is true, then

by persistence it is true at Bd,α′(m). Hence ∆ is true at Bd,α′(m). Else A(k) is true
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at Bd1,α′(m) which implies that ∆ is true at max(k,Bd1,α′(m)). From the computation

of k in the premise of the rule we use weakening and the bounding lemma to find k ≤

Bd1,α′(m). Therefore ∆ is true at Bd1,α′(m) ≤ Bd,α′(m).

6. (C-Cut). If the last rule is a computational cut we have for d0, d1 < d the premises

m d0,α k k `d1,α0 ∆.

Let d′ := max(d0, d1). We apply the induction hypothesis to find that ∆ is true at

Bd1,α′(k) ≤ Bd′,α′(k). The computation of k informs us that k ≤ Bd0,α(m) ≤ Bd′,α′(m).

Hence ∆ is true at Bd′,α′(Bd′,α′(m)) ≤ Bd,α′(m).

2

Theorem 3.21.

ProvRec(EA1) ⊆ E3

Proof.

If the function f is provably recursive in EA1 with bounded computational formula Cf

then

EA1 ` ∀~a∃b∃c(Cf (~a, b, c)).

Universal inversion gives

EA1 ` ∃b∃c(Cf (~a, b, c)).

By embedding this proof with 3.19 we obtain in EA1
∞ for all assignments ~a := ~m and

some fixed α ∈ E(ω), d, r ∈ N

m `d,αr ∃b∃c(Cf (~m, b, c))

where m := max(~m). Then by cut-elimination 3.18 letting d′ := 2r(d) we obtain

m `d
′,α

0 ∃b∃c(Cf (~m, b, c)).
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Now we may apply Lemma 3.20 above to find ∃b∃c(Cf (~n, b, c)) is true atBd′,α′(m) where

α′ := ω · (|t| + 1) + α for some |t| ∈ N determined by the original EA1 derivation. As

Bd′,α′(m) is an elementary function in m by Corollary 3.9 the same argument applies as

in the proof of the corresponding result from Chapter 2.

2

Corollary 3.22.

ProvRec(EA1) = E3

Proof.

The previous result gives the left to right inclusion and Proposition 3.3 supplies the right

to left inclusion.

2

Corollary 3.23. EA1 is conservative over EA(I;O) for Σ1-formulae with free variables.

Proof.

Assume EA1 ` ∃~dC(~a, ~d) for a bounded formula C. Then by the results above there is

an elementary function f such that for all ~m there exist ~m′ ≤ f(~m) such that C(~m, ~m′)

is true.

Now define another elementary function f ′ which applied to ~m finds the least k such that

C(~m, (k)0, . . . , (k)l) is true. Then define a computational formula for f ′ as

Cf ′(~m, k) :≡ C(~m, (k)0, . . . , (k)l) ∧ ∀k′ < k¬C(~m, (k′)0, . . . , (k
′)l).

As f ′ is elementary EA(I;O) ` ∃bCf ′(~x; b) and thus by logic EA(I;O) ` ∃~dC(~x; ~d).

Note that the variables ~a from the EA1 derivation have become input constants ~x which

limits the conservativity result to Σ1-formulae with free variables in accordance with the

notion of provably recursive in EA(I;O).

2
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Chapter 4

EA1(I;O) and EA2

4.1 Introduction

We may now develop stronger arithmetic theories using the framework adopted in

previous chapters.

Definition 4.1. The theory EA1(I;O).

EA1(I;O) is an extension of the theory EA1 from Chapter 3. As the name suggests,

EA1(I;O) renews the two-sorted variable separation considered in Chapter 1. We re-

introduce the input constants, again denoted x, y, z, . . ., which were eliminated by (C-

Ax). Thus the language of EA1(I;O) is the same as EA(I;O). The definitions of terms

and atomic formulae in EA1 are correspondingly extended to incorporate the new input

constants. Naturally the quantification rules inEA1 still only apply to the output variables

a, b, c, . . . so that the inputs remain free constants. The only additional non-logical axiom

we add toEA1 in formingEA1(I;O) is the predicative induction axiom schema Γ, A(0)∧

∀a(A(a)→ A(a+ 1))→ A(x) for any formula A. Again we favour the rule formulation

which is derivable from the axiom:



Chapter 4. EA1(I;O) and EA2 96

The predicative induction rule is, for an arbitrary set of formulae Γ

(P.Ind.)
Γ, A(0) Γ,¬A(a), A(a+ 1)

Γ, A(x)
where a is not free in Γ.

If EA1(I;O) did not have the closure axiom (C-Ax) then the theory would look identical

to EA(I;O). However by defining EA1 as a stepping stone to EA1(I;O) we have

layered and thus restricted the use of (C-Ax). If we had attempted to define EA1(I;O) as

EA(I;O)+ (C-Ax) without careful stratification we would obtain a much stronger theory.

This point is demonstrated in the following chapter.

All of the derivations given in Chapter 1 may be carried out in EA1(I;O). We adopt

the two-sorted definition for provably recursive functions given in 1.15 on page 25

for EA1(I;O). Clearly any function provably recursive in EA1 will also be provably

recursive in EA1(I;O) once we invert the universally quantified ~a in Definition 3.2 at

inputs ~x. Hence ProvRec(EA1) ⊆ ProvRec(EA1(I;O)).

Definition 4.2. The theory EA2.

EA2 is now defined as a theory of closure overEA1(I;O) following exactly the approach

used in Chapter 3 to define EA1 from EA(I;O). Hence EA2 is a new theory with just

one type of variable, output variables, which has the usual logical axioms and rules for

disjunction, conjunction, quantification and cut. It has all the non-logical axioms for

equality, basic arithmetic and coding but no predicative induction. EA2 includes a closure

axiom which now incorporates derivations from EA1(I;O).

The Σ1-closure axiom of EA2 reads,

(C-Ax) EA2 ` Γ(~c), A(~a,~b) if EA1(I;O) ` A(~x;~b).
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whereA is a Σ1-formula, Γ is an arbitrary set of formulae, and where all the free variables

of Γ, A are indicated.

The numerical super-script in EA2 indicates the maximum possible number of nested

applications of (C-Ax) used in any derivation. Since EA2 has only one type of variable

we use the single-sorted definition for a function to be provably recursive in the same

way as we did for EA1 in 3.2 on page 72. Using 3.3 we immediately conclude

ProvRec(EA1(I;O)) ⊆ ProvRec(EA2).

4.2 Lower Bounds for Provably Recursive Functions

In this section we give lower bounds on the provably recursive functions of both

EA1(I;O) and EA2. Then in the following two sections we provide corresponding upper

bounds by developing appropriate infinitary theories.

Theorem 4.3. ProvRec(EA1(I;O)) is closed under a single primitive recursion from

functions in ProvRec(EA1).

That is, for k > 0 if the k-ary function g and the k + 2-ary function h are provably

recursive in EA1 then for inputs ~y := y1, . . . , yk and x the function f defined by the

primitive recursion

f(~y, 0) = g(~y) f(~y, x+ 1) = h(~y, x, f(~y, x))

is provably recursive in EA1(I;O).

Proof.

For clarity, and without loss of generality, let k be 1. Assume that we are given

computational formulae Cg and Ch for the functions g and h respectively. We look to

define a computational formula Cf for the function f . We shall compute f(e, a) = b

(where e, a are output variables which will later be replaced by inputs y1, x to adhere to



Chapter 4. EA1(I;O) and EA2 98

the definition of a provably recursive function in EA1(I;O)). We let c be the code for a

sequence 〈c0, . . . , ca〉. In this sequence each component cd codes a pair whose left inverse

gives the value of f(e, d) and whose right inverse gives the code for the computation of

f(e, d). Formally our definition of Cf reads

Cf (e, a, b, c) :≡ lh(c) = a+ 1 ∧ ∀d < a+ 1((c)d 6= 0)

∧l((c)a) = b ∧ Cg(e, l((c)0), r((c)0))

∧∀d < a(Ch(e, d, l((c)d), l((c)d+1), r((c)d+1))). (4.1)

Working in EA1(I;O) we prove the existence condition for f follows from showing

∃b∃cCf (e, a, b, c) is progressive in a. We argue in a natural deduction style with extensive

use of the coding axioms on page 14.

i. Assume that we are provided a b and a c such that Cg(e, b, c). Then let t = p(0, p(b, c)).

We now deduce Cf (e, 0, l((t)0), t) working through the five conjuncts in the definition

above.

Firstly l(t) = 0 so lh(t) = lh(l(t)) + 1 = lh(0) + 1 = 0 + 1. Secondly (t)0 = r(l0(t)) =

p(b, c) 6= 0 thus ∀d < 0 + 1((t)d 6= 0). The third conjunct is an equality axiom. The

fourth follows from Cg(e, b, c) as l((t)0) = b and r((t)0) = c. Finally ¬d < 0 holds thus

the last conjunct follows by weakening. Bringing in our assumption and quantifying we

have

EA1(I;O) ` ¬∀e∃b∃cCg(e, b, c),∃b∃cCf (e, 0, b, c). (4.2)

Since g is provably recursive in EA1 we have a derivation of ∀e∃b∃cCg(e, b, c) in

EA1(I;O). A cut with (4.2) leaves

EA1(I;O) ` ∃b∃cCf (e, 0, b, c). (4.3)

ii. Now assume that we have a b and c such that Cf (e, a, b, c) holds and a b′ and c′ such

that Ch(e, a, b, b′, c′). Let t be the term p(c, p(b′, c′)) in order to deduce Cf (e, a+ 1, b′, t).

