11 research outputs found

    Slow Adaptive OFDMA Systems Through Chance Constrained Programming

    Full text link
    Adaptive OFDMA has recently been recognized as a promising technique for providing high spectral efficiency in future broadband wireless systems. The research over the last decade on adaptive OFDMA systems has focused on adapting the allocation of radio resources, such as subcarriers and power, to the instantaneous channel conditions of all users. However, such "fast" adaptation requires high computational complexity and excessive signaling overhead. This hinders the deployment of adaptive OFDMA systems worldwide. This paper proposes a slow adaptive OFDMA scheme, in which the subcarrier allocation is updated on a much slower timescale than that of the fluctuation of instantaneous channel conditions. Meanwhile, the data rate requirements of individual users are accommodated on the fast timescale with high probability, thereby meeting the requirements except occasional outage. Such an objective has a natural chance constrained programming formulation, which is known to be intractable. To circumvent this difficulty, we formulate safe tractable constraints for the problem based on recent advances in chance constrained programming. We then develop a polynomial-time algorithm for computing an optimal solution to the reformulated problem. Our results show that the proposed slow adaptation scheme drastically reduces both computational cost and control signaling overhead when compared with the conventional fast adaptive OFDMA. Our work can be viewed as an initial attempt to apply the chance constrained programming methodology to wireless system designs. Given that most wireless systems can tolerate an occasional dip in the quality of service, we hope that the proposed methodology will find further applications in wireless communications

    Energy-efficient robust resource provisioning in virtualized wireless networks

    Get PDF
    © 2015 IEEE. This paper proposes a robust resource allocation approach in virtualized wireless networks (VWNs) to address the uncertainty in channel state information (CSI) at the base station (BS) due to estimation error and mobility of users. In this set-up, the resources of an OFDMA-based wireless network are shared among different slices where the minimum reserved rate is considered as the quality-of-service (QoS) requirement of each slice. We formulate the robust resource allocation problem against the worst-case CSI uncertainty, aiming to maximize the overall energy efficiency (EE) of VWN in terms of a newly defined slice utility function. Uncertain CSI is modeled as the sum of its true estimated value and an error assumed to be bounded in a specific uncertainty region. The formulated problem suffers from two major issues: computational complexity and energy-efficiency degradation due to the considered error in the maximum extent. To deal with these issues, we consider a specific form of uncertainty region to solve the robust resource allocation problem via an iterative algorithm. The simulation results demonstrate the effectiveness of the proposed algorithms

    Feedback Allocation For OFDMA Systems With Slow Frequency-domain Scheduling

    Get PDF
    We study the problem of allocating limited feedback resources across multiple users in an orthogonal-frequency-division-multiple-access downlink system with slow frequency-domain scheduling. Many flavors of slow frequency-domain scheduling (e.g., persistent scheduling, semi-persistent scheduling), that adapt user-sub-band assignments on a slower time-scale, are being considered in standards such as 3GPP Long-Term Evolution. In this paper, we develop a feedback allocation algorithm that operates in conjunction with any arbitrary slow frequency-domain scheduler with the goal of improving the throughput of the system. Given a user-sub-band assignment chosen by the scheduler, the feedback allocation algorithm involves solving a weighted sum-rate maximization at each (slow) scheduling instant. We first develop an optimal dynamic-programming-based algorithm to solve the feedback allocation problem with pseudo-polynomial complexity in the number of users and in the total feedback bit budget. We then propose two approximation algorithms with complexity further reduced, for scenarios where the problem exhibits additional structure.Comment: Accepted to IEEE Transactions on Signal Processin

    Energy-Efficient Resource Allocation for Device-to-Device Underlay Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks is expected to bring significant benefits for utilizing resources, improving user throughput and extending battery life of user equipments. However, the allocation of radio and power resources to D2D communication needs elaborate coordination, as D2D communication can cause interference to cellular communication. In this paper, we study joint channel and power allocation to improve the energy efficiency of user equipments. To solve the problem efficiently, we introduce an iterative combinatorial auction algorithm, where the D2D users are considered as bidders that compete for channel resources, and the cellular network is treated as the auctioneer. We also analyze important properties of D2D underlay communication, and present numerical simulations to verify the proposed algorithm.Comment: IEEE Transactions on Wireless Communication

