190 research outputs found

    Real-time interactive video streaming over lossy networks: high performance low delay error resilient algorithms

    Get PDF
    According to Cisco's latest forecast, two-thirds of the world's mobile data traffic and 62 percent of the consumer Internet traffic will be video data by the end of 2016. However, the wireless networks and Internet are unreliable, where the video traffic may undergo packet loss and delay. Thus robust video streaming over unreliable networks, i.e., Internet, wireless networks, is of great importance in facing this challenge. Specifically, for the real-time interactive video streaming applications, such as video conference and video telephony, the allowed end-to-end delay is limited, which makes the robust video streaming an even more difficult task. In this thesis, we are going to investigate robust video streaming for real-time interactive applications, where the tolerated end-to-end delay is limited. Intra macroblock refreshment is an effective tool to stop error propagations in the prediction loop of video decoder, whereas redundant coding is a commonly used method to prevent error from happening for video transmission over lossy networks. In this thesis two schemes that jointly use intra macroblock refreshment and redundant coding are proposed. In these schemes, in addition to intra coding, we proposed to add two redundant coding methods to enhance the transmission robustness of the coded bitstreams. The selection of error resilient coding tools, i.e., intra coding and/or redundant coding, and the parameters for redundant coding are determined using the end-to-end rate-distortion optimization. Another category of methods to provide error resilient capacity is using forward error correction (FEC) codes. FEC is widely studied to protect streamed video over unreliable networks, with Reed-Solomon (RS) erasure codes as its commonly used implementation method. As a block-based error correcting code, on the one hand, enlarging the block size can enhance the performance of the RS codes; on the other hand, large block size leads to long delay which is not tolerable for real-time video applications. In this thesis two sub-GOP (Group of Pictures, formed by I-frame and all the following P/B-frames) based FEC schemes are proposed to improve the performance of Reed-Solomon codes for real-time interactive video applications. The first one, named DSGF (Dynamic sub-GOP FEC Coding), is designed for the ideal case, where no transmission network delay is taken into consideration. The second one, named RVS-LE (Real-time Video Streaming scheme exploiting the Late- and Early-arrival packets), is more practical, where the video transmission network delay is considered, and the late- and early-arrival packets are fully exploited. Of the two approaches, the sub-GOP, which contains more than one video frame, is dynamically tuned and used as the RS coding block to get the optimal performance. For the proposed DSGF approach, although the overall error resilient performance is higher than the conventional FEC schemes, that protect the streamed video frame by frame, its video quality fluctuates within the Sub-GOP. To mitigate this problem, in this thesis, another real-time video streaming scheme using randomized expanding Reed-Solomon code is proposed. In this scheme, the Reed-Solomon coding block includes not only the video packets of the current frame, but also all the video packets of previous frames in the current group of pictures (GOP). At the decoding side, the parity-check equations of the current frameare jointly solved with all the parity-check equations of the previous frames. Since video packets of the following frames are not encompassed in the RS coding block, no delay will be caused for waiting for the video or parity packets of the following frames both at encoding and decoding sides. The main contribution of this thesis is investigating the trade-off between the video transmission delay caused by FEC encoding/decoding dependency, the FEC error-resilient performance, and the computational complexity. By leveraging the methods proposed in this thesis, proper error-resilient tools and system parameters could be selected based on the video sequence characteristics, the application requirements, and the available channel bandwidth and computational resources. For example, for the applications that can tolerate relatively long delay, sub-GOP based approach is a suitable solution. For the applications where the end-to-end delay is stringent and the computational resource is sufficient (e.g. CPU is fast), it could be a wise choice to use the randomized expanding Reed-Solomon code

    Evaluating and improving the performance of video content distribution in lossy networks

    Get PDF
    The contributions in this research are split in to three distinct, but related, areas. The focus of the work is based on improving the efficiency of video content distribution in the networks that are liable to packet loss, such as the Internet. Initially, the benefits and limitations of content distribution using Forward Error Correction (FEC) in conjunction with the Transmission Control Protocol (TCP) is presented. Since added FEC can be used to reduce the number of retransmissions, the requirement for TCP to deal with any losses is greatly reduced. When real-time applications are needed, delay must be kept to a minimum, and retransmissions not desirable. A balance, therefore, between additional bandwidth and delays due to retransmissions must be struck. This is followed by the proposal of a hybrid transport, specifically for H.264 encoded video, as a compromise between the delay-prone TCP and the loss-prone UDP. It is argued that the playback quality at the receiver often need not be 100% perfect, providing a certain level is assured. Reliable TCP is used to transmit and guarantee delivery of the most important packets. The delay associated with the proposal is measured, and the potential for use as an alternative to the conventional methods of transporting video by either TCP or UDP alone is demonstrated. Finally, a new objective measurement is investigated for assessing the playback quality of video transported using TCP. A new metric is defined to characterise the quality of playback in terms of its continuity. Using packet traces generated from real TCP connections in a lossy environment, simulating the playback of a video is possible, whilst monitoring buffer behaviour to calculate pause intensity values. Subjective tests are conducted to verify the effectiveness of the metric introduced and show that the results of objective and subjective scores made are closely correlated

