2,879 research outputs found

    Dynamics and control of a class of underactuated mechanical systems

    Get PDF
    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized by nonintegrable dynamics relations is identified. Controllability and stabilizability results are derived for this class of underactuated systems. Examples are included to illustrate the results; these examples are of underactuated mechanical systems that are not linearly controllable or smoothly stabilizable

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, appendix A

    Get PDF
    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed were: (1) Capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) Capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) Postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) Investigation and simulation of various control methods including manual force/torque and active compliance control; (5) Evaluation and implementation of three obstacle avoidance methods; (6) Video simulation and edge detection; and (7) Software simulation validation. This appendix is the user's guide and includes examples of program runs and outputs as well as instructions for program use

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Appendix A: ROBSIM user's guide

    Get PDF
    The purpose of the Robotics Simulation Program is to provide a broad range of computer capabilities to assist in the design, verification, simulation, and study of robotics systems. ROBSIM is program in FORTRAN 77 for use on a VAX 11/750 computer under the VMS operating system. This user's guide describes the capabilities of the ROBSIM programs, including the system definition function, the analysis tools function and the postprocessor function. The options a user may encounter with each of these executables are explained in detail and the different program prompts appearing to the user are included. Some useful suggestions concerning the appropriate answers to be given by the user are provided. An example user interactive run in enclosed for each of the main program services, and some of the capabilities are illustrated

    High speed, precision motion strategies for lightweight structures

    Get PDF
    Research on space telerobotics is summarized. Adaptive control experiments on the Robotic Arm, Large and Flexible (RALF) were preformed and are documented, along with a joint controller design for the Small Articulated Manipulator (SAM), which is mounted on the RALF. A control algorithm is described as a robust decentralized adaptive control based on a bounded uncertainty approach. Dynamic interactions between SAM and RALF are examined. Unstability of the manipulator is studied from the perspective that the inertial forces generated could actually be used to more rapidly damp out the flexible manipulator's vibration. Currently being studied is the modeling of the constrained dynamics of flexible arms

    Engineering analysis and test results of the pre-stage planetary gear trains for wrist rotation and pitch assembly and azimuth and elevation assembly of the extendable stiff arm manipulator kit assembly

    Get PDF
    In order to improve the performance capability of the Extendable Stiff Arm Manipulator (ESAM) it was necessary to increase the overall gear ratio by a factor of approximately four. This is accomplished with minimum effect to existing hardware by the interposition of a planetary gear transmission between the respective drive motors and the harmonic drive transmissions. The engineering analysis in support of this design approach and the subsequent no-load test results are reported

    Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 - 3rd Report

    Get PDF
    We are conducting research in the area of teleoperation with feedback delay. Significant delays occur when performing space teleoperation from the earth as well as in subsea teleoperation where the operator is typically on a surface vessel and communication is via acoustic links. These delays make teleoperation extremely difficult and lead to very low operator productivity. We have combined computer graphics with manipulator programming to provide a solution to the delay problem. A teleoperator master arm is interfaced to a graphical simulation of the remote environment. Synthetic fixtures are used to guide the operators motions and to provide kinesthetic feedback. The operator\u27s actions are monitored and used to generate symbolic motion commands for transmission to, and execution by, the remote slave robot. While much of a task proceeds error free, when an error does occur, the slave system transmits data back to the master environment where the operator can then experience the motion of the slave manipulator in actual task execution. We have also provided for the use of tools such as an impact wrench and a winch at the slave site. In all cases the tools are unencumbered by sensors; the slave uses a compliant instrumented wrist to monitor tool operation in terms of resulting motions and reaction forces

    Study to design and develop remote manipulator system

    Get PDF
    Modeling of human performance in remote manipulation tasks is reported by automated procedures using computers to analyze and count motions during a manipulation task. Performance is monitored by an on-line computer capable of measuring the joint angles of both master and slave and in some cases the trajectory and velocity of the hand itself. In this way the operator's strategies with different transmission delays, displays, tasks, and manipulators can be analyzed in detail for comparison. Some progress is described in obtaining a set of standard tasks and difficulty measures for evaluating manipulator performance