    Energy-Efficient Scheduling and Power Allocation in Downlink OFDMA Networks with Base Station Coordination

    Full text link
    This paper addresses the problem of energy-efficient resource allocation in the downlink of a cellular OFDMA system. Three definitions of the energy efficiency are considered for system design, accounting for both the radiated and the circuit power. User scheduling and power allocation are optimized across a cluster of coordinated base stations with a constraint on the maximum transmit power (either per subcarrier or per base station). The asymptotic noise-limited regime is discussed as a special case. %The performance of both an isolated and a non-isolated cluster of coordinated base stations is examined in the numerical experiments. Results show that the maximization of the energy efficiency is approximately equivalent to the maximization of the spectral efficiency for small values of the maximum transmit power, while there is a wide range of values of the maximum transmit power for which a moderate reduction of the data rate provides a large saving in terms of dissipated energy. Also, the performance gap among the considered resource allocation strategies reduces as the out-of-cluster interference increases.Comment: to appear on IEEE Transactions on Wireless Communication

    Robust Power Allocation for Energy-Efficient Location-Aware Networks

    Get PDF
    In wireless location-aware networks, mobile nodes (agents) typically obtain their positions using the range measurements to the nodes with known positions. Transmit power allocation not only affects network lifetime and throughput, but also determines localization accuracy. In this paper, we present an optimization framework for robust power allocation in network localization with imperfect knowledge of network parameters. In particular, we formulate power allocation problems to minimize localization errors for a given power budget and show that such formulations can be solved via conic programming. Moreover, we design a distributed power allocation algorithm that allows parallel computation among agents. The simulation results show that the proposed schemes significantly outperform uniform power allocation, and the robust schemes outperform their non-robust counterparts when the network parameters are subject to uncertainty.National Natural Science Foundation (China) (Project 61201261)National Basic Research Program of China (973 Program) (61101131)University Grants Committee (Hong Kong, China) (GRF Grant Project 419509)National Science Foundation (U.S.) (Grant ECCS-0901034)United States. Office of Naval Research (Grant N00014-11-1-0397)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologie

    Contributions to Resource Allocation in Cognitive Radio Networks

    Get PDF
    The continuous increase in the number of wireless devices and the huge demand for higher data rates have promoted the development of new wireless communications technologies with improved spectrum sharing features. Recently, the concept of cognitive radio (CR) has gained increased popularity for the efficient utilization of radio frequency (RF) spectrum. A CR is characterized as a communication system which is capable to learn the spectrum environment through sensing, and to adapt its signaling schemes for a better utilization of the radio frequency resources. Resource allocation, which involves scheduling of spectrum and power resources, represents a crucial problem for the performance of CR networks in terms of system throughput and bandwidth utilization. In this dissertation, we investigate resource allocation problems in a CR network by exploring a variety of optimization techniques. Specifically, in the first part of the dissertation, our goal is to maximize the total throughput of secondary users (SUs) in an orthogonal frequency division multiple access (OFDMA) CR network. In addition, the power of SUs is controlled to keep the interference introduced to primary users (PUs) under certain limits, which gives rise to a non-convex mixed integer non-linear programming (MINLP) optimization problem. It is illustrated that the original non-convex MINLP formulation admits a special structure and the optimal solution can be achieved efficiently using any standard convex optimization method under a general and practical assumption. In the second part of the dissertation, considering the imperfect sensing information, we study the joint spectrum sensing and resource allocation problem in a multi-channel-multi-user CR network. The average total throughput of SUs is maximized by jointly optimizing the sensing threshold and power allocation strategies. The problem is also formulated as a non-convex MINLP problem. By utilizing the continuous relaxation and convex optimization tools, the dimension of the non-convex MINLP problem is significantly reduced, which helps to reformulate the optimization problem without resorting to integer variables. A newly-developed optimization technique, referred to as the monotonic optimization, is then employed to obtain an optimal solution. Furthermore, a practical low-complexity spectrum sensing and resource allocation algorithm is proposed to reduce the computational cost
    corecore