210 research outputs found

    Security of Vehicular Platooning

    Get PDF
    Platooning concept involves a group of vehicles acting as a single unit through coordination of movements. While Platooning as an evolving trend in mobility and transportation diminishes the individual and manual driving concerns, it creates new risks. New technologies and passenger’s safety and security further complicate matters and make platooning attractive target for the malicious minds. To improve the security of the vehicular platooning, threats and their potential impacts on vehicular platooning should be identified to protect the system against security risks. Furthermore, algorithms should be proposed to detect intrusions and mitigate the effects in case of attack. This dissertation introduces a new vulnerability in vehicular platooning from the control systems perspective and presents the detection and mitigation algorithms to protect vehicles and passengers in the event of the attack

    Resilience in Platoons of Cooperative Heterogeneous Vehicles: Self-organization Strategies and Provably-correct Design

    Full text link
    This work proposes provably-correct self-organizing strategies for platoons of heterogeneous vehicles. We refer to self-organization as the capability of a platoon to autonomously homogenize to a common group behavior. We show that self-organization promotes resilience to acceleration limits and communication failures, i.e., homogenizing to a common group behavior makes the platoon recover from these causes of impairments. In the presence of acceleration limits, resilience is achieved by self-organizing to a common constrained group behavior that prevents the vehicles from hitting their acceleration limits. In the presence of communication failures, resilience is achieved by self-organizing to a common group observer to estimate the missing information. Stability of the self-organization mechanism is studied analytically, and correctness with respect to traffic actions (e.g. emergency braking, cut-in, merging) is realized through a provably-correct safety layer. Numerical validations via the platooning toolbox OpenCDA in CARLA and via the CommonRoad platform confirm improved performance through self-organization and the provably-correct safety layer

    Autonomous Highway Systems Safety and Security

    Get PDF
    Automated vehicles are getting closer each day to large-scale deployment. It is expected that self-driving cars will be able to alleviate traffic congestion by safely operating at distances closer than human drivers are capable of and will overall improve traffic throughput. In these conditions, passenger safety and security is of utmost importance. When multiple autonomous cars follow each other on a highway, they will form what is known as a cyber-physical system. In a general setting, there are tools to assess the level of influence a possible attacker can have on such a system, which then describes the level of safety and security. An attacker might attempt to counter the benefits of automation by causing collisions and/or decreasing highway throughput. These strings (platoons) of automated vehicles will rely on control algorithms to maintain required distances from other cars and objects around them. The vehicle dynamics themselves and the controllers used will form the cyber-physical system and its response to an attacker can be assessed in the context of multiple interacting vehicles. While the vehicle dynamics play a pivotal role in the security of this system, the choice of controller can also be leveraged to enhance the safety of such a system. After knowledge of some attacker capabilities, adversarial-aware controllers can be designed to react to the presence of an attacker, adding an extra level of security. This work will attempt to address these issues in vehicular platooning. Firstly, a general analysis concerning the capabilities of possible attacks in terms of control system theory will be presented. Secondly, mitigation strategies to some of these attacks will be discussed. Finally, the results of an experimental validation of these mitigation strategies and their implications will be shown

    Cognitive Vehicle Platooning in the Era of Automated Electric Transportation

    Get PDF
    Vehicle platooning is an important innovation in the automotive industry that aims at improving safety, mileage, efficiency, and the time needed to travel. This research focuses on the various aspects of vehicle platooning, one of the important aspects being analysis of different control strategies that lead to a stable and robust platoon. Safety of passengers being a very important consideration, the control design should be such that the controller remains robust under uncertain environments. As a part of the Department of Energy (DOE) project, this research also tries to show a demonstration of vehicle platooning using robots. In an automated highway scenario, a vehicle platoon can be thought of as a string of vehicles, following one another as a platoon. Being equipped by wireless communication capabilities, these vehicles communicate with one another to maintain their formation as a platoon, hence are cognitive. Autonomous capable vehicles in tightly spaced, computer-controlled platoons will lead to savings in energy due to reduced aerodynamic forces, as well as increased passenger comfort since there will be no sudden accelerations or decelerations. Impacts in the occurrence of collisions, if any, will be very low. The greatest benefit obtained is, however, an increase in highway capacity, along with reduction in traffic congestion, pollution, and energy consumption. Another aspect of this project is the automated electric transportation (AET). This aims at providing energy directly to vehicles from electric highways, thus reducing their energy consumption and CO2 emission. By eliminating the use of overhead wires, infrastructure can be upgraded by electrifying highways and providing energy on demand and in real time to moving vehicles via a wireless energy transfer phenomenon known as wireless inductive coupling. The work done in this research will help to gain an insight into vehicle platooning and the control system related to maintaining the vehicles in this formation