Again there are five conjuncts to check.
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Firstly by our assumption for b and c we have lh(c) = a+ 1. Thus lh(t) = lh(l(t)) + 1 =

lh(c)+1 = a+2. Secondly if d < a+2 then either d < a+1 or d = a+1. In the former

case by the assumption for c we have (c)d 6= 0. Using Lemma 1.17 we deduce (t)d 6= 0.

In the latter case (t)a+1 = r(l0(t)) = r(t) = p(b′, c′) 6= 0. The third conjunct follows

from l((t)a+1) = l(p(b′, c′)) = b′. The fourth conjunct follows from the assumption

Cf (e, a, b, c) since it contains Cg(e, l((c)0), r((c)0)) and (c)0 = (t)0 by Lemma 1.17.

The last conjunct has two cases. Assuming d < a + 1 either d < a or d = a. If d < a

then by the assumption Cf (e, a, b, c) we have

Ch(e, d, l((c)d), l((c)d+1), r((c)d+1)).

Following Lemma 1.17 (c)d = (t)d and (c)d+1 = (t)d+1 and thus

Ch(e, d, l((t)d), l((t)d+1), r((t)d+1)).

On the other hand if d = a then the conjunct follows from the assumption Ch(e, a, b, b′, c′)

since l((t)a) = l((c)a) = b, l((t)a+1) = b′ and r((t)a+1) = c′.

Collating our assumptions yields

EA1(I;O) ` ¬Cf (e, a, b, c),¬Ch(e, a, b, b′, c′), Cf (e, a+ 1, b′, t)

from which applying quantifiers in the correct order leaves

EA1(I;O) ` ¬∃b∃cCf (e, a, b, c),¬∀e∀a∀b∃b′∃cCh(e, a, b, b′, c), ∃b∃cCf (e, a+ 1, b, c).

(4.4)

As h is provably recursive in EA1 we have a derivation of ∀e∀a∀b∃b′∃cCh(e, a, b, b′, c).

A cut with (4.4) gives

EA1(I;O) ` ¬∃b∃cCf (e, a, b, c),∃b∃cCf (e, a+ 1, b, c). (4.5)

We may now replace the output e by an input y1 and apply predicative induction to the

derivations (4.3) and (4.5) for

EA1(I;O) ` ∃b∃cCf (y1, x; b, c).
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This gives the existence condition for f to be provably recursive in EA1(I;O). The

uniqueness condition for f(e, a) can be easily shown to be progressive in a using the

definition of Cf (e, a, b, c) and the coding axioms. The base case will follow from the

uniqueness condition for g whilst the inductive step makes use of uniqueness for h.

2

Corollary 4.4. The super-exponential function, s(n), can be defined by the primitive

recursion s(0) = 1 and s(n+1) = 2s(n). As the exponential function is provably recursive

in EA1 we find from the previous theorem that s(x) is provably recursive in EA1(I;O).

The super-exponential function can be seen as a ‘backbone’ of Grzegorczyk’s class E4.

That is, for any f ∈ E4 and a fixed k ∈ N we have f(~n) ≤ sk(max(~n)) where s0(n) = n

and sk+1(n) = s(sk(n)) (cf. [43] or [51]). However in attempting to show that these

finite iterates are provably recursive in EA1(I;O) we again face the problem of input

substitution in two-sorted theories. In EA(I;O) this issue did not prevent closure under

composition of ProvRec(EA(I;O)) as ProvRec(EA(I;O)) = E3 and E3 is closed

under composition. Now in EA1(I;O), without input substitution we quickly reach a

barrier: ProvRec(EA1(I;O)) is not closed under composition. For example, we prove

in the next section of this chapter that s(s(x)) is not provably recursive. What we can do

is apply the Gentzen argument used in Lemma 1.23 on page 34 for EA(I;O) to show the

input x in the super-exponential function may be replaced by the exponential stack 2k(x)

for a fixed k ∈ N.

Fact 4.5.

Recall that for a fixed k ∈ N we denote the k-times iterate of 2x as 2k(x). We let E4
1

denote the class of functions computable in a number of steps bounded by s(2k(t(~n)))

for any fixed k ∈ N and any polynomial t. This class forms the first level of a proper

sub-hierarchy E4
i such that

⋃
i∈N E4

i = E4. We refer the reader to [11], [27] or [28] for

verification.
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Theorem 4.6.

ProvRec(EA1(I;O)) ⊇ E4
1 .

Proof.

Assume f ∈ E4
1 . Then we may assume there is a program P for an unlimited register

machineM which computes f(~x) in a number of steps bounded by s(2k(t(~x))) for a fixed

k ∈ N and polynomial t. Recall the proof of Theorem 1.24 in Chapter 1. We showed that

there is suitable bounded computational formula CM(~x; d, b, c) such that c codes d-many

steps of the computation by M of f(~x) = b. Moreover, we proved ∃b∃cCM(~x; d, b, c)

is progressive in d. Working in EA(I;O) we may apply Lemma 1.23 with k := 1 and

t := y to deduce

EA(I;O) ` ∃b∃cCM(~x, 2y; b, c).

This is, by Definition 1.21,

EA(I;O) ` ∃b0(∃c0E(y; b0, c0) ∧ ∃b∃cCM(~x; b0, b, c)).

By logic this formula is provably equivalent to a Σ1-formula. Moving to the theory

EA1(I;O), using (C-Ax) and then universal quantification we may deduce

EA1(I;O) ` ∀~a∀e∃b0(∃c0E(e, b0, c
′) ∧ ∃b∃cCM(~a, b0, b, c)). (4.6)

Now let 2e = b0 be shorthand for ∃c′E(e, b0, c
′). Likewise put s(d) = b1 :≡ ∃cS(d, b1, c)

where ∃cS(d, b1, c) is a computational formula defining the super-exponential function

using a sequence code c. S may be formally defined by following the proof of Theorem

4.3. The same theorem will show

EA1(I;O) ` s(0) = 1 and EA1(I;O) ` s(d) = b1 ∧ 2b1 = b0 → s(d+ 1) = b0.

(4.7)

We now claim

EA1(I;O) ` Progd∃b1(s(d) = b1 ∧ ∃b∃cCM(~x; b1, b, c)). (4.8)
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i. We know Progd∃b∃cCM(~x; d, b, c) from 1.24. Hence ∃b∃cCM(~x; 1, b, c). Since

s(0) = 1 is also provable, (4.7), the base case follows by conjunction and existential

quantification at 1.

ii. Assume we are given a b1 such that s(d) = b1 and ∃b∃cCM(~x; b1, b, c). For this b1 we

invert the ∀e in (4.6) at b1 and invert the ∀~a at ~x. We therefore find there is a b0 such that

2b1 = b0 and ∃b∃cCM(~x; b0, b, c). Since s(d) = b1 and 2b1 = b0 we deduce s(d+ 1) = b0

from (4.7). Thus by conjunction and existential quantification with witness b0 we obtain

∃b1(s(d+ 1) = b1 ∧ ∃b∃cCM(~x; b1, b, c)).

This gives the inductive step for (4.8).

Using (4.8) we may apply Lemma 1.23 from Chapter 1 to conclude

EA1(I;O) ` ∃b1(s(2k(t(~x))) = b1 ∧ ∃b∃cCM(~x; b1, b, c)).

As f(~x) is computable by P in a number of steps bounded by 2k(t(~x)), this sequent

(which is provably equivalent to a Σ1-formula) gives the existence condition for f to be

provably recursive inEA1(I;O). The uniqueness condition follows by applying the same

argument.

2

In order to capture all of the Grzegorczyk’s class E4 we must move to those functions

provably recursive in EA2. We shall use a characterization of the Grzegorczyk Hierarchy

above E3 proved by Axt in [3].

Fact 4.7. (Axt [3]) For i ≥ 3, the Grzegorczyk class E i+1 is the smallest class of functions

containing E i which is closed under composition and closed under a single primitive

recursion.
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Theorem 4.8.

ProvRec(EA2) ⊇ E4.

Proof.

Assume f ∈ E4. We use induction over the definition of f following Fact 4.7 above.

1. Firstly it may be that f ∈ E3. Then f is provably recursive in EA2 since by 3.22

E3 = ProvRec(EA1) and ProvRec(EA1) ⊂ ProvRec(EA2).

2. Assume that f is defined by composition where the auxiliary functions are all members

of E4 and thus, by the induction hypothesis, already provably recursive in EA2. Then

as Theorem 3.4 applies equally well to EA2 we know ProvRec(EA2) is closed under

composition. Hence f is provably recursive in EA2.

3. Finally f may be defined by a primitive recursion. The auxiliary functions are all

elementary and thus provably recursive in EA1 by 3.22. But then following Theorem 4.3

we see f is provably recursive in EA1(I;O) and thus it is also provably recursive in EA2.

2
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4.3 Upper Bounds for Provably Recursive Functions

In this section we shall prove the converse inclusions for Theorem 4.6 and Theorem 4.8

above. Following the methods in Chapters 2 and 3 we find upper bounds on the provably

recursive functions of EA1(I;O) and EA2 by developing appropriate infinitary theories.

