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Abstract—This paper proposes a robust resource allocation
approach in virtualized wireless networks (VWNs) to address
the uncertainty in channel state information (CSI) at the base
station (BS) due to estimation error and mobility of users. In
this set-up, the resources of an OFDMA-based wireless network
are shared among different slices where the minimum reserved
rate is considered as the quality-of-service (QoS) requirement of
each slice. We formulate the robust resource allocation problem
against the worst-case CSI uncertainty, aiming to maximize the
overall energy efficiency (EE) of VWN in terms of a newly
defined slice utility function. Uncertain CSI is modeled as the
sum of its true estimated value and an error assumed to be
bounded in a specific uncertainty region. The formulated problem
suffers from two major issues: computational complexity and
energy-efficiency degradation due to the considered error in
the maximum extent. To deal with these issues, we consider a
specific form of uncertainty region to solve the robust resource
allocation problem via an iterative algorithm. The simulation
results demonstrate the effectiveness of the proposed algorithms.

Index Terms—Energy-efficient resource provisioning, worst-
case robust optimization, virtualized wireless networks.

I. INTRODUCTION

Wireless network virtualization is a promising paradigm to

improve the spectrum efficiency and enable service customiza-

tion among slices belonging to different service providers via

introducing abstraction and modularity in wireless networks

[1]–[3]. In a single-cell VWN, different slices can share

physical network resources (e.g., base station (BS)) and wire-

less resources (e.g., sub-carriers and power) where each slice

comprises a set of users, and has its own QoS requirements.

Due to the diverse QoS requirements of slices and wireless

resource limitations, resource provisioning among slices is

challenging and essential, which has drawn a lot of attentions

recently, e.g., [4]–[10].

Generally, the resource provisioning problems considered in

[4]–[10] are based on a common assumption that the accurate

channel state information (CSI) of all users of different slices

to BS is available. Also, these works consider the total

throughput of VWN as an objective function, e.g., [7]–[10].

However, due to users’ mobility, stochastic nature of wireless

channels and delay in feedback channels, perfect CSI knowl-

edge may not be available in practice. Besides, considering a

utility function to investigate the energy efficiency is of high

importance for wireless networks [11]. In this paper, we aim

to focus on these two issues as follows. We first introduce a

utility function for each slice based on its total rate and its

cost of transmit power. We show that how this per-slice utility

function can increase the energy efficiency of VWN.

To immunize the performance of VWN against the uncer-

tainty in the CSI values, we apply the worst-case optimization

theory, which has been widely applied in the resource allo-

cation in wireless networks, e.g., [12]–[15]. In this context,

the uncertain parameter is modeled as an estimated value plus

an error that is modeled as a bounded value in the specific

region and the performance of network is maximized under

the worst condition of error. It is well-known that the worst-

case approach is capable to preserve the instantaneous VWN

performance against the uncertain parameters, while it suffers

from high computational complexity and total throughput

reduction due to its conservative view of worst-case error [12],

[13].

To deal with the above mentioned issues, we resort to the

moderate version of robust optimization theory in which the

error is assumed to have joint bounded and stochastic nature

[12]. Also, instead of maximizing the throughput under the

worst-case error condition, the throughput outage probability

is preserved below the predefined threshold. By selecting the

appropriate uncertainty region as well as variable-relaxation

and transformation techniques, we convexify the resource

allocation problem and propose an efficient two-level iterative

solution algorithm.

Simulation results verify the energy efficiency of the pro-

posed robust resource allocation algorithm in VWNs, based on

the slice utility function. Specifically, they show how important

the cost factor of utility function is in controlling the EE factor

of VWN.

The rest of this paper is organized as follows. Section

II introduces the system model and problem formulations,

followed by Section III, where a solution to the robust problem

and an iterative algorithm are proposed. In Section IV, the

simulation results are presented. Finally, Section V concludes

the paper.

