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a b s t r a c t 

Background and objective: Sleep apnea syndrome (SAS), which can significantly decrease the quality of 

life is associated with a major risk factor of health implications such as increased cardiovascular dis- 

ease, sudden death, depression, irritability, hypertension, and learning difficulties. Thus, it is relevant and 

timely to present a systematic review describing significant applications in the framework of computa- 

tional intelligence-based SAS, including its performance, beneficial and challenging effects, and modeling 

for the decision-making on multiple scenarios. 

Methods: This study aims to systematically review the literature on systems for the detection and/or 

prediction of apnea events using a classification model. 

Results: Forty-five included studies revealed a combination of classification techniques for the diagno- 

sis of apnea, such as threshold-based (14.75%) and machine learning (ML) models (85.25%). In addition, 

the ML models, were clustered in a mind map, include neural networks (44.26%), regression (4.91%), 

instance-based (11.47%), Bayesian algorithms (1.63%), reinforcement learning (4.91%), dimensionality re- 

duction (8.19%), ensemble learning (6.55%), and decision trees (3.27%). 

Conclusions: A classification model should provide an auto-adaptive and no external-human action de- 

pendency. In addition, the accuracy of the classification models is related with the effective features se- 

lection. New high-quality studies based on randomized controlled trials and validation of models using a 

large and multiple sample of data are recommended. 

© 2017 Published by Elsevier Ireland Ltd. 
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Abbreviations: AI, Apnea Index; AHI, Apnea and Hypopnea Index; AIRS, Arti- 

cial Immune Recognition System; ANN, Artificial Neural Network; ANFIS, Adap- 

ive Neuro-Fuzzy Inference System; AUC, Area Under receiver operating characteris- 

ic Curve; BHC, Binary Hierarchical Classification; BNN, Bayesian Neural Network; 

AS, Central Sleep Apnea; ECOC, Error Correcting Output Code; ECG, Electrocar- 

iogram; EEG, Electroencephalogram; EMG, Electromyography; EOG, electrooculog- 

aphy; FP, False Positive; FN, False Negative; HI, Hypopnea Index; HMM, Hidden 

arkov Model; KNN, K-Nearest Neighbor; LDA, Linear Discriminant Analysis; LS- 

VM, Least Squares Support Vector Machine; LR, Logistic Regression; LVQ, Learning 

ector Quantization; ML, Machine Learning; MLR, Multi-Linear Regression; MSA, 

ixed Sleep Apnea; NARX, Nonlinear AutoRegressive network with eXogenous; 

SA, Obstructive Sleep Apnea; PNN, Probabilistic Neural Network; NPV, Negative 

redictive Value; PPG, Photoplethysmogram; PPV, Positive Predictive Value; PSG, 

olysomnogram; RBFNN, Radial Basis Function Neural Network; RCT, Randomized 

ontrolled Trial; RDI, Respiratory Disturbance Index; ROC, receiver operating char- 

cteristic; SAS, Sleep Apnea Syndrome; Sp02, Oxygen Saturation; SRN, Simple Re- 

urrent Network; SVM, Support Vector Machine; TP, True Positive; TN, True Nega- 

ive; VDA, Voice Activity Detection. 
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. Introduction 

Sleep apnea syndrome (SAS) is defined as a temporary closure

f the upper airway during sleep when air is prevented from enter-

ng lungs which may results on the complete cessation of breath-

ng for more than 10 s in adults [1] . This is typically, accompanied

y a reduction in blood oxygen saturation and leads to arousal

rom sleep in order to breathe. In addition, repetitive obstructive

vents during sleep are hypothesized to cause intermittent hy-

oxia, resulting in activation of oxygen free radicals and an oxida-

ive stress response. 