Aside from the definitions of the appropriate bounding functions and the proofs of their

required properties, the proofs of structural rules, cut-elimination results and embeddings

are all essentially the same as the corresponding results in Chapters 2 and 3.

4.3.1 An Infinitary Theory for EA1(I;O)

Definition 4.9. The infinitary theory EA1
∞(I;O).

EA1
∞(I;O) extends the theory EA1

∞ from Chapter 3. We shall now re-introduce the

assumption of an input domain of numbers alongside the output domain. Hence to the

left of the proof gate, as in EA∞(I;O), we have two natural number ‘declarations’. The

finite measure d from EA1
∞ now becomes a structured tree-ordinal α1 whose assignment

in rules of inference is controlled by the input parameter n. This allows us to embed

inductions in EA1(I;O) into the infinitary theory. Hence proof height is now considered

as the ‘composition’ of two ordinals, α1◦α0 or ‘α0 then α1’. Otherwise we have precisely

the same set of rules as EA1
∞. A sequent in EA1

∞(I;O) takes the form

n;m `α1,α0
r Γ.

This is intended to be read as ‘given fixed natural number parameters ≤ n from the input

domain and values ≤ m from the output domain, the truth of Γ (in the standard model)

can be established in (α1 ◦ α0)-many steps using cuts on formulae whose rank is ≤ r’.

These sequents are defined inductively in the following.
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Logical Rules

(C-Ax) n; max(n0,m0) `α1,α0

0 Γ
for any α1, n, if in EA∞(I;O)

we already have n0;m0 `α0
0 Γ.

(L-Ax) n;m `α1,α0
r Γ

for any α1, α0 and r, if Γ

contains a true atom.

(∨)
n;m `βi,α0

ri
Γ, Ai

n;m `α1,α0
r Γ, A0 ∨ A1

if βi ∈ α1[n] and ri ≤ r

where i = 0 or 1.

(∧)
n;m `β0,α0

r0
Γ, A0 n;m `β1,α0

r1
Γ, A1

n;m `α1,α0
r Γ, A0 ∧ A1

if β0, β1 ∈ α1[n] and r0, r1 ≤ r.

(∀) {n; max(m, k) `βk,α0

r′ Γ, A(k)}k∈N
n;m `α1,α0

r Γ, ∀aA(a)

if for all k ∈ N, βk ∈ α1[n]

and r′ ≤ r.

(∃)
n;m β0,α0 k n;m `β1,α0

r1
Γ, A(k)

n;m `α1,α0
r Γ, ∃aA(a)

if β0 ∈ β1[n], β1 ∈ α1[n]

and r1 ≤ r.

(L-Cut)
n;m `β0,α0

r0
Γ,¬C n;m `β1,α0

r1
Γ, C

n;m `α1,α0
r Γ

if β0, β1 ∈ α1[n]

and |C|, r0, r1 ≤ r.

(C-Cut)
n;m β0,α0 k n; k `β1,α0

r1
Γ

n;m `α1,α0
r Γ

if β0, β1 ∈ α1[n] and r1 ≤ r.
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Computational Rules

(O-Ax) n; max(n0,m0) α1,α0 k for any α1 and n, if k ≤ Bα0(n0;m0).

(O-Cut)
n;m β0,α0 m′ n;m′ β1,α0 k

n;m α1,α0 k
if β0, β1 ∈ α1[n].

The relationship between EA1
∞(I;O) and EA1

∞ may be illuminated by the following

result.

Lemma 4.10. If in EA1
∞(I;O) we have n;m `α1,α0

r Γ then in EA1
∞ we find m `d,α0

r Γ

where d := Gα1(n).

Proof.

We use induction over the derivation of Γ in EA1
∞(I;O) with a sub-induction proving the

same correspondence for the computational sequents. The argument is straightforward

since in the axioms α1 is arbitrary and for any rule of inference with β ∈ α1[n] we deduce

Gβ(n) < Gα1(n) and may re-apply the same rule in EA1
∞.

2

Note similarly to Lemma 2.9 that the converse is not necessarily true. For example n+1 <

Gω+1(n) but n+ 1 /∈ ω + 1[n].

Recall the definition of the bounding function Bd,α(m) used for EA1
∞ (3.8). To give a

bounding function for EA1(I;O) we simply include an additional numerical argument n

and extend the inductive definition to include a limit stage by diagonalising over n.

Definition 4.11. For α1, α0 ∈ ΩS the functionsBα1,α0 : N2 → N are defined by recursion

over α1:

B0,α0(n;m) := B0,α0(m),

Bα1+1,α0(n;m) := Bα1,α0(n;Bα1,α0(n;m)),

Bλ,α0(n;m) := Bλn,α0(n;m).
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Note from the definition that B0,α0(n;m) is defined in terms of a function on α0 and m

only.

Corollary 4.12.

Bα1,α0(n;m) = Bd,α0(m) where d := Gα1(n).

Hence given α1, α0 ∈ E(ω) the function Bα1,α0 : N2 → N is in Grzegorczyk’s class E4.

Proof.

The first claim follows by a simple induction over α1. Using the standard notion for

iterates of a function it is easily seen from the definition of Bd,α0(m) that we may also

write Bα1,α0(n;m) = Bk
0,α0

(m) where k := 2Gα1 (n).

Recall that for any α0 ∈ E(ω) the function B0,α0(m) = Bα0(m;m) is an elementary

function in m, (2.12). Then, as a function of d and m, we find the iterate Bd,α0(m) is

in E4 (cf. [51]). From the first claim it follows that for any α1 ∈ E(ω), the function

Bα1,α0(n;m) also belongs to E4 by composition.

2

We may in fact refine the position of Bα1,α0 in Grzegorczyk’s class E4. Recall we denote

by E4
1 the class of functions computable in a number of steps bounded by s(2k(t(~n)))

for some fixed k ∈ N and polynomial t. We shall make use of the two place super-

exponential function s(n,m) defined as s(0,m) := m and s(n + 1,m) := 2s(n,m). This

function is often written with the notation 2n(m) but we shall avoid having arguments in

sub-scripts for clarity. A simple induction shows s(n,m) ≤ s(n+m).

Lemma 4.13. For any α1, α0 ∈ E(ω) the function Bα1,α0 : N2 → N is in E4
1 .

Proof.

By the comments above it will suffice to show that for a given α1, α0 ∈ E(ω), the number

of steps required to compute Bα1,α0(n;m) is bounded by s(2k(n),m) for some fixed

k ∈ N.
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As B0,α0(m) is elementary there exists some fixed l ∈ N such that both the value of the

function and the number of steps required to compute the function are bounded by 2l(m).

By the the preceding corollary we know Bα1,α0(n;m) is given by iterating B0,α0(m)

r-many times where r := 2Gα1 (n) is another elementary function (in n).

Thus a computation of Bα1,α0(n;m) requires a number of steps given by

2l(m)

+ 2l(2l(m))

+ 2l
(
2l(m) + 2l(2l(m))

)
+ . . .

where there are r-many terms in the sum. We may write this sum as
∑r

i=1 ai where

a1 = 2l(m) and for 1 < j ≤ r we have aj = 2l
(∑j−1

i=1 ai
)
.

We prove by induction on j that
∑j

i=1 ai ≤ 2j(l+1)(m). The base case is trivial. For the

inductive step, noting that 2l(m) + 2l(m) ≤ 2l+1(m), we have

j+1∑
i=1

ai ≤ 2j(l+1)(m) + 2l(2j(l+1)(m)) ≤ 2j(l+1)+l(m) + 2j(l+1)+l(m) ≤ 2(j+1)(l+1)(m).

Therefore the number of steps to compute Bα1,α0(n;m) is bounded by 2r(l+1)(m) which

may also be written as s(r(l + 1),m). Since r := 2Gα1 (n) we know r ≤ 2k′(n) for

a fixed k′ ∈ N. A straightforward induction gives 2k′(n) · (l + 1) ≤ 2k′+l(n) and thus

Bα1,α0(n;m) is computed in a number of steps bounded by s(2k(n),m) where k := k′+l.

2

Lemma 4.14. For α1, γ1 ∈ ΩS and m,n ∈ N:

1. If β ∈ α1[n] then Bβ,α0(n;m) < Bβ+1,α0(n;m) ≤ Bα1,α0(n;m).

2. Bα1,α0(n;m) is strictly increasing in m and increasing in n, strictly so if α1 is infinite.

3. Bα1,α0(n;m) ≤ Bβ1+α1,α0(n;m).
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Proof.

Since Bα1,α0(n;m) is just Bd,α0(n;m) for d := Gα1(n) these results follow immediately

from Lemma 2.13 and Lemma 3.10.

2

Lemma 4.15. Bounding for EA1
∞(I;O).

n;m α1,α0 k ⇔ k ≤ Bα1,α0(n;m).

Proof.

For the left to right implication we know n;m α1,α0 k implies that in EA1
∞ we have a

computation m d,α0 k for d := Gα1(n) from the method of Lemma 4.10. Hence we

simply apply the bounding result for EA1
∞, Lemma 3.11, and then use Corollary 4.12.

The right to left implication uses induction on α1 in exactly the same manner as the

bounding result for EA∞(I;O) given in Lemma 2.14.

