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ABSTRACT

The continuous increase in the number of wireless devices and the huge demand for

higher data rates have promoted the development of new wireless communications tech-

nologies with improved spectrum sharing features. Recently, the concept of cognitive

radio (CR) has gained increased popularity for the efficient utilization of radio frequency

(RF) spectrum. A CR is characterized as a communication system which is capable to

learn the spectrum environment through sensing, and to adapt its signaling schemes for

a better utilization of the radio frequency resources. Resource allocation, which involves

scheduling of spectrum and power resources, represents a crucial problem for the perfor-

mance of CR networks in terms of system throughput and bandwidth utilization.

In this dissertation, we investigate resource allocation problems in a CR network by

exploring a variety of optimization techniques. Specifically, in the first part of the disser-

tation, our goal is to maximize the total throughput of secondary users (SUs) in an orthog-

onal frequency division multiple access (OFDMA) CR network. In addition, the power of

SUs is controlled to keep the interference introduced to primary users (PUs) under certain

limits, which gives rise to a non-convex mixed integer non-linear programming (MINLP)

optimization problem. It is illustrated that the original non-convex MINLP formulation

admits a special structure and the optimal solution can be achieved efficiently using any

standard convex optimization method under a general and practical assumption.

In the second part of the dissertation, considering the imperfect sensing information,

we study the joint spectrum sensing and resource allocation problem in a multi-channel-

multi-user CR network. The average total throughput of SUs is maximized by jointly

optimizing the sensing threshold and power allocation strategies. The problem is also

formulated as a non-convex MINLP problem. By utilizing the continuous relaxation and
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convex optimization tools, the dimension of the non-convex MINLP problem is signifi-

cantly reduced, which helps to reformulate the optimization problem without resorting to

integer variables. A newly-developed optimization technique, referred to as the monotonic

optimization, is then employed to obtain an optimal solution. Furthermore, a practical low-

complexity spectrum sensing and resource allocation algorithm is proposed to reduce the

computational cost.
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NOMENCLATURE

AO Alternating Optimization

CR Cognitive Radio

CSI Channel State Information

FCC Federal Communications Commission

FFT Fast Fourier Transform

ISI Inter-Symbol Interference

KKT Karush-Kuhn-Tucker

LTE Long Term Evolution

MDKP Multi-Dimensional Knapsack Problem

MIMO Multiple-Input Multiple-Output

MINLP Mixed Integer Nonlinear Programming

MISO Multiple-Input Single-Output

NBI Narrowband Inteference

NP Non-Deterministic Polynomial-Time

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

PBS Primary Base Station

PSD Power Spectral Density

PU Primary User

QoS Quality of Service

RF Radio Frequency
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SBS Secondary Base Station

SNR Signal-to-Noise Ratio

SINR Signal-to-Interference-and-Noise Ratio

SU Secondary User
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1. INTRODUCTION

1.1 Cognitive Radio

With the increasing demands for smart mobile devices and other bandwidth consum-

ing wireless applications, radio frequency (RF) spectrum is becoming more and more

crowded. Even though most of the available spectrum has already been licensed, recent re-

ports, performed by many agencies such as Federal Communications Commission (FCC),

have indicated that the RF spectrum is being used inefficiently due to the conventional

static frequency allocation scheme [1, 2]. As a result, the concept of cognitive radio (CR)

was proposed as a promising technology by exploring the opportunistic usage of the fre-

quency bands that are not heavily occupied by the licensed primary users (PUs) [3]. Based

on the definition adopted by FCC [4]: “Cognitive radio: A radio or system that senses its

operational electromagnetic environment and can dynamically and autonomously adjust

its radio operating parameters to modify system operation, such as maximize throughput,

mitigate interference, facilitate interoperability, access secondary markets.”, one can ob-

serve that CR represents a potential new approach to spectrum access and aims at providing

a more efficient utilization of RF spectrum.

1.1.1 Cognitive Radio Paradigms

The paradigms assumed by CR networks can be generally classified into three broad

categories: underlay, overlay and interweave, based on the willingness of secondary users

(SUs) to access a channel licensed to the PU [5]. In particular, a PU represents a licensed

user with the highest priority on a given frequency band. SUs transmit opportunistically

on PUs’ licensed bands with the only requirement of not causing harmful interference to

PUs.

In the underlay paradigm, the simultaneous coexistence of PUs and SUs on the same
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frequency band is allowed as long as the interference to PUs does not exceed a given

threshold. The interference threshold can be defined in terms of the spectral mask, which

stands for the power spectral density (PSD) distribution of the interference across the fre-

quency band, or with respect to an average power constraint [5].

In overlay CR networks, SUs overhear the transmission of PUs and gather the knowl-

edge of the PUs’ transmission sequence and coding scheme. Then, SUs use this knowledge

to choose a transmission strategy that enhances the performance of its own transmission

while causing an acceptable amount of interference to PUs. For instance, SUs can utilize

the knowledge of PUs’ transmission to eliminate the interference caused by PUs at the

secondary receiver.

The interweave paradigm is based on the concept of opportunistic spectrum access.

Specifically, SUs sense the licensed spectrum and find the portions of the spectrum that

are left temporarily free by PUs. These free frequency bands are referred to as the spectrum

holes, and are available for SUs’ transmission. That is to say, SUs are allowed to access

the channel only if the channel is detected to be vacant. In this dissertation, we will focus

on the interweave CR paradigm, which represents also the original motivation for CR

networks.

1.1.2 Multi-Channel-Multi-User Setup in Cognitive Radio Networks

In this dissertation, we consider an interweave CR network with multiple channels, and

multiple PUs and SUs. In this way, the scenarios of single wideband channel CR network

and the CR network with a single PU and/or single SU can be considered as special cases.

An example of multi-channel-multi-user CR network is illustrated in Figure 1.1. In this

model, the CR network carries out the spectrum sensing on the multi-channel spectrum to

detect the spectrum holes. Based on the spectrum sensing information, multiple SUs try

to access the spectrum holes. While doing so, SUs also need to monitor the channels they
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occupy and vacate them whenever PUs become active on these channels. This procedure

repeats in time since the spectrum occupancy information may change as time evolves.

Time slot

Frequency

channel

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

Busy channel Idle channel

SU SU SUPU PU PU

Figure 1.1: Interweave multiple-channel-multiple-user CR model

In CR networks, the orthogonal frequency division multiple access (OFDMA) sig-

naling scheme, which represents an orthogonal frequency division multiplexing (OFDM)-

based technology, is typically employed to support multiple access and spectrum allocation

for multiple users.

OFDM represents a multicarrier modulation scheme that splits the data stream into sev-

eral lower rate streams and transmit these streams in parallel on different carriers. Since

the duration of each symbol is long, the OFDM signaling scheme suffers less from the

multipath echoes. Remaining inter-symbol interference (ISI) can be further removed by

implementing a cyclic prefix into the OFDM symbols. Moreover, the channel equalization

process is significantly simplified since OFDM can be regarded as a sequence of slowly

modulated narrowband signals rather than a rapidly modulated wideband signal. Other

advantages of OFDM signaling scheme include the robustness against narrowband inter-
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ferences (NBIs), very efficient implementation using fast Fourier transform (FFT), and the

high spectral efficiency achieved in combination with the multiple-input multiple-output

(MIMO) technique [6]. For these reasons, OFDM has been adopted as the physical layer

signaling scheme by a number of current and potential future communications standards

including IEEE 802.11 WLAN [7], IEEE 802.16 WMAN [8], IEEE 802.22 WRAN [9],

and 3GPP Long Term Evolution (LTE) [10].

OFDM perhaps also presents the most suitable signaling scheme to meet all the re-

quirements of a CR network at the physical level. The most important element in CR

networks is the ability of measuring and learning the conditions of RF spectrum. OFDM

presents intrinsic spectrum sensing abilities due to the inherent FFT operation employed

for signal conversion from the time domain to the frequency domain. In this way, all the

points in the time-frequency grid for the operating channels can be sensed and measured

without any extra hardware components of spectrum sensing. After the CR network senses

the spectrum and identifies the spectrum holes, the next step is to allocate the bandwidth to

SUs and prevent a congested radio spectrum, i.e., the radio spectrum occupied by licensed

PUs to be interfered by SUs. This procedure can be easily carried out by turning off the

subcarriers that are used already by PUs, and this is easily implementable due to the very

nature of OFDM signaling [6].

1.2 Overview of Resource Allocation

As discussed earlier, the spectrum sensing process resumes to finding the spectrum

holes that are not utilized by PUs and to determine SUs which are available to transmit

on these idle spectrum channels. In OFDMA CR networks, the problems to intelligently

allocate these channels to SUs, and to adjust the transmission power of SUs to guarantee

the QoS of PUs and to maximize the total profit of SUs, represent a paramount task for the

sake of efficient utilization and scheduling of CR networks. These problems are referred
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to as the resource allocation problems, and have drawn great interest in the literature of CR

networks. In this subsection, the state-of-the-art works on resource allocation problems in

OFDMA CR networks are presented. In addition, our contributions to resource allocation

are highlighted.

1.2.1 Related Work on Resource Allocation

Due to its significance in managing radio resources and resolving the users’ contention

for resources, resource allocation problems in OFDMA CR networks have been investi-

gated intensively in literature. In the case of a single SU, the resource allocation problems

were studied in [11–13]. Particularly, the authors in [11] studied the resource allocation

problem by maximizing the throughput of a SU while limiting the interference introduced

to PUs. The scenario of one primary transmitter-receiver and one secondary transmitter-

receiver pairs wes considered. A modified water-filling algorithm was proposed to obtain

the optimal solution. In addition, two suboptimal loading algorithms that are less compu-

tationally complex were also developed. Reference [12] employed a similar problem setup

compared to [11] with an additional transmit power constraint. The problem was formu-

lated as a non-convex optimization problem with respect to the power allocated to each

OFDM subchannel. A low computational complexity algorithm was proposed to obtain

a suboptimal solution. In [13], the resource allocation problem for a single SU was orig-

inally expressed as non-linear integer programming problem and then was re-formulated

as a 0-1 multi-dimensional knapsack problem (MDKP). An efficient greedy max-min al-

gorithm was then proposed to solve the corresponding problem.

The more practical multiuser set-up in OFDMA CR networks was investigated in

[14–16]. In these works, the multiuser RA problem involves two tasks: i) the user assign-

ment task, i.e., to assign the subchannels of OFDM spectrum to SUs; and ii) the power

allocation task, i.e., to allocate power to SUs such that a certain objective is achieved. Par-
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ticularly, the user assignment variables can only take binary values with 1 indicating the

subchannel is occupied and 0 otherwise. Reference [14] proposed an efficient algorithm to

maximize the total throughput of SUs. Instead of jointly optimizing the user assignment

and power allocation tasks, the proposed suboptimal algorithm in [14] first performs the

subchannel assignment task and then finds the optimal power allocation for a given SU

layout. The authors in [15] assumed a time-sharing property among SUs, which allows

multiple SUs to share a common subchannel. The energy efficiency of the CR network,

which is defined as the ratio between the total capacity of SUs and the total power con-

sumption, was investigated. A fast interior-point method was developed to jointly optimize

the user assignment and power allocation tasks. To obtain a binary user assignment, the

time-sharing variables were simply rounded, and the corresponding power levels were de-

rived based on the rounded result. Reference [16] adopted a similar algorithm in [14]

to perform the user assignment and power allocation tasks separately. The heterogenous

users’ rate requirements as well as the spectrum sensing errors were also taken into account

by this study.

1.2.2 Contributions to Resource Allocation

The RA algorithms in these works suffer from two main drawbacks: i) no optimal

solution is obtained, and all the algorithms proposed in these works are suboptimal in

general; and ii) these algorithms sometimes lead to infeasible solutions. For example,

in [15], the rounded user assignment variables might not represent a feasible solution for

the corresponding power allocation. In this dissertation, a simplified problem formulation

is proposed compared to [14–16]. We show that under a general and practical assumption,

the proposed formulation can be always solved optimally by standard convex optimization

techniques. Specifically, the subchannel layout for SUs can be directly obtained using the

signal-to-interference-and-noise ratio (SINR) information of SUs and the corresponding
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optimal power allocation can be calculated via the proposed subgradient method.

1.3 Overview of Joint Spectrum Sensing and Resource Allocation

Spectrum sensing is of significant importance in CR networks since that’s how SUs de-

tect and access the available spectrum. A summary of the main spectrum sensing methods

in CR networks is depicted in Table 1.1. The interested reader can refer to [17] and refer-

ences therein for more details about these sensing methods as well as their advantages, dis-

advantages and implementation challenges. Apparently, a well-designed spectrum sensing

scheme can accurately find the spectrum holes and improve the performance of secondary

network. In the field of energy detection based sensing methods, several works studied the

spectrum sensing problem by selecting the sensing parameters to maximize the through-

put of secondary network under the constraint that PUs are sufficiently protected [18–20].

In particular, the total throughput of secondary network is expressed as the multiplication

of the false alarm rate and the achievable throughput, with the false alarm rate expressed

as a function of sensing parameters and the achievable throughput as fixed values. How-

ever, as discussed earlier, the achievable throughput of secondary network also depends

on the resource allocation strategy, i.e., on how to allocate the channels and power to SUs.

The references [11, 14, 21] focused on maximizing the throughput of secondary network

assuming the perfect spectrum sensing information, i.e., no sensing errors are considered

in these works. However, perfect spectrum sensing is extremely difficult to acquire in

practical wireless networks. Considering the false alarm and misdetection rates as fixed

values, the authors in [16, 22] studied the resource allocation problem in CR networks by

maximizing the total throughput of SUs.

