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Feedback Allocation For OFDMA Systems With

Slow Frequency-domain Scheduling

Harish Ganapathy∗, Siddhartha Banerjee, Nedialko B. Dimitrov and

Constantine Caramanis

Abstract

We study the problem of allocating limited feedback resources across multiple users in an orthogonal-

frequency-division-multiple-access downlink system with slow frequency-domain scheduling. Many flavors

of slow frequency-domain scheduling (e.g., persistent scheduling, semi-persistent scheduling), that adapt

user-sub-band assignments on a slower time-scale, are being considered in standards such as 3GPP Long-

Term Evolution (LTE). In this paper, we develop a feedback allocation algorithm that operates in conjunction

with any arbitrary slow frequency-domain scheduler with the goal of improving the throughput of the system.

Given a user-sub-band assignment chosen by the scheduler, the feedback allocation algorithm involves

solving a weighted sum-rate maximization at each (slow) scheduling instant. We first develop an optimal

dynamic-programming-based algorithm to solve the feedback allocation problem with pseudo-polynomial

complexity in the number of users and in the total feedback bit budget. We then propose two approximation

algorithms with complexity further reduced, for scenarios where the problem exhibits additional structure.

Index Terms

Limited feedback, multi-user feedback allocation, throughput-optimal, uplink feedback, Random Vector

Quantization, sub-modular functions, convex relaxations
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I. INTRODUCTION

Orthogonal-frequency-division-multiple-access (OFDMA) is the multiple-access technology of

choice for many current and future wireless standards such as 3GPP Long-Term Evolution (LTE),

IEEE 802.16e (WiMAX) and Long-Term Evolution Advanced (LTE-A). With the singular goal

of achieving higher throughputs in order to keep pace with the every-growing suite of data-

hungry applications, OFDMA systems typically operate in conjunction with a fast frequency-domain

scheduler that allows for aggressive adaptation to the fading conditions of the channel. Here, user-

sub-band assignments typically occur once every 1ms, 2ms or 5ms depending upon the standard

under consideration. In the quest for higher data rates, the overhead incurred in enabling such fast

frequency-domain scheduling is often ignored.

Primarily, there are two types of overhead that facilitate user scheduling in an OFDMA downlink

system. These are: the overhead incurred in (i) communicating user-sub-band assignments and

in (ii) collecting channel state information (CSI) from all users commonly referred to as the

process of feedback. To address the first issue, recently, there has been an increasing interest

in “slow” frequency-domain scheduling [1]–[5] instead of its faster counterpart for applications

where the overhead demands of the latter do not justify its use. For example, LTE adopts (semi-

)persistent scheduling for voice-over-IP applications that typically do not have high throughput

demands [1]–[4]. Here, user-sub-band assignments are decided on a slower time-scale while link

adaptation (on the fast time-scale) specifically in the semi-persistent approach, is achieved through

Hybrid Automatic Repeat Request (HARQ) re-transmissions. Li et al. [5] show that slow OFDMA

scheduling can achieve throughputs close to the ideal case in many real-world scenarios.

Moving on to the implications of (ii), we borrow an example of a typical LTE setting recently

provided in Ouyang et al. [23]: In LTE, the smallest unit of bandwidth that can be assigned to

a user for data transmission is called a resource block, which is essentially a group of OFDM

sub-carriers. If we consider a 10MHz LTE system with L = 50 resource blocks shared by K = 50

users equipped with standard 4-bit codebooks (modulation/coding tables) at the mobiles, we have

a total feedback bandwidth of 4KL = 4 × 50 × 50 = 10kb per sub-frame [6]. Given a typical

uplink data rate of 48kb per sub-frame, this consumes 20% of the uplink capacity, clearly making

feedback bandwidth consumption an important bottleneck. This observation, amongst others, has

motivated the development of limited feedback techniques [7]–[15]. In general, adapting the size of
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the codebook (e.g., CSI table at the mobiles) [8]–[10] and sub-carrier grouping [11]–[15], subject

to a constraint on the total available feedback bandwidth, are two of the most popular multi-user

limited feedback approaches in the literature. In the former, the size of the codebook on each

OFDMA sub-band, and potentially the codebooks themselves, are periodically chosen based on the

“state” of the network. In the latter, feedback reduction is achieved through a grouping technique

where one CSI report is generated for a group of OFDMA sub-bands.

In this paper, we propose a feedback allocation policy that operates in conjunction with a slow

frequency-domain scheduler assumed given. In particular, given a scheduling assignment on a slower

time-scale, i.e., once every T time slots, the feedback allocation policy decides user codebook sizes

again on the same time-scale. Thus, in the context of past literature, we focus on the former

limited feedback approach of choosing dynamic codebook sizes as a function of the network state

(e.g., channels, queues, etc.), a process that we call feedback allocation henceforth1, to address the

second type of overhead. The difference between our approach and past work on dynamic codebook

selection is that our algorithm adapts to queue sizes and hence user applications, in addition to the

channel state thereby generalizing earlier methods.

The main contributions of this paper are the following:

1) We propose a throughput-optimal feedback allocation policy that overlays a given slow

scheduler. The proposed policy takes the form of a weighted sum-rate maximization problem

that needs to be solved once every T time slots. Throughput-optimality is with respect to the

space of all possible feedback allocation policies while fixing the particular data scheduler of

interest.

Efficient algorithmic implementability of these policies is a critical design requirement, and this

is the focus of our remaining contributions. Our focus is in line with several papers over the

last decade, which study the algorithmic aspects of queue-based scheduling for specific network

structures and resource allocation problems (see, e.g., [24]–[28] and references therein). Needless to

say, the difficulty in solving the weighted sum-rate maximization problem in each slot is intricately

tied to the resource being optimized. Recently, significant strides were made by Tan et al. [27],

[28] in solving the joint queue-based scheduling and power control problem that has attracted much

1One can in general consider a more comprehensive feedback allocation policy that includes both codebook-size adaptation and

sub-carrier grouping. However, such policies are beyond the scope of this paper and a subject for future study.
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interest over the years (see [26] and references therein). Here, the possible transmission rates in each

slot come from a continuous region induced by all possible power allocations. The authors [27], [28]

solve non-convex power-control problems (e.g., weighted sum-rate) accurately and efficiently by

using solutions to related convex problems (e.g., max-min rate) in an intelligent manner. Optimality

is established under many channel settings. While the lack of convexity is due to interfering users

in [27], [28], in the model by Huang et al. [26], self-noise due to channel estimation error forms

the cause. The authors [26] nevertheless propose both optimal and sub-optimal approaches with

varying degrees of complexity. In contrast to power allocation, in our case, the region of possible

rates in each slot is discrete and is induced by all possible splits of the total feedback budget. This

allows us to leverage many powerful tools from the area of combinatorial optimization. With the

exception of the work of Ouyang and Ying [23], the problem of feedback allocations has not been

considered in the past, to the best of our knowledge.