2

Lemma 4.16. Weakening for Computations. If we have the computation

n;m α1,α0 k

and if n ≤ n′,m ≤ m′, k ≥ k′ and α1[n] ⊆ α′1[n], α0[m] ⊆ α′0[m] then for any γ, δ ∈ ΩS

then we also have the computation

n′;m′ γ+α′1,δ+α
′
0 k′.

Proof.

We use induction over the height of the computation. If the computation is an instance

of (O-Ax) then k ≤ Bα0(n0;m0) where max(n0,m0) = m. Thus by the corresponding

result in Chapter 2 we find k′ ≤ Bδ+α′0
(m′;m′). Since either α′1 = 0 or 0 ∈ α′1[n] it
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follows from 4.14 above that k′ ≤ Bγ+α′1,δ+α
′
0
(n′;m′). Hence the result follows by the

previous lemma. Now consider the case where the last rule applied is (O-Cut). Then after

applying the induction hypothesis, since β ∈ α1[n] ⇒ γ + β ∈ γ + α′1[n′] we re-apply

(O-Cut) to give the required result.

2

Lemma 4.17. For any term t(~x;~a) in EA1(I;O) and any numbers m and n, if the value

of the term upon substituting mi ≤ m for each ai and ni ≤ n for each xi is the number k

we have in EA1
∞(I;O) the computation

n;m ω·(|t|+1),0 k.

Proof.

We show Bα1,0(n;m) = Bα1(n;m) whence the result will follow by Lemma 2.17 and

Lemma 2.14 in Chapter 2 and Lemma 4.15 above.

When α1 = 0 we find B0,0(n;m) = B0(m) = B0(m;m) = p(m) = B0(n;m). Now

assume α1 is a successor. Then using the induction hypothesis

Bα1+1,0(n;m) = Bα1,0(n;Bα1,0(n;m)) = Bα1(n;Bα1(n;m)) = Bα1+1(n;m).

Similarly when α1 is a limit, Bλ,0(n;m) = Bλn,0(n;m) = Bλn(n;m) = Bλ(n;m).

2

We now derive the usual structural rules for EA1
∞(I;O) in order to prove cut-elimination.

Lemma 4.18. Weakening for Logical Rules. If

n;m `α1,α0 Γ

and if n ≤ n′,m ≤ m′,Γ ⊆ Γ′ and α1[n] ⊆ α′1[n], α0[m] ⊆ α′0[m] then for any γ, δ ∈ ΩS

n′;m′ `γ+α′1,δ+α
′
0 Γ′.
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Lemma 4.19. Inversions.

n;m `α1,α0
r Γ, A0 ∧ A1 ⇒ n;m `α1,α0

r Γ, Ai where i = 0 or 1.

n;m `α1,α0
r Γ,∀aA(a) ⇒ n; max(m, k) `α1,α0

r Γ, A(k) for every k ∈ N.

Proofs.

In each case we use induction over the height of the derivation. Where the derivation

is an instance (C-Ax) we use the argument presented in the proofs of the corresponding

Lemma 3.14 and Lemma 3.15 for EA1
∞ in Chapter 3. Then in each of the other cases the

reasoning matches that used in Chapter 2 for EA∞(I;O). That is, letting α be α1 and

suppressing the mention of α0 we follow exactly the proofs of Lemma 2.18, Lemma 2.19

and Lemma 2.20.

2

Theorem 4.20. Cut-Elimination. Letting δ1 := 2r(α1),

n;m `α1,α0
r Γ ⇒ n;m `δ1,α0

0 Γ

Proof.

Firstly we need to prove a false-atom lemma and a cut-rank reduction lemma. As above,

we use induction of the height of the derivation with the corresponding results for EA1
∞

in Chapter 3 sufficing for cases of (C-Ax) and the corresponding results for EA∞(I;O)

in Chapter 2 used in all other cases. Then cut-reduction and cut-elimination follow using

the proofs for EA∞(I;O) in Chapter 2.

2
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Theorem 4.21. Embedding of EA1(I;O). Assume

EA1(I;O) ` Γ(x0, . . . , xl; a0, . . . , ak)

where all the free variables are displayed.

Then this derivation determines some α0 ∈ E(ω) and some d, r ∈ N such that, for all

n0, . . . , nl and all m0, . . . ,mk, if n ≥ max(n0, . . . , nl) and m ≥ max(m0, . . . ,mk) then

n;m `ω·d,α0
r Γ(n0, . . . , nl;m0, . . . ,mk).

Proof.

We use induction over the height of derivation of Γ in EA1(I;O).

1. (C-Ax). Assume the derivation is an instance of the Σ1-closure axiom where

Γ(~x;~a) :≡ Γ′(~x;~c), A(~d,~b)

for ~a = ~c, ~d,~b and Σ1-formula A. Thus in EA(I;O) we have a proof of A(~y;~b) and hence

by the embedding theorem on page 61 we deduce in EA∞(I;O) that

n′,m′ `ω·hr A(~n′; ~m′)

for some fixed h, r ∈ N where n′ ≥ max(~n′) and m′ ≥ max( ~m′). Then applying cut-

elimination followed by the (C-Ax) rule in EA1
∞(I;O) we find

0; max(n′,m′) `0,α0

0 A(~n′, ~m′)

for some α0 ∈ E(ω). Applying weakening we find

n;m `0,α0

0 Γ′(~n; ~m′′), A(~n′, ~m′)

where n ≥ ~n and m ≥ max( ~m′′, ~n′, ~m′), which is what we required.

The cases for a logical axiom, disjunction, conjunction and universal quantification are

all straightforward following the corresponding cases in the proof of 2.27 in Chapter 2.

We illustrate the two remaining cases.
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2. (∃). Assume the deduction in EA1(I;O) results from applying the existential rule to

Γ′, A(t(~y;~b)) where ~y;~b may contain other variables in addition to any of those in ~x;~a.

By the induction hypothesis, assigning 0 to any extraneous variables

n;m `ω·d0,α0

r′ Γ′, A(t(~n; ~m)). (4.9)

where n ≥ ~n and m ≥ ~m and α0 ∈ E(ω). Letting k be the value of t(~n; ~m) we deduce

from logic axioms and cut, for some d1 ∈ N,

n;m `ω·d1,α0

1 ¬A(t(~n; ~m)), A(k).

Letting r := max(r′, |A|, 1) and d′ := max(d0, d1) + 1, a cut with (4.9) gives

n;m `ω·d′,α0
r Γ′, A(k).

Lemma 4.16 and Lemma 4.17 yield the computation n;m ω·(|t|+1),α0 k. Hence, putting

d′′ := max(d′, |t| + 1) + 1 and d := d′′ + 1, we have ω · (|t| + 1) ∈ ω · d′′[n] and

ω · d′′ ∈ ω · d[n]. We apply the existential rule and find

n;m `ω·d,α0
r Γ′, ∃aA(a).

3. (P-Ind.). Assume Γ :≡ Γ′, A(x) where the final rule of inference applied in EA1(I;O)

is predicative induction. Applying the induction hypothesis to the premises gives

n;m `ω·d0,β0r0
Γ′, A(0)

and for every m′ ∈ N

n; max(m,m′) `ω·d1,β′0r1
Γ′,¬A(m′), A(m′ + 1).

Firstly we apply weakening (4.18) to replace β0 and β′0 by α0 := β0+β′0. Then by k-many

applications of (L-Cut) on the formulae A(0), A(1), . . . , A(k − 1) we find for any k

n; max(m, k) `ω·d′+k,α0
r Γ, A(k). (4.10)
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where d′ := max(d0, d1) and r := max(r0, r1, |A|).

Using Lemma 4.17 and Lemma 4.16 we have n;m ω,α0 k. Thus by the (C-Cut) rule,

with d := d′ + 1

n;m `ω·d,α0
r Γ, A(k)

provided k ≤ n which is what we required.

2

Lemma 4.22. Assume that in EA∞(I;O), for a Σ1-set ∆, we have a derivation

n;m `α1,α0

0 ∆.

Further assume that |t| is the maximum of the heights of any term t in ∆ and let α′i =

ω · (|t|+ 1) + αi for i = 0, 1. Then ∆ is true at Bα′1,α
′
0
(n;m).

Proof.

Using induction on the height of the derivation, the (C-Ax) case follows the reasoning

given for the (C-Ax) in Lemma 3.20. Then each of the other cases are given by replicating

the proof of the corresponding result for EA∞(I;O) with α1 in place of α and α0

suppressed.

2

Theorem 4.23.

ProvRec(EA1(I;O)) = E4
1

Proof.

For the left to right inclusion we follow the method in the corresponding results 2.30 and

3.21 for EA(I;O) and EA1 respectively. Given a provably recursive function we take the

Σ1 existence proof and embed it into EA1
∞(I;O). Then by the results above, for some

α1, α0 ∈ E(ω), we find the function Bα1,α0(n;m) witnesses the existential quantifiers.
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Thus f is elementarily definable from Bα1,α0(n;m) which by Lemma 4.13 is a function

in E4
1 . Therefore f ∈ E4

1 . The right to left inclusion is Theorem 4.6.

2

4.3.2 An Infinitary Theory for EA2

We shall conclude this chapter by using another infinitary system in order to prove

ProvRec(EA2) ⊆ E4.

Definition 4.24. The infinitary theory EA1
∞.