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider the down-link transmission of OFDMA-based

VWN with one central base station (BS) serving a set of slices,

i.e., G = {1, · · · , G}, in which each slice g ∈ G requires a

minimum reserved rate Rrsv
g . Furthermore, each slice g ∈ G

has a set of users, i.e., Ng = {1, · · · , Ng}, where Ng is the

total number of users in slice g and N =
∑

g∈G Ng represents

the total number of users in VWN. Considering the OFDMA



scheme, the total bandwidth B is equally divided into a set

of sub-carriers, i.e., K = {1, · · · ,K}, where each sub-carrier

bandwidth Bc = B/K is assumed to be small compared to the

coherent bandwidth of wireless channel. Thereby, the channel

gain hng,k of user ng on sub-carrier k exhibits flat fading.

Let wng,k ∈ {0, 1} be the sub-carrier allocation indicator

for user ng on sub-carrier k, where wng,k = 1 indicates that

sub-carrier k is assigned to user ng , and otherwise wng,k = 0.

Via exclusive orthogonal sub-carrier assignment imposed by

OFDMA implementation issue, we have

C1 :
∑

g∈G

∑

ng∈Ng

wng,k ≤ 1, ∀k ∈ K,

which means that each sub-carrier is allocated to maximum

one user. Due to the transmit power limitation of BS, we have

C2 :
∑

g∈G

∑

ng∈Ng

∑

k∈K

wng,kPng,k ≤ Pmax,

where Png,k and Pmax are the allocated power to user ng

over sub-carrier k and maximum transmit power of BS,

respectively. Therefore, the rate of user ng ∈ Ng is

Rng
(P,w) =

∑

k∈K

wng,k log2

(
1 +

Png,khng,k

σ

)
,

where P = [Png,k]∀ng,g,k and w = [wng,k]∀ng,g,k are the

allocated power vector and the sub-carrier assignment vector

of all users, respectively. The constraint on the minimum rate

reserved for each slice g ∈ G is represented as

C3 :
∑

ng∈Ng

Rng
(P,w) ≥ Rrsv

g , ∀g ∈ G.

For energy-efficient design of VWN, we consider the follow-

ing slice utility function, ∀g ∈ G,

Ug(P,w) =
∑

ng∈Ng

Rng
(P,w)− CE

g

∑

ng∈Ng

∑

k∈K

wng,kPng,k,

where the energy-cost coefficient of slice g ∈ G, CE
g provides

the trade-off between its achieved throughput and its power

consumption. Aiming to maximize the sum utility of all slices,

while satisfying the minimum required slice rates, the nominal

VWN optimization problem is

max
P,w

∑

g∈G

Ug(P,w), (1)

subject to : C1 − C3.

In (1), perfect CSI knowledge is assumed. However, in prac-

tice, due to delay in feedback channel, user mobility, and error

in the estimation, such CSI knowledge can be imperfect. To

deal with this issue, we consider the uncertainty in CSI at the

BS and introduce a robust counterpart of the above resource

allocation problem.

The imperfect CSI is modeled as the sum of its estimated

value and an additive error i.e.,

hng
= h̄ng

+ ĥng
, ∀ng ∈ Ng, g ∈ G,

where hng
= [hng,k]∀k is the 1 × K uncertain CSI vector,

and, h̄ng
= [h̄ng,k]∀k and ĥng

= [ĥng,k]∀k are, respectively,

the 1 × K estimated CSI and error vectors of user ng . In

the context of worst-case robust optimization, the errors on

the estimated values are trapped in the bounded region, called

uncertainty region, defined as

Eng
= {hng

| ‖hng
− h̄ng

‖ ≤ ǫng
}, ∀ng ∈ Ng, ∀g ∈ G,

where ǫng
≥ 0 is the uncertainty bound, assumed to be small,

and ‖x‖ denotes the norm function of vector x [16].

The effect of uncertainty on hng
can be represented by

a new vector of variables in the throughput of each user.

Let R̂ng
denotes the throughput of user ng in the robust

resource allocation, which depends on h = [hng
]∀g,ng

. When

the uncertainty region shrinks to zero (i.e., ǫng
= 0), the total

throughput of the nominal and robust optimization problems

are identical i.e.,

Rng
(P,w) = R̂ng

(P,w,h)|ǫng=0, ∀ng ∈ Ng.