As SAS events are classified according to whether the patient

xhibits respiratory effort, then the presence of abdominal and

horacic effort for continuing breathing while air flow completely

tops, is called Obstructive Sleep Apnea (OSA) representing the

ost common pattern of SAS. On the contrary, when a complete

essation of both respiratory movements and airflow during at

east 10 s, is considered as Central Sleep Apnea (CSA). Finally, the

ombination of these two symptoms, defined by a central respira-

ory pause followed, in a relatively short interval of time, by an

http://dx.doi.org/10.1016/j.cmpb.2017.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2017.01.001&domain=pdf
mailto:ngpombo@ubi.pt
mailto:ngarcia@di.ubi.pt
mailto:bousson@ubi.pt
http://dx.doi.org/10.1016/j.cmpb.2017.01.001
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Fig. 1. Conceptual workflow of decision support systems, highlighting the focus of this systematic review. 
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obstructive ventilator effort is called Mixed Sleep Apnea (MSA).

Moreover, hypopnea is a condition wherein the breathing is slow

and shallow reducing the oxygen supply to lungs due to partial ob-

struction to the airway path. 

The severity of apnea and hypopnea is measured by the num-

ber of episodes per hour, by means of an assessment tool, such as

Apnea Index (AI), Hypopnea Index (HI), Apnea and Hypopnea Index

(AHI) or Respiratory Disturbance Index (RDI). Thus, a mild case of

apnea/hypopnea if observed when it happens between 5 and 15

episodes per hour, while a moderate case is verified when it oc-

curs between 15 and 30 episodes per hour, and a severe case is a

result of the occurrence of 30 or more episodes per hour. 

These respiratory disturbances may lead to hypoxia and hyper-

capnia, which can trigger arousal from sleep by increasing ven-

tilatory drive [2] . As a result of such sleep disruption, excessive

daytime sleepiness is the most common presenting complaint [3] .

Other symptoms of sleep apnea include snoring, asthma, sleep

talking, sweating, chronic fatigue, falling asleep at inappropriate

times of the day, morning headaches, weight gain, limited atten-

tion span, and memory loss. These symptoms can significantly de-

crease the quality of life and are associated with a major risk fac-

tor of health implications such as increased cardiovascular disease,

sudden death, depression, irritability, hypertension, and learning

difficulties [4] . Moreover, unfortunately, because of person’s un-

awareness, SAS may go undiagnosed for years [5] . In fact, statistics

show that around 100 million people worldwide are suspected to

have OSA of which the vast majority undiagnosed [6] . In line with

this, SAS is an important concern for public health that raises sev-

eral challenges regarding it diagnosis, assessment and treatment. 

The gold-standard method in SAS diagnosis is the nocturnal

polysomnography (PSG). This diagnosis includes the monitoring

of the breath airflow [7] , snore [8] , midsagittal jaw movement

[9] , respiratory events [10] , oxygen saturation (SpO2), body posi-

tion, electroencephalography (EEG), electromyography (EMG), elec-

trooculography (EOG), and electrocardiography (ECG) which is in-

convenient for a patient since it requires his connection to numer-

ous sensors for one night, usually at the hospital under the super-

vision of a sleep technician. Therefore, new simplified methods and

techniques for diagnosis and screening are desirable and timely.

However, due to the complexity to deal with SAS symptoms, as ev-

idenced by the multi-parameter monitoring provided by the PSG,

it is advisable that new approaches could offer the ability to sum-

marize all the collected information aiming at to extract the most

relevant data, reducing the complexity of the model, before the

classification process. For this reason, SAS diagnosis and screening

often includes a three stages methodology as depicted in Fig. 1:

feature extraction, selection of features and pattern classification.

Firstly, the main purpose is to achieve a reduced set of features,

extracted usually by means of algorithms from the observed data.

Secondly, these features should be prioritized aiming to provide an

adequate selection, which is meaningful since classification algo-

rithms are unable to achieve high accuracy when a large number

of weakly relevant and/or redundant features are managed. Thirdly,

a classification method that should be wisely selected aiming to

provide reasonable, reliable and consistent decisions. 

