25,787 research outputs found

    Nanodiamond landmarks for subcellular multimodal optical and electron imaging.

    Get PDF
    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable "zooming-in" to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery

    Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions

    Get PDF
    Mathematical operators whose transformation rules constitute the building blocks of a multi-linear algebra are widely used in physics and engineering applications where they are very often represented as tensors. In the last century, thanks to the advances in tensor calculus, it was possible to uncover new research fields and make remarkable progress in the existing ones, from electromagnetism to the dynamics of fluids and from the mechanics of rigid bodies to quantum mechanics of many atoms. By now, the formal mathematical and geometrical properties of tensors are well defined and understood; conversely, in the context of scientific and high-performance computing, many tensor- related problems are still open. In this paper, we address the problem of efficiently computing contractions among two tensors of arbitrary dimension by using kernels from the highly optimized BLAS library. In particular, we establish precise conditions to determine if and when GEMM, the kernel for matrix products, can be used. Such conditions take into consideration both the nature of the operation and the storage scheme of the tensors, and induce a classification of the contractions into three groups. For each group, we provide a recipe to guide the users towards the most effective use of BLAS.Comment: 27 Pages, 7 figures and additional tikz generated diagrams. Submitted to Applied Mathematics and Computatio

    Digital design of medical replicas via desktop systems: shape evaluation of colon parts

    Get PDF
    In this paper, we aim at providing results concerning the application of desktop systems for rapid prototyping of medical replicas that involve complex shapes, as, for example, folds of a colon. Medical replicas may assist preoperative planning or tutoring in surgery to better understand the interaction among pathology and organs. Major goals of the paper concern with guiding the digital design workflow of the replicas and understanding their final performance, according to the requirements asked by the medics (shape accuracy, capability of seeing both inner and outer details, and support and possible interfacing with other organs). In particular, after the analysis of these requirements, we apply digital design for colon replicas, adopting two desktop systems. ,e experimental results confirm that the proposed preprocessing strategy is able to conduct to the manufacturing of colon replicas divided in self-supporting segments, minimizing the supports during printing. ,is allows also to reach an acceptable level of final quality, according to the request of having a 3D presurgery overview of the problems. ,ese replicas are compared through reverse engineering acquisitions made by a structured-light system, to assess the achieved shape and dimensional accuracy. Final results demonstrate that low-cost desktop systems, coupled with proper strategy of preprocessing, may have shape deviation in the range of ±1 mm, good for physical manipulations during medical diagnosis and explanation

    Manual for starch gel electrophoresis: A method for the detection of genetic variation

    Get PDF
    The procedure to conduct horizontal starch gel electrophoresis on enzymes is described in detail. Areas covered are (I) collection and storage of specimens, (2) preparation of tissues, (3) preparation of a starch gel, (4) application of enzyme extracts to a gel, (5) setting up a gel for electrophoresis, (6) slicing a gel, and (7) staining a gel. Recipes are also included for 47 enzyme stains and 3 selected gel buffers. (PDF file contains 26 pages.
    • …
    corecore