3,394 research outputs found

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF

    Automatic neonatal sleep stage classification:A comparative study

    Get PDF
    Sleep is an essential feature of living beings. For neonates, it is vital for their mental and physical development. Sleep stage cycling is an important parameter to assess neonatal brain and physical development. Therefore, it is crucial to administer newborn's sleep in the neonatal intensive care unit (NICU). Currently, Polysomnography (PSG) is used as a gold standard method for classifying neonatal sleep patterns, but it is expensive and requires a lot of human involvement. Over the last two decades, multiple researchers are working on automatic sleep stage classification algorithms using electroencephalography (EEG), electrocardiography (ECG), and video. In this study, we present a comprehensive review of existing algorithms for neonatal sleep, their limitations and future recommendations. Additionally, a brief comparison of the extracted features, classification algorithms and evaluation parameters is reported in the proposed study

    Clinical decision making for prediction of otitis using machine learning approach

    Get PDF
    This study investigates the relationship between autoimmune disease otitis and gut microbial community abundance by using machine learning as an aid in the medical decision-making process. Stool samples of healthy and otitis diseased infants were obtained from the curatedMetagenomicData package. Class imbalance present in the dataset was handled by oversampling a minority class. Afterwards, we built several machine learning models (support vector machine, k-nn, artificial neural networks, random forest and gradient boosting) to predict otitis from gut microbial samples. The best overall accuracy was obtained by the random forest classifier, 0.99, followed by support vector machine and gradient boosting algorithms, both achieving 0.96 accuracy. We also obtained the most informative predictors as potential microbial biomarkers for otitis disease. The obtained results showed better accuracy in prediction of otitis from microbial metagenome than previously proposed methods found in literature

    Unobtrusive cot side sleep stage classification in preterm infants using ultra-wideband radar

    Get PDF
    Background: Sleep is an important driver of development in infants born preterm. However, continuous unobtrusive sleep monitoring of infants in the neonatal intensive care unit (NICU) is challenging.Objective: To assess the feasibility of ultra-wideband (UWB) radar for sleep stage classification in preterm infants admitted to the NICU.Methods: Active and quiet sleep were visually assessed using video recordings in 10 preterm infants (recorded between 29 and 34 weeks of postmenstrual age) admitted to the NICU. UWB radar recorded all infant's motions during the video recordings. From the baseband data measured with the UWB radar, a total of 48 features were calculated. All features were related to body and breathing movements. Six machine learning classifiers were compared regarding their ability to reliably classify active and quiet sleep using these raw signals.Results: The adaptive boosting (AdaBoost) classifier achieved the highest balanced accuracy (81%) over a 10-fold cross-validation, with an area under the curve of receiver operating characteristics (AUC-ROC) of 0.82.Conclusions: The UWB radar data, using the AdaBoost classifier, is a promising method for non-obtrusive sleep stage assessment in very preterm infants admitted to the NICU

    Classification techniques on computerized systems to predict and/or to detect Apnea: A systematic review

    Get PDF
    Sleep apnea syndrome (SAS), which can significantly decrease the quality of life is associated with a major risk factor of health implications such as increased cardiovascular disease, sudden death, depression, irritability, hypertension, and learning difficulties. Thus, it is relevant and timely to present a systematic review describing significant applications in the framework of computational intelligence-based SAS, including its performance, beneficial and challenging effects, and modeling for the decision-making on multiple scenarios.info:eu-repo/semantics/publishedVersio
    • …
    corecore