The objective of the worst-case approach is to find the optimal

transmit power and sub-carrier allocation for each user that

optimize their total throughput under the worst condition of

error in the uncertainty region. In this approach, the robust

VWN resource allocation problem based on (1) becomes [12]

max
P,w

∑

g∈G

Ûg(P,w,h), (2)

subject to : C1 − C3,

where Ûg(P,w,h) is the robust counter part of the utility Ug ,

mathematically expressed as

Ûg(P,w,h) =
∑

ng∈Ng

min
hng∈Eng

R̂ng
(P,w,h)− CE

g

∑

k∈K

wng,kPng,k

In general, solving the robust counterpart (2) involves high

computational complexity, because, in addition to the inherent

computational complexity from (1), it has a new set of

optimization variables with uncertain parameters, i.e., hng
.

To reduce the computational complexity of (2), we treat each

hng,k as a bounded random variable. Then, we demonstrate

how the inner minimization over hng
is solved. Interestingly,

we will also show that the proposed reformulation provides a

trade-off between performance and robustness.

III. ROBUST EE RESOURCE PROVISIONING ALGORITHM

The direct way to solve (2) is to obtain the inner mini-

mization analytically, and then, solve the outer maximization,

either numerically or analytically [16]. In the following, we

will show how the inner and outer optimization problems can

be solved.

A. Inner Optimization Problem

The inner optimization problem of (2) is

min
hng∈Eng

R̂ng
(P,w,h), ∀ng ∈ Ng, g ∈ G. (3)



For general definition of norm function of Eng
, a closed-form

expression of hng
cannot be obtained for a given values of P

and w for (3). To simplify (3), following the same argument

as in [16]–[18], we assume that hng,k for all ng ∈ Ng and k ∈
K are i.i.d. random variables with the probability distribution

function (pdf) of f(ĥng,k). In this case, the uncertainty region

is transformed into ĥng,k ∈ [−εng,k, εng,k], where εng,k is the

bound of uncertainty region for user ng on sub-carrier k. Now,

by utilizing the pdf of ĥng,k, the inner optimization problem

of (3) is transformed into [17]

min
t

∑

k∈K

wng,ktng,k, (4)

subject to:

C4 : Pr
{
log2

(
1 +

Png,khng,k

σ

)
< tng,k

}
> ηng,k,

C5 : ĥng,k ∈ [−εng,k, εng,k], ∀k ∈ K, ∀ng ∈ Ng,

where t = [tng,k]∀ng,g,k and tng,k ≥ 0 is an auxiliary variable

for this transformation. Also, 0 < ηng,k < 1 is the probability

factor against the uncertain parameters. C4 can be simplified

to tng,k > log2(1 +
Png,kF

−1(ηng,k)

σ
) for all k ∈ K and ng ∈

Ng . If f(ĥng,k) has a uniform distribution over the interval

[−εng,k, εng,k], we have F−1(ηng,k) = 2εng,kηng,k+h̄ng,k−
εng,k. Therefore, the solution of (4) for all ng and k is

h̃ng,k = 2εng,kηng,k + h̄ng,k − εng,k, (5)

for all k ∈ K and ng ∈ Ng . From (5), for 0.5 ≤ ηng,k < 1,

h̄ng,k ≤ h̃ng,k, and is in-line with the concept of worst-case

robust optimization, in which the error is at its own maximum

extent. For this, we will focus on this case in the rest of this

paper.

The throughput of each user with uncertainty can be rewrit-

ten as R̂ng
(P,w) =

∑
k∈K

wng,k log2 (1 +
Png,kh̃ng,k

σ
), for all

ng ∈ Ng and g ∈ G. Therefore, (2) is simplified to

max
P,w

∑

g∈G

Ûg(P,w), (6)

subject to : C1 − C2 and Ĉ3,

where

Ûg(P,w) =
∑

ng∈Ng

R̂ng
(P,w)− CE

g

∑

ng∈Ng

∑

k∈K

wng,kPng,k

and

Ĉ3 :
∑

ng∈Ng

R̂ng
(P,w) ≥ Rrsv

g , ∀g ∈ G.

By the new definition of Ûg(P,w) and h̃ng,k, (2) is trans-

formed into the optimization problem with two variable vec-

tors P and w, similar to the nominal optimization problem in

(1). Therefore, computational complexity of robust optimiza-

tion problem (6) is downgraded to that of (1).