In a nutshell, both the selection of sensing parameters and the physical-layer resource

allocation strategy have an impact on the performance of the secondary network. The

aforementioned references either optimize the spectrum sensing scheme under a pre-defined
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SU resource layout or design a resource allocation strategy while fixing the sensing param-

eters. As an extension and generalization of our resource allocation work introduced in

Subsubsection 1.2.2, a joint spectrum sensing and resource allocation optimization prob-

lem is proposed for a more practical scheduling of CR network.

Spectrum sensing
method

Description

Energy Detection Also known as radiometry of periodogram, the most common
method of spectrum sensing. Detects the primary signal by com-
paring the output of the energy detector with a sensing threshold.

Waveform-based
sensing

Also known as coherent sensing, applicable to systems with
known signal patterns. Correlates the received signal with a
known pattern of itself and compare the decision metric with a
threshold.

Cyclostationarity-
based sensing

Detects the presence of PUs’ transmission using the cyclic corre-
lation function, which is a cyclostationary feature of the received
signal.

Radio identifica-
tion based sens-
ing

Extracts several features from the received signal and identifies
the presence of known transmission technologies via classification
methods.

Matched filter Implements the matched filter to detect a known transmitted sig-
nal. Requires perfect knowledge of the PUs’ signaling scheme.

Table 1.1: Category of spectrum sensing methods

1.3.1 Related Work on Joint Optimization

In the CR literature, the state-of-the-art joint spectrum sensing and resource allocation

problems in CR networks can be roughly categorized into two broad classes: those corre-

sponding to single channels and those associated with multiple channels. In the scenario of

a single channel band, the authors in [23] studied the joint optimization of sensing time and

power allocation. The goal was to maximize the average throughput of the secondary net-

work and minimize the outage probability of SUs’ transmission under the average power
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constraint of SUs and the average interference threshold introduced to PUs. In [24], the

sensing parameters and the transmission power of SUs were optimized to minimize the to-

tal power consumption. The cooperative sensing scheme was adopted to jointly consider

the sensing data from different locations to prevent the potential sensing issues due to the

multipath fading/shadowing and hidden primary user. In terms of the multi-channel setup,

which is also the concentration of this dissertation, reference [25] formulated the joint op-

timization problem for one PU and one SU in OFDM-based CR networks. The problem

was further generalized to the case of a non-cooperative power allocation game for two

SUs. In [26], Fan et al. considered the joint optimization problem for multiple SUs in a

multi-channel CR network. The time-sharing property among SUs was assumed in [26],

which allows multiple SUs to share a common channel. In both [25] and [26], the alter-

nating optimization (AO) method was employed to maximize the average throughput of

SUs by alternatively optimizing the sensing parameters and power variables while setting

constant the other variables.

1.3.2 Contributions to Joint Optimization

In the multi-channel setup, both [25] and [26] utilized the AO method to iteratively

optimize the sensing parameters and allocate the transmission power using a random initial

guess. However, the AO method can be easily trapped in a local minima/maxima near the

starting point [27]. Thus, the convergence of the solutions in [25] and [26] heavily depend

on the initial point selected and the stability of the proposed AO algorithms is questionable.

Moreover, for a multi-channel-multi-user setup, the time-sharing property is not practical

in some cases such as the OFDM scheme, in which an IFFT/FFT pair coupled with a cyclic

prefix are used for modulation and de-modulation. Since the FFT-size is fixed in advance,

no further subdivision of each frequency subchannel is possible [28].

In this dissertation, we address the joint spectrum sensing and resource allocation prob-
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lem in a downlink multi-channel-multi-user CR network. Our goal is to maximize the av-

erage throughput of the secondary network subject to a peak power constraint of SUs and

an average interference constraint at the PUs. Furthermore, we assume that each channel

in the frequency domain can be occupied by at most one SU, which leads to a non-convex

mixed integer nonlinear programming (MINLP) optimization problem. We first show that

under a general and practical assumption, the non-convex MINLP problem can be reduced

to a formulation which does not resort to any integer variable. It is further illustrated that

the reduced formulation represents the canonical form of a monotonic optimization and

can be solved globally using the polyblock outer approximation algorithm. As an alter-

native method for the joint optimization problem, a computationally efficient suboptimal

algorithm, which consists of a list of single-variable optimization problems, is proposed

based on a modified version of the original non-convex MINLP formulation.

1.4 Outline

The rest of this dissertation is structured as follows:

• As one of the two mainly-used optimization methods in this dissertation, some pre-

liminaries of convex optimization are presented in Section 2. Since convex opti-

mization has been investigated intensively for decades and most of the techniques

are well known to researchers in a variety of areas, only the specific techniques

employed in this dissertation are briefly described.

• As another optimization method used throughout the entire dissertation, a concep-

tual and graphical introduction on monotonic optimization is provided in Section 3.

Since the concept of monotonic optimization was only reported recently, a detailed

illustration is presented.

• In Section 4, the optimal resource allocation algorithm for downlink OFDMA CR

10



networks is presented.

• In Section 5, by considering the imperfect spectrum sensing information, the joint

spectrum sensing and resource allocation problem is studied in a multi-channel-

multi-user CR network.

• Conclusions and some future research directions are drawn in Section 6.
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2. PRELIMINARIES ON CONVEX OPTIMIZATION

In recent years, convex optimization has become a popular computational tool in the

general area of engineering, thanks to its ability to solve large-scaled practical engineer-

ing problems efficiently and reliably. Nowadays, new applications of convex optimization

are continuously being reported in nearly every area of engineering and science including

communications, signal processing, estimation and detection theory, networking, control,

information theory, computer science, operations research, machine learning, bioinformat-

ics, economics and statistics. For detailed examples of convex optimization applications,

the reader is referred to [29–33] and references therein.

In this section, some preliminaries of convex optimization techniques that are utilized

in this dissertation are briefly presented. In particular, some basic concepts and theorems

of convex optimization are introduced in Subsection 2.1. The relevant convex optimization

techniques in the dual domain are given in Subsection 2.2. In Subsection 2.3, we briefly

discuss how convex optimization can be applied to solve convex MINLP optimization

problems.

2.1 Basic Definitions and Theorems

In this subsection, most of the definitions and theorems about convex optimization are

presented based on the materials reported in [29, 34] without resorting to proofs.

Definition 1. A set S ⊂ Rn is a convex set if it contains the entire line segment joining

any pair of its points, i.e.,

x,y ∈ S ⇒ λx+ (1− λ)y ∈ S, ∀0 ≤ λ ≤ 1.
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Definition 2. A function f : Rn → R is convex on a convex set S if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x,y ∈ S, 0 ≤ θ ≤ 1.

A function f is said to be concave if −f is a convex function.

Theorem 1. A more general way to determine the convexity of a function is by means of

the Hessian matrix. Specifically, a continuous, twice differentiable function f : Rn → R

is convex on a convex set S if and only if its Hessian matrix of second partial derivatives

is positive semidefinite. Similarly, a function f is said to be concave if its Hessian matrix

is negative semidefinite.

Definition 3. The general form of a convex optimization problem is defined as

min
x∈S

f(x),

for a convex function f : Rn → R and a convex set S ∈ Rn. Alternatively, the standard

form of convex optimization problems can be expressed as

min f(x)

s.t. gi(x) ≤ 0, i = 1, · · · ,m

hj(x) = 0, j = 1, · · · , p

(2.1)

where “s.t.” stands for “subject to”, f, gi : Rn → R are convex functions and hj : Rn →

R are affine functions.

Definition 4. If f : Rn → R, then the perspective function of f is the function g : Rn+1 →

R defined as

g(x, t) = tf(x/t),
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for t > 0. The perspective operator preserves convexity. That is to say, if f is a convex

function, so is its perspective function g. Similarly, if f is concave, then so is g.

Theorem 2. If f1, f2, · · · , fn : Rn → R are convex functions and ω1, ω2, · · · , ωn ≥ 0,

then f : Rn → R, defined as

f = ω1f1 + ω2f2 + · · ·+ ωnfn

is also convex. Similarly, a nonnegative weighted sum of concave functions is concave.

2.2 Convex Optimization in Dual Domain

The topics of duality and Karush-Kuhn-Tucker (KKT) conditions are our focus of

this subsection. In this subsection, most of the results are borrowed from the convex

optimization tutorial paper [35]. First, we consider a standard optimization formulation in

(2.1). However, for now, we do not assume the convexity of (2.1). The Lagrange function

L : Rn × Rm × Rp → R is defined as

L(x,λ,µ) = f(x) +
m∑
i=1

λigi(x) +

p∑
j=1

µjhj(x),

where vectors λ = [λ1, · · · , λm]T and µ = [µ1, · · · , µp]
T are referred to as the Lagrange

multipliers or dual variables. The Lagrange dual problem is defined as

max d(λ,µ)

s.t. λ ≥ 0,

with d(λ,µ) = infx L(x,λ,µ). In contrast, the original problem (2.1) is referred to as

the primal problem compared to the dual problem. It can be stated that regardless of the

convexity for the primal problem, the Lagrange dual problem is a convex optimization
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problem. In addition, it presents an optimal value d∗ less than the optimal value p∗ of the

primal problem, i.e., d∗ ≤ p∗, a condition which is termed as the weak duality. Thanks

to this unique property, one can always approximate a lower bound of a non-convex opti-

mization problem by analyzing and addressing the dual problem.

Moreover, if we assume the convexity of the primal problem (2.1), a more powerful

theorem can be employed to achieve a necessary and sufficient condition for optimality.

Specifically, under the assumption of a certain regularity condition and the differentiability

of functions f, gi and hj , the following KKT conditions hold:

Theorem 3. If x̃, λ̃, and µ̃ are any points satisfying the KKT conditions

gi(x̃) ≤ 0, i = 1, · · · ,m

hi(x̃) = 0, j = 1, · · · , p

λ̃i ≥ 0, i = 1, · · · ,m

λ̃igi(x̃) = 0, i = 1, · · · ,m

∇f(x̃) +
m∑
i=1

λ̃i∇gi(x̃) +
p∑

j=1

µ̃j∇hj(x̃) = 0,

(2.2)

where ∇ stands for the gradient, then x̃, λ̃, and µ̃ are primal and dual optimal solution,

respectively. In addition, the strong duality is achieved, i.e., d∗ = p∗.

The regularity condition can be met in various ways. In general, most convex opti-

mization problems satisfy the Slater’s condition, which means that there exists a point x

such that gi(x) < 0 and hj(x) = 0. Additionally, if gi and hj are all affine functions, then

the regularity condition is automatically met.

KKT conditions play a significant role in convex optimization. In some special cases,

an analytical solution can be directly derived from (2.2). Moreover, some numerical con-

vex optimization algorithms, such as the interior-point method with the barrier funciton,
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can be interpreted equivalently as tackling the KKT conditions.

2.3 Relaxation for Convex MINLP Optimization

As discussed earlier, the proposed resource allocation and joint optimization problems

are originally both formulated as MINLP problems. Therefore, a brief introduction to

MINLP problems and their optimization algorithms are illustrated in this subsection.

Mathematically, MINLP expresses the optimization problem using both integer and

fractional variables. Furthermore, the objective function and/or its feasible region are de-

scribed by nonlinear functions [36]. In some instances, when the integrality variable is

continuously relaxed, the remaining objective function and feasible set are convex and

such kind of MINLP is referred to as the convex MINLP problem. Even though the con-

vex MINLP is NP-hard, there are exact algorithms which terminate in a finite number

of steps with a guaranteed optimal solution (if there is one). Some examples of optimal

convex MINLP algorithms include the branch-and-bound method [37], the generalized

Benders decomposition [38], the outer approximation method [39], the branch-and-cut

method [40], and the extended cutting-plan method [41]. However, most of these meth-

ods suffer from a relatively high computational complexity and may not be suitable for

implementation in CR wireless networks. The main reason is that the resource allocation

in CR networks utilizes the instantaneous channel state information (CSI) and spectrum

information and must be carried out frequently to cope with the changes in these data.

In the literature of wireless communications, a typical way for tackling convex MINLP

problems is to first perform the continuous relaxation by omitting the integrality variable

[15]. Then, the remaining problem admits the form of a nonlinear convex optimization

and can be addressed efficiently using any standard convex optimization algorithm such

as the interior-point method. In this way, the solution obtained for integer variables is

mostly likely fractional and it does not represent a feasible solution. To deal with this
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issue, some rounding policy is proposed to transform the fractional solutions into integer

values. Another method is to first perform integer optimization based on the constraints

related to integer variables [14, 16]. Thus, an integer feasible but suboptimal solution is

obtained. Then, the optimization problem is calculated again only with respect to the

remaining fractional variables.

However, the aforementioned two procedures suffer from some drawbacks, mainly

due to the potential infeasible solution. For the former case, a rounding policy has to be

designed to guarantee the feasibility of the constraints associated with the integer variables.

Sometimes this kind of rounding policy might be very complicated or even impossible to

carry out. With regard to the later case, even though the feasibility of the integer variables

is ensured, the resulting solution for the fractional variables may not satisfy all the related

constraints.

In this dissertation, we still adopt the continuous relaxation method to tackle the con-

vex MINLP problem. By exploring the special structure of the formulated problem, we

alternatively show that the relaxed problem actually achieves an integer solution for the

integer variable. In this way, we do not need to go through the two procedures mentioned

above and avoid the potential infeasibility issue.
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3. PRELIMINARIES ON MONOTONIC OPTIMIZATION

Optimization techniques have been widely used in a variety of disciplines in engineer-

ing and the solutions of most optimization problems rely heavily on the convexity of the

problem formulation. However, many practical engineering problems are non-convex in

their original formulation and even cannot be transformed into an equivalent convex form

by any means. An interesting observation is that most non-convex engineering problems,

especially in the areas of communications, networking and information theory, show the

monotonic or hidden monotonic properties. One simple example lies in the field of in-

formation theory, where the Shannon capacity monotonically increases with regard to the

bandwidth and the signal-to-noise ratio (SNR) [42]. The analysis of these monotonic prop-

erties has led to a number of concepts and theorems, which may enable the researchers to

reduce the difficulty level in obtaining the global optimal solution of the problem, and this

is the fundamental principle of monotonic optimization.