2) We develop a dynamic programming algorithm that solves the weighted sum-rate feedback

allocation problem with pseudo-polynomial complexity in the number of users and the total

feedback bit budget. This approach is exact and requires no assumptions on the structure of

the weighted sum-rate function.

3) We show that in many practical wireless systems, the weighted sum-rate is non-decreasing

and sub-modular in the feedback budget. Using this observation, we leverage sub-modular

optimization results from combinatorial optimization (e.g. [19]–[21]) and propose a reduced-

complexity algorithm with an approximation guarantee of (1− 1
e
).

4) Multiple-input-single-output (MISO) beamforming is being considered as a potential trans-

mission mode in the Long Term Evolution standard [1]. For such systems, we show that when

the popular Random Vector Quantization codebook [17], [33], [34] is used, we are able to

reduce the complexity even further and provide an approximation guarantee of 1
2
.

The rest of this paper is organized as follows. In Section II, we introduce the system model for

feedback allocation and slow data scheduling. In Section III, we discuss the notion of throughput-

optimality in queueing networks and introduce a throughput-optimal joint feedback allocation and

slow data scheduling policy. In Section IV, we solve the optimal online feedback optimization

problem for both objectives while in Section V, we investigate methods of reducing the complexity

of the optimal online optimization problem by exploiting more structure in the objective function.
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Concluding remarks are made in Section VII.

Notation: xij denotes element (i, j) of matrix X while xi denotes element i of vector x. Given

matrices X,Y ∈ Rp×q, X ≤ Y means xij ≤ yij, ∀i = 1, . . . , p, j = 1, . . . , q. R+, N0 and N

represent the non-negative real numbers, non-negative integers and positive integers respectively.

II. SYSTEM MODEL

We consider the downlink of a frequency-division-duplex OFDMA system with L sub-carriers/sub-

bands and K users that operates in slotted-time. The network model is described below:

Channel State: The true supportable rate for user i on sub-band j at time t is given by µij [t].

We assume that µij [t] is ergodic and comes from a continuous set M. We assume that the mobile

has perfect knowledge of the channel state {µij[t]}Lj=1 in every time slot. The probability density

function for rate µij[t] is given by Pr (µij[t] = m) = πmi (αi [t]) , m ∈ M, where αi [t] denotes a

large-scale fading gain that is dependent on user position and comes from a finite set αi[t] ∈ Ω.

Users change positions once every T slots where T ∈ {1, 2, 3, . . .} denotes the large-scale fading

coherence time. For ease of notation, we introduce a counter t̄ = ⌊ t
T
⌋T to keep track of the

slower large-scale fading time-scale, i.e., πmi (αi[t]) = πmi (αi[t̄]) , ∀t. For convenience, we also

set πmi[t̄] = πmi (αi[t̄]) making implicit the dependence on t and T . Note that the large-scale

coefficient is typically only distance-dependent and independent of frequency allowing us to omit

the index j when representing it. We assume that the base station has perfect knowledge of {αi[t̄]}
and all distribution information {πmi[t̄]}. Most importantly, t̄ represents the time-scale at which

feedback optimizations and scheduling assignments are decided.

Traffic model: Each user k ∈ {1, 2, . . . , K}, has a queue of untransmitted packets with queue-

length qk[t̄] that is maintained at the base station with associated arrival rate λk.

Feedback model: The base station allocates a feedback budget of bk[t̄] bits to user k such

that
∑K

k=1 bk[t̄] ≤ B where B represents the total limited feedback budget of the system. Let

the sub-carriers in our OFDMA system be indexed by S = {1, 2, . . . , L}. Assume that user k is

allocated sub-bands Nk[t̄] ⊆ S by the slow scheduling algorithm. Given a budget of bk[t̄] bits by

the base station and an assignment Nk[t̄] of size |Nk[t̄]| = nk, the user employs a codebook of

size bkj[t̄], j ∈ Nk[t̄] bits for sub-band j where
∑

j∈Nk
bkj [t̄] = bk[t̄]; {bkj[t̄]}j∈Nk

represents the

per-sub-band budgets for user k that are chosen by the user to maximize rate.
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Quantized channel state: Given a budget of bk[t̄] and a sub-band assignment Nk[t̄], the actual

post-quantization rate achieved by user k at time t where t̄ ≤ t ≤ t̄ + 1, on sub-band j ∈ Nk[t̄] is

denoted by µ
q
kj[bkj [t̄], µij[t]]. Note that the actual achievable rate is determined by the quantization

budgets (along with the codebook of course), that are decided on the slower time-scale indexed by

t̄, as well as the true state of the channel at current time t.

Network state: The network state at time t̄ is given by M [t̄] =
(

{πmi[t̄]}Ki=1, {qk[t̄]}Ki=1

)

, which

is a collection of channel distributions and queue lengths on the slower time-scale. In general,

the feedback allocation and slow scheduling policies make allocation and assignment decisions,

respectively, for T time slots t̄ < t < t̄+ 1 based on state M [t̄].

Expected rates and virtual users: Let rkj[αk[t̄], bkj[t̄]] = Eπmi[t̄]

[

µ
q
kj[bkj[t̄], µij[t]]

]

denote the

expected rate (through the course of T time slots)) for user k on sub-band j. The total expected

rate that is achieved by user k given a sub-band assignment Nk[t̄] and allocation bk[t̄] is then

given by
∑

j∈Nk[t̄]
rkj[αk[t̄], bkj[t̄]]. We make an observation at this point that helps us simplify the

presentation of the results. Since the rate is additive across sub-bands, and is a function of a band-

independent channel gain, one may consider and analyze an equivalent virtual system where the

number of users is equal to the number of sub-bands. This removes the dependence of the feedback

allocation policy on the assignments Nk[t̄]. In other words, the equivalent system would consist of

L users assigned to L sub-bands with feedback allocations {bi′ [t̄]}Li′=1 and rates ri′[αi′ [t̄], bi′ [t̄]]. As

for the queue lengths, one can simply “replicate” the same queue length qk[t̄] for all virtual users

k′ ∈ Nk[t̄], i.e., qk′[t̄] = qk[t̄], ∀k′ ∈ Nk[t̄]. Once the optimal feedback allocation {b∗i′ [t̄]}Li′=1 and

virtual rates ri′ [b
∗
i′ [t̄]] are computed, we can map back to the original system by calculating the true

rate for user k as
∑

i′∈Nk[t̄]
ri′[αi′ [t̄], b

∗
i′ [t̄]].