In this paper, we provide a systematic review of classification

methods for the decision-making on the multiple SAS scenarios,

a  
ncluding their concepts, models, performance, plus beneficial and

hallenging effects. 

. Methods 

.1. Research questions 

The primary research questions of this review were as follows:

RQ1) Which classification techniques have been used to support

hysician’s decision-making on SAS? (RQ2) What is the beneficial

nd challenging effects stemming from the included case studies? 

.2. Inclusion criteria 

Studies were included in this review if they met the following

riteria: (1) presented a method to detect and/or to predict apnea,

2) were based on computerized systems, (3) included data about

ystems’ evaluation, (4) presented preliminary or definitive results

nd (5) were written in English. These criteria were also applied

o studies obtained from reference tracking. There were no age or

isease restrictions; participants could be either adults or children,

onsisting of sleep disorders patients, whose data were collected

ither into a study or in a scientific database (e.g. Physionet). 

.3. Search strategy 

To determine the state-of-the-art related with classification

echniques on apnea prediction and/or detection, a search was con-

ucted on the following databases: ACM Digital Library, and Sci-

nceDirect. Only the studies published from the year 2005 until

ecember 31th, 2015 and meeting the inclusion criteria were con-

idered for this study. Two reviewers independently evaluated ev-

ry study, and their suitability was determined by the agreement

f both parties. A third reviewer was considered to adjudicate on

ifferences of opinion but was not required because a consensus

as reached. 

.4. Extraction of study characteristics 

The following data were extracted from the studies and tabu-

ated (see Table 2 ): year of publication, population, database, main

ecision, classification method, and metrics to evaluate it perfor-

ance as presented on Table 1 . When a study compared several

lassification models the presented metrics are related to the most

ccurate model. 

. Results 

The combined electronic searches identified 1537 records. Out

f the 1460 titles and abstracts that were then screened to test

ligibility using the PICOS screening tool (population or partici-

ant, intervention or indicator, comparator or control, outcome,

nd study design), 77 full-text papers were eligible for inclusion.

hus, the full text evaluation of these papers resulted in the exclu-

ion of 37 records that did not match the defined criteria. Many

f the excluded papers reported studies focus on the sleep quality

nd/or classification of sleep/awake events. Further hand searching
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Table 1 

Outcome metrics. 

Metric Definition 

Accuracy T P+ T N 
TP + FP + TN+ FN 

× 100% 

Sensitivity TP 
TP+ FN 

× 100% 

Specificity TN 
TN+ FP 

× 100% 

Positive Predictive Value (PPV) Ratio of true positives to total number of patients classified (correctly or incorrectly). 

Negative Predictive Value (NPV) Rati o of true negatives to total number of patients classified (correctly or incorrectly). 

Receiver Operating Characteristic (ROC) 

curve 

Plots of sensitivity versus 1-Specifity 

Area under ROC curve (AUC) As ROC is commonly applied for comparing classifier performances because it measures how well two classes 

are distinguished 

g-means 
√ 

Sensit i v it y × Speci f icity 

F1-measure A single measure of performance obtained as the harmonic mean of positive predictive value (precision) and 

sensitivity (recall): 2 ×P P V×Sensit i v it y 
P P V+ Sensit i v it y 

Precision The proportion of correctly classified positive samples to all samples classified as positive 

TP: number of true positive cases; TN: number of true negative cases; FP: number of false positive cases; FN: number of false negative cases. 

Fig. 2. Study workflow. 
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or reference tracking from the selected papers identify five addi-

ional studies. The selection procedure was based on the PRISMA

tatement which flowchart is presented in Fig. 2 . In summary, our

eview examined 45 papers that represent 41 unique studies (some

tudies reported the same data and were clustered to avoid selec-

ion bias). 