Most mathematical concepts and theories for monotonic optimization have been estab-

lished since 2000 by a series of papers written by Tuy et al. [43–46]. Only very recently

the concept of monotonic optimization was introduced to the ares of communications and

networking. Qian et al. made the first attempt in [47], in which the weighted throughput

maximization through power control is achieved globally using a monotonic-based algo-

rithm named as MAPLE. The hidden monotonic property was discovered from the origi-

nal formulation of the power control problem. A number of follow-up works [19, 48–51]

then were reported by exploring the monotonic property or the hidden monotonic prop-

erty inside the proposed non-convex problem formulation. The applications of monotonic

property encompass a variety of topics including power scheduling, multiple-input single-

output (MISO) and MIMO channel optimization, and CR management.
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In this section, some preliminaries about monotonic optimization are introduced. Most

of the material in this section is summarized based on two tutorial-style papers [43] and

[52], where the first paper is presented mainly from a mathematical point of view while

the second paper focuses on applications of monotonic optimization in communications

and networking.

3.1 Basic Definitions and Theorems

Some basic concepts and theorems for monotonic optimization are illustrated in this

subsection without proof. The reader is referred to [43, 52] for more details of the proofs.

Definition 5 (Increasing function). A function f : Rn
+ → R is increasing if f(x) ≤ f(y)

when1 x ≤ y. A function f is decreasing if −f is increasing.

Definition 6 (Normal set). A set G ⊂ Rn
+ is normal if x ∈ G ⇒ [0,x] ⊂ G.

Definition 7 (Conormal set). A set H ⊂ Rn
+ is conormal in [0,b] if x ∈ H ⇒ [x,b] ⊂ H.

Definition 8 (Upper boundary). A point x̄ in a closed normal set G is called an upper

boundary point of G if there does not exist any other point x in G such that x > x̄. The

set of all upper boundary points of G is called the upper boundary of G and is denoted as

∂+G.

For a better understanding of these concepts, an example illustrating the normal set,

the conormal set, and the upper boundary of the normal set is shown in Figure 3.1. In

the rectangular region [0,b], set G, denoted as the striped area, is clearly a normal set, set

H, represented as the shadowed area, is a conormal set, and the upper boundary of G is

marked as the blue line in the figure.

Next, we present the definition of monotonic optimization in its standard form:

1For two vectors x,y ∈ Rn, we say x ≤ y if xi ≤ yi, i = 1, · · · , n.
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Figure 3.1: Example of normal set, conormal set and upper boundary.

Definition 9 (Standard form of monotonic optimization). Monotonic optimization is re-

ferred to as a problem with the following structure:

max f(x)

s.t. x ∈ G ∩H,
(3.1)

where f(x) : Rn
+ → R is an increasing function, G ⊂ [0,b] ⊂ Rn

+ is a normal set with

nonempty interior, and H is a closed conormal set in [0,b].

Since monotonic optimization is mainly employed in non-convex optimization prob-

lems in which a monotonic or a hidden monotonic property can be explored, we first give

readers an intuitive idea about how monotonic property can be utilized to alleviate the

difficulty to obtain a global solution for non-convex optimization problems.

In general, finding the global solution for a non-convex optimization problem involves

searching every point in the feasible domain. However, if the objective function f(x) :
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Rn → R in a maximization problem is monotonically increasing, once a feasible point x

is known, all the points x̄ satisfying x̄ < x can be simply discarded since all these points

lead to a smaller objective value compared to x. Moreover, if a function g(x) : Rn → R

representing a constraint such that g(x) ≤ 0 is a monotonically increasing function, once

an infeasible point x is found such that g(x) > 0, then all the points satisfying x̄ > x

are infeasible at all due to the monotonic property of the constraint. In this way, the

monotonic property inside the non-convex optimization problem successfully reduces the

size of feasible region, and thus simplifies the searching procedure for a global optimal

solution.

3.2 Polyblock Outer Approximation Algorithm

The commonly-used algorithm for solving monotonic optimization problems, referred

to as the polyblock outer approximation algorithm, is illustrated in this subsection. We

first introduce two important concepts, namely the concept of polyblock and the concept

of proper vertices.

Definition 10 (Polyblock). A set P ⊂ Rn
+ is called a polyblock if it is a union of a fi-

nite number of rectangular boxes, i.e., P = [0,b1] ∪ [0,b2] ∪ · · · ∪ [0,bm]. Let T =

[b1,b2, · · · ,bm], then T is defined as the vertex set of the polyblock. Obviously, a poly-

block is a normal set.

Definition 11 (Improper vertex). Let T be the vertex set of a polyblock, a vertex v ∈ T is

proper if there does not exist v′ ̸= v and v′ ∈ T such that v′ > v. A vertex is improper if

it is not proper. Removing improper vertices does not affect the shape of a polyblock.

An example of polyblocks and improper vertices is shown in Figure 3.2. It can be seen

that the poloblock is generated by taking the union of 3 rectangular boxes with vertex v1,

v2 and v3, respectively. However, based on the definition of improper vertices, it can be
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readily observed that vertex v3 is actually an improper vertex and removing v3 does not

change the shape of polyblock.

0

Figure 3.2: Illustration of polyblocks and improper vertices

For convex optimization, the supporting hyperplane theorem states that for any point

x outside the feasible convex set, there is a hyperplane passing through a point on the

boundary of the convex set that separates x from the feasible set. Consequently, the fea-

sible set is enclosed in a halfspace and separated from the other halfspace. The support-

ing hyperplane theorem plays a fundamental role for the polyhedral outer approximation

method [53], since it allows to address the convex optimization based on iteratively ap-

proximating the convex feasible set by a nested sequence of polyhedra. In each iteration,

the new polyhedron is formed by taking the intersection with the new halfspace generated

by the supporting hyperplane theorem. Additionally, for a concave maximization problem,

the concave function always achieves its maximum over a bounded polyhedron on one of

its vertices.

Similarly, the monotonic optimization problem can be also solved in a way analogous

to the polyhedral outer approximation method. Particularly, any point x outside a normal

set can be separated from this normal set by a cone defined as {x̄|x̄ ≥ x}. As a result,
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0
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Normal

Set

0
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Figure 3.3: (a) Separation pattern for convex optimization; (b) Separation pattern for
monotonic optimization.

a normal set can be approximated by a nested sequence of polyblocks. For a clear illus-

tration of the relationship and difference between convex set approximation and normal

set approximation, the separation patterns for these two approximations are depicted in

Figure 3.3. Moreover, the comparison between a polyhedron and a polyblock is illustrated

in Figure 3.4.

The details of the polyblock outer approximation algorithm are omitted in this subsec-

tion. However, in Subsection 4.3, a step-by-step illustration will be given for an imple-

mentation of the polyblock outer approximation algorithm in CR networks.
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Figure 3.4: (a) A polyhedron enclosing a convex set; (b) A polyblock enclosing a normal
set.
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4. OPTIMAL RESOURCE ALLOCATION FOR DOWNLINK OFDMA COGNITIVE

RADIO NETWORKS

4.1 Introduction

In this section, we study the downlink resource allocation problem in OFDMA CR

networks assuming the perfect spectrum sensing knowledge [54]. Our goal is to maximize

the aggregated throughput of SUs. In addition, the power of SUs is controlled to keep

the interference introduced to PUs under certain limits, which gives rise to a non-convex

MINLP optimization problem. It is illustrated that the non-convex MINLP formulation

admits a special structure and the optimal solution can be always achieved using standard

convex optimization techniques under a general and practical assumption. In particular,

the subgradient method is adopted to address the problem in the dual domain. The effec-

tiveness of the proposed algorithms is verified by simulations.

The rest of this section is structured as follows. The system model and problem formu-

lation are presented in Subsection 4.2. By exploring the special structure of our problem,

an optimal subchannel and power allocation algorithm is proposed in Subsection 4.3. Nu-

merical results and discussions are given in Subsection 4.4. Finally, conclusions are drawn

in Subsection 4.5.

4.2 System Model

Consider a downlink OFDMA CR interweave network with L licensed PUs coexisting

with K SUs, as shown in Figure 4.1. In the RF spectrum domain, the CR model employed

in [11, 14, 15] is considered. Particularly, as depicted in Figure 4.2, it is assumed that the

lth PU’s operating band ranges from fl to fl+Bl and the remaining available spectrum has

N total subchannels with equal bandwidth B. Since SUs can only access to subchannels

that are detected to be vacant, the interference introduced from SUs to PUs is mainly due
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to out-of-band emissions, which are caused by power leakage in the sidelobes of OFDM

signals [55]. Specifically, the interference per unit power introduced to the lth PU due to

the allocation of the SU on the nth subchannel is given by [11]

ISPl,n =

∫ dl,n+Bl/2

dl,n−Bl/2

gSPl,n ϕ(f)df, (4.1)

where gSPln represents the power gain from the secondary base station (SBS) to the lth PU

on the nth subchannel, and dl,n denotes the spectrum distance between the centers of the

nth subchannel and the lth PU band. Notation ϕ(f) represents the PSD of the OFDM

signal and it is given by ϕ(f) = T
(

sinπfT
πfT

)2
, where T stands for the symbol duration.

PBS

PU

PBS

PU

PU

SU

SU

PU

PU

PBS: Primary Base Station

PU: Primary User

SBS: Secondary Base Station

SU: Secondary User

PBS: Primary Base Station

PU: Primary User

SBS: Secondary Base Station

SU: Secondary User

SBS

Figure 4.1: A downlink cognitive radio network.

The received throughput of the kth SU on the nth subchannel is expressed via Shannon

throughput formula as follows [14]:

rk,n = log

(
1 +

gSSk,npk,n

σ2 + IPS
k

)
, (4.2)
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Figure 4.2: RF Spectrum sharing between PUs and SUs.

where gSSk,n is the power gain from the SBS to the kth SU on the nth subchannel, pk,n stands

for the transmitted power from SBS to the kth SU on the nth subchannel, and σ2 denotes

the noise power. Additionally, IPS
k represents the interference caused by PUs on the kth

SU, which can be measured as part of the noise by the receiver of the kth SU [56]. It is

assumed that the power gains from the SBS to SUs (gSSk,n) and PUs (gSPl,n ) are known by the

SBS.

Towards this end, by denoting the SINR on the nth subchannel occupied by the kth SU

with unit power as

sk,n
.
=

gSSk,n

σ2 + IPS
k

, (4.3)

the downlink resource allocation optimization problem in CR networks can be formalized
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as the problem (P1) shown below:

max
xk,n,pk,n

K∑
k=1

N∑
n=1

xk,n log(1 + sk,npk,n) (P1)

s.t.
K∑
k=1

N∑
n=1

xk,npk,n ≤ PT (C1
1 )

K∑
k=1

N∑
n=1

xk,npk,nI
SP
l,n ≤ Imax

l , l = 1, · · · , L, (C2
1 )

K∑
k=1

xk,n ≤ 1, n = 1, · · · , N (C3
1 )

pk,n ≥ 0, k = 1, · · · , K n = 1, · · · , N (C4
1 )

xk,n ∈ {0, 1}, k = 1, · · · , K n = 1, · · · , N (C5
1 )

where rk,n = log(1 + sk,npk,n), xk,n is a binary variable indicating whether the nth sub-

channel is occupied by the kth SU, PT denotes the total transmit power by the SBS, Imax
l

stands for the interference tolerance for the lth PU, constraint (C3
1 ) requires that each sub-

channel can be only allocated to only one SU, and constraint (C4
1 ) simply illustrates the

nonnegativity property of power variables.

4.3 Optimal Subchannel and Power Allocation Algorithm

Based on the discussion in Subsection 2.3, the continuous relaxation of problem (P1)

is non-convex with respect to xk,n and pk,n. Therefore, optimization problem (P1) is a

non-convex MINLP problem, which is NP-hard and computationally difficult to solve.

To efficiently obtain the optimal solution for (P1), we first introduce a new variable yk,n,

where yk,n = xk,npk,n, to replace the variable pk,n in (P1). Thus, the resulting optimization

problem is equivalent to (P1) and it is termed as “PE
1 ” shown below:
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max
xk,n,yk,n

K∑
k=1

N∑
n=1

xk,n log(1 +
sk,nyk,n
xk,n

) (PE
1 )

s.t.
K∑
k=1

N∑
n=1

yk,n ≤ PT

K∑
k=1

N∑
n=1

yk,nI
SP
l,n ≤ Imax

l , l = 1, · · · , L

K∑
k=1

xk,n ≤ 1, n = 1, · · · , N

yk,n ≥ 0, k = 1, · · · , K n = 1, · · · , N

xk,n ∈ {0, 1}, k = 1, · · · , K n = 1, · · · , N

It is proved in Appendix A that the continuous relaxation of the optimization problem

(PE
1 ), termed as (P2) later, is a convex optimization problem. Therefore, problem (PE

1 )

admits a formulation of convex MINLP. However, as illustrated in Subsection 2.3, convex

MINLP problems are still NP-hard. To find the optimal solution of (PE
1 ), the brute-force

approach requires generating KN permutations of binary variables xk,n and solving the

power allocation problem for each permutation. Other convex MINLP algorithms, such

as the branch-and-bound and the outer approximation method, can definitely reduce the

searching time compared to the brute-force approach, but they are still computationally

complex especially for the OFDM systems with a large number of subchannels. Therefore,

we instead investigate the continuous relaxation of the problem by relaxing the binary

constraint xk,n ∈ {0, 1} to 0 ≤ xk,n ≤ 1. This approach is also referred to as the time-

sharing method in the literature of multicarrier wireless systems. The term “time-sharing”

comes from the intuitive meaning of the binary variable. In multicarrier signaling scheme,

relaxing the binary variable simply indicates that this carrier is occupied by a certain user
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in a fractional portion of time and the remaining time can also be shared by other users.