Through the remainder of this paper barring the final simulations section, we study the equivalent

system mentioned above where we have L users assigned to L sub-bands. Having defined all the

ingredients of our OFDMA downlink network, we move on to the next section where we develop

the feedback allocation policy that periodically makes decisions based on the network state.

III. THROUGHPUT-OPTIMAL FEEDBACK ALLOCATION WITH SLOW SCHEDULING

In this section, we develop a feedback allocation (codebook size adaptation) protocol that when

operated in conjunction with a given slow data scheduling policy, guarantees throughput-optimality.

This means that given an arrival rate vector ~λ, if there exists any scheduling policy that can guarantee
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bounded expected queue sizes, then so can the proposed policy, which falls under the MaxWeight

family of policies that was pioneered by Tassiulus and Ephremedis [29].

As mentioned towards the end of the last section, we now have a virtual system with L users

assigned to L sub-bands with feedback allocations {bk′[t̄]}Lk′=1, rates {rk′[α′[t̄], bk′[t̄]]}Lk′=1 and

queues {qk′[t̄]}Lk′=1. Through the remainder of this paper, until Section VI, we replace the index k′

by k for convenience, with the implicit understanding that we are dealing with virtual users. The

feedback allocation policy is presented below.

Algorithm 1 MaxWeight feedback allocation with slow data scheduling

1: while t ≥ 0 do

2: if t (mod T ) = 0 then

3: Set t̄ = t

4: Solve

{b∗k[t̄]} = argmax
∑L

k=1 qk[t̄]rk[αk[t̄], bk]

w.r.t. bk ∈ {0, 1, . . . , B}, ∀k
s.t.

∑L
k=1 bk ≤ B.

(1)

5: end if

6: end while

A few remarks about the above algorithm are in order:

(i) Throughput-optimality: The algorithm is throughput-optimal with respect to the space of policies

that make feedback allocation and assignment decisions once every T slots. This means that if any

policy that makes feedback allocation and assignment decisions once every T slots can stabilize a

set of arrival rates {λk}, then so can the proposed policy in (1). Let the region of rates {λk} that

can be stabilized by the policy in (1) be denoted by V . The above notion of throughput optimality

for queueing systems has been used extensively in the literature (see [24], [25], [29], [30] and

references therein). We do not prove throughput-optimality as it follows from standard Lyapunov

techniques that are well-established in the queueing literature [30].

(ii) Computational complexity: While the optimization problem characterizes optimal performance,

solving it exactly may be computationally prohibitive. In fact, a brute-force approach to solving (1)

would incur a complexity of O
((

B+L−1
L−1

))

.
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The final remark forms the basis for the remainder of this paper. The brute-force approach

to solving (1) is clearly infeasible from an implementation perspective. We take up the issue of

complexity starting in Section IV and propose a host of computationally-efficient algorithms to

solve the feedback allocation problem in (1). We wish to highlight that all algorithmic developments

can be applied to full-buffer (saturated) systems where scheduling schemes such as proportional

fairness become applicable. This is because most schedulers of interest solve a weighted sum-rate

maximization problem at each instant [31].

IV. OPTIMAL FEEDBACK ALLOCATION THROUGH DYNAMIC PROGRAMMING

In Section III, we have established that for queue stability, we are interested in solving the

following online weighted sum-rate maximization problem

max{bk}∈B
∑L

k=1 qk[t̄]rk[αk[t̄], bk]. (2)

The form of the functions {rk[αk[t̄], bk]} would of course depend on the underlying physical system

and is intimately connected to the computational complexity of the problem. In fact, for complex

modulation/coding schemes the function might only be available as a look-up table. While the

optimization problem characterizes optimal performance, solving it exactly may be computationally

prohibitive. Thus, the focus of this paper becomes algorithmic. We propose novel solutions to

(2) through Sections IV and V that explore the natural tradeoffs between accuracy, complexity

and the structure of the weighted sum-rate function. We start by showing that by using Dynamic

Programming, the exact solution can be obtained in pseudo-polynomial time.

Theorem 1. The online resource allocation problem (2) can be solved exactly in time O (LB2).

Proof: Order the users arbitrarily. We choose to work with the existing order w.l.o.g. For any

given arbitrary weights {wi}, wi > 0, define A(i, j)
△
= wirk[αi, j] to be the weighted rate for user

i given we allocate j bits to this user and define R(k, b)
△
= max∑k

i=1 bi≤b, bi∈N0

∑k
i=1wiri[αi, bi] to

be the maximum weighted sum-rate if we have b bits to allocate amongst the first k users with

R(0, b) = 0. It follows that R(1, b) = A(1, b), b = 0, . . . , B. We can write a recursion R(k, b) =

maxj=0,...,b {R(k − 1, b− j) + A(k, j)}. The optimality of this recursion can be established using

standard induction arguments similar to the two-dimensional knapsack problem [16]. This rule gives

rise to a table with a total of L(b+1) elements. In order to compute element (k, b) in the table, using
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our recursion, we incur a complexity of O(b + 1). Hence, the total complexity can be calculated

as
∑L

k=1

∑B

b=0(b+ 1) = L
∑B

b=0(b+ 1) = L
(B+1)(B+2)

2
= O(LB2).

Thus, we have proposed an exact solution using dynamic programming, which has pseudo-

polynomial2 complexity O (LB2) and which is applicable to any type of weighted sum-rate function.

Therefore, in contrast to the joint power-control and scheduling problems in [26]–[28] and owing

to the discrete nature of the feedback allocation problem we consider in (2), we do not require any

special channel-induced properties of the objective function such as those imposed on its partial

derivatives in Lemma 2 of [27], in order to find an optimal solution.

Note that R(K,B) in Theorem 1 with wi = qi, ∀i, is equal to (2) and dynamic programming

essentially gives us a technique to compute R(K,B) by solving smaller sub-problems. The following

toy example with K = 2 users and a total bit budget of B = 2 bits illustrates a typical series of

computations en route to calculating R(2, 2).