B. Proposed Algorithm to Solve (6)

Due to the existence of both continuous and discrete vari-

ables R̂ng
(P,w), (6) is non-convex. To transform (6) to a

convex optimization problem, following by [19], we apply

techniques of variable transformation and relaxations. First,

we relax the wng,k as a continuous variable in interval [0, 1].
In the new definition, wng,k indicates the portion of time that

sub-carrier k is assigned to user ng for a specific transmission

frame. Consequently, C1 is changed to

C̃1 : wng,k ∈ [0, 1] and
∑

g∈G

∑

ng∈Ng

wng,k ≤ 1, ∀k ∈ K.

Furthermore, we consider a new variable xng,k = wng,kPng,k,

which transforms R̂ng
(P,w) to

R̃ng
(x,w) =

∑

k∈K

wng,k log2 (1 +
xng,kh̃ng,k

σwng,k

), ∀ng ∈ Ng.

Therefore, the utility function is simplified to

Ũg(x,w) =
∑

ng∈Ng

R̃ng
(x,w)− CE

g

∑

ng∈Ng

∑

k∈K

xng,k.

In this context, C2 and Ĉ3 are transformed into

C̃2 :
∑

g∈G

∑

ng∈Ng

∑

k∈K

xng,k ≤ Pmax and

C̃3:
∑

ng∈Ng

R̃ng
(x,w) ≥ Rrsv

g , ∀g ∈ G,

respectively. Since R̃ng
(x,w) belongs to the class of convex

functions represented as f(x, y) = x log2(1 + y
x
) ∀x, y ≥ 0

[20]. Therefore, the convexified robust counterpart of (1) is

max
x,w

∑

g∈G

Ũg(x,w), (7)

subject to : C̃1, C̃2 and C̃3.

Now, we can solve (7) by solving the dual optimization

problem and applying KKT conditions. Let ρk, λ and φg

represent the Lagrange multipliers for constraints C̃1, C̃2 and

C̃3, respectively. Therefore, the Lagrange function for (7) is

L(w, x, λ,φ,ρ) = (8)

−
∑

g∈G

Ũg + λ(
∑

g∈G

∑

ng∈Ng

∑

k∈K

xng,k − Pmax)+

∑

g∈G

φg(R
rsv
g −

∑

ng∈Ng

R̃ng
) +

∑

k∈K

ρk(
∑

g∈G

∑

ng∈Ng

wng,k − 1).

Applying KKT conditions to (8), we obtain the optimal power

solution of (7) ∀k ∈ K, ng ∈ Ng and g ∈ G as

Png,k =

[
1 + φg

ln(2)(λ+ CE
g )

−
σ

h̃ng,k

]Pmax

0

. (9)

In order to obtain the solution for sub-carrier allocation, we

obtain the following necessary condition for wng,k for all k ∈
K and ng ∈ Ng



Algorithm 1 :Robust Slice Provisioning

Initialization: Set w∗(l = 0) = 1, P∗
ng
(l = 0) =

Pmax/K, ∀ng ∈ Ng, g ∈ G, l = 0, lmax, imax and

0 < ζm ≪ 1 for m = {1, 2, 3}.

OL: Repeat l = l + 1:

λ(l) =
[
λ(l − 1) + δλ

∂L
∂λ

]+
,

φg(l) =
[
φg(l − 1) + δφg

∂L
∂φg

]+
, ∀g ∈ G.

IL: Repeat i = i+ 1:

Update P∗(i) according to (9).

Update w∗(i) according to (10).

Until (||P(i)− P(i− 1)|| ≤ ζ1) or i > imax.

Until ((||φg(l)−φg(l−1)|| ≤ ζ2 and ||λ(l)−λ(l−1)|| ≤
ζ3) or l > lmax).

w∗
ng,k





= 0, ∂L(w,x,λ,φ,ρ)
∂w∗

ng,k

< 0,

∈ [0, 1], ∂L(w,x,λ,φ,ρ)
∂w∗

ng,k

= 0,

= 1, ∂L(w,x,λ,φ,ρ)
∂w∗

ng,k

> 0,

where [21]

∂L(w, x, λ,φ,ρ)

∂w∗
ng,k

=

(1 + φg)

(
log2(1 + γng,k)−

γng,k

(1 + γng,k) ln(2)

)
.