The time-sharing approach was first presented in [57] and has been widely used in the

multicarrier OFDM system to transform binary variables into continuous ones [58–61].

Thus, the following relaxed optimization problem (P2) is formulated

max
xk,n,yk,n

K∑
k=1

N∑
n=1

xk,n log(1 +
sk,nyk,n
xk,n

) (P2)

s.t.
K∑
k=1

N∑
n=1

yk,n ≤ PT (C1
2 )

K∑
k=1

N∑
n=1

yk,nI
SP
l,n ≤ Imax

l , l = 1, · · · , L (C2
2 )

K∑
k=1

xk,n ≤ 1, n = 1, · · · , N (C3
2 )

yk,n ≥ 0, k = 1, · · · , K n = 1, · · · , N (C4
2 )

xk,n ≥ 0, k = 1, · · · , K n = 1, · · · , N (C5
2 )

Since (C3
2 ) implicitly implies that xk,n ≤ 1, (C5

2 ) is simply written as xk,n ≥ 0 instead of

0 ≤ xk,n ≤ 1.

In the remaining of this subsection, by making a general assumption, we show that

problem (P2) always achieve a binary optimal solution for the user assignment variable

even though the variable xk,n can take any value from 0 to 1.

Since all the constraints of the convex problem (P2) are affine, the regularity condition

holds and (P2) admits a zero duality gap [29]. Therefore, (P2) can be solved in the dual
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domain using KKT conditions. The Lagrange function of (P2) is expressed as

L(xk,n, yk,n, λ, µl, ηn)

=xk,n log

(
1 +

sk,nyk,n
xk,n

)
+ λ

(
PT −

K∑
k=1

N∑
n=1

yk,n

)
+

L∑
l=1

µl

(
Imax
l −

K∑
k=1

N∑
n=1

yk,nI
SP
l,n

)

+
N∑

n=1

ηn

(
1−

K∑
k=1

xk,n

)
,

(4.4)

where constraints (C4
2 ) and (C5

2 ) are absorbed in the KKT conditions.

For simplicity, the logarithm functions are assumed to be natural logarithms. Due to

the KKT conditions, it follows that

∂L

∂yk,n
=

sk,nxk,n
xk,n + sk,nyk,n

− λ−
L∑
l=1

µlI
SP
l,n


= 0, yk,n > 0

< 0, yk,n = 0

(4.5)

which further leads to

yk,n =

 1

λ+
L∑
l=1

µlISPl,n

− 1

sk,n


+

xk,n, (4.6)

with (·)+ is defined as max(·, 0). In addition, taking the derivative of the Lagrange function

with respect to xk,n leads to

∂L

∂xk,n
= log

(
1 +

sk,nyk,n
xk,n

)
− sk,nyk,n
xk,n + sk,nyk,n

− ηn
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For simplicity, we denote

Jk,n = log

(
1 +

sk,nyk,n
xk,n

)
− sk,nyk,n
xk,n + sk,nyk,n

= log

1 + sk,n

 1

λ+
L∑
l=1

µlISPl,n

− 1

sk,n


+−

sk,n

 1

λ+
L∑

l=1
µlI

SP
l,n

− 1
sk,n

+

1 + sk,n

 1

λ+
L∑

l=1

µlI
SP
l,n

− 1
sk,n

+ ,

(4.7)

where the second equality follows from (5.16). From the KKT conditions, it turns out that

Jk,n − ηn =


= 0, xk,n > 0

< 0, xk,n = 0.

(4.8)

Moreover, due to the complementary slackness of KKT conditions, it follows that

λ

(
PT −

K∑
k=1

N∑
n=1

yk,n

)
= 0 (4.9)

µl

(
Imax
l −

K∑
k=1

N∑
n=1

yk,nI
SP
l,n

)
= 0, l = 1, · · · , L (4.10)

ηn

(
1−

k∑
k=1

xk,n

)
= 0, n = 1, · · · , N (4.11)

with λ, µl, ηn ≥ 0.

Based on the aforementioned equations, the following result can be established.

Lemma 1. For n = 1, · · · , N , ηn = maxk Jk,n.

Proof. See Appendix B.1.

Based on Lemma 1 and the KKT conditions (4.5) - (4.11), the main results of our work
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are summarized by the following theorems.

Theorem 4. If maxk Jk,n is achieved by only one SU, i.e., Jk∗n,n > Jk,n, k ̸= k∗n, then the

nth subchannel is assigned to the k∗nth SU only, i.e.,

xk∗n,n = 1|k∗n=argmax Jk,n , ∀n (4.12)

If maxk Jk,n is tied by multiple SUs, to optimize problem (P2), the nth subchannel must be

shared by these SUs.

Proof. See Appendix B.2

Theorem 5. Under the assumption that for any given subchannel n, sk,n’s are all distinct

for k = 1, · · · , K, the problem (P2) can always achieve a binary optimal solution for the

user assignment variable xk,n. In particular, each subchannel is solely assigned to the SU

with the largest sk,n, i.e.,

xk∗n,n = 1|k∗n=argmax sk,n and xk,n = 0|k ̸=k∗n , ∀n (4.13)

Proof. See Appendix B.3.

In general, SUs are randomly located around the SBS and the probability that two

SUs have exactly the same SINR per unit power is almost zero. Therefore, in practical

scenarios, the optimization problem (P2) can always achieve a binary optimal solution for

the user assignment variables.

Towards this end, it can be claimed that under the assumption in Theorem 5, problem

(P2) can always achieve a binary optimal solution in (4.13). In this way, the dimension of

problem (P2) can be significantly reduced from 2KN to N . In particular, plugging (4.13)
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into problem (P2) yields

max
yk∗n,n

N∑
n=1

log(1 + sk∗n,nyk∗n,n) (P3)

s.t.
N∑

n=1

yk∗n,n ≤ PT (C1
3 )

N∑
n=1

yk∗n,nI
SP
l,n ≤ Imax

l , l = 1, · · · , L (C2
3 )

yk∗n,n ≥ 0, n = 1, · · · , N, (C3
3 )

which is termed as problem (P3) in this subsection.

It can be observed that problem (P3) represents a classic waterfilling problem without

constraint (C2
3 ). The existence of constraint (C2

3 ) adds another level of difficulty to the

problem, which does not admit an analytical solution. However, problem (P3) still can

be solved by any standard convex optimization numerical method, such as the interior-

point method and the subgradient method. Since all the derivations aforementioned are

discussed in the dual domain, we use the subgradient method to iteratively update the dual

variables and recover the primal variable yk∗n,n. In particular, suppose the dual variables

associated with constraints (C1
3 ) and (C2

3 ) to be β and γl, respectively. They can be updated

by

βi+1 =

(
βi − αi(PT −

N∑
n=1

yk∗n,n)

)+

(4.14)

γi+1
l =

(
γil − αi(Imax

l −
N∑

n=1

yk∗n,nI
SP
l,n )

)+

, (4.15)

where i is the iteration number and αi is the step size in the ith iteration. A common

choice for the step size in subgradient methods is referred to as “square summable but not
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summable”, in which the step sizes satisfy

αi ≥ 0,
∞∑
i=1

αi = ∞,

∞∑
i=1

α2
i <∞.

One typical example is αi = a/(i+ b) with some a > 0 and b ≥ 0. Once the optimal dual

variables are obtained, the corresponding optimal primal variable can be recovered by the

following relationship:

yk∗n,n =

 1

β +
L∑
l=1

γlISPl,n

− 1

sk∗n,n


+

, (4.16)

which is derived by applying the KKT conditions to problem (P3). The reader can refer

to [62] for more details about the subgradient method.

To summarize, the outline of our proposed subgradient method for solving problem

(P3), or equivalently problem (P2), is presented below in Algorithm 1. Once the optimal

solution x∗k,n and y∗k,n for problem (P2) is obtained, we can claim it is also optimal for the

original problem (P1). This argument can be proved in two steps: first, since (P2) is a

relaxed version of (P1), the optimal objective value of (P2) provides an upper bound for

(P1); second, since x∗k,n’s are binary, the optimal solution of (P2) is a feasible solution of

(P1) and consequently achieves a lower bound for the optimal objective value in (P1).

In terms of the computational complexity, Algorithm 1 requires O(KN) operations to

find the optimal user assignment using (4.13). Suppose the subgradient method converges

in ∆ iterations, and in each iteration, it needs O(N) to update yk∗n,n and O(L) to update

µl. Thus, the overall complexity for Algorithm 1 is O(N∆) since the subgradient method

generally needs much more than K iterations to converge.
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Algorithm 1 Subgradient method for problem (P2)
Require: SINRs of SUs in (4.3) are distinct.

1: Obtain the optimal SU assignment using (4.13). Assume the k∗nth SU occupies the nth
subchannel.

2: For each subchannel n, set yk,n = 0 for k ̸= k∗n.
3: Initialize β and γl. Set i = 0.
4: while i ≤ maximum number of iterations do
5: for n = 1 to N do
6: Calculate yk∗n,n using (4.16)
7: end for
8: Update βi+1 and γi+1

l using (4.14) and (4.15), respectively
9: i = i + 1

10: end while

4.4 Simulation Results

For the simulation results presented in this subsection, we assume the numbers of

PUs to be 4, i.e., L = 4. The whole OFDM access scheme presents 44 subchannels

with the bandwidth of each subchannel equal to B = 15kHz. The four PUs occupy the

subchannels 1-3, 10-14, 20-27 and 30-40, respectively. Thus, the number of available CR

subchannels is N = 20. It is also assumed that the symbol duration T = 66.7µs and

the noise power σ2 = 10−3W. The interference introduced to SUs, IPS
k , is assumed to be

uniformly distributed from 10−3W to 10−2W. In addition, the channels from the SBS to

SUs, as well as the channels from the SBS to PUs, are assumed to be Rayleigh fading with

an average channel power gain 10dB. Thus, gSSk,n and gSPl,n are exponentially distributed

with mean 10dB. Since some parameters are randomly generated, an average result of

1,000 independent Monte-Carlo runs is carried out for simulating the total SU throughput.

In Figure 4.3, it is assumed that the number of SUs is 5, i.e., K = 5, the total SU

throughput for (P1) is performed with a power limit PT ranging from 1W to 1.6W and an

interference threshold Imax
l ranging from 4 × 10−12W to 7 × 10−12W. It can be observed
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Figure 4.3: Total SU throughput as a function of PT and Imax
l with K = 5.

that the total SU throughput increases with the increase of power limit and/or interference

threshold.

In Figure 4.4 and 4.5, the interference threshold Imax
l is fixed to be 5 × 10−12W. We

alternatively assume that the number of SUs varies from 2 to 11. In this case, the total SU

throughput for (P1) is simulated in Figure 4.4 with the power limit PT ranging from 1W

to 1.6W. It can be seen that even with the same power limit and interference threshold, the

CR system with more SUs can achieve a higher throughput. As expected, it is depicted in

Figure 4.5 that the average SU throughput decreases as the number of SUs increases for a

fixed power limit and interference threshold.

4.5 Conclusions

In this section, the resource allocation problem in a downlink CR network was inves-

tigated. Our goal was to maximize the total throughput of SUs subject to an interference

constraint at PUs. The problem was formulated as a non-convex MINLP optimization
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Figure 4.4: Total SU throughput as a function of PT and K, with Imax
l = 5× 10−12W.
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Figure 4.5: Average SU throughput as a function of PT and K, with Imax
l = 5× 10−12W.
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problem. Under a general and quite practical assumption, we demonstrated that the for-

mulated problem can be globally maximized via standard convex optimization techniques.

In particular, the subgradient method was adopted to address the problem in the dual do-

main. Numerical results were presented to discuss the change of total SU throughput as a

function of power limit, interference threshold and the number of SUs.
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5. JOINT SPECTRUM SENSING AND RESOURCE ALLOCATION IN

MULTI-CHANNEL-MULTI-USER COGNITIVE RADIO NETWORKS

5.1 Introduction

In this section, the joint spectrum sensing and resource allocation problem is inves-

tigated in a multi-channel-multi-user CR network [63]. Assuming imperfect spectrum

sensing information, our goal is to jointly optimize the sensing threshold and power allo-

cation strategy such that the average total throughput of SUs is maximized. Additionally,

the power of SUs is constrained to keep the interference introduced to PUs under certain

limits, which gives rise to a non-convex MINLP optimization problem. Our contribution in

this section is threefold. First, it is illustrated that the dimension of the non-convex MINLP

problem can be significantly reduced, which helps to re-formulate the optimization prob-

lem without resorting to integer variables. Second, it is demonstrated that the simplified

formulation admits the canonical form of a monotonic optimization and an ϵ-optimal so-

lution can be achieved using the polyblock outer approximation algorithm. Third, a prac-

tical low-complexity spectrum sensing and resource allocation algorithm is developed to

reduce the computational cost. Finally, the effectiveness of proposed algorithms is verified

by simulations.

The rest of the section is structured as follows. The system model and problem formu-

lation are described in Subsection 5.2. By exploring the special structure of the problem

in Subsection 5.2, an equivalent but significantly reduced in dimension formulation of the

optimization problem is presented in Subsection 5.3. The proposed algorithm exploits the

knowledge of a monotonic optimization, and it is shown in Subsection 5.4 to achieve an ϵ-

optimal solution. In Subsection 5.5, we develop a suboptimal spectrum sensing and power

allocation algorithm with reduced computational complexity. Numerical results and dis-
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cussions are presented in Subsection 5.6. Finally, conclusions are drawn in Subsection

5.7.