    Scalable Video Streaming with Prioritised Network Coding on End-System Overlays

    Get PDF
    PhDDistribution over the internet is destined to become a standard approach for live broadcasting of TV or events of nation-wide interest. The demand for high-quality live video with personal requirements is destined to grow exponentially over the next few years. Endsystem multicast is a desirable option for relieving the content server from bandwidth bottlenecks and computational load by allowing decentralised allocation of resources to the users and distributed service management. Network coding provides innovative solutions for a multitude of issues related to multi-user content distribution, such as the coupon-collection problem, allocation and scheduling procedure. This thesis tackles the problem of streaming scalable video on end-system multicast overlays with prioritised push-based streaming. We analyse the characteristic arising from a random coding process as a linear channel operator, and present a novel error detection and correction system for error-resilient decoding, providing one of the first practical frameworks for Joint Source-Channel-Network coding. Our system outperforms both network error correction and traditional FEC coding when performed separately. We then present a content distribution system based on endsystem multicast. Our data exchange protocol makes use of network coding as a way to collaboratively deliver data to several peers. Prioritised streaming is performed by means of hierarchical network coding and a dynamic chunk selection for optimised rate allocation based on goodput statistics at application layer. We prove, by simulated experiments, the efficient allocation of resources for adaptive video delivery. Finally we describe the implementation of our coding system. We highlighting the use rateless coding properties, discuss the application in collaborative and distributed coding systems, and provide an optimised implementation of the decoding algorithm with advanced CPU instructions. We analyse computational load and packet loss protection via lab tests and simulations, complementing the overall analysis of the video streaming system in all its components

    Robust and efficient video/image transmission

    Get PDF
    The Internet has become a primary medium for information transmission. The unreliability of channel conditions, limited channel bandwidth and explosive growth of information transmission requests, however, hinder its further development. Hence, research on robust and efficient delivery of video/image content is demanding nowadays. Three aspects of this task, error burst correction, efficient rate allocation and random error protection are investigated in this dissertation. A novel technique, called successive packing, is proposed for combating multi-dimensional (M-D) bursts of errors. A new concept of basis interleaving array is introduced. By combining different basis arrays, effective M-D interleaving can be realized. It has been shown that this algorithm can be implemented only once and yet optimal for a set of error bursts having different sizes for a given two-dimensional (2-D) array. To adapt to variable channel conditions, a novel rate allocation technique is proposed for FineGranular Scalability (FGS) coded video, in which real data based rate-distortion modeling is developed, constant quality constraint is adopted and sliding window approach is proposed to adapt to the variable channel conditions. By using the proposed technique, constant quality is realized among frames by solving a set of linear functions. Thus, significant computational simplification is achieved compared with the state-of-the-art techniques. The reduction of the overall distortion is obtained at the same time. To combat the random error during the transmission, an unequal error protection (UEP) method and a robust error-concealment strategy are proposed for scalable coded video bitstreams

    COST EFFICIENT PROVISIONING OF MASS MOBILE MULTIMEDIA SERVICES IN HYBRID CELLULAR AND BROADCASTING SYSTEMS

    Full text link
    Uno de los retos a los que se enfrenta la industria de las comunicaciones móviles e inalámbricas es proporcionar servicios multimedia masivos a bajo coste, haciéndolos asequibles para los usuarios y rentables a los operadores. El servicio más representativo es el de TV móvil, el cual se espera que sea una aplicación clave en las futuras redes móviles. Actualmente las redes celulares no pueden soportar un consumo a gran escala de este tipo de servicios, y las nuevas redes de radiodifusión móvil son muy costosas de desplegar debido a la gran inversión en infraestructura de red necesaria para proporcionar niveles aceptables de cobertura. Esta tesis doctoral aborda el problema de la provisión eficiente de servicios multimedia masivos a dispositivos móviles y portables utilizando la infraestructura de radiodifusión y celular existente. La tesis contempla las tecnologías comerciales de última generación para la radiodifusión móvil (DVB-H) y para las redes celulares (redes 3G+ con HSDPA y MBMS), aunque se centra principalmente en DVB-H. El principal paradigma propuesto para proporcionar servicios multimedia masivos a bajo coste es evitar el despliegue de una red DVB-H con alta capacidad y cobertura desde el inicio. En su lugar se propone realizar un despliegue progresivo de la infraestructura DVB-H siguiendo la demanda de los usuarios. Bajo este contexto, la red celular es fundamental para evitar sobre-dimensionar la red DVB-H en capacidad y también en áreas con una baja densidad de usuarios hasta que el despliegue de un transmisor o un repetidor DVB-H sea necesario. Como principal solución tecnológica la tesis propone realizar una codificación multi-burst en DVB-H utilizando códigos Raptor. El objetivo es explotar la diversidad temporal del canal móvil para aumentar la robustez de la señal y, por tanto, el nivel de cobertura, a costa de incrementar la latencia de la red.Gómez Barquero, D. (2009). COST EFFICIENT PROVISIONING OF MASS MOBILE MULTIMEDIA SERVICES IN HYBRID CELLULAR AND BROADCASTING SYSTEMS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/6881Palanci
    corecore