200 research outputs found

    Observer Sliding Mode Control Design for lower Exoskeleton system: Rehabilitation Case

    Get PDF
    Sliding mode (SM) has been selected as the controlling technique, and the state observer (SO) design is used as a component of active disturbance rejection control (ADRC) to reduce the knee position trajectory for therapeutic purposes. The suggested controller will improve the needed position performances for the Exoskeleton system when compared to the proportional-derivative controller (PD) and SMC as feed-forward in the ADRC approach, as shown theoretically and through computer simulations. Simulink tool is used in this comparison to analyze the nominal case and several disruption cases. The results of mathematical modeling and simulation studies demonstrated that SMC with a disturbance observer strategy performs better than the PD control system and SMC in feed-forward with a greater capacity to reject disturbances and significantly better than these controllers. Performance indices are used for numerical comparison to demonstrate the superiority of these controllers

    Fractional multi-loop active disturbance rejection control for a lower knee exoskeleton system

    Get PDF
    Rehabilitation Exoskeleton is becoming more and more important in physiotherapists’ routine work. To improve the treatment performance, such as reducing the recovery period and/or monitoring and reacting to unpredictable situations, the rehabilitation manipulators need to help the patients in various physical trainings. A special case of the active disturbance rejection control (ADRC) is applied to govern a proper realisation of basic limb rehabilitation trainings. The experimental study is performed on a model of a flexible joint manipulator, whose behaviour resembles a real exoskeleton rehabilitation device (a one-degree-of-freedom, rigid-link, flexible-joint manipulator). The fractional (FADRC) is an unconventional model-independent approach, acknowledged as an effective controller in the existence of total plant uncertainties, and these uncertainties are inclusive of the total disturbances and unknown dynamics of the plant. In this work, three FADRC schemes are used, the first one using a fractional state observer (FSO), or FADRC1, second one using a fractional proportional-derivative controller (FPD), or FADRC2, and the third one a Multi-loop fractional in PD-loop controller and the observer-loop (Feedforward and Feedback), or FADRC3. The simulated Exoskeleton system is subjected to a noise disturbance and the FADRC3 shows the effectiveness to compensate all these effects and satisfies the desired position when compared with FADRC1 and FADRC2. The design and simulation were carried out in MATLAB/Simulink

    Development of Novel Compound Controllers to Reduce Chattering of Sliding Mode Control

    Get PDF
    The robotics and dynamic systems constantly encountered with disturbances such as micro electro mechanical systems (MEMS) gyroscope under disturbances result in mechanical coupling terms between two axes, friction forces in exoskeleton robot joints, and unmodelled dynamics of robot manipulator. Sliding mode control (SMC) is a robust controller. The main drawback of the sliding mode controller is that it produces high-frequency control signals, which leads to chattering. The research objective is to reduce chattering, improve robustness, and increase trajectory tracking of SMC. In this research, we developed controllers for three different dynamic systems: (i) MEMS, (ii) an Exoskeleton type robot, and (iii) a 2 DOF robot manipulator. We proposed three sliding mode control methods such as robust sliding mode control (RSMC), new sliding mode control (NSMC), and fractional sliding mode control (FSMC). These controllers were applied on MEMS gyroscope, Exoskeleton robot, and robot manipulator. The performance of the three proposed sliding mode controllers was compared with conventional sliding mode control (CSMC). The simulation results verified that FSMC exhibits better performance in chattering reduction, faster convergence, finite-time convergence, robustness, and trajectory tracking compared to RSMC, CSMC, and NSFC. Also, the tracking performance of NSMC was compared with CSMC experimentally, which demonstrated better performance of the NSMC controller

    Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors

    Get PDF
    We conducted a case study with one volunteer and a recording setup to detect sounds induced by the actions: jaw clenching, tooth grinding, reading, eating, and drinking. The setup consisted of two in-ear microphones, where the left ear was semi-occluded with a commercially available earpiece and the right ear was occluded with a mouldable silicon ear piece. Investigations in the time and frequency domains demonstrated that for behaviors such as eating, tooth grinding, and reading, sounds could be recorded with both sensors. For jaw clenching, however, occluding the ear with a mouldable piece was necessary to enable its detection. This can be attributed to the fact that the mouldable ear piece sealed the ear canal and isolated it from the environment, resulting in a detectable change in pressure. In conclusion, our work suggests that detecting behaviors such as eating, grinding, reading with a semi-occluded ear is possible, whereas, behaviors such as clenching require the complete occlusion of the ear if the activity should be easily detectable. Nevertheless, the latter approach may limit real-world applicability because it hinders the hearing capabilities.</p

    A Passivity-based Nonlinear Admittance Control with Application to Powered Upper-limb Control under Unknown Environmental Interactions