5.2 System Model and Problem Formulation

In order to make the rest of the section easy to follow, a list of some frequently-used

terminologies and their corresponding notations in this section is illustrated in Table 5.1.

We consider a downlink multi-band CR interweave network with a SBS coexisting in

the vicinity of a PBS. There are total L licensed PUs and K SUs, as shown in Figure 5.1.

The CR model in the RF domain is depicted in Figure 5.2. It is assumed that the whole

RF spectrum has N total channels with equal bandwidth B. In addition, all the channels

are licensed to PUs and the bands of PUs are not overlapping. At a certain time instant,

the SBS detects the spectrum and finds the spectrum holes which are licensed to but not

utilized by PUs based on the joint optimization rule. These spectrum holes are referred to

as the CR bands and are available for SUs’ transmission. The key difference between the

model proposed here and the one in Subsection 4.2 is that the imperfect spectrum sensing

is taken into account here. For example, the PUs’ occupancy and the available CR bands

in Figure 5.2 are based on the detection information, which might be false. In other words,

the occupied bands in Figure 5.2 are subject to the possibility to be idle and the vacant

bands in Figure 5.2 might be occupied.

5.2.1 Spectrum Sensing

When the SBS senses the spectrum, two kinds of sensing errors typically exist. The

first is termed as false alarm, which occurs when the channel is detected to be occupied

but it is actually vacant. The second kind is referred to as misdetection, and it represents

the case when the SBS fails to detect the occupancy of PUs, i.e., the channel is detected to

be vacant but it is actually occupied. We employ the sensing technique in [20], in which
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Figure 5.1: A downlink CR network assuming imperfect spectrum sensing.

the false alarm and detection probabilities in the nth channel are expressed as

P F
n (γn) = P (d1n|H0

n) = Q

(
γn −Mσ2

ν

σ2
ν

√
2M

)
, (5.1)

and

PD
n (γn) = P (d1n|H1

n) = Q

(
γn −M(σ2

ν + gPS
n σ2

s)

σν
√

2M(σ2
ν + 2gPS

n σ2
s)

)
, (5.2)

where d0n denotes the event that the nth channel is detected to be vacant and d1n otherwise,

H0
n represents the hypothesis that the nth channel is actually vacant and H1

n otherwise, and

γn is the sensing threshold. Basically, the hypothesis H1
n is chosen if the received signal

level is above γn on the nth channel. On the other hand, the hypothesis H0
n is selected

if the level is below γn. Additionally, Q(·) is the tail probability of the standard normal

distribution, gPS
n represents the power gain from the PBS to the SBS, and M stands for the

number of sensing samples. Additionally, σ2
s denotes the average power of the transmitted

signal from the PBS and σ2
ν represents the noise power at the receiver end of SBS, both of

which are assumed to be equal at each channel. Similar to [20], we assume that M,σ2
s , σ

2
ν ,
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Figure 5.2: RF spectrum sharing between PUs and SUs assuming imperfect spectrum
sensing.

and gPS
n are known a priori at the SBS. Particularly, the power gain gPS

n can be learned

during a period when the primary transmitter is known to be working [16].

The probability of misdetection is then given by

PMD
n (γn) = P (d0n|H1

n) = 1− PD
n (γn). (5.3)

It can be observed that the choice of sensing threshold results in a trade-off between the

probabilities of false alarm and misdetection. Due to the monotonically decreasing prop-

erty of the Q function, a higher sensing threshold yields a smaller probability of false alarm

but a larger probability of misdetection, and vice versa.

5.2.2 Resource Allocation

Denoting pk,n as the transmitted power from the SBS to the kth SU on the nth channel

in the case when the nth channel is detected to be vacant, and xk,n as the binary variable
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Table 5.1: List of terminologies and corresponding notations

L Number of PUs
K Number of SUs
N Number of channels
B Bandwidth of each channel
γn Sensing threshold for the nth channel
M Number of sensing samples
σ2
ν Noise power
gPS
n Power gain from the PBS to the SBS
σ2
s Average power of the transmitted signal from the PBS

H0
n Hypothesis that the nth channel is vacant

H1
n Hypothesis that the nth channel is occupied

d0n Event that the nth channel is detected to be vacant
d1n Event that the nth channel is detected to be occupied
PD
n Detection rate on the nth channel
P F
n False alarm rate on the nth channel
PMD
n Misdetection rate on the nth channel
P 0
n Probability that the nth channel is vacant
P 1
n Probability that the nth channel is occupied
Rk,n Average throughput of the kth SU on the nth channel
R̄k,n Approximated average throughput of the kth SU on the nth channel
yk,n Transmitted power from the SBS to the kth SU on the nth channel
xk,n Binary variable with xk,n = 1 indicating that the nth channel is occupied by

the kth SU and xk,n = 0 otherwise
Ik,n Interference from PUs introduced to the kth SU on the nth channel
gSSk,n Power gain from the SBS to the kth SU on the nth channel
gSPl,n Power gain from the SBS to the lth PU on the nth channel
Imax
l Average interference constraint to the lth PU
Sl Licensed channels for the lth PU
P T
n Peak power limit of the SBS on the nth channel

indicating whether the nth channel is occupied by the kth SU, the average throughput of

the kth SU on the nth channel can be expressed via Shannon capacity formula as follows:

Rk,n = P (d0n,H0
n)xk,n log

(
1 +

gSSk,npk,n

σ2
ν

)
+ P (d0n,H1

n)xk,n log

(
1 +

gSSk,npk,n

σ2
ν + Ik,n

)

+ P (d1n,H0
n)× 0 + P (d1n,H1

n)× 0,
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where gSSk,n stands for the power gain from the SBS to the kth SU on the nth channel,

which is assumed to be known at the SBS. This information can be acquired at the SBS

by measuring the uplink channel gain and utilizing the symmetry property between uplink

and downlink channels [21]. Moreover, Ik,n represents the interference from the PBS

introduced to the kth SU on the nth channel. Basically, SUs are only allowed to transmit

on the nth channel when it is detected to be vacant, i.e., at the scenario d0n. In this case, if

the detection is correct, then only noise exists. On the other hand, when it fails to detect the

occupancy of PUs, there is interference from PUs to the SU. For simplicity, the logarithm

functions are assumed to be natural logarithms in this dissertation. By expressing

P (d0n,H0
n) = P (H0

n)P (d
0
n|H0

n) = P 0
n(1− P F

n ),

and

P (d0n,H1
n) = P (H1

n)P (d
0
n|H1

n) = P 1
n(1− PD

n ),

where P 0
n = P (H0

n) and P 1
n = P (H1

n) denote the priori probabilities and can be obtained

via long-term estimation. The above equation resumes to

Rk,n = P 0
n(1− P F

n )xk,n log

(
1 +

gSSk,npk,n

σ2
ν

)
+ P 1

n(1− PD
n )xk,n log

(
1 +

gSSk,npk,n

σ2
ν + Ik,n

)
.

(5.4)

In order to formulate the optimization problem, the following constraints are consid-

ered:

• QoS of PUs: To sufficiently protect the QoS of PUs, an interference threshold

Imax
l , l = 1, · · · , L, is enforced to constrain the average interference introduced
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at PUs by SUs:

K∑
k=1

∑
n∈Sl

P 1
n(1− PD

n )xk,npk,ng
SP
l,n ≤ Imax

l , l = 1, · · · , L, (5.5)

where gSPl,n denotes the power gain from the SBS to the lth PU on the nth channel,

which can be periodically measured by a band manager or estimated by listening

to a becon signal and then fed back to the SBS [55], and Sl represents the licensed

channels for the lth PU.

• Transmit power constraint: Instead of considering the average power constraint,

which only guarantees that the power limit is not exceeded in an average sense,

we consider the peak power constraint herein dissertation. Let P T
n represent the

maximum transmit power of the SBS on the nth channel. The power constraint

reduces to
K∑
k=1

xk,npk,n ≤ P T
n , n = 1, · · · , N. (5.6)

Additionally, constraint (5.6) also prevents the ill-conditioned situation in constraint

(5.5). Specifically, if P 1
n(1 − PD

n ) admits a very small value on some channel n,

then
∑K

k=1 xk,npk,n can even take a large value close to infinity and still make (5.5)

satisfied.

• Interference constraint among SUs: To prevent the interference among SUs, we

simply add a constraint requiring that each channel can be occupied by at most one

SU, i.e.,
K∑
k=1

xk,n ≤ 1, n = 1, · · · , N. (5.7)

• Sensing error constraint: In order to receive the best balance between false alarm
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and misdetection, the following sensing error constraints are added:

PD
n (γn) ≥ 0.5, P F

n (γn) ≤ 0.5, n = 1, · · · , N. (5.8)

Due to the monotonically decreasing property of Q function in (5.1) and (5.2), and

the fact that Q−1(0.5) = 0, constraints (5.8) can be further expressed as

Mσ2
ν ≤ γn ≤M(σ2

ν + gPS
n σ2

s), n = 1, · · · , N. (5.9)

• Basic constraints for xk,n and pk,n: Since xk,n is a binary variable indicating whether

the nth channel is occupied by the kth SU, it follows that

xk,n ∈ {0, 1}, k = 1, · · · , K, n = 1, · · · , N. (5.10)

In addition, the non-negative property of the power variables is expressed as

pk,n ≥ 0, k = 1, · · · , K, n = 1, · · · , N. (5.11)

Since we are investigating a CR network where the licensed spectrum is inefficiently

utilized, the PU activity probability P 1
n is assumed to be very small, say less than 0.25, and

it follows that P 0
n > P 1

n . Moreover, based on (5.8), it turns out that 1 − P F
n > 1 − PD

n .

Therefore, combing these two observations and the fact that σ2
ν < σ2

ν + Ik,n, the first term

in (5.4) dominates Rk,n, and Rk,n can be further approximated as

R̃k,n = P 0
n(1− P F

n )xk,n log

(
1 +

gSSk,npk,n

σ2
ν

)
. (5.12)

The joint spectrum sensing and resource allocation problem, referred to as “P-Joint”
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herein dissertation, is formulated as

max
xk,n,pk,n,γn

K∑
k=1

N∑
n=1

R̃k,n (P-Joint)

s.t. (5.5), (5.6), (5.7), (5.9), (5.10), (5.11).

5.3 An Equivalent Formulation

Since the objective function of P-Joint is non-convex with respect to xk,n, pk,n and γn,

it is a non-convex MINLP problem, which is NP-hard and computationally complex to

solve [36]. In this subsection, we illustrate that under a general and practical assumption,

the dimension of the original non-convex MINLP problem can be significantly reduced.

Basically, the binary variable xk,n can be removed which results in an equivalent formula-

tion only in terms of the power and sensing threshold variables.

Instead of directly analyzing P-Joint with respect to xk,n, pk,n and γn, we alternatively

tackle the problem with a fixed value of γn satisfying the constraint (5.9). In this way, the

resulting problem can be expressed as

max
xk,n,pk,n

K∑
k=1

N∑
n=1

R̃k,n (5.13)

s.t. (5.5), (5.6), (5.7), (5.10), (5.11).

It can be observed (5.13) is still a non-convex MINLP problem. However, by exploring the

special structure in the dual domain, it is demonstrated that the optimal solution of (5.13)

can be derived using standard convex optimization tools under a general and practical as-

sumption. The same procedure used in Subsection 4.2 is employed here. Specifically,

we first introduce a new variable yk,n, where yk,n = xk,npk,n, to replace the variable pk,n.

Thus, the resulting problem is equivalent to (5.13). The time-sharing method is then used
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by relaxing the binary variable xk,n ∈ {0, 1} to 0 ≤ xk,n ≤ 1. Even though the time-

sharing method is employed, unlike reference [26], we do not allow multiple SUs to share

a common channel. The time-sharing method is just utilized to conduct the continuous

relaxation of the MINLP problem such that the convex optimization tools can be imple-

mented. Thus, the problem (5.13) is relaxed to

max
xk,n,yk,n

K∑
k=1

N∑
n=1

P 0
n(1− P F

n )xk,n log

(
1 +

gSSk,nyk,n

σ2
νxk,n

)
(5.14)

s.t.
K∑
k=1

∑
n∈Sl

P 1
n(1− PD

n )yk,ng
SP
l,n ≤ Imax

l , l = 1, · · · , L

K∑
k=1

yk,n ≤ P T
n , n = 1, · · · , N

K∑
k=1

xk,n ≤ 1, n = 1, · · · , N

xk,n ≥ 0, pk,n ≥ 0, k = 1, · · · , K, n = 1, · · · , N

Since constraint
∑K

k=1 xk,n ≤ 1 implicitly implies that xk,n ≤ 1, the relaxation con-

dition is simply expressed as xk,n ≥ 0 instead of 0 ≤ xk,n ≤ 1. Analogous to the

convexity proof of problem (P2) shown in Appendix A, it can be readily inferred that

xk,n log(1 + gSSk,nyk,n/(σ
2
νxk,n)) is a concave function with respect to xk,n and yk,n, since

it is the perspective function of the concave logarithm function. The objective function of

(5.14), being the positive summation of concave functions, is also concave. Hence, the

optimization problem (5.14) is a convex optimization problem due to the fact that all its

constraints are affine.