Example (Dynamic programming): Order the two users arbitrarily, say user 1 first followed by

user 2. Then, initialize values the following weighted rates appropriately for b = 0, 1, 2,

R(1, b) = A(1, b) : when user 1 is allocated b bits

R(2, b) = A(2, b) : when user 2 is allocated b bits.

Once initialized, we then compute value R(2, 1) = max{R(1, 1) + A(2, 0), R(1, 0) + A(2, 1)} =

max{R(1, 1), A(2, 1)}. Finally, we calculate

R(2, 2) = max{R(1, 2) + A(2, 0), R(1, 1) + A(2, 1),

R(1, 0) + A(2, 2}
= max{R(1, 2), R(1, 1) + A(2, 1), A(2, 2)},

the desired optimal weighted sum-rate with two users and two bits.

To understand the computational requirements in the context of a real-world system, consider

the LTE example that was presented in the introduction to this paper. Here, we had the following

parameters: L = 50, K = 50 with 4-bit modulation/coding tables at the mobiles. To model the

limited feedback constraint, let B = 4cL, c ∈ {1, 2, ..., K−1}, which has an intuitive interpretation

of being able to provide full feedback to at most c users; c = K represents no constraint on feedback

resources for this setting. Then, a feedback bandwidth of c = K
4

corresponds to a complexity of

2An algorithm has pseudo-polynomial complexity if its running time is a polynomial in the size of the input in unary. The size

of the input to (2) in unary at most LBAmax +B = O(LB) where Amax = max(i,j) A(i, j).
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roughly 7×1011 operations, which is clearly quite daunting. Thus, while the dynamic programming

approach is indeed viable for sufficiently small systems, we require algorithms with faster running

times that might be less accurate. This forms the focus of the remainder of this paper.

V. REDUCED-COMPLEXITY RESOURCE ALLOCATION

In this section, we show that if the weighted sum-rate functions have additional structure, we

can develop faster algorithms. As is often done for computationally hard problems, one seeks

efficient but potentially suboptimal algorithms, but then proves lower bounds on the performance.

In this vein, we develop more computationally efficient algorithms that approximately solve (2),

and provide theoretical lower bounds on their performance. The long-term performance of these

approximate algorithms in achieving queue stability is characterized by Theorem 2 below. The proof

is omitted as these are well-known results in queuing systems.

We say that an algorithm is a γ-approximation, γ ∈ (0, 1], to (1) if it provides a solution {balgk }
such that

∑

k qk[t̄]rk[αk[t̄], b
alg
k ] ≥ γmax{bk}∈B

∑

k qk[t̄]rk[αk[t̄], bk]. The following theorem is a

generalization of the original result by Tassiulus and Ephremedis [29]. It essentially states that

local approximation is consistent with the long-term objectives we consider.

Theorem 2. If λk ∈ {γν : ν ∈ V}, γ ∈ (0, 1], then a γ-approximation to the per-instant scheduling

rule {b∗[t]} = argmax{bk}∈B
∑

k qk[t̄]rk[αk[t̄], bk] stabilizes the system.

Recall from remark (i) in the Section III that V represents the region of rates that are stabilizable

by Algorithm 1. The theorem essentially states that for queueing systems: If we calculate a γ-

approximate solution to (2) in every time slot, one can achieve a γ-fraction of the throughput region.

This result paves the way for the design of computationally-efficient algorithms, by constructing

approximations to (2).

In Section A, we consider weighted sum-rate functions that are non-decreasing and sub-modular

in the feedback bit allocation. In short, sub-modularity refers to diminishing returns with respect to

the allocation of resources. This is a property that is exhibited quite frequently by wireless systems

in general, e.g., point-to-point capacity scales logarithmically in transmit power, achievable rates in

multiple antenna precoding systems exhibit diminishing returns in the size of the codebook [17],

[18], etc. In the developments that follow, we exploit this property in order to propose a greedy
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feedback allocation algorithm that has complexity O((B + L)log2L) with approximation factor of
(

1− 1
e

)

. Our main contributions are contained in Lemma 2 and Theorem 3.

In Section B, we focus on a class of weighted sum-rate functions that arise in downlink scenarios

where the base station is equipped with multiple antennas and performs transmit beamforming

with quantized beamformer feedback. This is a popular transmission strategy that been extensively

researched [17], [33]–[35] and adopted into standards such as W-CDMA [32] and LTE [1]. We

show that for this choice of physical layer signalling protocol, the weighted sum-rate maximiza-

tion problem in (2) is sub-modular for certain types of beamformer quantizers. We illustrate the

improvement in computational performance by using the LTE example from the Introduction.

A. Reduced-complexity resource allocation through sub-modularity

We begin this section with a quick primer on sub-modular optimization (summarized from [19]–

[21]) that will be useful for our purposes. In keeping with the literature, the approach pursued in

this section will be graph theoretic in contrast to the rest of this paper. A sub-modular function is

defined as follows: Let E be a finite set and 2E represent all its subsets. Then, F : 2E → R+ is a

non-decreasing, normalized, sub-modular function if F (∅) = 0 (normalized), F (A) ≤ F (B) when

A ⊆ B ⊆ E (non-decreasing) and if F (A ∪ {e})− F (A) ≥ F (B ∪ {e}) − F (B), ∀A ⊆ B ⊆ E

and e ∈ E \B (sub-modular).

The following property of sub-modular functions is useful for our analysis.

Lemma 1. If Fn, n = 1, . . . , N , are sub-modular on set E, then
∑N

n=1wnFn(A), A ⊆ E is a

sub-modular function for wn ≥ 0, ∀n.

Having provided the definition of sub-modularity along with a useful property, we now introduce

the kinds of constraint sets that are typically considered in the context of sub-modular optimization:

(i) A set system (E, I) where E is a finite set and I is a collection of subsets of E is called

an independence system if ∅ ∈ I and satisfies if A ⊆ B for B ∈ I, then A ∈ I. (ii) An

independence system is called a matriod if it satisfies the following additional property; if A,B ∈ I
and |A| < |B|, then there exists e ∈ B \A such that A ∪ {e} ∈ I. (iii) Set I is a uniform matroid

if I = {F ⊆ E : |F | ≤ k} for k ∈ N.