    Get PDF
    This paper presents an admittance controller based on the passivity theory for a powered upper-limb exoskeleton robot which is governed by the nonlinear equation of motion. Passivity allows us to include a human operator and environmental interaction in the control loop. The robot interacts with the human operator via F/T sensor and interacts with the environment mainly via end-effectors. Although the environmental interaction cannot be detected by any sensors (hence unknown), passivity allows us to have natural interaction. An analysis shows that the behavior of the actual system mimics that of a nominal model as the control gain goes to infinity, which implies that the proposed approach is an admittance controller. However, because the control gain cannot grow infinitely in practice, the performance limitation according to the achievable control gain is also analyzed. The result of this analysis indicates that the performance in the sense of infinite norm increases linearly with the control gain. In the experiments, the proposed properties were verified using 1 degree-of-freedom testbench, and an actual powered upper-limb exoskeleton was used to lift and maneuver the unknown payload.Comment: Accepted in IEEE/ASME Transactions on Mechatronics (T-MECH

    Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art

    Get PDF
    Robot-assisted rehabilitation has become a new mainstream trend for the treatment of stroke patients with movement disability. Pneumatic muscle (PM) is one of the most promising actuators for rehabilitation robots, due to its inherent compliance and safety features. In this paper, we conduct a systematic review on the soft rehabilitation robots driven by pneumatic muscles. This review discusses up to date mechanical structures and control strategies for PMs-actuated rehabilitation robots. A variety of state-of-the-art soft rehabilitation robots are classified and reviewed according to the actuation configurations. Special attentions are paid to control strategies under different mechanical designs, with advanced control approaches to overcome PM’s highly nonlinear and time-varying behaviors and to enhance the adaptability to different patients. Finally, we analyze and highlight the current research gaps and the future directions in this field, which is potential for providing a reliable guidance on the development of advanced soft rehabilitation robots

    Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.

    Get PDF
    A rehabilitation robot plays an important role in relieving the therapists' burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles' good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM's nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions

    Advancements in Sensor Technologies and Control Strategies for Lower-Limb Rehabilitation Exoskeletons: A Comprehensive Review

    Get PDF
    Lower-limb rehabilitation exoskeletons offer a transformative approach to enhancing recovery in patients with movement disorders affecting the lower extremities. This comprehensive systematic review delves into the literature on sensor technologies and the control strategies integrated into these exoskeletons, evaluating their capacity to address user needs and scrutinizing their structural designs regarding sensor distribution as well as control algorithms. The review examines various sensing modalities, including electromyography (EMG), force, displacement, and other innovative sensor types, employed in these devices to facilitate accurate and responsive motion control. Furthermore, the review explores the strengths and limitations of a diverse array of lower-limb rehabilitation-exoskeleton designs, highlighting areas of improvement and potential avenues for further development. In addition, the review investigates the latest control algorithms and analysis methods that have been utilized in conjunction with these sensor systems to optimize exoskeleton performance and ensure safe and effective user interactions. By building a deeper understanding of the diverse sensor technologies and monitoring systems, this review aims to contribute to the ongoing advancement of lower-limb rehabilitation exoskeletons, ultimately improving the quality of life for patients with mobility impairments

    Coupling Disturbance Compensated MIMO Control of Parallel Ankle Rehabilitation Robot Actuated by Pneumatic Muscles

    Get PDF
    To solve the poor compliance and safety problems in current rehabilitation robots, a novel two-degrees-offreedom (2-DOF) soft ankle rehabilitation robot driven by pneumatic muscles (PMs) is presented, taking advantages of the PM’s inherent compliance and the parallel structure’s high stiffness and payload capacity. However, the PM’s nonlinear, time-varying and hysteresis characteristics, and the coupling interference from parallel structure, as well as the unpredicted disturbance caused by arbitrary human behavior all raise difficulties in achieving high-precision control of the robot. In this paper, a multi-input-multi-output disturbance compensated sliding mode controller (MIMO-DCSMC) is proposed to tackle these problems. The proposed control method can tackle the un-modeled uncertainties and the coupling interference existed in multiple PMs’ synchronous movement, even with the subject’s participation. Experiment results on a healthy subject confirmed that the PMs-actuated ankle rehabilitation robot controlled by the proposed MIMO-DCSMC is able to assist patients to perform high-accuracy rehabilitation tasks by tracking the desired trajectory in a compliant manner

    Two-link lower limb exoskeleton model control enhancement using computed torque

    Get PDF
    Robotic technology has recently been used to help stroke patients with gait and balance rehabilitation. Rehabilitation robots such as gait trainers are designed to assist patients in systematic, repetitive training sessions to speed up their recovery from injuries. Several control algorithms are commonly used on exoskeletons, such as proportional, integral and derivative (PID) as linear control. However, linear control has several disadvantages when applied to the exoskeleton, which has the problem of uncertainties such as load and stiffness variations of the patient’s lower limb. To improve the lower limb exoskeleton for the gait trainer, the computed torque controller (CTC) is introduced as a control approach in this study. When the dynamic properties of the system are only partially known, the computed torque controller is an essential nonlinear controller. A mathematical model forms the foundation of this controller. The suggested control approach’s effectiveness is evaluated using a model or scaled-down variation of the method. The performance of the suggested calculated torque control technique is then evaluated and contrasted with that of the PID controller. Because of this, the PID controller’s steady-state error in the downward direction can reach 5.6%, but the CTC can lower it to 2.125%
    • …
    corecore