EA2
∞ is defined analogously to EA1

∞ from Definition 3.7 on page 79. EA2
∞ will now

employ a finite parameter d and two tree-ordinals, α1 and α0, to measure height. The

height is again considered as a ‘composition’ (d ◦ (α1 ◦ α0)) or ‘α0 then α1 then d’. We

shall write ~α for α1, α0. Sequents in EA1
∞ take the form

m `d,~αr Γ

where m is a natural number declaration from the output domain. These sequents are

inductively defined by the rules (C-Ax), (L-Ax), ∨, ∧, ∀, ∃, (L-Cut) and (C-Cut) with

computations rules again called (O-Ax) and (O-Cut). We shall only detail the definitions

for the rules (C-Ax) and (O-Ax). In each of the other rules the parameters ~α act passively

with the proof height determined by d similarly to Definition 3.7. The (C-Ax) rule now

brings in derivations from EA1
∞(I;O) whilst (O-Ax) asserts a computation of a numeral

bounded by the functions Bα1,α0 used in EA∞(I;O).
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(C-Ax) max(n0,m0) `d,~α0 Γ
for any d, if in EA1

∞(I;O) we already

have a derivation of n0;m0 `~α0 Γ.

(O-Ax) max(n0,m0) d,~α k for any d, if k ≤ Bα1,α0(n0;m0).

Definition 4.25. For ~α ∈ ΩS and d ∈ N the functions Bd,~α : N → N are defined by

recursion over d:
B0,~α(m) := B~α(m;m),

Bd+1,~α(m) := Bd,~α(Bd,~α(m)).

We immediately deduce from Lemma 4.12 that for a fixed d ∈ N and ~α ∈ E(ω), the

function Bd,~α(m) is in E4.

Lemma 4.26. For any ~α ∈ ΩS and d,m ∈ N, Bd,~α(m) is strictly increasing in m and d.

Proof.

These majorization properties are provided by simple inductions over d using Lemma

4.14.

2

Lemma 4.27. Bounding for EA2
∞. For any ~α ∈ ΩS

m d,~α k ⇔ k ≤ Bd,~α(m).

Proof.

Then the bounding result follows using the same argument as Lemma 3.11 from Chapter

3 with ~α in place of α.
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2

Lemma 4.28. Weakening for Computations. If we have

m d,~α k

and if m ≤ m′, k ≥ k′ and d ≤ d′, α1[m] ⊆ α′1[m], α0[m] ⊆ α′0[m] then for any

γ, δ ∈ ΩS then we also have the computation

m′ d′, ~α′ k′

where ~α′ = γ + α′1, δ + α′0.

Proof.

Using induction, if the computation is an (O-Ax) the result follows using Lemma 4.16.

Otherwise the computation results from an application of (O-Cut). Then we simply apply

the induction hypothesis and re-apply the rule.

2

Similarly using Lemma 4.17 we may deduce a bounding result for the values of terms. If

the value of t when applied to ~m ≤ m is k then m 0,~α k where ~α := ω · (|t|+ 1), 0.

It is now a matter of routine to show EA2
∞ possesses cut-elimination by giving proofs of

weakening, inversions and cut-rank reduction. All of these results are verified analogously

to the proofs in Chapter 3 with ~α in place of α. The base cases involving (C-Ax) now

appeal to the corresponding results for EA1
∞(I;O) given earlier in this chapter.

Theorem 4.29. Embedding of EA2. Assume

EA2 ` Γ(a0, . . . , ak)

where all the free variables are displayed. Then this derivation determines some α1, α0 ∈

E(ω) and some d, r ∈ N such that, for all m0, . . . ,mk, if m ≥ max(m0, . . . ,mk) then

m `d,~αr Γ(m0, . . . ,mk).
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Proof.

We use induction over the proof of Γ in EA2. The cases for logical axioms, disjunction,

conjunction, universal quantification and cut are all straightforward following the method

in 3.19. We shall provide more detail on the remaining two cases.

1. (C-Ax). Where Γ(~a) :≡ Γ′(~c), A(~d,~b) for a Σ1-formula A and the last rule is the

closure axiom we have EA1(I;O) ` A(~y;~b). Then, by the embedding theorem (4.21)

and cut-elimination (4.20) for EA1
∞(I;O), we obtain for α1, α0 ∈ E(ω)

n;m `~α0 A(n0, . . . , nl,m0, . . . ,mj).

The result follows by applying (C-Ax) in EA2
∞ and then weakening.

2. (∃). Assume Γ :≡ Γ′, A(t(~b)) and the final rule of inference is existential quantification

with witness t. Inductively we obtain

m `d0, ~α′r′ Γ′, A(t(~m))

for ~α′ := α′1, α
′
0 ∈ E(ω). Assuming k is the value of t(~m) and putting r := max(r′, |A|),

we have by logic axioms and cuts

m `d1, ~α′r Γ′, A(k) (4.11)

for some d1 ∈ N. Letting |t| be the height of the term t, we have a computation of k given

by

m 0,ω·(|t|+1),0 k.

Hence by computational weakening

m 0,~α k (4.12)

where ~α := ω · (|t|+ 1) +α′1, α
′
0. We also use weakening to change α′1, α

′
0 to ~α in (4.11).

Finally, with d := d1 + 1 we may apply existential quantification using (4.12) to leave

m `d,~αr Γ.
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2

Lemma 4.30. Let ∆ be a set of Σ1-formulae. Assume that in EA2
∞

m `d,~α0 ∆.

Then letting |t| be the maximum of the heights of any terms t in ∆ and α′i := ω·(|t|+1)+αi

for i = 0, 1 we find ∆ is true at Bd, ~α′(m).

Proof.

We follow the proof of the analogous result for EA1
∞ given by Lemma 3.20.

2

Theorem 4.31.

ProvRec(EA2) = E4

Proof.

The right to left inclusion is already proved by Theorem 4.8. The left to right inclusion

uses the same argument as before except now the witnesses for the existential formula are

given by Bd,~α(m) which, for ~α ∈ E(ω) and fixed d ∈ N, is a function in E4.

2
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Chapter 5

The Hierarchy EAk for k ∈ N

5.1 Basic Definitions

We have two principles by which a given weak arithmetic base theory T with one type

of variable may be extended. Firstly adding input constants to form a two-sorted theory

T (I;O) incorporating a predicative induction rule. Secondly defining a new one sorted

theory T ′ by interpreting the input constants in T (I;O) as proper variables when they

occur in a Σ1-formula via the (C-Ax) rule. This chapter presents a hierarchy of theories

built up from alternating these two principles. The overall closure under finite applications

of such principles gives a characterization of primitive recursive arithmetic.

Definition 5.1.

Let EA(I;O) be denoted EA0(I;O). Then for any natural number k > 0 the theories

EAk and EAk(I;O) are generated inductively.

EAk is a one-sorted theory with the usual rules of inference for first order logic with

equality and the arithmetic axioms laid out on page 13. EAk has no induction rule. We

add one non-logical axiom schema:
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The Σ1-closure axiom of EAk is

(C-Ax) EAk ` Γ(~c), A(~a,~b) if EAk−1(I;O) ` A(~x;~b).

whereA is a Σ1-formula, Γ is an arbitrary set of formulae, and where all the free variables

of Γ, A are indicated.

EAk(I;O) is then defined as the two sorted extension of EAk. That is, we add an infinite

supply of input constants x, y, z, x0, x1, . . . as symbols of the language along with the

predicative induction rule:

The predicative induction rule is, for an arbitrary set of formulae Γ

(P.Ind.)
Γ, A(0) Γ,¬A(a), A(a+ 1)

Γ, A(x)
where a is not free in Γ.

5.2 Lower Bounds for Provably Recursive Functions

Theorem 5.2. For each natural number k > 0

ProvRec(EAk) ⊇ Ek+2.

Proof.

We use induction over k. If k := 1 then we use Proposition 3.3 in Chapter 3. Now assume

the result holds for k. Then using Fact 4.7, for any function f ∈ Ek+3 there are three

possibilities for its definition. We use a sub-induction over the three cases.

1. f ∈ Ek+2. Then f is provably recursive in EAk by the induction hypothesis for k. As

ProvRec(EAk) ⊆ ProvRec(EAk+1) we see f is provably recursive in EAk+1.
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2. Now assume f is defined by composition where the auxiliary functions gi are in Ek+3.

By the sub-induction hypothesis we have gi ∈ ProvRec(EAk+1). Then we may use

Theorem 3.4 to show ProvRec(EAk+1) is closed under composition and hence, f ∈

ProvRec(EAk+1).

3. Finally it may be the case that f ∈ Ek+3 is defined by a primitive recursion using

auxiliary functions gi ∈ Ek+2. Using the main induction hypothesis gi ∈ ProvRec(EAk).

Then using Theorem 4.3 we may show f ∈ ProvRec(EAk(I;O)) and thus we obtain

f ∈ ProvRec(EAk+1).

2

Remarks

We note that the previous theorem may also be proved using the relationship between

bounded arithmetic and EA1 illustrated by Proposition 3.6. Let fk for k ∈ N be some

suitable diagonal function for the Grzegorczyk Hierarchy where f2 is elementary. For

example one may take the finite levels of the Fast-Growing Hierarchy defined in Appendix

B. Then the provably recursive functions of I∆0 plus the axiom “fk+2 is total” are exactly

Ek+3. This result is given in [12] where it is attributed to A. Wilkie. The function f2

is provably recursive in EA1 and, inductively, Theorem 4.3 yields that fk+2 is provably

recursive in EAk+1. Following the approach in the proof of 3.6 we may embed I∆0+

“fk+2 is total” into EAk+1. Hence ProvRec(EAk) ⊇ Ek+2.

