677 research outputs found

    Path planning for reconfigurable rovers in planetary exploration

    Get PDF
    This paper introduces a path planning algorithm that takes into consideration different locomotion modes in a wheeled reconfigurable rover. Such algorithm, based on Fast Marching, calculates the optimal path in terms of power consumption between two positions, providing the most appropriate locomotion mode to be used at each position. Finally, the path planning algorithm is validated on a virtual Martian scene created within the V-REP simulation platform, where a virtual model of a planetary rover prototype is controlled by the same software that is used on the real one. Results of this contribution also demonstrate how the use of two locomotion modes, wheel-walking and normal-driving, can reduce the power consumption for a particular area.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Development Environment for Optimized Locomotion System of Planetary Rovers

    Get PDF
    This paper addresses the first steps that have been undergone to set up the development environement w.r.t optimization and to modelling and simulation of overall dynamics of the rover driving behaviour under all critical surface terrains, like soft and hard soils, slippage, bulldozing effect and digging in soft soil. Optimization is based on MOPS (Multi-Objective Prameter Synthesis), that is capable for handling several objective functions such as mass reduction, motor power reduction, increase of traction forces, rover stability guarantee, and more. The tool interferes with Matlab/Simulink and with Modelica/Dymola for dynamics model implementation. For modelling and simulation of the overall rover dynamics and terramechanical behaviour in all kind of soils we apply a Matlab based tool that takes advantage of the multibody dynamics tool Simpack. First results of very promising rover optimizations 6 wheels are presented that improve ExoMars rover type wheel suspension systems. Performance of driveability behaviour in different soils is presented as well. The next steps are discusses in order to achieve the planned overall development environment

    Slide-Down Prevention for Wheeled Mobile Robots on Slopes

    Get PDF
    Wheeled mobile robots on inclined terrain can slide down due to loss of traction and gravity. This type of instability, which is different from tip-over, can provoke uncontrolled motion or get the vehicle stuck. This paper proposes slide-down prevention by real-time computation of a straightforward stability margin for a given ground-wheel friction coefficient. This margin is applied to the case study of Lazaro, a hybrid skid-steer mobile robot with caster-leg mechanism that allows tests with four or five wheel contact points. Experimental results for both ADAMS simulations and the actual vehicle demonstrate the effectiveness of the proposed approach.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Motion Dynamics of a Rover With Slip-Based Traction Model

    Get PDF
    Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC, May 200

    Trajectory tracking and traction coordinating controller design for lunar rover based on dynamics and kinematics analysis

    Get PDF
    Trajectory tracking control is a necessary part for autonomous navigation of planetary rover and traction coordinating control can reduce the forces consumption during navigation. As a result, a trajectory tracking and traction coordinating controller for wheeled lunar rover with Rocker Bogie is proposed in the paper. Firstly, the longitudinal dynamics model and the kinematics model of six-wheeled rover are established. Secondly, the traction coordinating control algorithm is studied based on sliding mode theory with improved exponential approach law. Thirdly, based on kinematics analysis and traction system identification, the trajectory tracking controller is designed using optimal theory. Then, co-simulations between ADAMS and MATLAB/Simulink are carried out to validate the proposed algorithm, and the simulation results have confirmed the effectiveness of path tracking and traction mobility improving

    Path Planning for Reconfigurable Rovers in Planetary Exploration

    Get PDF
    This paper introduces a path planning algorithm that takes into consideration different locomotion modes in a wheeled reconfigurable rover. Power consumption and traction are estimated by means of simplified dynamics models for each locomotion mode. In particular, wheel-walking and normaldriving are modeled for a planetary rover prototype. These models are then used to define the cost function of a path planning algorithm based on fast marching. It calculates the optimal path, in terms of power consumption, between two positions, providing the most appropriate locomotion mode to be used at each position. Finally, the path planning algorithm was implemented in V-REP simulation software and a Martian area was used to validate it. Results of this contribution also demonstrate how the use of these locomotion modes would reduce the power consumption for a particular area.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    A mobile planetary lander utilizing elastic loop suspension