The optimization problem that has been considered in the context of sub-modular functions and
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independence systems is

F ∗ = max
A∈I,A⊆E

F (A). (3)

Since many NP-hard problems can be reduced to a sub-modular function maximization over

an independence system, significant research has focused on developing efficient approximation

algorithms. In particular, the performance of the greedy algorithm in solving special cases of (3)

has been extensively studied. Nemhauser et al. [22] considered problem (3) over uniform matroids

and showed that the greedy algorithm provides a (1 − 1
e
) approximation factor for this special

case. Please refer to Goundan et al. [19], Calinescu et al. [20] and Vondrak [21] for a summary

of related results on sub-modular function optimization over other families of constraint sets. The

greedy algorithm is presented later in the section in the context of our specific feedback allocation

problem.

Sub-modularity in feedback allocation: We now show that the optimal bit allocation problem in

(2) may by posed as a sub-modular maximization over a uniform matroid when the rates exhibit sub-

modularity. Let G = (U, V, E) be a bipartite graph where U contains L user nodes and V contains

B bit nodes, both ordered arbitrarily, i.e. |U | = L and |V | = B. Let E contain the set of all edges

E = {ekb : i = 1, . . . , L and j = 1, . . . , B}. Given A ⊆ E, we define |A|i △
= |{ekb ∈ A : k = i}| to

represent the number of bits allocated to user i, i.e., |A|i = bi. The independence we are interested

in is I = {A ⊆ E : |A| ≤ B} where B is the total bit budget. By definition, I is a uniform matroid

and furthermore, I is the set of all valid allocations since if A ∈ I, then
∑L

k=1 bk =
∑L

k=1 |A|k ≤ B

and if A 6∈ I, then
∑L

k=1 bk =
∑L

k=1 |A|k = |A| > B. Now the weighted sum-rate maximization

problem in (2) in time slot t̄ may be re-written as

max{bk}∈B
∑L

k=1 qkrk[αk[t̄], bk]

≡ max
∑L

k=1 qkrk[αk[t̄], bk]− rk[αk[t̄], 0]

s.t. bk = |A|k,
∑

k |A|k ≤ B, A ⊆ E

= maxA∈I

∑L
k=1 qkrk[αk[t̄], |A|k]− rk[αk[t̄], 0].

The following result becomes immediate.

Lemma 2. If the function rk[αk, bk] is non-decreasing and sub-modular in the bit allocation bk =

|A|k, A ⊆ E for all users k = 1, . . . , L, and channel states αk ∈ Ω, then
∑L

k=1 qkrk[αk, |A|k] −
rk[αk, 0] is a normalized, non-decreasing, sub-modular function on set E for all channel states

m ∈ M.
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Proof: The result follows from Lemma 1.

Hence, the greedy algorithm can be used to solve the optimal bit allocation problem in (2)

with approximation factor
(

1− 1
e

)

. The greedy algorithm for the specific case of our bit allocation

problem in time slot t can be written as follows where uk(bk)
△
= qk (rk[αk, bk + 1]− rk[αk, bk])

denote the increase in rate or marginal utility if user k is given one extra bit.

Algorithm 2 Greedy feedback allocation

1: Set b = 1 and bk = 0, ∀k, which is essentially a bit counter for each user

2: Compute marginal utilities {uk(bk)}.

3: while
∑

k bk ≤ B do

4: Sort this list of marginal utilities.

5: Assign a bit to user k∗ who is on top of this list.

6: Update bk∗ = bk∗ + 1 and re-compute uk∗(bk∗)

7: end while

We end this section by investigating the complexity of the above algorithm in the following

theorem.

Theorem 3. The greedy algorithm approximates the optimal bit allocation problem in (2) to within

a factor of
(

1− 1
e

)

while incurring complexity O((B + L)log2L).

Proof: Step 2 of this algorithm incurs complexity O(Llog2L) for the first iteration b = 1.

Subsequently, every re-sort in Step 3 costs O(log2L) with a maximum of B such re-sorts. Thus,

the total complexity is O((B + L)log2L). For the proof of the approximation factor, please refer

to Nemhauser et al. [22].

In the context of the LTE example introduced earlier, this means that by exploiting the sub-

modular structure in the rates, we reduce the complexity from 7 × 1011 to 15 × 103 operations.

Before we move on to the next section, we provide an example of a common wireless setting where

sub-modularity is exhibited. Consider a traditional point-to-point single antenna wireless link with a

b-bit modulation-coding table at the receiver. The modulation-coding table is constructed as follows.

Given a non-negative real number in the interval [0, σ], σ >> 0, we uniformly partition the interval

into 2b sub-intervals and implement the quantization scheme ⌊x⌋Q = iσ
2b
, i σ

2b
≤ x < (i + 1) σ

2b
, i =
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0, 1, . . . , 2b−1. Then, for any fixed position-dependent gain of α, the achievable rate of the system

in a fading environment can be written as

r[α, b] = Eh[log2(1 +
⌊√

α|h|2
⌋

Q
)], (4)

where |h|2 is a truncated exp(1) random variable that has a maximum value of σ >> 0. The

probability density function for such a random variable is given by f|h|2(x) = C(σ) exp(−x)

where C(·) is a normalization factor. Note that this example considers a traditional continuous

fading model. One may obtain its discrete version thereby conforming with our system model, by

sampling the support [0, σ]. Thus, the rate expression in (4) may be treated as an approximation

that becomes increasingly accurate as we discretize the support more finely. For the case α = 1,

the rate (4) can be explicitly computed as

r[1, b] = C(σ)
∑2b−1

i=0 log2
(

1 + iσ
2b

) ∫ (i+1) σ

2b

i σ

2b
exp(−x)dx

=
[

1− exp
(

− σ
2b

)]
∑2b−1

i=0 log2
(

1 + iσ
2b

)

exp
(

−i σ
2b

)

.

Setting l[j, b] = log2
(

1 + jσ

2b

)

, the normalized incremental gain with one extra bit can be calculated

as
C(σ)−1(r[1, b + 1]− r[1, b])

=
[

1− e
− 1

2
σ

2b

]

∑2×2b−1
i=0 l[i, b+ 1]e−i 1

2
σ

2b −
[

1− e
− σ

2b

]

∑2b−1
i=0 l[i, b]e−i σ

2b

=
[

1− e
− 1

2
σ

2b

] [

∑2b−1
j=0 l[2j, b+ 1]e−j σ

2b +
∑2b−1

j=0 l[2j + 1,

b+ 1]e−(2j+1) σ

2b+1

]

−
[

1− e
− σ

2b

] [

∑2b−1
i=0 l[i, b]e−i σ

2b

]

by splitting odd and even terms

=
[

e
− 1

2
σ

2b − e
− σ

2b

]

[

∑2b−1
j=0 e

−j σ

2b log2

(

1 + 0.5
2b

σ
+j

)]

.