We tackle the problem in the dual domain, which leads to the adoption of the Lagrange
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function

Lg =
K∑
k=1

N∑
n=1

P 0
n(1− P F

n )xk,n log

(
1 +

gSSk,nyk,n

σ2
νxk,n

)
+

N∑
n=1

λn

(
P T
n −

K∑
k=1

yk,n

)

+
L∑
l=1

µl

(
Imax
l −

k∑
k=1

∑
n∈Sl

P 1
n(1− PD

n )yk,ng
SP
l,n

)
+

n∑
n=1

ηn

(
1−

K∑
k=1

xk,n

)
,

(5.15)

where the last constraint in (5.14) is absorbed in KKT conditions. Applying KKT condi-

tions [35] leads to

∂Lg

∂yk,n
= P 0

n(1− P F
n )

gSSk,nxk,n

σ2
νxk,n + gSSk,nyk,n

− λn − P 1
n(1− PD

n )µlg
SP
l,n


= 0, yk,n > 0,

< 0, yk,n = 0,

with n ∈ Sl. It turns out that

yk,n =

(
ψn −

σ2
ν

gSSk,n

)+

xk,n, (5.16)

where

ψn =
P 0
n(1− P F

n )

λn + P 1
n(1− PD

n )µlgSPl,n

,

with n ∈ Sl,. Moreover, taking the derivative of the Lagrange function with respect to xk,n

and plugging (5.16) into the result yields

∂Lg

∂xk,n
= Jk,n − ηn


= 0, xk,n > 0,

< 0, xk,n = 0,

(5.17)
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where

Jk,n = P 0
n(1− P F

n )

[
log

(
1 +

gSSk,n

(
ψn − σ2

ν/g
SS
k,n

)+
σ2
ν

)
−

gSSk,n(ψn − σ2
ν/g

SS
k,n)

+

σ2
ν + gSSk,n(ψn − σ2

ν/g
SS
k,n)

+

]
.

(5.18)

Based to the aforementioned equations, the following result can be established.

Lemma 2. All the channels must be occupied by SUs. That is to say, for any channel n,

there exist some SUs such that xk,n > 0. In addition, ηn = maxk Jk,n, n = 1, · · · , N .

Proof. See Appendix C.1.

Based on Lemma 2, the following more general result is derived.

Theorem 6. Under the assumption that for any channel n, gSSk,n’s are all distinct for

k = 1, · · · , K, the problem (5.14) always achieve a binary optimal solution for the user

assignment variable xk,n. Particularly, each channel is solely assigned to the SU with the

largest gSSk,n, i.e.,

xk∗n,n = 1|k∗n=argmaxk gSS
k,n
, n = 1, · · · , N,

xk,n = 0|k ̸=k∗n , n = 1, · · · , N.
(5.19)

Proof. See Appendix C.2.

Generally, SUs are randomly located around the SBS and the probability that two

SUs present exactly the same power gain gSSk,n is almost zero. Therefore, the optimization

problem (5.14) always achieve a binary optimal solution for the user assignment variable.

It can be further claimed that the optimal binary solution in (5.19) for problem (5.14) is

also optimal for problem (5.13). This argument can be proved in two steps: first, the

optimal objective value of (5.14) serves as an upper-bound for (5.13) due to the fact that

(5.14) is a relaxed version of (5.13); second, since the optimal solution (5.19) for (5.14) is
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binary, it represents a feasible solution of (5.13) and consequently achieves a lower-bound

for the optimal objective value of (5.13).

Towards this end, it turns out that for a fixed γn, the optimization problem (5.13) admits

an optimal solution (5.19) for the user assignment variable xk,n. Since this statement holds

for any feasible γn, by plugging (5.19) into the formulation of P-Joint, it can be concluded

that the original joint optimization P-Joint can be simplified to

max
pk∗n,n,γn

N∑
n=1

P 0
n(1− P F

n ) log

(
1 +

gSSk∗n,n
pk∗n,n

σ2
ν

)
(P-JointE)

s.t.
∑
n∈Sl

P 1
n(1− PD

n )pk∗n,ng
SP
l,n ≤ Imax

l , l = 1, · · · , L (C1)

0 ≤ pk∗n,n ≤ P T
n , n = 1, · · · , N (C2)

Mσ2
ν ≤ γn ≤M(σ2

ν + gPS
n σ2

s), n = 1, · · · , N, (C3)

where k∗n = argmaxk g
SS
k,n, n = 1, · · · , N . Since the above optimization problem is

equivalent to P-Joint, it is termed as “P-JointE”. For the rest of this section, we focus on

addressing P-JointE since its dimension is significantly less than that of P-Joint and the

integer variable xk,n has been removed.

5.4 Optimal Joint Spectrum Sensing and Resource Allocation Algorithm

Due to the non-convex property of the objective function, P-JointE is still a non-convex

optimization problem with respect to pk∗n,n and γn. However, it can be readily found that

P-JointE is a convex optimization problem with regard to pk∗n,n while fixing γn. Moreover,

it also admits the formulation of a convex optimization in terms of γn while fixing pk∗n,n.

This is due to the fact that P F
n and 1 − PD

n are convex functions with respect to γn under

the constraint (5.8), or equivalently (C3) [20]. In literature, the non-convex optimization

with such kind of formulation is typically solved by means of the AO method [25, 26],
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where the sensing threshold and power variable are iteratively optimized while fixing the

other. However, as discussed earlier, the convergence of the AO method heavily depends

on the initial point and the iterative algorithm can be trapped at a local maximum near the

starting point. Therefore, in this subsection, we propose an algorithm by exploiting the

knowledge of a monotonic optimization to solve the joint optimization problem P-JointE.

It is shown that the problem admits the canonical form of a monotonic optimization, which

can be addressed in a finite steps with an ϵ-optimal solution1.

5.4.1 Polyblock Outer Approximation Algorithm

Since the preliminaries of monotonic optimization have been presented in Subsection

3.1, in this subsubsection, the polyblock outer approximation algorithm, which aims to

solving P-JointE, is described via a detailed illustration.

Let [p,γγγ] = [pk∗1 ,1, · · · , pk∗N ,N , γ1, · · · , γN ] be a vector with length 2N , the objective

function for P-JointE is an increasing function with respect to [p,γγγ] since 1 − P F
n is an

increasing function of γn and the logarithm is an increasing function of pk∗n,n. Moreover,

in the region

[
0, [P T

1 , · · · , P T
N ,M(σ2

ν + gPS
1 σ2

s), · · · ,M(σ2
ν + gPS

N σ2
s)]
]
, (5.20)

the normal set G and the conormal set H can be expressed as

G =
{
(p,γγγ)|(C1), (C2), 0 ≤ γn ≤M(σ2

ν + gPS
n σ2

s)
}
,

and

H =
{
(p,γγγ)|pk∗n,n ≥ 0, γn ≥Mσ2

ν

}
,

respectively. A monotonic optimization problem can be solved using the polyblock outer

1x̄ is an ϵ-optimal solution if f(x∗)− ϵ ≤ f(x̄) ≤ f(x∗), where x∗ represents the optimal solution.
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approximation algorithm with an ϵ-optimal solution provided that the conormal set H is

strictly bounded away from 0, i.e., there exists a positive vector a such that 0 < a ≤

x, ∀x ∈ H. It can be observed that this condition does not hold for our formulation due to

the fact that pk∗n,n can be zero in H. In computer simulations, this issue can be addressed

by setting a very small number δ, say 10−3, as a lower-bound for pk∗n,n without affecting

the simulation results. Alternatively, one can shift the origin to a negative coordinate such

that the conormal set H is strictly bounded away from the new origin [51].

The proposed polyblock outer approximation algorithm for P-JointE is summarized in

Algorithm 2. The basic idea of polyblock outer approximation algorithm is to enclose the

feasible set G ∩ H as closely as possible by a nested sequence of “polyblocks”, starting

with the polyblock P1 in (5.20). The starting polyblock P1 is illustrated in Figure 5.3(a)

where a 2N dimension figure is plotted in a two-dimension plane for simplicity. Among

all the vertices of the polyblock (in P1, we only have one vertex z1), we choose the one

with the largest objective value (Line 3) and project this vertex to the upper-boundary of G

(Line 4). The projection process is mathematically defined as the following single-variable

optimization problem

α = argmaxα|α>0,αzi∈G,

which can be solved efficiently by the bisection search algorithm due to the normality of G.

The projection of the best vertex is termed as πG(zi) in Algorithm 2. From Line 5 to Line

11, the algorithm determines the current best solution and the current best value (CBV),

and store them as [p̄, γ̄γγ] and CBV, respectively. In Line 12, a new polyblock Pi+1 with

vertices Ti+1 is generated by cutting off a cone that is in the infeasible set. In particular, the

best vertex zi is removed and 2N new vertices {vi, i = 1, · · · , 2N} are added. The newly-

added vertices together with the remaining vertices Ti\zi generate the new polyblock. For

the illustration purpose, the new polyblock P2, which comes from the polyblock P1, is
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depicted in Figure 5.3(b). In Line 13, improper vertices are removed to accelerate the

convergence speed and save the memory. Due to the monotonically increasing property

of the objective function, removing improper vertices does not affect the shape of the

polyblock [52].

This procedure is repeated until the current best value is close to the best vertex value,

i.e., |f(zi)− CBVi| ≤ ϵ. In this way, a sequence of polyblocks

P1 ⊃ P2 ⊃ · · · ⊃ Pi ⊃ · · · ⊃ G ∩ H

is constructed and the feasible set is approximated more and more closely. The current

best solution [p̄, γ̄γγ] is guaranteed to be ϵ-optimal.

(a) (b)

Figure 5.3: (a) The initialized polyblock P1; (b) The polyblock P2 generated from P1.

The dimension of the problem, which directly determines the size of polyblock vertex

set, is a key factor for the computational complexity of monotonic optimization. Addition-

ally, the form of constraints also affects the complexity since the feasibility is required to
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Algorithm 2 Polyblock outer approximation algorithm for problem P-JointE
Input: Function f : The objective function in P-JointE.

G =
{
(p,γγγ)|(C1), (C2), 0 ≤ γn ≤M(σ2

ν + gPS
n σ2

s)
}
,

H =
{
(p,γγγ)|pk∗n,n ≥ δ, γn ≥Mσ2

ν

}
Output: An ϵ-optimal solution [p∗,γγγ∗]
Initialization: Error tolerance ϵ > 0. CBV0 = −∞. i = 0. [p̄, γ̄γγ]0 = 0. The vertex set

T1 = [P T
1 , · · · , P T

N ,M(σ2
ν + gPS

1 σ2
s), · · · ,M(σ2

ν + gPS
N σ2

s)].
1: while |f(zi)− CBVi| ≤ ϵ do
2: i = i+ 1
3: From Ti, select zi = argmax f(z)|z∈Ti .
4: Find πG(zi) = αzi, α = argmaxα|α>0,αzi∈G .
5: if πG(zi) = zi, i.e., zi ∈ G then
6: [p̄, γ̄γγ]i = zi and CBVi = f(zi).
7: else if πG(zi) ∈ H and f(πG(zi)) ≥ CBVi−1 then
8: [p̄, γ̄γγ]i = πG(zi) and CBVi = f(πG(zi)).
9: else

10: [p̄, γ̄γγ]i = [p̄, γ̄γγ]i−1 and CBVi = CBVi−1.
11: end if
12: Ti+1 = (Ti\zi) ∪ {vi, i = 1, · · · , 2N}, where vi is obtained by replacing the ith

entry of zi by the ith entry of πG(zi).
13: Remove from Ti+1 all the improper vertices.
14: end while
15: Let [p∗,γγγ∗] = [p̄, γ̄γγ]i and terminate the algorithm.

be checked in each iteration. As an under-explored research area, limited computational

experience has shown that polyblock algorithms work very well for monotonic optimiza-

tion problems with a small dimension m, generally m ≤ 10 [24]. The reader can find

more details about monotonic optimization as well as its applications in communication

and networking systems in [52] and references therein.

The problem P-JointE, at first glance, has a dimension 2N . However, since the licensed

channels for PUs are non-overlapping, i.e., Si ∩ Sj = 0, i ̸= j and all the channels are

licensed to PUs, i.e., S1∪· · ·∪Sl = {1, · · · , N}, P-JointE actually can be decomposed into
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L independent optimization problems whose dimensions are |S1|, · · · , |SL|, respectively.

Specifically, these L independent optimization problems are

max
pk∗n,n,γn

∑
n∈Sl

P 0
n(1− P F

n ) log

(
1 +

gSSk∗n,n
pk∗n,n

σ2
ν

)

s.t.
∑
n∈Sl

P 1
n(1− PD

n )pk∗n,ng
SP
l,n ≤ Imax

l

0 ≤ pk∗n,n ≤ P T
n , n ∈ Sl

Mσ2
ν ≤ γn ≤M(σ2

ν + gPS
n σ2

s), n ∈ Sl,

with l = 1, · · · , L. In this way, as long as the largest number of channels occupied by

licensed PUs is small, the monotonic optimization technique can be used to achieve an

ϵ-optimal solution.

5.5 Low-Complexity Suboptimal Algorithm

Algorithm 2 provides an ϵ-optimal solution for the joint spectrum sensing and resource

allocation problem P-JointE. However, the proposed polyblock outer approximation algo-

rithm is typically suitable for a small-dimension monotonic optimization problem and the

computational complexity is very high in a CR network with a large number of channels,

such as the OFDM wireless system. In this subsection, we propose a low-complexity sub-

optimal algorithm by first modifying the constraint of P-JointE and then solving a list of

single-variable optimization problems.

Instead of limiting the total interference to PUs, we alternatively impose a threshold

for the interference to each licensed channel of PUs. Mathematically, the modified inter-

ference constraint is expressed as

P 1
n(1− PD

n )pk∗n,ng
SP
l,n ≤ Imax

l /|Sl|, ∀n ∈ Sl, l = 1, · · · , L. (C ′
1)
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Thus, the joint spectrum sensing and resource allocation problem can be reformulated as

max
pk∗n,n,γn

N∑
n=1

P 0
n(1− P F

n ) log

(
1 +

gSSk∗n,n
pk∗n,n

σ2
ν

)
(P-JointEM)

s.t. (C ′
1), (C2), (C3)

It can be inferred that constraint (C ′
1) is more stringent compared to constraint (C1). Thus,

P-JointEM, being a modified version of P-JointE, provides a lower-bound for P-JointE.