    Research on Information Flow Topology for Connected Autonomous Vehicles

    Get PDF
    Information flow topology plays a crucial role in connected autonomous vehicles (CAVs). It describes how CAVs communicate and exchange information with each other. It predominantly affects the platoon\u27s performance, including the convergence time, robustness, stability, and scalability. It also dramatically affects the controller design of CAVs. Therefore, studying information flow topology is necessary to ensure the platoon\u27s stability and improve its performance. Advanced sliding mode controllers and optimisation strategies for information flow topology are investigated in this project. Firstly, the impact of information flow topology on the platoon is studied regarding tracking ability, fuel economy and driving comfort. A Pareto optimal information flow topology offline searching approach is proposed using a non-dominated sorting genetic algorithm (NSGA-II) to improve the platoon\u27s overall performance while ensuring stability. Secondly, the concept of asymmetric control is introduced in the topological matrix. For a linear CAVs model with time delay, a sliding mode controller is designed to target the platoon\u27s tracking performance. Moreover, the Lyapunov analysis is used via Riccati inequality to guarantee the platoon\u27s internal stability and input-to-output string stability. Then NSGA-II is used to find the homogeneous Pareto optimal asymmetric degree to improve the platoon\u27s performance. A similar approach is designed for a nonlinear CAVs model to find the Pareto heterogeneous asymmetric degree and improve the platoon\u27s performance. Thirdly, switching topology is studied to better deal with the platoon\u27s communication problems. A two-step switching topology framework is introduced. In the first step, an offline Pareto optimal topology search with imperfect communication scenarios is applied. The platoon\u27s performance is optimised using a multi-objective evolutionary algorithm based on decomposition (MOEA/D). In the second step, the optimal topology is switched and selected from among the previously obtained Pareto optimal topology candidates in real-time to minimise the control cost. For a continuous nonlinear heterogeneous platoon with actuator faults, a sliding mode controller with an adaptive mechanism is developed. Then, the Lyapunov approach is applied to the platoon\u27s tracking error dynamics, ensuring the systems uniformly ultimately bounded stability and string stability. For a discrete nonlinear heterogeneous platoon with packet loss, a discrete sliding mode controller with a double power reaching law is designed, and a modified MOEA/D with two opposing adaptive mechanisms is applied in the two-step framework. Simulations verify all the proposed controllers and frameworks, and experiments also test some. The results show the proposed strategy\u27s effectiveness and superiority in optimising the platoon\u27s performance with multiple objectives

    A Study of Potential Security and Safety Vulnerabilities in Cyber-Physical Systems

    Get PDF
    The work in this dissertation focuses on two examples of Cyber-Physical Systems (CPS), integrations of communication and monitoring capabilities to control a physical system, that operate in adversarial environments. That is to say, it is possible for individuals with malicious intent to gain access to various components of the CPS, disrupt normal operation, and induce harmful impacts. Such a deliberate action will be referred to as an attack. Therefore, some possible attacks against two CPSs will be studied in this dissertation and, when possible, solutions to handle such attacks will also be suggested. The first CPS of interest is vehicular platoons wherein it is possible for a number of partially-automated vehicles to drive autonomously towards a certain destination with as little human driver involvement as possible. Such technology will ultimately allow passengers to focus on other tasks, such as reading or watching a movie, rather than on driving. In this dissertation three possible attacks against such platoons are studied. The first is called ”the disbanding attack” wherein the attacker is capable of disrupting one platoon and also inducing collisions in another intact (non-attacked) platoon vehicles. To handle such an attack, two solutions are suggested: The first solution is formulated using Model Predictive Control (MPC) optimal technique, while the other uses a heuristic approach. The second attack is False-Data Injection (FDI) against the platooning vehicular sensors is analyzed using the reachability analysis. This analysis allows us to validate whether or not it is possible for FDI attacks to drive a platoon towards accidents. Finally, mitigation strategies are suggested to prevent an attacker-controlled vehicle, one which operates inside a platoon and drives unpredictably, from causing collisions. These strategies are based on sliding mode control technique and once engaged in the intact vehicles, collisions are reduced and eventual control of those vehicles will be switched from auto to human to further reduce the impacts of the attacker-controlled vehicle. The second CPS of interest in this dissertation is Heating, Ventilating, and Air Conditioning (HVAC) systems used in smart automated buildings to provide an acceptable indoor environment in terms of thermal comfort and air quality for the occupants For these systems, an MPC technique based controller is formulated in order to track a desired temperature in each zone of the building. Some previous studies indicate the possibility of an attacker to manipulate the measurements of temperature sensors, which are installed at different sections of the building, and thereby cause them to read below or above the real measured temperature. Given enough time, an attacker could monitor the system, understand how it works, and decide which sensor(s) to target. Eventually, the attacker may be able to deceive the controller, which uses the targeted sensor(s) readings and raises the temperature of one or multiple zones to undesirable levels, thereby causing discomfort for occupants in the building. In order to counter such attacks, Moving Target Defense (MTD) technique is utilized in order to constantly change the sensors sets used by the MPC controllers and, as a consequence, reduce the impacts of sensor attacks

    Experimental verification of vehicle platoon control algorithms

    Get PDF
    Organizing a group of vehicles into a vehicle platoon in a way that, except for the leading vehicle, each platoon member can be autonomously driven has been a research goal for decades. Among other benefits this results in a decrease of fuel consump- tion and also in the driver’s workload and an increase in a better use of road capacity. The recent developments in the area of ac- tive control systems for vehicles make it possible to realize more and more autonomous functions and the above defined cooper- ation between vehicles seems to be increasingly feasible. This article aims to point out that today it is possible to reach this goal without vehicle specific software and hardware
    corecore