(5)

Through simple numerical enumeration, one may confirm that the 1-bit rate gain given above in (5)

decreases over realistic bit sizes of b ∈ {1, 2, . . . , 25} and hence, r[1, b] is a sub-modular function.

With a little more algebra, one may derive a similar result for the general case with any arbitrary,

non-negative, position-dependent gain α.

In the next section, we provide another example of a wireless system that exhibits sub-modularity.

In particular, we consider a class of multiple antenna wireless links and solve (2) in the context of

these systems.
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B. Reduced-complexity resource allocation for MISO systems

When the user rates rk[α, b] are sub-modular in the bit allocation b in every channel state α ∈ Ω,

we use the greedy algorithm in Section A to approximately solve the online feedback allocation

problem in (2) with complexity O((B + L)log2L). In this section, we show that 2 × 1 MISO

quantized transmit diversity systems exhibit sub-modular expected rates bringing into use the results

from the previous section. Furthermore, in the context of these specific transmission schemes, we

develop an approximation algorithm based on convex relaxations with a further-reduced complexity

of O(Llog2L) and an approximation guarantee of 1
2

for typical operational signal-to-noise ratios

(SNR). Thus, aside from the usual impact on precision that is typically omitted from running time

calculations, the running time of our algorithm no longer depends on the feedback budget B. In

the example above, the running time is reduced even further from 15× 103 operations to roughly

300 operations.

We begin this section by investigating the effects of limited feedback on the aforementioned

class of MISO systems. It is well-known that the instantaneous SNR for a classical 2 × 1 single-

stream beamforming MISO link is given by SNR(α)||h||2 where SNR(α) = Pα
No

, P is the transmit

power, No is the noise power and h = [h1 h2]
T , hi ∈ C represents the MISO channel with

zero mean, unit variance complex Gaussian entries. As with the example in the previous section,

the analytical rate expressions in this section are derived for continuous vector channels, which

are increasingly accurate approximations as we sample the support C2 more finely. Recall from

Section II that α ∈ Ω models the effects of large-scale fading. To achieve this maximum in-

stantaneous SNR, the user requires perfect feedback of the channel vector h. However, feedback

in realistic systems is imperfect due to limited feedback budgets and quantization, the primary

motivation for this work. We assume that the channel vector h is quantized using the popular

Random Vector Quantization (RVQ) technique [17], [34]. This technique is briefly reviewed in the

next section when we present simulation results. Recent results [17], [33], [34] bound (upper and

lower) the loss in rate due to quantization of h when using RVQ codebooks. In particular, both

upper and lower bounds on the rate loss due to quantization for user k take the form c(αk)2
−bk

for some c(αk) > 0. Motivated by these results, we assume that the post-quantization rate for

user k in the presence of large-scale fading takes the form rk[αk, bk] = E
[

log2(1 + SNRk||h||2)
]

−
(

E
[

log2(1 + SNRk||h||2)
]

− E
[

log2(1 + SNRk|h|2)
])

2−bk , where we have omitted the dependence
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on t̄ for brevity. We validate the use of the above approximation through numerical testing in the

next section for many values of αk from a typical operational range in a wireless system.

Thus, the optimization in (2) for the 2× 1 MISO case takes the specific form

max{bk}∈B

∑L

k=1 qk
[

β2(SNRk)−
(

β2(SNRk)− β1(SNRk)
)

2−bk
]

, (6)

where SNRk = SNR(αk) for short, β1(SNR) = E
[

log2(1 + SNR|h1|2)
]

and β2(SNR) = E
[

log2(1 + SNR||h||2)
]

denote the one-tap and two-tap expected rates, respectively, for a Rayleigh fading channel with the

given SNR.

Relaxation and approximation guarantees: Through the remainder of the section, we develop an

approximation algorithm to solve (6) in closed-form while incurring a complexity of O(Llog 2L)
3.

We provide an approximation guarantee of 1
2
.

Theorem 4. Consider the following continuous relaxation of (6) formed by replacing the discrete

set B with its natural continuous extension and dropping terms that are independent of the variables

{bk}:

{b∗k} = arg min∑
k bk≤B, bk∈R+

L
∑

k=1

qkβ1(SNRk)2
−bk . (7)

The solution to this relaxation is b∗k =

[

− log2

(

η∗

qk(log 2)
1

β1(SNRk)

)]+

, where η∗ is chosen such that
∑

k b
∗
k = B and [x]+ = max{x, 0}.

Proof: See Appendix A.

Next, we comment on the complexity of computing the above fractional solution.

Theorem 5. Computing the above solution in Theorem 4 incurs a complexity of O(Llog2L).

Proof: See Appendix A.

The following lemma states that weighted sum-rate function in (6) is non-decreasing and sub-

modular on set E = {ekb : i = 1, . . . , L and b = 1, . . . , B}, thereby allowing us to connect and

compare the results in this section with those in the previous section on sub-modular functions.

The proof is standard in the literature on sub-modular functions and follows from the fact that

3We recognize that there is an additional storage cost of O(log B).
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the fractional relaxation of the weighted sum-rate function is concave in {bk} over the domain

{[0, B]K :
∑

k bk ≤ B}. It is hence omitted.

Lemma 3. The weighted sum-rate function in (6) where bk = |A|k, A ⊆ E, E = {ekb : i =

1, . . . , L and b = 1, . . . , B} is non-decreasing and sub-modular on this set E.

Comparing the results in Theorems 3 and 5, we see that by assuming less about the exact form

of the communication system, we are incurring an added complexity cost of O(Blog2L), while

providing a system-independent approximation guarantee of (1− 1
e
).

Once we solve for b∗k, we apply a floor operation in order to enforce the integer constraints, i.e.,

we set b∗k,INT = ⌊b∗k⌋ if b∗k ≥ 1 and b∗k,INT = 0 if b∗k < 1. This leads us to the task of quantifying

loss due to integrality, which we do next. We consider two cases: For b∗k ≥ 1, we have that

β2(SNRk)(1−2
−bk,INT )+β1(SNRk)2

−bk,INT

β2(SNRk)(1−2
−b∗

k )+β1(SNRk)2
−b∗

k

≥ β2(SNRk)(1−2−b∗
k
+1)+β1(SNRk)2

−b∗
k
−1

β2(SNRk)(1−2
−b∗

k )+β1(SNRk)

since b∗k − 1 ≤ b∗k,INT ≤ b∗k + 1

≥ 1
2
β1(SNRk)2

−b∗
k

β1(SNRk)2
−b∗

k
since 1 ≤ b∗k < ∞

= 1
2
.