5.3 Infinitary Theories for EAk

To provide matching upper bounds on the provably recursive functions of EAk we must

define suitable infinitary theories. We first give a definition of the intended bounding

functions these infinitary theories will use. In what follows let ~α = αk−1, . . . , α0 for any

natural number k > 0.
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Definition 5.3. Recall the definition of Bα0(n;m) given in 2.11. For ~α ∈ ΩS and k > 0,

the functions Bαk,~α : N2 → N are defined by recursion on αk:

B0,~α(n;m) := B~α(m;m),

Bαk+1,~α(n;m) := Bαk,~α(n;Bαk,~α(n;m)),

Bλ,~α(n;m) := Bλn,~α(n;m).

For d ∈ N we also define the functions Bd,~α : N→ N by recursion on d:

B0,~α(m) := B~α(m;m),

Bd+1,~α(m) := Bd,~α(Bd,~α(m)).

We may easily verify, by an induction on αk, that Bαk,~α(n;m) = Bd,~α(m) where

d := Gαk(n).

Lemma 5.4. If ~α ∈ E(ω) and k > 0 then

1. For a fixed d ∈ N we have Bd,~α ∈ Ek+2,

2. For αk ∈ E(ω) we have Bαk,~α ∈ Ek+3.

Proof.

We use induction over k. When k := 1 we know Bd,~α ∈ E3 by 3.9 and Bα1,~α ∈ E4 by

4.12.

Now, assuming the result for k, it is easy to see that Bd,αk,~α is defined by composition

using Bαk,~α ∈ Ek+3. Hence it is also a function in Ek+3.

From above, Bαk+1,αk,~α(n;m) is equal to Bd,αk,~α(m) where d := Gαk+1
(n). Since

Gαk+1
(n) is always elementary for αk+1 ∈ E(ω) we may define Bαk+1,αk,~α by a primitive

recursion whose auxiliary functions lie in Ek+3. We immediately conclude, as required,

Bαk+1,αk,~α ∈ Ek+4.

2
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Definition 5.5.

The theories EAk∞ and EAk∞(I;O) for any natural number k > 0 are generated

inductively by generalizing the definitions given in Chapter 3 and Chapter 4.

Let EA∞(I;O) be denoted EA0
∞(I;O). Sequents in EAk∞(I;O) take the form

n;m `αk,~αr Γ.

The rules of inference for (C-Ax) and (O-Ax) are given below. The other rules are

standard with the conclusions being assigned a height αk, ~α provided β belongs to αk[n]

whilst ~α remains fixed.

(C-Ax) n; max(n0,m0) `αk,~α0 Γ
for any αk and n, if in EAk−1

∞ (I;O)

we already have n0;m0 `~α0 Γ.

(O-Ax) n; max(n0,m0) αk,~α m′ for any αk and n, if m′ ≤ B~α(n0;m0).

The theory EA1
∞ is defined in Chapter 3. The theories EAk+1

∞ for k > 0 are defined

similarly. That is, they are the same system as EAk+1
∞ (I;O) but without the input

parameter n and using a finite measure d in place of the tree-ordinal αk+1.

Theorem 5.6. For each natural number k > 0

ProvRec(EAk) = Ek+2.

Proof.

Using the infinitary theory EAk∞ we follow the methods laid out in Chapter 3, where

k := 1, and Chapter 4, where k := 2. We may prove an embedding ofEAk intoEAk∞ and

find witnesses for the provable Σ1-formulae of EAk now given by the functions Bd,~α(m).

Since these functions lie in Ek+2 by Lemma 5.4, we find ProvRec(EAk) ⊆ Ek+2. The

reverse inclusion is Theorem 5.2.

2



Chapter 5. The Hierarchy EAk for k ∈ N 125

5.4 The Theory EA≺ω

Definition 5.7. EA≺ω is defined as the two-sorted theory which extends EA(I;O) with

the following Σ1-closure axiom schema:

(C-Ax) EA≺ω ` Γ(~c), A(~a,~b) if EA≺ω ` A(~x;~b).

whereA is a Σ1-formula, Γ is an arbitrary set of formulae, and where all the free variables

of Γ, A are indicated.

Thus EA≺ω is closed under the two principals of predicative induction and Σ1-closure.

It is easily seen that EA≺ω is closed under Σ1-induction. For any Σ1-formula A(a) which

is progressive in a, predicative induction gives A(x). Then Σ1-closure and quantification

yield ∀aA(a).

Theorem 5.8.

ProvRec(EA≺ω) = PRIM.

Proof.

Working from left to right if f is provably recursive in EA≺ω then by parsing the finite

proof of the existence condition we will observe a finite number of appeals to (C-Ax) and

(P.Ind.). Thus the proof may be replicated in EAk for some k ∈ N and by 5.6 we deduce

f ∈ Ek+2 ⊆ PRIM .

For the right to left inclusion note that if f ∈ PRIM then for some k ∈ N we have

f ∈ Ek+2. Then by 5.6 f is provably recursive in EAk and hence provably recursive in

EA≺ω.

2
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Appendix

A. Derivations of Basic Results

In the following lemmas Γ is an arbitrary set of formulae.

Lemma A.1. Generalized law of excluded middle. For any formula A

EA(I;O) ` Γ,¬A,A.

Proof.

We use induction over the build up of the formula A. We only need consider the atomic

case s = t and the inductive steps (∨) and (∃) due to the symmetry of the calculus and

free use of exchange. If A :≡ s = t then the result is an instance of excluded middle. For

the inductive step A :≡ A0 ∨ A1 we have

[IH]
Γ,¬A0, A0

[IH]
Γ,¬A1, A1 (∧)

Γ,¬A0 ∧ ¬A1, A0, A1 (∨)
Γ,¬A0 ∧ ¬A1, A0 ∨ A1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ,¬A,A.

Finally when A :≡ ∃a(A0(a)) we have

[IH]
Γ,¬A0(a), A0(a)

(∃)
Γ,¬A0(a),∃a(A0(a))

(∀)
Γ,∀a(¬A0(a)),∃a(A0(a)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ,¬A,A.
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2

Henceforth we use the lemma above as an axiom denoted by (L-Ax).

Lemma A.2. Conjunction inversion. For any formulae A0 and A1,

EA(I;O) ` Γ, A0 ∧ A1 ⇒ EA(I;O) ` Γ, Ai

where i = 0 or 1.

Proof.

Without loss of generality let i = 0. Assume that we have a derivation of Γ, A0∧A1, then

[L-Ax]
Γ,¬A1,¬A0, A0 (∨)

Γ, A0,¬A0 ∨ ¬A1. . . . . . . . . . . . . . . . . . . . . . . .
Γ, A0,¬(A0 ∧ A1)

[Assumption]
Γ, A0, A0,∧A1 (Cut)

Γ, A0.

2

Lemma A.3. Disjunction inversion. For any formulae A0 and A1,

EA(I;O) ` Γ, A0 ∨ A1 ⇒ EA(I;O) ` Γ, A0, A1.

Proof.

Assume we have a derivation of Γ, A0 ∨ A1, then

[L-Ax]
Γ, A1,¬A0, A0

[L-Ax]
Γ, A0,¬A1, A1 (∧)

Γ, A0, A1,¬A0 ∧ ¬A1. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Γ, A0, A1,¬(A0 ∨ A1)

[Assumption]
Γ, A0, A1, A0 ∨ A1 (Cut)

Γ, A0, A1.

2

Lemma A.4. Universal quantifier inversion. For any formulae A,

EA(I;O) ` Γ,∀aA(a) ⇒ EA(I;O) ` Γ, A(t)

where t is any term.
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Proof.

Assuming a derivation of Γ,∀aA(a) we deduce

[L-Ax]
Γ,¬A(t), A(t)

(∃)
Γ,∃a(¬A(a)), A(t). . . . . . . . . . . . . . . . . . . . . . . . .
Γ,¬∀a(A(a)), A(t)

[Assumption]
Γ,∀aA(a)

(Cut)
Γ, A(t).

2

We use inversions in proof-trees as derived rules in their own right with the notations

(∧-inv), (∨-inv) and (∀-inv) respectively. They may be used to give more liberal equality

and arithmetic axioms such as Γ, s 6= t, t 6= w,w = s. We still denote such sequents as

[E-Ax] or [Ax].

Lemma A.5. Symmetry of equality. For any terms s and t,

EA(I;O) ` Γ, s 6= t, t = s.

Proof.

[E-Ax]
Γ, s 6= t, t 6= t, t = s

[E-Ax]
Γ, t = t

(Cut)
Γ, s 6= t, t = s.

2

Lemma A.6. Transitivity of equality. For any terms s, t and w,

EA(I;O) ` Γ, s 6= t, t 6= w, s = w.

Proof.

[E-Ax]
Γ, s 6= t, t 6= w,w = s

[Lemma A.5]
Γ, w 6= s, s = w

(Cut)
Γ, s 6= t, t 6= w, s = w.
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2

Lemma A.7. Generalized law of equality. For any terms s, t and formula A,

EA(I;O) ` Γ, s 6= t,¬A(s), A(t).

Proof.

