1,758 research outputs found

    The effects of noise on binocular rivalry waves: a stochastic neural field model

    Get PDF
    We analyse the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how multiplicative noise in the activity variables leads to a diffusive–like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. The multiplicative noise also renormalizes the mean speed of the wave. We use our analysis to calculate the first passage time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation leads to quenched disorder in the neural fields during propagation of a wave

    Prä- und postnatale Entwicklung topographischer Transformationen im Gehirn

    Get PDF
    This dissertation connects two independent fields of theoretical neuroscience: on the one hand, the self-organization of topographic connectivity patterns, and on the other hand, invariant object recognition, that is the recognition of objects independently of their various possible retinal representations (for example due to translations or scalings). The topographic representation is used in the presented approach, as a coordinate system, which then allows for the implementation of invariance transformations. Hence this study shows, that it is possible that the brain self-organizes before birth, so that it is able to invariantly recognize objects immediately after birth. Besides the core hypothesis that links prenatal work with object recognition, advancements in both fields themselves are also presented. In the beginning of the thesis, a novel analytically solvable probabilistic generative model for topographic maps is introduced. And at the end of the thesis, a model that integrates classical feature-based ideas with the normalization-based approach is presented. This bilinear model makes use of sparseness as well as slowness to implement "optimal" topographic representations. It is therefore a good candidate for hierarchical processing in the brain and for future research.Die vorliegende Arbeit verbindet zwei bisher unabhängig untersuchte Gebiete der theoretischen Neurowissenschaften: zum Einen die vorgeburtliche Selbstorganisation topographischer Verbindungsstrukturen und zum Anderen die invariante Objekterkennung, das heisst, die Erkennung von Objekten trotz ihrer mannigfaltigen retinalen Darstellungen (zum Beispiel durch Verschiebungen oder Skalierungen). Die topographische Repräsentierung wird hierbei während der Selbstorganisation als Koordinatensystem genutzt, um Invarianztransformationen zu implementieren. Dies zeigt die Möglichkeit auf, dass sich das Gehirn bereits vorgeburtlich detailliert selbstorganisieren kann, um nachgeburtlich sofort invariant Erkennen zu können. Im Detail führt Kapitel 2 in ein neues, probabilistisch generatives und analytisch lösbares Modell zur Ontogenese topographischer Transformationen ein. Dem Modell liegt die Annahme zugrunde, dass Ausgabezellen des Systems nicht völlig unkorreliert sind, sondern eine a priori gegebene Korrelation erreichen wollen. Da die Eingabezellen nachbarschaftskorreliert sind, hervorgerufen durch retinale Wellen, ergibt sich mit der Annahme rein erregender Verbindungen eine eindeutige topographische synaptische Verbindungsstruktur. Diese entspricht der bei vielen Spezies gefundenen topographischen Karten, z.B. der Retinotopie zwischen der Retina und dem LGN, oder zwischen dem LGN und dem Neokortex. Kapitel 3 nutzt eine abstraktere Formulierung des Retinotopiemechanismus, welche durch adiabitische Elimination der Aktivitätsvariablen erreicht wird, um den Effekt retinaler Wellen auf ein Modell höherer kortikaler Informationsverarbeitung zu untersuchen. Zu diesem Zweck wird der Kortex vereinfacht als bilineares Modell betrachtet, um einfache modulatorische Nichtlinearitäten mit in Betracht ziehen zu können. Zusätzlich zu den Ein- und Ausgabezellen kommen in diesem Modell Kontrolleinheiten zum Einsatz, welche den Informationsfluss aktiv steuern können und sich durch Wettbewerb und pränatalem Lernen auf verschiedene Muster retinaler Wellen spezialisieren. Die Ergebnisse zeigen, dass die entstehenden Verbindungsstrukturen affinen topographischen Abbildungen (insbesondere Translation, Skalierung und Orientierung) entsprechen, die nach Augenöffnen invariante Erkennung ermöglichen, da sie Objekte in der Eingabe in eine normalisierte Repräsentierung transformieren können. Das Modell wird für den eindimensionalen Fall ausführlich analysiert und die Funktionalität für den biologisch relevanteren zweidimensionalen Fall aufgezeigt. Kapitel 4 verallgemeinert das bilineare Modell des dritten Kapitels zu einem mehrschichtigen Modell, die shifter curcuits''. Diese ermöglichen eine logarithmisch in der Anzahl der Eingabezellen wachsende Anzahl an Synapsen, statt einer prohibitiv quadratischen Anzahl. Ausgenutzt wird die Orthogonalität von Translationen im Raum der Verbindungsstrukturen um diese durch harten Wettbewerb an einzelnen Synapsen zu organisieren. Neurobiologisch ist dieser Mechanismus durch Wettbewerb um einen wachstumsregulierenden Transmitter realisierbar. Kapitel 5 nutzt Methoden des probabilistischen Lernens, um das bilineare Modell auf das Lernen von optimalen Repräsentation der Eingabestatistiken zu optimieren. Da statistischen Methoden zweiter Ordnung, wie zum Beispiel das generative Modell aus Kapitel 2, keine lokalisierten rezeptiven Felder ermöglichen und somit keine (örtliche) Topographie möglich ist, wird sparseness'' verwendet um statistischen Abhängigkeiten höherer Ordnung zu lernen und gleichzeitig Topographie zu implementieren. Anwendungen des so formulierten Modells auf natürliche Bilder zeigen, dass lokalisierte, bandpass filternde rezeptive Felder entstehen, die primären kortikalen rezeptiven Feldern stark ähneln. Desweiteren entstehen durch die erzwungene Topographie Orientierungs- und Frequenzkarten, die ebenfalls kortikalen Karten ähneln. Eine Untersuchung des Modells mit zusätzlicher slowness'' der Ausgabezellen und in zeitlicher Nähe gezeigten transformierten natürlichen Eingabemustern zeigt, dass verschiedene Kontrolleinheiten konsistente und den Eingabetransformationen entsprechende rezeptive Felder entwickeln und somit invariante Darstellungen bezüglich der gezeigten Eingaben entwickeln