(8)

Similarly for b∗k < 1 and bk,INT = 0, we have that

β2(SNRk)(1−2
−bk,INT )+β1(SNRk)2

−bk,INT

β2(SNRk)(1−2
−b∗

k )+β1(SNRk)2
−b∗

k

≥ β1(SNRk)
1
2
β2(SNRk)+β1(SNRk)

since b∗k < 1

= 1
1
2

β2(SNRk)

β1(SNRk)
+1

.

(9)

From (8) and (9), we can compute the approximation factor as

min







1

2
,

1

1
2
maxk

{

β2(SNRk)

β1(SNRk)

}

+ 1







. (10)

Thus, the approximation factor critically depends on the ratio
β2(SNRk)
β1(SNRk)

, which essentially represents

the rate gain due an extra tap or antenna. In Fig. 1, we numerically compute
β2(SNRk)
β1(SNRk)

for a

typical cellular range of −15dB to 15dB and see that
β2(SNRk)
β1(SNRk)

≤ 2 over this range. Combining the

results in Fig. 1 with (10), we can conclude that the proposed relaxation/rounding algorithm has

an approximation factor of 1
2
.
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Fig. 1. Rate gain due to the addition of an extra antenna as a function of SNR.

In summary, the two proposed algorithms exploit the structure of the feedback allocation in

settings such MISO with quantized beamforming, in delivering lower complexity than the optimal

dynamic programming approach accompanied by guarantees on accuracy. Note that the accuracy

guarantees, namely, (1− 1
e
) for the greedy algorithm and 1

2
for the convex program are independent

of any system parameters such as channel statistics, total bit budget B, etc., and are hence, a

clear measure of worst-case performance. We now move on to performance evaluation through

numerical simulations in the next section, which helps us understand the actual performance against

the backdrop of these worst-case guarantees.

VI. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the greedy feedback allocation algorithm in a

MISO downlink network. The simulations serve as a proof of concept for the proposed dynamic

feedback allocation approach. As the baseline case, we introduce a static equal allocation algorithm

that we describe in detail below along with the rest of the simulation setup. Note that we now

revert back (from the virtual system with L users) to the original system with K users, i.e., the

indices k = 1, 2, . . . , K, now track actual users.

Number of users, OFDMA bands and data scheduling policy: There are K = 4 users in a

10MHz system with a total of L = 8 OFDMA sub-bands. Since the focus of these simulations

(and this paper) is primarily on quantifying the gains of dynamic feedback allocation, the users are

assigned equal amounts of spectrum for data transmission at the beginning of the communication

epoch that do not change with time, i.e., user i is always assigned to bands {2i− 1, 2i}.

Small-scale fading, average user SNRs and traffic model: The users are stationary and have

fixed average SNRs through the entire epoch of communication. We consider two average SNR
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profiles - (i) Large asymmetry with average SNRs 10 log10(SNR1[t̄]) = −10dB, 10 log10(SNR2[t̄]) =

−8dB, 10 log10(SNR3[t̄]) = 10dB, 10 log10(SNR4[t̄]) = 10dB and (ii) Nearly symmetric with

average SNRs 10 log10(SNR1[t̄]) = −1dB, 10 log10(SNR2[t̄]) = −1dB, 10 log10(SNR3[t̄]) = 1dB,

10 log10(SNR4[t̄]) = 1dB. Asymmetric profiles are of interest because this is the regime where

dynamic allocation would arguably have most value. The small-scale fading channel realizations

h in each slot are generated according to the standard complex Gaussian distribution. The arrivals

are assumed to be deterministic and symmetric with rates λk = λ, ∀k.

Feedback budget and baseline equal allocation: The feedback budget is set to B = 12 bits.

The baseline algorithm allocates an equal number of bits to each user, i.e., bk = 3, ∀k. Each user

in turn distributes these three bits as follows - two bits to the first sub-band it is assigned and one

bit to the second. In other words, the per sub-band allocation for user k is bk1 = 2 and bk2 = 1.

The allocation is changed every T = 10 slots.

MISO RVQ codebooks and post-quantization rate: For each bit allocation b, we generate

codebook C(b) by choosing two points uniformly at random from the sphere C2. For such a codebook

C(b), we compute the ergodic rate over 1000 standard (zero mean, unit variance), complex Gaussian

channel realizations. We repeat this experiment over 100 codebooks and choose the codebook C∗(b)

that provides maximum ergodic rate. We repeat this procedure for each b ∈ {0, 1, . . . , B} and create

a super-codebook {C∗(0), . . . , C∗(B)}. Note that the codebook generation procedure is done once

at the beginning of the communication epoch. In the previous section, we proposed

rk[α, b] = β2(SNR)(1− 2−b) + β1(SNR)2−b (11)

as an approximation for the ergodic rate given b bits. In Fig. 2, we compare (11) with the true

(numerically computed) ergodic rate given b bits at various SNR values in a typical operational

range. We see that (11) is indeed an accurate approximation.

Having described the simulation setup in detail, we now present the results of our experiments. We

compare the performance of three algorithms – the greedy dynamic feedback allocation algorithm in

Algorithm 2, the equal allocation case, and the case with perfect feedback (i.e., where the bit budget

B = ∞) – under the two average SNR profiles. The results for SNR profile with large asymmetry

are plotted in Fig. 3. In Fig. 3(a), we see that the greedy dynamic algorithm outperforms the static

equal allocation approach by almost 13% while consuming only an additional
log2((B+L−1

L−1 ))
T

= 0.88

bits per second of overhead. Furthermore, greedy dynamic algorithm achieves within 1.5% of the
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Fig. 2. Comparison of predicted rate (11) with true numerically computed ergodic rate given for codebooks {C∗(b)}Bb=0 at various

values of SNR; (a) Low-to-moderate SNR (b) Moderate-to-high SNR.
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Fig. 3. Throughput under the two feedback schemes with different average SNR profiles. The average queue length is measured

over 10000 iterations; (a) Large asymmetry with SNR profile {−10,−8, 10, 10}dB (b) Nearly symmetric case with SNR profile

{−1,−1, 1, 1}dB

optimal dynamic programming allocation4 thereby rendering the performance guarantee of (1− 1
e
)

in Theorem 3 quite conservative.