    Nonlinear control for Two-Link flexible manipulator

    Get PDF
    Recently the use of robot manipulators has been increasing in many applications such as medical applications, automobile, construction, manufacturing, military, space, etc. However, current rigid manipulators have high inertia and use actuators with large energy consumption. Moreover, rigid manipulators are slow and have low payload-to arm-mass ratios because link deformation is not allowed. The main advantages of flexible manipulators over rigid manipulators are light in weight, higher speed of operation, larger workspace, smaller actuator, lower energy consumption and lower cost. However, there is no adequate closed-form solutions exist for flexible manipulators. This is mainly because flexible dynamics are modeled with partial differential equations, which give rise to infinite dimensional dynamical systems that are, in general, not possible to represent exactly or efficiently on a computer which makes modeling a challenging task. In addition, if flexibility nature wasn\u27t considered, there will be calculation errors in the calculated torque requirement for the motors and in the calculated position of the end-effecter. As for the control task, it is considered as a complex task since flexible manipulators are non-minimum phase system, under-actuated system and Multi-Input/Multi-Output (MIMO) nonlinear system. This thesis focuses on the development of dynamic formulation model and three control techniques aiming to achieve accurate position control and improving dynamic stability for Two-Link Flexible Manipulators (TLFMs). LQR controller is designed based on the linearized model of the TLFM; however, it is applied on both linearized and nonlinear models. In addition to LQR, Backstepping and Sliding mode controllers are designed as nonlinear control approaches and applied on both the nonlinear model of the TLFM and the physical system. The three developed control techniques are tested through simulation based on the developed dynamic formulation model using MATLAB/SIMULINK. Stability and performance analysis were conducted and tuned to obtain the best results. Then, the performance and stability results obtained through simulation are compared. Finally, the developed control techniques were implemented and analyzed on the 2-DOF Serial Flexible Link Robot experimental system from Quanser and the results are illustrated and compared with that obtained through simulation

    Modelling and control of lightweight underwater vehicle-manipulator systems

    Get PDF
    This thesis studies the mathematical description and the low-level control structures for underwater robotic systems performing motion and interaction tasks. The main focus is on the study of lightweight underwater-vehicle manipulator systems. A description of the dynamic and hydrodynamic modelling of the underwater vehicle-manipulator system (UVMS) is presented and a study of the coupling effects between the vehicle and manipulator is given. Through simulation results it is shown that the vehicle’s capabilities are degraded by the motion of the manipulator, when it has a considerable mass with respect to the vehicle. Understanding the interaction effects between the two subsystems is beneficial in developing new control architectures that can improve the performance of the system. A control strategy is proposed for reducing the coupling effects between the two subsystems when motion tasks are required. The method is developed based on the mathematical model of the UVMS and the estimated interaction effects. Simulation results show the validity of the proposed control structure even in the presence of uncertainties in the dynamic model. The problem of autonomous interaction with the underwater environment is further addressed. The thesis proposes a parallel position/force control structure for lightweight underwater vehicle-manipulator systems. Two different strategies for integrating this control law on the vehicle-manipulator structure are proposed. The first strategy uses the parallel control law for the manipulator while a different control law, the Proportional Integral Limited control structure, is used for the vehicle. The second strategy treats the underwater vehicle-manipulator system as a single system and the parallel position/force law is used for the overall system. The low level parallel position/force control law is validated through practical experiments using the HDT-MK3-M electric manipulator. The Proportional Integral Limited control structure is tested using a 5 degrees-of-freedom underwater vehicle in a wave-tank facility. Furthermore, an adaptive tuning method based on interaction theory is proposed for adjusting the gains of the controller. The experimental results show that the method is advantageous as it decreases the complexity of the manual tuning otherwise required and reduces the energy consumption. The main objectives of this thesis are to understand and accurately represent the behaviour of an underwater vehiclemanipulator system, to evaluate this system when in contact with the environment and to design informed low-level control structures based on the observations made through the mathematical study of the system. The concepts presented in this thesis are not restricted to only vehicle-manipulator systems but can be applied to different other multibody robotic systems
    corecore