For holding the exclusive sub-carrier allocation of OFDMA,

the sub-carrier k is allocated to user which satisfy the follow-

ings

w∗
n′

g,k
=

{
1, n′

g = max∀ng,∀g
∂L(w,x,λ,φ,ρ)

∂w∗

ng,k

,

0, ng 6= n′
g.

(10)

The iterative algorithm to allocate the optimal power and sub-

carrier with uncertain CSI is presented in Algorithm 1. It starts

with initialization of variables followed by an outer loop where

Lagrange variables λ and φg are updated for all g ∈ G via

gradient method, where 0 < δx ≪ 1 is the step size for

Lagrange variable x. In the inner loop, the power and sub-

carriers are computed from the updated values of Lagrange

variables. The iterative processes are stopped when power and

sub-carrier converge to the constant values.

IV. SIMULATION RESULTS

In this section, we investigate the proposed solution

of the resource provisioning problem (2) via simulation

results. For simulation settings, we consider two slices

g1 and g2 ∈ G where BS has K = 64 sub-carriers and

σ = 1. The CSI is derived from Rayleigh fading distribution,

modeled as hng,k = Xd−β
ng

, where β = 4 is the path loss

exponent, X is exponential random variable with mean one,

and dng
is the distance of user ng from BS. For all the

simulations, we set the minimum reserved rate Rrsv
g = 1.0

bps/Hz for each slice, ηng,k = 0.9, CE
g = 3.0, Pmax = 15
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Fig. 2: EE versus number of subcarriers K

dB, and εng,k = ε = 0.3, ∀ng ∈ Ng and ∀k ∈ K unless

otherwise stated. For the simulations in Figs. 1 and 2, all the

users of slices are randomly located in the range of distance

dng
∈ {0.2, 0.5} Km. All the plotted results are obtained from

the average of over 100 CSI realizations. To demonstrate the

results, we define the energy efficiency (EE) factor as EE =∑
g∈G

∑
ng∈Ng

Rng
(P,w)/(

∑
g∈G

∑
ng∈Ng

∑
k∈K Png,k +

Pc) where Pc = −10 dB is the constant signal processing

power required at the BS [22].

Fig. 1 illustrates the total EE factor versus number of

users N for different values of Pmax. The EE increases with

increasing N for all considered Pmax due to the multi-user

diversity gain, which increases the total rate leading to higher

energy efficiency. From Fig. 2, increasing K also increases

the EE factor. This is because that VWN has more options

to assign sub-carriers with better channel gains to the users

with increasing K. Thus, the total rate of VWN and hence

EE would be increased. Figs. 1 and 2 indicate that the total

EE reduces with increasing Pmax. This happens because higher

power cannot help to increase throughput (due to the tradeoff

between throughput and power cost in the defined utility) as

much as required to compensate the power increase in the

denominator of EE factor.

To analyze the behavior of EE with respect to εng,k, we con-
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sider two scenarios based on the locations of users, 1) Users

at the cell-edge or low-SNR scenario where dng
∈ [0.4, 0.6]

Km for all ng , and 2) Users at the cell-center or high-SNR

scenario where dng
∈ [0.2, 0.3] Km for all ng . It can be

observed that increasing ε decreases the EE factor due to the

conservative feature of the worst-case approach, where error

is considered to the maximum extent. From both Figs. 3 and

4, increasing CE
g increases the EE factor since for higher value

of price, the VWN consumes less power. Consequently, EE is

increased. Moreover, EE factor in Fig. 3 is higher than that in

Fig. 4. This is because when users are located at the boarder

of the cell, the rate of VWN decreases because of limited

transmit power and large scale fading. Consequently, EE factor

decreases.

V. CONCLUSION

In this paper, we propose the robust resource provisioning

policy for the OFDMA-based VWNs, aiming to maximize

the total energy efficiency of network while satisfying the

minimum rate requirements of all the slices. The non-convex

problem is transformed into the convex one by applying the

appropriate selection of uncertainty region, variable trans-

formations and relaxations. Based on the solution of the

convexified problem, an iterative algorithm is proposed. Via

simulation results, the effects of system parameters including

error in CSI on total EE factor of VWN is investigated.
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