We use induction over the build up of the formula A(t). By symmetry we only need

consider the atomic casesw = t, t = w and the inductive steps (∨) and (∃). IfA :≡ w = t

then the result is an instance of transitivity of equality given above. Now let A :≡ t = w.

We have

[E-Ax]
Γ, w 6= s, s 6= t, t = w

[Lemma A.5]
Γ, s 6= w,w = s

(Cut)
Γ, s 6= t, s 6= w, t = w.

If A(t) :≡ A0(t) ∨ A1(t) we may deduce

[IH]
Γ, s 6= t,¬A0(s), A0(t)

[IH]
Γ, s 6= t,¬A1(s), A1(t)

(∧)
Γ, s 6= t,¬A0(s) ∧ ¬A1(s), A0(t), A1(t)

(∨)
Γ, s 6= t,¬A0(s) ∧ ¬A1(s), A0(t) ∨ A1(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ, s 6= t,¬A(s), A(t).

Lastly if A(t) :≡ ∃a(A0(a, t)) we have

[IH]
Γ, s 6= t,¬A0(a, s), A0(a, t)

(∃)
Γ, s 6= t,¬A0(a, s),∃a(A0(a, t))

(∀)
Γ, s 6= t, ∀a(¬A0(a, s)), ∃a(A0(a, t)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ, s 6= t,¬A(s), A(t).

2

Lemma A.8. Substitution. For any terms s and t,

EA(I;O) ` Γ, s = t and EA(I;O) ` Γ, A(s) ⇒ EA(I;O) ` Γ, A(t).
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Proof.

[Assumption]
Γ, s = t

[Lemma A.7]
Γ, s 6= t,¬A(s), A(t)

(Cut)
Γ,¬A(s), A(t)

[Assumption]
Γ, A(s)

(Cut)
Γ, A(t)

2

Lemma A.9. Cases. For any term t, if a is not free in Γ,

EA(I;O) ` Γ, A(0) and EA(I;O) ` Γ, A(a+ 1) ⇒ EA(I;O) ` Γ, A(t).

Proof.

Firstly we have

[Assumption]
Γ, A(0)

[Lemma A.7]
Γ, t 6= 0,¬A(0), A(t)

(Cut)
Γ, t 6= 0, A(t).

Secondly

[Assumption]
Γ, A(a+ 1)

[Lemma A.7]
Γ, a+ 1 6= t,¬A(a+ 1), A(t)

(Cut)
Γ, a+ 1 6= t, A(t)

(∀)
Γ, ∀a(a+ 1 6= t), A(t).

Forming the conjunction of the two derivations above we obtain

Γ, t 6= 0 ∧ ∀a(a+ 1 6= t), A(t)

[Ax (1.3)]
Γ, t 6= 0 ∨ (t ···−1) + 1 = t

(∨-inv)
Γ, t 6= 0, (t ···−1) + 1 = t

(∃)
Γ, t 6= 0,∃a(a+ 1 = t)

(∨)
Γ, t 6= 0 ∨ ∃a(a+ 1 = t).

(Cut)
Γ, A(t).
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2

We use the leaf abbreviation [E-Ax] to refer to instances of Lemma A.5, Lemma A.6 or

Lemma A.7. We use Lemma A.8 and Lemma A.9 as derived rules within proof-trees

adopting the notation (Sub.) or (Cases) respectively.

Lemma A.10. In EA(I;O) we may prove the universal closures of:

1. a ≤ a.

2. a ≤ 0→ a = 0.

3. a ≤ b+ 1→ a ≤ b ∨ a = b+ 1.

4. a ≤ b→ a ≤ b+ 1.

5. a+ 1 ≤ b→ a ≤ b.

6. a ≤ b→ a+ 1 ≤ b+ 1.

7. a ≤ b ∧ a′ ≤ b′ → a+ a′ ≤ b+ b′.

8. a ≤ b ∧ a′ ≤ b′ → a · a′ ≤ b · b′.

9. ¬0 < a.

10. a < a+ 1.

11. a < b→ a+ 1 ≤ b.

12. a < b→ a+ 1 < b+ 1.

13. a < b→ a < b+ 1.

14. a < b+ 1→ a < b ∨ a = b.

Proofs.

1. [Ax (1.6)]
a+ 0 = a

(∃)
∃c(a+ c = a). . . . . . . . . . . . . . . . . . .

a ≤ a.
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2. Firstly

[L-Ax]
a 6= 0, a = 0

[Ax (1.6)]
a+ 0 = a

(Sub.)
a+ 0 6= 0, a = 0.

Secondly we have

[Ax (1.1)]
(a+ c) + 1 6= 0, a = 0

[Ax (1.7)]
a+ (c+ 1) = (a+ c) + 1

(Sub.)
a+ (c+ 1) 6= 0, a = 0.

Applying the cases lemma (A.9) to these derivations gives

a+ c 6= 0, a = 0
(∀)

∀c(a+ c 6= 0), a = 0
(∨)

∀c(a+ c 6= 0) ∨ a = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a ≤ 0→ a = 0.

3. Following the lines of the deduction above for part 2

[L-Ax]
a 6= b+ 1, a = b+ 1

[Ax (1.6)]
a+ 0 = a

(Sub.)
a+ 0 6= b+ 1, a = b+ 1.

The second derivation is

[Ax (1.1)]
(a+ c) + 1 6= b+ 1, a+ c = b

(∃)
(a+ c) + 1 6= b+ 1,∃c(a+ c = b)

[Ax (1.7)]
a+ (c+ 1) = (a+ c) + 1

(Sub.)
a+ (c+ 1) 6= b+ 1, ∃c(a+ c = b).

Applying cases we obtain

a+ c 6= b+ 1,∃c(a+ c = b), a = b+ 1
(∀)

∀c(a+ c 6= b+ 1),∃c(a+ c = b), a = b+ 1
(∨)

∀c(a+ c 6= b+ 1),∃c(a+ c = b) ∨ a = b+ 1
(∨)

∀c(a+ c 6= b+ 1) ∨ (∃c(a+ c = b) ∨ a = b+ 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a ≤ b+ 1→ a ≤ b ∨ a = b+ 1.
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4.
[E-Ax]

a+ c 6= b, (a+ c) + 1 = b+ 1

[Ax (1.7)]
a+ (c+ 1) = (a+ c) + 1

(Sub.)
a+ c 6= b, a+ (c+ 1) = b+ 1

(∃)
a+ c 6= b,∃c(a+ c = b+ 1)

(∀)
∀c(a+ c 6= b),∃c(a+ c = b+ 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a ≤ b→ a ≤ b+ 1.

5. From the equality axiom

(a+ 1) + c 6= b, (a+ 1) + c = b

we use associativity of addition (1.14), to deduce by substitution

(a+ 1) + c 6= b, a+ (1 + c) = b+ 1.

The result follows by existential quantification on the right with witness 1 + c and then

universal quantification over the remaining c.

6. Along similar lines to part 5 we use the equality axiom

a+ c 6= b, (a+ c) + 1 = b+ 1

and then both associativity (1.13) and commutativity (1.14) of addition to deduce by

substitutions

a+ c 6= b, (a+ 1) + c = b+ 1.

Then we apply existential quantification on the right with witness c and universal

quantification over the remaining c.

7. This time we start with the equality

a+ c 6= b, a′ + c′ 6= b′, (a+ c) + (a′ + c′) = b+ b′.

The associativity and commutativity axioms will give

a+ c 6= b, a′ + c′ 6= b′, (a+ a′) + (c+ c′) = b+ b′.
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An existential quantification at c + c′ followed by two universal quantifications, over c

and c′, complete the derivation.

8. Like the last three parts but with the equality

a+ c 6= b, a′ + c′ 6= b′, (a · c) + (a′ · c′) = b · b′.

This time we make repeated appeals to the distributivity of addition over multiplication

(1.15) and (1.16) as well as associativity and commutativity of addition until we reach

a+ c 6= b, a′ + c′ 6= b′, (a · a) + ((a · c′) + ((a′ · c) + (c · c′))) = b · b′.

The existential witness for the inequality will now be the term (a · c′) + ((a′ · c) + (c · c′)).

9. We have ¬a ≤ 0, a = 0 using part 2. Written another way this is ¬(a ≤ 0 ∧ a 6= 0)

which by the definition of < is just ¬0 < a.

10. Firstly, parts 1 and 4 give a ≤ a + 1. Secondly, using equality and substitutions on

axiom (1.10) we may show a 6= a + 1, 0 = 0 + 1 which by a cut with (1.1) is a 6= a + 1.

Hence by conjunction a ≤ a+ 1 ∧ a 6= a+ 1, that is a < a+ 1.

11. We easily deduce a+0 6= b, a = b from [L-Ax] and (1.6). Furthermore, we have by [L-

Ax], associativity of addition (1.13) and commutativity of addition (1.14) that a+(c+1) 6=

b, (a + 1) + c = b. Hence by (∃), a + (c + 1) 6= b, a + 1 ≤ b. Using the cases rule on

these two derivations leaves a + c 6= b, a = b, a + 1 ≤ b which is a < b→ a + 1 ≤ b by

a universal quantification over c and logic.

12. From part 6, ¬a ≤ b, a + 1 ≤ b + 1 and from axiom (1.2), a + 1 6= b + 1, a = b.

Forming the conjunct ¬a ≤ b, a = b, a+1 ≤ b+1∧a+1 6= b+1 and using the definition

of < we have shown a < b→ a+ 1 < b+ 1.