Moreover, with the help of the modified constraint (C ′
1), P-JointEM can be decomposed

into N independent subproblems as shown below

max
pk∗n,n,γn

P 0
n(1− P F

n ) log

(
1 +

gSSk∗n,n
pk∗n,n

σ2
ν

)
(P-JointEM-n)

s.t. (C ′
1), (C2), (C3)

with n = 1, · · · , N . In this way, we only need to solve N optimization problems, each of

which presents two variables pk∗n,n and γn.

To solve P-JointEM-n, it is first claimed that either constraint (C ′
1) or (C2) achieves

the equality at the optimal solution. This claim can be easily verified via a proof by con-

tradiction. First, it is assumed that neither constraint achieves the equality at the optimal

solution. Then, we can definitely add more power to this channel to achieve the equality

at either constraint while obtaining a larger objective value, which completes the proof by

contradiction. Consequently, pk∗n,n can be expressed in terms of γn as follows:

pk∗n,n = min

(
Imax
l

|Sl|P 1
n(1− PD

n )gSPl,n

, P T
n

)
=

Imax
l

max
(
|Sl|P 1

n(1− PD
n )gSPl,n , I

max
l /P T

n

) ,
(5.21)
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and P-JointEM-n resumes to a single-variable optimization problem

max
γn

f(γn)− g(γn) (5.22)

s.t. Mσ2
ν ≤ γn ≤M(σ2

ν + gPS
n σ2

s),

with

f(γn) = P 1
n(1− P F

n ) log(σ2
ν + gSSk,nI

max
l ),

and

g(γn) = P 1
n(1− P F

n )× log

[
σ2
ν ·max

(
|Sl|P 1

n(1− PD
n )gSPl,n ,

Imax
l

P T
n

)]
.

Problem (5.22) can be solved using a one-dimensional brute-force algorithm. To avoid

the exhaustive search, in the rest of this subsection, we show that it can also be addressed

using the monotonic optimization technique described in Subsection 5.4.

Both PD
n and P F

n are monotonically decreasing functions in terms of γn. As a result,

the cost function in (5.22) is the difference between two increasing functions f(γn) and

g(γn). It is shown in Appendix E that problem (5.22) can be rewritten as the canonical

form of a monotonic optimization by introducing a new parameter t:

max f(γn) + t

s.t. (γn, t) ∈ G ∩H,
(5.23)

with

G =

{
(γn, t)

∣∣∣∣0 ≤ γn ≤M(σ2
ν + gPS

n σ2
s), 0 ≤ t ≤ g

(
M(σ2

ν + gPS
n σ2

s)
)
− g

(
Mσ2

ν

)
,

g (γn) + t ≤ g
(
M(σ2

ν + gPS
n σ2

s)
)}

,

(5.24)
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and

H = {(γn, t)|γn ≥Mσ2
ν , t ≥ 0}. (5.25)

We can implement the same technique as in Subsection 5.4 to achieve an ϵ-optimal solution

for variable γn in problem (5.23), or equivalently P-JointEM-n. Then the power solution

can be obtained using (5.21).

5.6 Simulations and Discussions

For the numerical results presented in this subsection, we consider two different kinds

of scenarios, namely a CR network with a small number of channels and one with a large

number of channels. For the former scenario, we compare the simulation performance

among three algorithms: i) The proposed optimal monotonic optimization algorithm in

Subsection 5.4; ii) The proposed suboptimal monotonic optimization algorithm in Subsec-

tion 5.5; and iii) The state-of-the-art AO method in literature, which is briefly discussed

in the beginning of Subsection 5.4 and fully illustrated in Appendix E. For the later sce-

nario, only the simulation for the second and third algorithms aforementioned is carried

out, since the optimal monotonic optimization algorithm does not work very well for a

large size problem. However, notice that the suboptimal solution for P-JointEM-n can be

further enhanced by plugging it back into P-JointE as an initial point of the AO method.

Therefore, this scheme is termed as “suboptimal-enhanced” and included as a benchmark

for the simulation in a large-dimension CR network. As discussed earlier in the section,

some references studied the CR problem with a fixed sensing parameter or a fixed physical

layer resource layout. We do not consider these set-ups in this subsection since the joint

spectrum sensing and resource allocation problem obviously outperforms these set-ups

from a mathematical point of view.

60



5.6.1 A Small-Dimension CR Network

In this subsubsection, the numbers of PUs and SUs are assumed to be 3, i.e., L = 3

and K = 3. The whole RF spectrum presents N = 6 channels. The licensed channels for

these three PUs are 1-2, 3-4 and 5-6, respectively. The PU activity probability P 1
n is set

to be 0.2 for all the channels. For the sensing parameters, it is assumed that the number

of sensing samples M = 10 and the average power of the transmitted signal at the PBS

σ2
s = 10W . For the resource allocation parameters, the channels from the SBS to SUs,

as well as the channels from the SBS to PUs, are assumed to be Rayleigh fading with an

average channel power gain 5dB. Thus, gSSk,n and gSPl,n are both distributed exponentially

with mean 5dB. The noise power σ2
ν is assumed to be 1W.

Since the channel gains are randomly generated, an average result of 100 independent

Monte-Carlo runs is carried out for calculating the average total throughput of secondary

network. In Figure 5.4, the average total throughput of SUs is simulated with a power limit

P T
n ranging from 10W to 30W for all channels and an interference threshold Imax

l = 1W,

l = 1, · · · , L. Moreover, we consider the sensing SNR at the SBS in two cases. Specif-

ically, the sensing channels from the PBS to the SBS, gPS
n , are assumed to be Rayleigh

fading with an average channel power gain −10dB and −4dB for all channels. Thus, the

sensing SNRs, Γ = E[gPS
n ]σ2

s/σ
2
ν , at the SBS are 0dB and 6dB for all channels. It can be

seen that with the power limit increasing, the average total SU throughput also increases.

In addition, the suboptimal monotonic optimization algorithm outperforms the AO method

and is very close to the optimal solution in both sensing SNRs. The same trend can be ob-

served in Figure 5.5 with P T
n = 25W and Imax

l ranging from 0.4W to 1.2W.

In Figure 5.6 and Figure 5.7, the simulation with one realization of channel gains is

performed coupled with parameters P T
n = 25W, Imax

l = 1W and Γ = 6dB. Particularly,

in Figure 5.6, the probabilities of misdetection and false alarm, together with the allocated
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power, for each individual channel are illustrated. For the 1st, 2nd, 5th and 6th channel

where the probabilities of misdetection and false alarm are low, the maximum power P T
n

is assigned. In contrast, for the 4th channel where the sensing errors are relatively high,

a very low power is allocated to protect the QoS of PUs. In Figure 5.7, 10 independent

simulations are performed of these algorithms with a fixed realization of channel gains.

Since both the optimal monotonic and the suboptimal monotonic algorithms achieve a

solution at most ϵ away from its own optimal solution, their performances keep consistent.

On the other hand, the performance of AO method varies a lot due to different selections

of the initial guess.
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Figure 5.4: Average total throughput of SUs in terms of the power limit and the sensing
SNR (N = 6).
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Figure 5.5: Average total throughput of SUs in terms of the interference threshold and the
sensing SNR (N = 6).

5.6.2 A Large-Dimension CR Network

A simulation parameter setup similar to the one in Subsubsection 5.6.1 is implemented

for a large-dimension CR network with N = 40. Specifically, L = 4, K = 10 and the

licensed channels for four PUs are 1-10, 11-20, 21-30 and 31-40, respectively. Moreover,

P 1
n = 0.2, n = 1, · · · , N, M = 10, σ2

s = 10W and σ2
ν = 1W. The channel power gains

gSSk,n and gSPl,n are assumed to be exponentially distributed with mean 5dB.

In Figure 5.8, the average total SU throughput is simulated with a power limit P T
n

ranging from 10W to 30W for n = 1, · · · , N and an interference limit Imax
l = 5W,

l = 1, · · · , L. Similar to Subsubsection 5.6.1, we consider the scenarios of Γ = 0dB

and 6dB. As expected, the increase of power limit results in a higher average throughput

for the secondary network. It is also found that the proposed suboptimal algorithm is
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Figure 5.6: The probabilities of misdetection and false alarm, and the allocated power on
individual channels.

comparable to the AO method with the enhanced-suboptimal scheme outperforming the

others. The same trend can be found in Figure 5.9 with P T
n = 25W and Imax

l ranging

from 1W to 5W. The convergence speed of the suboptimal-enhanced scheme is shown in

Figure 5.10 with parameters P T
n = 25W and Imax

l = 5W. It can be seen that these two

independent simulations converge only in 3 iterations. More simulation results reveal that

with the suboptimal monotonic solution as the starting point, the AO method generally

converges in less than 5 iterations.

5.6.3 Discussions

Based on the numerical results presented in this subsection, it can be claimed that the

proposed optimal and suboptimal monotonic optimization algorithms outperform the AO
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method in terms of accuracy and stability in the presence of a small-dimension CR net-

work. For a large-dimension CR network, the performance of the suboptimal algorithm is

comparable to the AO method. Using the solution provided by the suboptimal monotonic

algorithm as the starting point, the suboptimal-enhanced algorithm achieves a higher ob-

jective value than the AO method. Moreover, it is also shown that the suboptimal-enhanced

scheme converges in only a few iterations.

In terms of computational complexity, the optimal monotonic optimization algorithm

is generally applicable for a problem whose size is less than 10. Such a framework is

typically used as a benchmark for other heuristic algorithms or employed in a CR net-

work with a very small number of channels. The state-of-the-art AO method is an iterative

optimization method where spectrum sensing and resource allocation are optimized in

turns. However, in each turn, the optimization problem presents a variable size same to
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Figure 5.8: Average total throughput of SUs in terms of the power limit and the sensing
SNR (N = 40).

the number of channels in the CR network, which results in a high computational burden

in each iteration. Finally, the suboptimal algorithm, being a list of single-variable exhaus-

tive search problems, or equivalently, a two-dimension monotonic optimization problem,

generally exhibits the lowest computational complexity.

In a nutshell, for a small-dimension CR network, the suboptimal monotonic algorithm

yields a near-optimal solution and converges very fast. If the computational time is not

considered significant, the optimal monotonic algorithm can also be chosen. In a large-

dimension CR network, the proposed suboptimal monotonic algorithm achieves a reason-

able performance with a low computational complexity. The suboptimal-enhanced scheme

can also be employed to further improve the performance.
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Figure 5.9: Average total throughput of SUs in terms of the interference threshold and the
sensing SNR (N = 40).

5.7 Conclusions

This section studied the problem of designing the sensing threshold and power allo-

cation strategy that maximize the average throughput of a multi-channel-multi-user CR

network. The average interference and the peak power constraints, together with the sens-

ing error constraint, are imposed to seek for the best balance between the protection of

PUs and the throughput of CR network. Mathematically, the joint spectrum sensing and

resource allocation problem is formulated as a non-convex MINLP optimization problem.

The convex optimization technique is first employed to simplify the MINLP problem,

which results in an equivalent formulation without any integer variables. Based on the

knowledge of a monotonic optimization, we propose an algorithm to acquire the optimal

sensing threshold and power allocation strategy for a CR network with a small number of
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Figure 5.10: Convergence of the suboptimal-enhanced algorithm.

channels. In addition, a low-complexity suboptimal algorithm is developed to reduce the

computational cost, and it is applicable to both small and large dimension CR networks.

Numerical results indicate that the proposed optimal and suboptimal algorithms consis-

tently outperform the start-of-the-art AO method in a CR network with a small number of

channels. For a large-dimension CR network, the suboptimal algorithm also represents a

good choice due to its low computational complexity.
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6. CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, the resource allocation problem was investigated in an interweave

multi-channel-multi-user CR network where SUs can access opportunistically the licensed

spectrum detected to be idle. Two powerful optimization techniques, namely the convex

optimization and monotonic optimization, were employed to obtain the global optimal

solutions.

First, some preliminaries about convex optimization and monotonic optimization were

introduced. Since convex optimization techniques have been widely used in different kinds

of areas for decades, only the essential concepts and theorems were given in Section 2

without any proof. On the other hand, in Section 3, the concept of monotonic optimiza-

tion was introduced together with some basic features of monotonic optimization includ-

ing increasing functions, normal sets, conormal sets, upper boundary, polyblocks, etc.

As an under-explored research topic, monotonic optimization represents a powerful tool

to achieve an optimal solution for non-convex optimization problems. In particular, by

exploring the monotonic or hidden monotonic property of the problem, monotonic opti-

mization enables to accelerate the searching speed for the optimal solution. Monotonic

optimization problems can be addressed by the polyblock outer approximation method,

which is analogous to the polyhedral outer approximation method for convex optimization

problems.

The aforementioned optimization techniques were then exploited for the resource al-

location problem in CR networks. In Section 4, the OFDMA signaling scheme was con-

sidered in a downlink interweave CR network. By exploring the special structure of the

formulated MINLP problem using convex optimization techniques, we showed that the

optimal subchannel and power allocation strategy, which aims at maximizing the total
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throughput of SUs, can be obtained using any standard convex optimization algorithm.

In Section 5, by taking into account the spectrum sensing errors, a joint spectrum sens-

ing and resource allocation problem was studied in a multi-channel-multi-user interweave

CR network. The joint optimization problem, with additional spectrum sensing variables,

can be regarded as an extension of the resource allocation problem in Section 4 with an ex-

tra level of difficulty. Monotonic optimization techniques were implemented to address the

problem, which represents an optimal solution. In addition, a low-complexity algorithm

was also developed to reduce the computational cost.