In the nearly symmetric case however, the gains due to dynamic allocation decrease and almost

vanish in the particular case that we consider in Fig.3(b), as would be expected. We see that in this

case, the greedy algorithm achieves within 20% of the optimal.

Thus, with minimal expenditure in overhead, the dynamic allocation approach achieves notable

gains in throughput for asymmetric settings, thereby showing considerable promise for systems

with larger feedback budgets and a greater degree of asymmetry (in traffic loads and channels).

4The optimal weighted sum-rate is at most as large as the weighted sum-rate with perfect feedback.
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VII. CONCLUDING REMARKS

We summarize the algorithmic contributions presented in Sections IV and V in Table I. We

observe from the table that these algorithms explore the tradeoffs between accuracy, computational

efficiency and the structure of the weighted sum-rate function. An interesting question and future

direction pertaining to the section on MISO systems is whether such an analysis can be extended

to cover other commonly-deployed multiple-antenna architectures. Finally, the design of joint data

scheduling and feedback allocation policies is another direction for future research.

TABLE I

PROPERTIES OF PROPOSED ONLINE FEEDBACK ALLOCATION ALGORITHMS

Algorithm Required structure on Complexity Approx.

weighted sum-rate factor

Dynamic None O(LB2) 1

Programming

Greedy Non-decreasing O((B + L)log2K)
(

1− 1
e

)

Sub-modular

Convex Non-decreasing O(Llog2L)
1
2

Relaxation Sub-modular

MISO RVQ Systems

In summary, we propose optimal feedback allocation policies for cellular downlink systems where

the base station has a limited feedback budget. This problem is solved using dynamic programming

incurring pseudo-polynomial complexity in the number of users and the total bit budget. When the

weighted sum-rate is a non-decreasing sub-modular function, we leverage the theory of sub-modular

function maximization to propose a greedy algorithm with polynomial complexity that has a ap-

proximation guarantee of
(

1− 1
e

)

. For MISO transmit beamforming physical layer communication

schemes with quantized beamformer feedback, we recognize that the weighted sum-rate function is

non-decreasing and sub-modular for RVQ codebooks. More importantly, it takes a special form that

allows us to develop an approximation algorithm based on convex relaxations that can be solved in

closed-form, incurring lesser complexity than the greedy algorithm. We connect the performance

of the proposed approximate online algorithms to the long-term throughput region of the system.
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APPENDIX A

PROOF OF THEOREMS 4-5

Proof of Theorem 4: The objective function is clearly convex since 2−bk is convex. By studying

(7) closely, we can also say that b∗k is such that
∑L

k=1 b
∗
k = B since if this not true, we can

increase the bit allocation for at least one user thereby decreasing the objective function. Since

B > 0, bk = 0, ∀k is in the interior of our constraint set B, which implies that Slater’s constraint

for strong duality is satisfied and that the Karush-Kuhn-Tucker (KKT) conditions are sufficient in

nature. The Lagrangian cost function can be written as L(bk, λk, η) = −∑L

k=1 qkr1(SNRk)2
−bk −

λkbk + η (
∑

k bk − B) for which the KKT conditions are b∗k ≥ 0, λ∗
k ≥ 0, b∗kλk = 0, and

η∗ = qkr1(SNRk)(log 2)2−bk + λ∗
k. Since 2−b is a decreasing function in b, it follows that if

η∗ ≤ qkr1(SNRk)(log 2), then λ∗
k = 0 and b∗k = − log2

(

η∗

qk(log 2)
1

r1(SNRk)

)

is a valid solution to (7).

If η∗ > qkr1(SNRk)(log 2), λ∗
k = η∗ − qkr1(SNRk)(log 2) and b∗k = 0. Hence, we can write the

solution as b∗k =
[

− log2

(

η∗

qk(log 2)
1

r1(SNRk)

)]+

where η∗ is chosen such that
∑

k b
∗
k = B.

Proof of Theorem 5: In order to compute the solution in Theorem 4, we first need to sort {θk}Lk=1 in

ascending order where θk = qkr1(SNRk)(log 2). This has complexity O(Llog2L). Call this sorted

set {θm}. Once sorted, we need to set η∗ = θm for each m and test feasibility. Testing feasibility

incurs O(L), as it is a L-term addition and scanning through each θm incurs O(log2L) through the

use of binary search. As we increase η∗, more b∗m terms are set to zero. Once we locate m1 and m2

such that η∗ = θm1 is infeasible while η∗ = θm2 is feasible, we can compute η∗ in closed-form since

it satisfies
∑

m≥m2
b∗m = B. Hence, the total complexity is O(Llog2L)+O(Llog2L) = O(Llog2L).

DRAFT



24

Harish Ganapathy (M’12) received his B.S. and M.S. degrees in electrical engineering from the State

University of New York at Buffalo in May 2003 and May 2005, respectively. He received his Ph.D. in

electrical engineering from The University of Texas, Austin in August 2011. His research interests lie broadly

in optimization as applied to wireless networks, including both physical layer and networking aspects.

Siddhartha Banerjee (S’09) received a B.Tech in electrical engineering from the Indian Institute of Tech-

nology, Madras in May 2007 and an M.S. in electrical and computer engineering from The University of

Texas, Austin in December 2009. He is currently pursuing his Ph.D. at the latter. He briefly worked as a

visiting researcher at Bell Labs, Alcatel-Lucent in 2009, and at the Technicolor Paris Research Lab in 2011.

His research focuses on the learning and control of information flows in networks.

Nedialko B. Dimitrov is an Assistant Professor in the Operations Research Department of the Naval Postgrad-

uate School. He received a Ph.D. in theoretical computer science from the University of Texas at Austin (2008)

and B.S. degrees in mathematics and computer science from the University of Michigan, Ann Arbor (2002).

Prior to joining the Naval Postgraduate School, he held a two year postdoctoral fellowship in the Operations

Research Program of the University of Texas at Austin. His research interests are in network modeling and

stochastic combinatorial optimization, with applications in infectious disease control and national security.

Constantine Caramanis (M’06) received his Ph.D. in electrical engineering and computer science from the

Massachusetts Institute of Technology in 2006. Since then, he has been on the faculty in the Department of

Electrical and Computer Engineering at The University of Texas at Austin. He received the NSF CAREER

Award in 2011. His current research interests include robust and adaptable optimization, machine learning

and high-dimensional statistics, with applications to large scale networks.

DRAFT