As shown in Table 2 , all the included studies represent 1940

articipants and/or subjects. Only nine of the forty-one studies

21.9%) included in this review were published by the end of 2009.

f the remaining thirty-two studies, twenty were published by the

nd of 2013 (48.7%). Finally, twelve studies (29.2%) were published
etween the beginning of 2014 and the end of 2015. All of the in-

luded studies were classified as a descriptive study design; when

ata and characteristics about the phenomenon being examined

re presented. None of the found studies neither presented a case-

ontrol nor a Randomized Controlled Trial (RCT). The case control

eans that the subjects who have a specific condition/disease (the

cases’) are compared with subjects who are similar but do not

ave a specific condition/disease (the ‘controls’). On the contrary,

n the RCT all the participants in a trial are randomly allocated ei-

her to the intervention group (under investigation) or to the con-

rol group. 
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Table 2 

Included studies. 

Study Year Population Decision Classification method ( ∗) best when 

multiple on the same study 

Performance 

Ac (%) Se (%) Sp (%) Other 

Fontenla-Romero [11] 2005 6 patients OSA/MSA/CSA Bayesian NN Mean (SD) 83.78 

(1.90) 

Al-ani [12] 2008 N/A Apnea/Non-Apnea HMM 70 

Marcos [13] 2008 187 patients (147 M, 40 F) (57.97 ± 12.84) Apnea/Non-Apnea ANN 85.50 89.80 79.40 AUC: 90.00% 

Polat [14] 2008 83 patients (59 M, 24 F) [17–83 years] (mean:49) Apnea/Non-Apnea AIRS, ANFIS, ANN, and C4.5 ( ∗) 95.12 91.67 96.55 AUC: 97.00% 

Álvarez-Estévez [15] 2009 12 patients Apnea/Non-Apnea/Hypoapnea Fuzzy Logic 87.00 89.00 

Khandoker [16,17] 2009 32 patients (25 M, 7 F) Apnea/Non-Apnea SVM 10 0.0 0 10 0.0 0 10 0.0 0 

Mendez [18] 2009 [27–63 years] (48 ± 10.8) Apnea/Non-Apnea ANN ( ∗), and KNN 88.00 89.00 86.00 

Sezgin [19,20] 2009 21 patients (14 M, 7 F) [21–57 years] (mean:37) OSA/MSA/CSA ANN OA (86%), MA (80%), 

CA (95%) 

Sugi [21] 2009 [46–58 years] Apnea/Non-Apnea Threshold based method 86.00 

Gunes [22] 2010 83 patients (59 M, 24 F) [17–83 years] (mean:49) Non-Apnea/Mild/ 

Moderate/Serious Apnea 

ANN 84.14 86.37 74.61 

Ubeyli [23,24] 2010 1 patient (1 M) (age:32) Hypopnea/non-hypopnea ANFIS ( ∗), and LS-SVM 96.25 95.00 97.50 

Hsu [25] 2011 15 patients (13 M, 2 F) [9–72] Apnea/Non-Apnea Threshold based method 87.60 

Deliba ̧s o ̌glu [26] 2011 N/A Apnea/Non-Apnea NARX-ANN 96.66 

Otero [27] 2011 12 patients Apnea / Hypopnea /Drops in 

SpO2/ Limitations of thoracic 

and abdominal effort 

Fuzzy Set 95.70 

Shi [28] 2011 N/A Apnea/Non-Apnea SVM 91.18 90.02 91.73 

Tagluk [29] 2011 20 patients (36 ± 8) Apnea/Non-Apnea ANN 96.15 

Yildiz [30] 2011 24 patients Apnea/Non-Apnea LS-SVM 10 0.0 0 10 0.0 0 10 0.0 0 

Wang [31] 2011 124 patients (90 M, 34 F) Apnea/Non-Apnea Rough Set ( ∗), ANN, C4.5, LVQ, LR, 

and SVM 

85.71 100 g-means: 92.58% 

Al-Angari [32] 2012 100 patients Apnea/Non-Apnea SVM 82.40 69.90 91.40 

Doukas [33] 2012 4 patients (2 M, 2 F) Apnea/Non-Apnea VAD algorithm 98.31 

Guijarro-Berdiñas [34] 2012 6 Patients OSA/MSA/CSA ECOC (90.27 ± 0.79) 