Some of the potential future research directions that require further investigations in-

clude:

• For the joint optimization problem in Section 5, the sensing data is only collected

and measured at the SBS. However, fading, shadowing and hidden primary user

issues may dramatically affect the sensing accuracy in the case of a single sensing

point. The concept of cooperative sensing was recently reported to collect data from

different sensing points and make the decision by comprehensively considering all

the sensing data collected [64, 65]. In this regard, our work of joint optimization

might be extended by adopting the cooperative sensing technique. However, the

resulting problem is more complicated since the false alarm and misdetection rates

may admit a very complicated expression.

• Only interweave CR networks were studied in this dissertation by assuming the op-

portunistic access of SUs. Our work might be generalized to both underlay and

overlay CR networks, where SUs are allowed to coexist with PUs in the same chan-

nel by ensuring that no harmful interference is caused to PUs. In these scenarios, the

total throughput of SUs should increase since more channels are available to SUs.

• In this dissertation, the perfect CSI is assumed. However, in practical wireless sys-
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tems, it is very hard to obtain perfect information about channel gains. Therefore,

the imperfectness of CSI should be considered in our future research works.

• In both the resource allocation and joint optimization problems, we focused on in-

stantaneous optimization. In other words, the network resource scheduling and de-

cision making are based on the instantaneous channel gains obtained. In this way,

the algorithms need to be calculated very frequently to follow up the rapid change

of channel gains in CR networks. Such fast adaption may cause high computa-

tional burden and excessive signaling overhead. A slow adaptive network scheduling

scheme based on long-term channel state parameters represents an important future

direction for our study of CR networks. In this case, the channel coefficients are

random rather than deterministic and the problem can be formulated as a stochastic

optimization problem. The reader can refer to [66] for an existing research work

which focused on optimizing the throughput of an OFDMA system stochastically.

• From a mathematical viewpoint, the theory of monotonic optimization as well as

its applications in communications, signal processing and networking, is still at its

infancy stage. Moreover, monotonic optimization with a large number of variables

is still computationally complex. Developing more efficient algorithms for mono-

tonic optimization and implementing them into practical communications systems

represent important open research problems.
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APPENDIX A

PROOF OF THE CONVEXITY FOR PROBLEM (P2) IN SECTION 4

The continuous relaxation of problem (PE
1 ) is represented as problem (P2) in Subsec-

tion 4.3. Suppose

fk,n(xk,n, yk,n) = xk,n log(1 +
sk,nyk,n
xk,n

),

it can be claimed that fk,n is a concave function with respect to xk,n and yk,n. First, it can

be checked that fk,n is the perspective of the logarithm function log(1 + sk,nyk,n). Since

the logarithm function log(1 + sk,nyk,n) is concave with respect to yk,n. Due to Definition

4, the perspective fk,n preserves the concavity.

Because fk,n is a concave function for any k and n, the objective function of (P2), being

the summation of concave functions, is a concave function with respect to xk,n and yk,n.

Therefore, it can be concluded that the optimization problem (P2) is a convex optimization

problem due to the fact that all its constraints are affine.
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APPENDIX B

PROOF OF LEMMAS AND THEOREMS IN SECTION 4

B.1 Proof of Lemma 1

On one hand, if ηn < maxk Jk,n, for k∗n = argmaxk Jk,n, it follows that Jk∗n,n−ηn > 0,

which violates (4.8). On the other hand, if ηn > maxk Jk,n, it yields that Jk,n−ηn < 0,∀k.

Based on (4.8), it can be inferred that xk,n = 0,∀k, i.e., no SU occupies the nth subchan-

nel. From (4.11), we have ηn = 0 and thus maxk Jk,n < 0. However, this statement is con-

tradictory to the formulation of Jk,n in (4.7). Specifically, Jk,n can be regarded as a func-

tion J(wk,n) = log(1 +wk,n)−wk,n/(1 +wk,n) with wk,n = sk,n

 1

λ+
L∑

l=1
µlI

SP
l,n

− 1
sk,n

+

.

The function is a monotonically increasing function for wk,n ≥ 0, and its minimum value

0 is achieved at wk,n = 0. Considering both sides, it yields that ηn = maxk Jk,n, which

completes the proof.

B.2 Proof of Theorem 4

If maxk Jk,n is achieved by only one SU, say the k∗nth SU, from Lemma 1, we have

Jk∗n,n − ηn = 0 and Jk,n − ηn < 0, k ̸= k∗n.

From (4.8), it follows that xk∗n,n > 0 and xk,n = 0, k ̸= k∗n. Moreover, since Jk∗n,n >

Jk,n, k ̸= k∗n and Jk,n ≥ 0, it follows that ηn = Jk∗n,n > 0 and furthermore xk∗n,n = 1 due

to (4.11). Since KKT conditions are necessary and sufficient conditions for problem (P2),

xk∗n,n = 1 and xk,n = 0, k ̸= k∗n is the only solution satisfying the KKT conditions (4.5),

(4.8) and (4.11), we can claim this is the optimal solution. However, if maxk Jk,n is tied

for multiple SUs, these SUs all achieve positive xk,n due to (4.8), and the nth subchannel
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must be shared among these SUs. The complementary slackness conditions (4.9) and

(4.10) also have to be incorporated to decide how to share the subchannel.

B.3 Proof of Theorem 5

Based on Theorem 4, each subchannel nmust be allocated to at least one SU, i.e., there

exists at least one positive xk,n for each n. Positive xk,n leads to positive yk,n (otherwise

we can just set xk,n = 0), and thus the set {k | 1/(λ +
L∑
l=1

µlI
SP
l,n ) − 1/sk,n > 0} is not

empty due to (5.16). Moreover, the maximum of Jk,n must be achieved among the SUs in

this set. In this way, the (·)+ operator can be removed and Jk,n in (4.7) can be simplified

as

Jk,n = log sk,n +

λ+
L∑
l=1

µlI
SP
l,n

sk,n
− log(λ+

L∑
l=1

µlI
SP
l,n )− 1.

It turns out that

∂Jk,n
∂sk,n

=

sk,n − (λ+
L∑
l=1

µlI
SP
l,n )

s2k,n
,

and Jk,n is a monotonically increasing function of sk,n in the set {k | 1/(λ+
L∑
l=1

µlI
SP
l,n )−

1/sk,n > 0}. Therefore, if sk,n’s are all distinct, according to Theorem 4, the nth subchan-

nel is assigned to the k∗nth SU with k∗n = argmaxk sk,n.
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APPENDIX C

PROOFS OF LEMMAS AND THEOREMS IN SECTION 5

C.1 Proof of Lemma 2

Assume that the nth channel is not occupied by any SU, i.e., xk,n = 0,∀k. Due to

(5.17), it follows that Jk,n < ηn, ∀k. It can be observed that Jk,n is a monotonically

increasing function with respect to (ψn − σ2
ν/g

SS
k,n)

+ with its minimum value 0 attained at

(ψn − σ2
ν/g

SS
k,n)

+ = 0. Thus, ηn > 0. Based on this fact and the complementary slackness

condition

ηn

(
1−

K∑
k=1

xk,n

)
= 0, (C.1)

it turns out that
∑K

k=1 xk,n = 1, which contradicts the original assumption that xk,n =

0, ∀k. Therefore, it can be claimed that all the channels must be occupied by SUs. Fur-

thermore, the statement Jk,n < ηn, ∀k, does not hold, which implies that maxk Jk,n ≥ ηn.

From (5.17), we have maxk Jk,n ≤ ηn, and thus ηn = maxk Jk,n, which completes the

proof.

C.2 Proof of Theorem 6

The theorem has to be proved in two scenarios. For a channel n, on one hand, it might

occur that ψn − σ2
ν/g

SS
k,n ≤ 0,∀k. In this case, yk,n = 0, ∀k, and we can simply assign

the channel to the SU with the largest gSSk,n without affecting the objective value. On the

other hand, if the set {k|ψn − σ2
ν/g

SS
k,n > 0} is not empty, maxk Jk,n must be achieved

among SUs in this set. In this way, the (·)+ can be removed and it follows that Jk,n is a

monotonically increasing function of gSSk,n in the set {k|ψn−σ2
ν/g

SS
k,n > 0}. Thus, maxk Jk,n

is solely achieved at the SU with the largest gSSk,n, say the k∗nth SU, provided that gSSk,n’s are

83



all distinct. Then, based on Lemma 2, η = maxk Jk,n > 0, and it follows that xk∗n,n > 0

and xk,n = 0, k ̸= k∗n due to (5.17). Finally, the complementary slackness condition in

(C.1) yields the result that xk∗n,n = 1.
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APPENDIX D

TRANSFORMATION OF PROBLEM (5.22) in SECTION 5

To transform problem (5.22) into the canonical form of a monotonic optimization,

notice that for every {γn|Mσ2
ν ≤ γn ≤ M(σ2

ν + gPS
n σ2

s)} there exists a nonnegative

parameter t such that g(γn) + t = g(M(σ2
ν + gPS

n σ2
s)). In this way, problem (5.22) can be

rewritten as

max
γn

f(γn) + t

s.t. Mσ2
ν ≤ γn ≤M(σ2

ν + gPS
n σ2

s)

g(γn) + t = g(M(σ2
ν + gPS

n σ2
s)).

Let F (γn, t) = f(γn) + t, the formulation above admits the canonical form

max F (γn, t)

s.t. (γn, t) ∈ G ∩H,

with G and H defined in (5.24) and (5.25), respectively. It is easy to check that in the

region [
0, [M(σ2

ν + gPS
n σ2

s), g(M(σ2
ν + gPS

n σ2
s))− g(Mσ2

ν)]
]
,

F (γn, t) is an increasing function, G and H are the normal and conormal set, respectively.
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APPENDIX E

ALTERNATING OPTIMIZATION METHOD FOR JOINT SPECTRUM SENSING

AND RESOURCE ALLOCATION PROBLEM

In this appendix, the state-of-the-art AO method for solving the joint spectrum sensing

and resource allocation in CR networks is described as a benchmark for the proposed opti-

mal and suboptimal monotonic optimization methods in Section 5. We focus on applying

the AO method to address P-JointE, which is equivalent to the original problem P-Joint.

For the AO method, a random but feasible guess of γ(0)n is selected at the initialization

step. Given a fixed value of γn, the first step is to calculate the optimal power allocation

strategy pk∗n,n, which is provided by “Alternating optimization - power (AO-P)”:

AO-P :

max
pk∗n,n

N∑
n=1

P 0
n(1− P F

n ) log

(
1 +

gSSk∗n,n
pk∗n,n

σ2
ν

)

s.t. (C1), (C2)

AO-P can be implemented via any standard convex optimization technique, such as the

interior point method [29]. However, by re-formulating and analyzing the problem in the

dual domain, it is shown that AO-P presents a closed-form solution for the power allocation

variables pk∗n,n.

Considering the dual variables µl, l = 1, · · · , L for the constraint (C1) leads to the
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Lagrangian:

Lg(pk∗n,n, µl) =
N∑

n=1

P 0
n(1− P F

n ) log

(
1 +

gSSk,npk∗n,n

σ2
ν

)

+
l∑

l=1

µl

(
Imax
l −

∑
n∈Sl

P 1
n(1− PD

n )pk∗n,ng
SP
l,n

)
,

where constraint (C2) is absorbed in KKT conditions. The KKT conditions yield that

∂Lg

∂pk∗n,n
= P 0

n(1− P F
n )

gSSk,n

σ2
ν + gSSk,npk∗n,n

− µlP
1
n(1− PD

n )gSPl,n


< 0, pk∗n,n = 0,

= 0, 0 < pk∗n,n < P T
n ,

> 0, pk∗n,n > 0.

It turns out that the optimal power variables admit the expression:

pk∗n,n = min

{(
P 0
n(1− P F

n )

µlP 1
n(1− PD

n )gSPl,n

− σ2
ν

gSSk,n

)+

, P T
n

}
(E.1)

Setting the power variables pk∗n,n to fixed values in (E.1), the next step is to find the

optimal sensing threshold, termed as the “Alternating optimization - sensing threshold

(AO-ST)” in this paper:

AO-ST :

max
γn

N∑
n=1

P 0
n(1− P F

n ) log

(
1 +

gSSk∗n,n
pk∗n,n

σ2
ν

)

s.t. (C2), (C3)

As aforementioned, P F
n and PD

n are convex and concave functions with regard to γn,

respectively. Consequently, AO-ST represents a convex optimization problem, which can

be solved efficiently via the interior point method.
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Combining these two steps, namely, AO-P and AO-ST, the proposed enhanced AO

method is summarized in Algorithm 3, where ϵ represents the stopping criterion and as-

sumes a sufficiently small positive number. It turns out that the objective value is a non-

decreasing function with

f (i) = f(γ(i)n , p
(i)
k∗n,n

) ≤ f(γ(i)n , p
(i+1)
k∗n,n

) ≤ f(γ(i+1)
n , p

(i+1)
k∗n,n

) = f (i+1).

Since γn and pk∗n,n are upper-bounded, the convergence is ensured.

Algorithm 3 AO method for P-JE

Initialization: i = 0, ϵ, and γ(0)n

1: repeat
2: Given γ(0)n , calculate p∗k∗n,n that solves AO-P from (E.1).

3: p
(i+1)
k∗n,n

= p∗k∗n,n

4: Given p(i+1)
k∗n,n

, find the solution of AO-ST: γ∗n.

5: γ
(i+1)
n = γ∗n

6: Calculate the objective value of P-JE in terms of γ(i+1)
n and p(i+1)

k∗n,n
, and denote it as

f (i+1).
7: i = i+ 1
8: until f (i) − f (i−1) ≤ ϵ
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