213 research outputs found

    Aerodynamic fuze characteristics for trajectory control

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1998.Includes bibliographical references (p. 131-135).by Alexander Michael Budge.M.S

    FUN3D Manual: 12.6

    Get PDF
    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status

    FUN3D Manual: 12.8

    Get PDF
    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status

    FUN3D Manual: 12.9

    Get PDF
    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status

    FUN3D Manual: 13.3

    Get PDF
    This manual describes the installation and execution of FUN3D version 13.3, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status

    FUN3D Manual: 13.2

    Get PDF
    This manual describes the installation and execution of FUN3D version 13.2, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status

    FUN3D Manual: 13.5

    Get PDF
    This manual describes the installation and execution of FUN3D (Fully-UNstructured three-dimensional CFD (Computational Fluid Dynamics) code) version 13.5, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status

    7th International Conference on Nonlinear Vibrations, Localization and Energy Transfer: Extended Abstracts

    Get PDF
    International audienceThe purpose of our conference is more than ever to promote exchange and discussions between scientists from all around the world about the latest research developments in the area of nonlinear vibrations, with a particular emphasis on the concept of nonlinear normal modes and targeted energytransfer

    Applied Aerodynamics

    Get PDF
    Aerodynamics, from a modern point of view, is a branch of physics that study physical laws and their applications, regarding the displacement of a body into a fluid, such concept could be applied to any body moving in a fluid at rest or any fluid moving around a body at rest. This Book covers a small part of the numerous cases of stationary and non stationary aerodynamics; wave generation and propagation; wind energy; flow control techniques and, also, sports aerodynamics. It's not an undergraduate text but is thought to be useful for those teachers and/or researchers which work in the several branches of applied aerodynamics and/or applied fluid dynamics, from experiments procedures to computational methods

    Advanced numerical treatment of chemotaxis driven PDEs in mathematical biology

    Get PDF
    From the first formulation of chemotaxis-driven partial differential equations (PDEs) by Keller and Segel in the 1970's up to the present, much effort has been expended in modelling complex chemotaxis re- lated processes. The shear complexity of such resulting PDEs crucially limits the postulation of analytical results. In this context the sup- port by numerical tools are of utmost interest and, thus, render the implementation of a numerically well elaborated solver an undoubt- edly important task. In this work I present different iteration strategies (linear/nonlinear, decoupled/monolithic) for chemotaxis-driven PDEs. The discretiza- tion follows the method of lines, where I employ finite elements to resolve the spatial discretization. I extensively study the numerical efficiency of the iteration strategies by applying them on particular chemotaxis models. Moreover, I demonstrate the need of numerical stabilization of chemotaxis-driven PDEs and apply a exible scalar algebraic ux correction. This methodology preserves the positivity of the fully discretized scheme under mild conditions and renders the numerical solution non-oscillatory at a low level of additional compu- tational costs. This work provides a first detailed study of accurate, efficient and exible finite element schemes for chemotaxis-driven PDEs and the implemented numerical framework provides a valuable basis for fu- ture applications of the solvers to more complex models
    • …
    corecore