Martínez-Vargas [35] 2012 N/A Apnea/Non-Apnea KNN 80.61 76.22 82.27 

Otero [36] 2012 10 Patients Apnea / Hypopnea /Drops in 

SpO2/ Limitations of thoracic 

and abdominal effort 

Fuzzy Set 90.00 

Alencar [37] 2013 17 patients (11 M, 6 F) (50 ± 10) Apnea/Non-Apnea Hurst’s R/S based algorithm 94.11 

Almazaydeh [38] 2013 100 healthy people Apnea/Non-Apnea VAD algorithm 97.00 

Jafari [39] 2013 N/A Apnea/Non-Apnea SVM 94.80 94.16 95.42 

LaFleur [40] 2013 N/A Apnea/Non-Apnea LDA 99.74 PPV: 99.80 

Maali [41] 2013 5 patients Apnea/Non-Apnea BPNN ( ∗), RBFNN, and SRN AUC: 87% 

Zhang [42] 2013 40 Patients Apnea/Non-Apnea SVM 94.37 95.71 89.47 

Al-Mardini [43] 2014 15 patients (14 M, 1 F) Apnea/Non-Apnea Score (Apnea/Hypopnea Index, AHI) 87.50 100 85.50 PPV:99.90% 

NPV:100% 

Benavides [44] 2014 82 patients (82 M, 0 F) Apnea/Non-Apnea LDA, and Multi-linear Regression 85.00 75.00 PPV: 77.30% NPV: 

83.30% 

F1-measurement: 

81.00% 

Erazo [45] 2014 N/A Apnea/Non-Apnea ANN ( ∗), and SVM 55.94 84.36 19.00 

Sánchez-Morillo [46] 2014 115 patients (83 M, 32 F) (58.40 ± 13.40) Non-Apnea/Mild / Moderate 

/Serious Apnea 

Binary Hierarchical Classification 

structure (BHC) using: Decision Tree, 

PNN, and SVM 

79.30 76.70 82.60 Precision:85.20% 

F1-measurement: 

90% AUC: 90% 

Solé-Casals [47] 2014 376 patients (253 M, 123 F) [18–82] Apnea/Non-Apnea AdaBoost, ANN, KNN, SVM, and 

Bayesian classification ( ∗) 

82.04 81.74 82.40 

Travieso [48] 2014 N/A Apnea/Non-Apnea HMM + SVM 99.23 

Abdelnasser [49] 2015 3 patients Apnea/Non-Apnea Threshold based method 96.00 

Cohen [50] 2015 394 patients (193 M, 201 F) Apnea/Non-Apnea LDA 66.70 58.10 67.00 

Hassan [51] 2015(on 

press) 

[27–63 years] (45 ± 10) Apnea/Non-Apnea Bagging 85.97 84.14 86.83 

Lee [52] 2015 N/A OSA/CSA/ Hypopnea Adaboost 85.00 90.00 80.00 AUC: 84.00% 

Nandakumar [53,54] 2015 37 patients (20 M, 17 F) [23–93] OSA/MSA/CSA/Hypoapnea Peak detection algorithm Mean (SD) 97.83 

(2.22) 

Samy [55] 2015 16 patients Apnea/Non-Apnea KNN, and SVM ( ∗) 79.80 66.7 83 
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On the one hand, as presented in Table 3 , the 41 unique stud-

es revealed a combination of classifiers that were clustered as fol-

ows: threshold-based methods (14.75%), such as: Voice Activity

etection (VAD), peak detection methods, and combined thresh-

lds, and machine learning (ML) methods (85.25%) segmented as

ollows: neural networks (44.26%), regression (4.91%), instance-

ased (11.47%), reinforcement learning (4.91%), ensemble learning

6.55%), decision trees (3.27%), dimensionality reduction (8.19%),

nd Bayesian model (1.63%). 