13. Using the equality axiom b + (c + 1) 6= b, (b + (c + 1)) ···−b = b ···−b with substitution

instances of axiom (1.10) gives b + (c + 1) 6= b, c + 1 = 0 from which we cut with

c + 1 6= 0 from axiom (1.1). Further substitutions using associativity and commutativity



Appendix 135

of addition yields (b + 1) + c 6= b which allows a cut with the equality axiom a 6=

b + 1, a + c 6= b, (b + 1) + c = b. We now have a 6= b + 1, a + c 6= b so by universal

quantification ¬a ≤ b, a 6= b + 1. Forming a conjunction with an instance of part 4,

¬a ≤ b, a ≤ b + 1, will give ¬a ≤ b, a < b + 1. The result follows by weakening since

¬a ≤ b, a = b, a < b+ 1 is just ¬a < b, a < b+ 1.

14. By part 3 we find ¬a ≤ b + 1, a ≤ b, a = b + 1. Forming a conjunct with the axiom

a 6= b, a = b gives ¬a ≤ b + 1, a = b + 1, a ≤ b ∧ a 6= b, a = b. This is exactly

a < b+ 1→ a < b ∨ a = b.

2

B. Sub-Recursive Hierarchies

The definitions and facts we give here are taken from [43] and [51] where further details

and proofs may be found.

Definition B.11. Let ~n := n1, . . . , nk ∈ N. The initial functions z, s, u : Nk → N are

defined as

z(~n) := 0,

s(~n) := n1 + 1,

ui(~n) := ni, for each i ≤ k.

Definition B.12. Given the j-ary function h and the k-ary functions g1, . . . , gj we may

define a new function f : Nk → N by the scheme of composition as

f(~n) := h(g1(~n), . . . , gj(~n)).

Definition B.13. Given the k + 2-ary function h and the k-ary function g we may define

a new function f : Nk+1 → N by the scheme of primitive recursion as
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 f(0, ~n) := g(~n),

f(m+ 1, ~n) := h(m,~n, f(m,~n).

Furthermore, we say f is defined by bounded recursion if for some previous defined

k + 1-ary function p
f(0, ~n) := g(~n),

f(m+ 1, ~n) := h(m,~n, f(m,~n),

f(m,~n) ≤ p(m,~n).

Definition B.14. Given the k + 1-ary function g, and the binary functions addition and

multiplication, we may define a new function f : Nk+1 → N by bounded sum as

f(m,~n) := Σi≤mg(i, ~n).

or by bounded product as

f(m,~n) := Πi≤mg(i, ~n).

Definition B.15. The class of primitive recursive functions, PRIM , is defined as the

smallest class of functions which contains the initial functions and is closed under

composition and primitive recursion.

Definition B.16. (Csillag [17], Kalmar [32]) The class of elementary functions, E , is

defined as the smallest class of functions which contains the initial functions, the addition

function, the recursive difference function and is closed under formation of bounded sums

and products.

Definition B.17. For i ∈ N let Ei be a sequence of primitive recursive functions defined

by:

E0(n,m) := n+m,

E1(n) := n2 + 2,

Ei+2(0) := 2,

Ei+2(n+ 1) := Ei+1(Ei+2(n)).
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It can be seen easily that the functions Ei are monotonically increasing in their numerical

input and also in their numerical index. Furthermore, if we denote by Ek
i the k-times

iterate of Ei, we have that Ek
i (n) ≤ Ei+1(n+ k) (cf. [51]).

Definition B.18. (Grzegorczyk [29]) The function class E0 is defined as the smallest class

of functions which contains the initial functions and is closed under composition and

bounded recursion. The function classes E i+1 for any i ≥ 0 are defined similarly except

the function Ei is added to the list of initial functions.

These classes form the Finite Grzegorczyk Hierarchy, E0, E1, . . . , E i, . . . where i ∈ N.

Facts B.19. The proofs of the following results regarding the Grzegorczyk Hierarchy may

be found in [51].

1.
⋃
i∈N E i = PRIM.

2. E3 = E , the elementary functions.

3. E0 ⊂ E1 ⊂ . . . ⊂ E i ⊂ E i+1 ⊂ . . . .

4. f(~n) ∈ E0 ⇒ f(~n) ≤ nj + c for some c ∈ N and j ≤ k.

5. f(~n) ∈ E1 ⇒ f(~n) ≤ nk · ck + . . . n0 · c0 + c for some c, c0, . . . , ck ∈ N.

6. f(~n) ∈ E2 ⇒ f(~n) ≤ p(~n) where p is some polynomial in ~n.

7. f(~n) ∈ E3 ⇒ f(~n) ≤ 2m(~n) for some m ∈ N

where 20(~n) := max(~n) and 2m+1(~n) := 22m(~n).

8. f(~n) ∈ E i+1 ⇒ f(~n) ≤ Em
i (max(~n)) for some m ∈ N.

9. If f(~n) ∈ E i then fixed iterates of f belong to the same class by composition whereas

the full iteration f ′(m,~n) := fm(~n) lies in the next class E i+1.

10. If f(~n) is defined by primitive recursion using functions g, h ∈ E i then f ∈ E i+1.

Definition B.20. Let f be any k-ary computable function and let C be any recursively

enumerable class of functions. We say f is computable in time belonging to C if there
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is a k-ary function sf ∈ C such that sf (~n) gives the number of steps required by a

deterministic Turing machine to compute f on inputs ~n. Likewise we may define the

notion f is computable in space belonging to C.

Fact B.21. (Cobham [15], Meyer and McCreight [40], Meyer [41]) Let i ≥ 3 and let f

be any total function. Then the following are equivalent

1. f belongs to the Grzegorczyk class E i.

2. f is computable in time belonging to E i.

3. f is computable in space belonging to E i.

Hence E i forms a complexity class with respect to time and space.

It is straightforward to extend the Grzegorczyk Hierarchy using hierarchies of functions

defined by recursion over tree-ordinals. We give the definitions and basic properties of

the Fast-Growing Hierarchy and the Slow-Growing Hierarchy then state the relationship

between them and the provably recursive functions of Peano Arithmetic. Further details

may be found in [19], [43] or [51] .

Definition B.22. For α ∈ ΩS the Fast-Growing Hierarchies of functions Fα : N → N

and Bα : N→ N are defined by the recursions

F0(n) := n+ 1,

Fα+1(n) := F n+1
α (n),

Fλ(n) := Fλn(n),

and
B0(n) := n+ 1,

Bα+1(n) := Bα(Bα(n)),

Bλ(n) := Bλn(n).
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Definition B.23. For α ∈ ΩS the Slow-Growing Hierarchy of functions Gα : N → N

are defined by the recursion

G0(n) = 0,

Gα+1(n) = Gα(n) + 1,

Gλ(n) = Gλn(n).

Facts B.24. (Fairtlough and Wainer [19]) For all α ∈ ΩS

1. Gα is increasing and strictly so when α is infinite. Fα and Bα are strictly increasing

provided n 6= 0.

2. If β ∈ α[n] then Fβ(n) < Fα(n), Bβ(n) < Bα(n) and Gβ(n) < Gα(n).

3. By parts 1 and 2, the hierarchies Fα, Bα and Gα form a majorization hierarchy on ΩS.

I.e., the functions are strictly increasing (except the constant functions Gα(n) = α when

α is finite) and each function at level α eventually dominates the corresponding function

at level β for β ≺ α.

4. For α 6= 0 and n > 1, Gα(n) < Bα(n) < Fα(n) < Bω·α(n).

For any total function f we let E(f) denote the functions elementary in f . That is, E(f)

is the smallest class containing the initial functions, the addition function, the recursive

difference function, the function f and is closed under formation of bounded sums and

products.

Definition B.25. (Löb and Wainer [37], [38] and Wainer [61]) For 3 � α � ε0 the

Extended Grzegorczyk Hierarchy is defined as

1. If α := β + 1 then Eα := E(Fβ).

2. If α is a limit ordinal then Eα :=
⋃

3≤β≺α Eβ

For finite α we see Eα corresponds to the Grzegorczyk Hierarchy at and above the

elementary functions. Furthermore Eω = PRIM and Eε0 corresponds to the provably

recursive functions of Peano Arithmetic. For the fast-growing Bα functions we find
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1.
⋃
α≺ω·iE(Bα) = E i+2

2.
⋃
α≺ω2 E(Bα) = PRIM

3.
⋃
α≺ε0 E(Bα) = ProvRec(PA).

Proofs of these results may be found in [19].

The slow-growing functions Gα are much slower than Fα or Bα. Indeed
⋃
α≺ε0 E(Gα) =

E3, the elementary functions. By the hierarchy comparison results of Girard [26] and later

Cichon and Wainer [10], Wainer [62], we find that

1.
⋃
α≺φ(i,0)E(Gα) = E i+2 for i > 0.

2.
⋃
α≺φ(ω,0)E(Gα) = PRIM .

3.
⋃
α≺ε∗0

E(Gα) = ProvRec(PA).

where φ is the function defined by the Veblen Hierarchy and ε∗0 is a suitable tree-ordinal

representation of the Bachmann-Howard ordinal (cf. [19]). Thus, following Arai [1], [2]

and Schmerl [52], the Bachmann-Howard ordinal may be seen as the slow-growing or

pointwise ordinal of Peano Arithmetic.
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