    Development of Maps of Simple and Complex Cells in the Primary Visual Cortex

    Get PDF
    Hubel and Wiesel (1962) classified primary visual cortex (V1) neurons as either simple, with responses modulated by the spatial phase of a sine grating, or complex, i.e., largely phase invariant. Much progress has been made in understanding how simple-cells develop, and there are now detailed computational models establishing how they can form topographic maps ordered by orientation preference. There are also models of how complex cells can develop using outputs from simple cells with different phase preferences, but no model of how a topographic orientation map of complex cells could be formed based on the actual connectivity patterns found in V1. Addressing this question is important, because the majority of existing developmental models of simple-cell maps group neurons selective to similar spatial phases together, which is contrary to experimental evidence, and makes it difficult to construct complex cells. Overcoming this limitation is not trivial, because mechanisms responsible for map development drive receptive fields (RF) of nearby neurons to be highly correlated, while co-oriented RFs of opposite phases are anti-correlated. In this work, we model V1 as two topographically organized sheets representing cortical layer 4 and 2/3. Only layer 4 receives direct thalamic input. Both sheets are connected with narrow feed-forward and feedback connectivity. Only layer 2/3 contains strong long-range lateral connectivity, in line with current anatomical findings. Initially all weights in the model are random, and each is modified via a Hebbian learning rule. The model develops smooth, matching, orientation preference maps in both sheets. Layer 4 units become simple cells, with phase preference arranged randomly, while those in layer 2/3 are primarily complex cells. To our knowledge this model is the first explaining how simple cells can develop with random phase preference, and how maps of complex cells can develop, using only realistic patterns of connectivity

    Unsupervised experience with temporal continuity of the visual environment is causally involved in the development of V1 complex cells

    Get PDF
    Unsupervised adaptation to the spatiotemporal statistics of visual experience is a key computational principle that has long been assumed to govern postnatal development of visual cortical tuning, including orientation selectivity of simple cells and position tolerance of complex cells in primary visual cortex (V1). Yet, causal empirical evidence supporting this hypothesis is scant. Here, we show that degrading the temporal continuity of visual experience during early postnatal life leads to a sizable reduction of the number of complex cells and to an impairment of their functional properties while fully sparing the development of simple cells. This causally implicates adaptation to the temporal structure of the visual input in the development of transformation tolerance but not of shape tuning, thus tightly constraining computational models of unsupervised cortical learning

    Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    Get PDF
    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Bio-Inspired Computer Vision: Towards a Synergistic Approach of Artificial and Biological Vision