    Get PDF
    Efforts to increase the cost effectiveness of future lunar and planetary rover missions have led to the mobile lander concept, which replaces the landing legs of a soft-lander craft with a compact mobility system of sufficient strength to withstand the landing impact. The results of a mobile lander conceptual design effort based on existing NASA-Viking '75 hardware are presented. The elastic loop concept, developed as a post-Apollo rover technology, is found to meet stringent stowage, traction, power and weight requirements

    A novel concept for analysis and performance evaluation of wheeled rovers

    Get PDF
    [Abstract] - The analysis, design, and operation planning of rovers are often based on predictive dynamic simulation, where the multibody model of the vehicle is combined with terramechanics relations for the representation of the wheel–ground interaction. There are, however, limitations in terramechanics models that prevent their use in parametric analysis and simulation studies. Increasing mobility is generally a primary objective for the design and operation of rovers. The models and assumptions used in the analysis phase should target this objective. In this paper we put forward a new concept for the analysis of wheeled rovers, particularly for applications in off-road environments on soft soil. We propose a novel view of the problem based on the development of models that are primarily intended to represent how parameter changes in the robot design can influence performance. These models allow for the definition of indicators, which gives information about the behavior of the system. We term such models observative. In the reported work, a set of indicators for rover performance is formulated using such models. The ability of these indicators to characterize the behavior of a rover is assessed with a series of simulation tests and experiments. The indicators defined using observative models succeeded to capture the changes in rover performance due to variations in the system parameters. Results show that the proposed models can provide a useful tool for the design and operation of planetary exploration rovers

    Methods for Wheel Slip and Sinkage Estimation in Mobile Robots

    Get PDF
    Future outdoor mobile robots will have to explore larger and larger areas, performing difficult tasks, while preserving, at the same time, their safety. This will primarily require advanced sensing and perception capabilities. Video sensors supply contact-free, precise measurements and are flexible devices that can be easily integrated with multi-sensor robotic platforms. Hence, they represent a potential answer to the need of new and improved perception capabilities for autonomous vehicles. One of the main applications of vision in mobile robotics is localization. For mobile robots operating on rough terrain, conventional dead reckoning techniques are not well suited, since wheel slipping, sinkage, and sensor drift may cause localization errors that accumulate without bound during the vehicle’s travel. Conversely, video sensors are exteroceptive devices, that is, they acquire information from the robot’s environment; therefore, vision-based motion estimates are independent of the knowledge of terrain properties and wheel-terrain interaction. Indeed, like dead reckoning, vision could lead to accumulation of errors; however, it has been proved that, compared to dead reckoning, it allows more accurate results and can be considered as a promising solution to the problem of robust robot positioning in high-slip environments. As a consequence, in the last few years, several localization methods using vision have been developed. Among them, visual odometry algorithms, based on the tracking of visual features over subsequent images, have been proved particularly effective. Accurate and reliable methods to sense slippage and sinkage are also desirable, since these effects compromise the vehicle’s traction performance, energy consumption and lead to gradual deviation of the robot from the intended path, possibly resulting in large drift and poor results of localization and control systems. For example, the use of conventional dead-reckoning technique is largely compromised, since it is based on the assumption that wheel revolutions can be translated into correspondent linear displacements. Thus, if one wheel slips, then the associated encoder will register revolutions even though these revolutions do not correspond to a linear displacement of the wheel. Conversely, if one wheel skids, fewer encoder pulses will be counted. Slippage and sinkage measurements are also valuable for terrain identification according to the classical terramechanics theory. This chapter investigates vision-based onboard technology to improve mobility of robots on natural terrain. A visual odometry algorithm and two methods for online measurement of vehicle slip angle and wheel sinkage, respectively, are discussed. Tests results are presented showing the performance of the proposed approaches using an all-terrain rover moving across uneven terrain
    • 

    corecore