    Get PDF
    To appear in CVIUStudies in biological vision have always been a great source of inspiration for design of computer vision algorithms. In the past, several successful methods were designed with varying degrees of correspondence with biological vision studies, ranging from purely functional inspiration to methods that utilise models that were primarily developed for explaining biological observations. Even though it seems well recognised that computational models of biological vision can help in design of computer vision algorithms, it is a non-trivial exercise for a computer vision researcher to mine relevant information from biological vision literature as very few studies in biology are organised at a task level. In this paper we aim to bridge this gap by providing a computer vision task centric presentation of models primarily originating in biological vision studies. Not only do we revisit some of the main features of biological vision and discuss the foundations of existing computational studies modelling biological vision, but also we consider three classical computer vision tasks from a biological perspective: image sensing, segmentation and optical flow. Using this task-centric approach, we discuss well-known biological functional principles and compare them with approaches taken by computer vision. Based on this comparative analysis of computer and biological vision, we present some recent models in biological vision and highlight a few models that we think are promising for future investigations in computer vision. To this extent, this paper provides new insights and a starting point for investigators interested in the design of biology-based computer vision algorithms and pave a way for much needed interaction between the two communities leading to the development of synergistic models of artificial and biological vision

    Brain State Dependent Activity in the Lateral Geniculate Nucleus

    Get PDF
    Brain state dependent thalamocortical (TC) activity plays and important role in sensory coding, oscillations and cognition. The lateral geniculate nucleus (LGN) relays visual information to the cortex, but the state dependent spontaneous and visually evoked activity of LGN neurons in awake behaving animals remains controversial. In awake head-restrained mice, using a combination of pupillometry, extracellular and intracellular recordings from morphologically and physiologically identified LGN neurons we show that TC neurons and putative local interneurons are inversely related to arousal forming two complementary coalitions with TC cells being positively correlates with wakefulness, while local interneuron activity is negatively correlated. Additionally, the orientation tuning of visually evoked thalamic cell responses is altered during various brain states. Intracellular recordings indicated that the membrane potential of LGN TC neurons was tightly correlated to fluctuations in pupil size. Inactivating the corticothalamic feedback by GABAA agonist muscimol applied on the dural surface significantly diminishes the correlation between brain states and thalamic neuronal activity. Additional investigations show that by photostimulating GABAergic axons (expressing Channelrhodopsin-2 in a Cre-dependent manner) that project from the lateral hypothalamus (LH) to the dorsal raphe nucleus (DRN), neurons in the DRN increase their action potential output, presumably through disinhibition. Taken together our results show that LGN neuronal membrane potential and action potential output are dynamically linked to arousal dependent brain states in awake mice and this fact might have important functional implications

    The thalamocortical symphony:How thalamus and cortex play together in schizophrenia and plasticity

    Get PDF
    The work presented in this thesis aimed at investigating the function and mechanism of corticothalamic-thalamocortical network in schizophrenia and experience-dependent plasticity, further discussed their possible connection.In Chapter 2, we examined the effects of low-dose ketamine on the corticothalamic circuit (CTC) system. Our findings reveal that ketamine induces abnormal spindle activity and gamma oscillations in the CTC system. Notably, ketamine also leads to a transition in thalamic neurons from burst-firing to tonic action potential mode, which may underlie deficits in spindle oscillations. Chapter 3 addresses sensory perception deficits in schizophrenia, emphasizing disruptions in beta and gamma frequency oscillations due to signal-to-noise ratio imbalances. Chapter 4 explores experience-dependent plasticity, highlighting the role of thalamic synaptic inhibition in ocular dominance plasticity and the influence of cortical feedback. Chapter 5 investigates the involvement of endocannabinoids, particularly CB1 receptors, in inhibitory synaptic maturation and ocular dominance plasticity within the primary visual cortex.The general discussion raises the possibility of a link between neural plasticity and schizophrenia, particularly during the transformative phase of adolescence when the brain undergoes significant changes. An abnormal balance between inhibition and excitation, influenced by GABAergic maturation deficits, connectivity disruptions, and altered perceptual information transfer, may contribute to the development of schizophrenia.This thesis offers valuable insights into the intricate mechanisms underlying schizophrenia, with a particular focus on the CTC circuit, NMDA receptors, and endocannabinoids in the context of neuronal plasticity and cognitive function
    corecore