On the other hand, as presented in Table 3 , the decision mak-

ng is based on the following scenarios: binary decision, such as:

pnea or non-apnea and hypoapnea or non-hypoapnea, presented

fty-one times (83.59%), three-option decision, such as: apnea, or

on-apnea or hypopnea, presented four times (6.55%), or four and

ore option decision presented six times (9.83%). When the deci-

ion making is combined with the classifier model, was observed

hat the neural networks to detect apnea or non-apnea was the

ost popular scenario considered in twenty two studies (53.65%). 

In the next sections, we briefly describe the principles of

hreshold for classification, and several ML techniques are pre-

ented including a conceptual mind-map as depicted in Fig. 3 , clos-

ng with the observed beneficial and challenging effects as a result

f a fusion between the clinical and the computer science perspec-

ive. 

.1. Threshold-based classification 

The threshold-based classification is operate using different

imits, typically support and confidence thresholds, and thus their

peration is very much dependent on the selection of appropriate

alues [56] . The observed methods and its description are detailed

n Table 4 . 

.2. Machine learning classification 

The ML has revolutionized the possibility to deal with large and

omplex electronic data sets [57] . Nevertheless, rapid technologi-

al developments continue to pose several challenges for data sci-

ntists to ensure computational models with the ability not only

o cope with big data, and multidimensional data structures, but

lso to provide accurate and reliable performances. In the next

ub-sections, different machine learning techniques are briefly de-

cribed. 

.2.1. Neural networks 

Artificial neural networks (ANNs) aim to perform tasks analo-

ous to biological brains based on the connections among many

imple processing elements, so called neurons. Their main feature

s the ability to change their behavior based on the external in-

ormation that flows through an ANN during the learning (train-

ng) phase. Neurons are organized into layers, where outputs from

ne layer are used as inputs into the following layer. However, the

mount of the measurement data of the network output is propor-

ional to its size. This means that the complexity of the tasks to

e accomplished leads to huge data, and this places a great deal of

urden on transmission networks of limited capacity. Other neu-

al networks techniques were observed in this review, such as, the

ayesian neural network (BNN) [58] , the Adaptive neuro-fuzzy in-

erence system (ANFIS) [59] , the Simple recurrent network (SRN)

60] , the Radial basis function neural network (RBFNN) [61] , the

upport vector machine (SVM) [62] , the Least squares SVM [63] ,

nd the Probabilistic neural networks (PNN). The BNN aims to cast

he training phase as a problem of inference, which is solved using

ayes’ theorem. On the contrary, the ANFIS is functionally equiv-

lent to a fuzzy inference system which uses a hybrid learning

lgorithm. In fact, this model is based on a network, to manage
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Fig. 3. Mind map of the observed machine learning techniques. 

Table 4 

Threshold-based methods. 

Study Description 

Abdelnasser [49] Threshold value for detecting the significantly increase and/or decrease in the breathing signal. 

Hsu [25] Combined threshold values for detecting the significantly increase and/or decrease in the delta wave ratio on the EEG 

signal, and therefore the duration of apnea or hypopnea events. 

Sugi [21] Combined threshold values for detecting EEG arousals in the PSG record for detect sleep apnea events. 

Doukas [33] , Almazaydeh [38] VAD for modelling of snore signal. 

Al-Mardini [43] Combined values such as body movement, audio record on respiratory effort s, and oxygen level to obtain the average 

number of apnea events per hour. The severity of the apnea is determined as follows: (1) mild when 5 ≤ average < 

15, (2) moderate when 15 ≤ average < 30, (3) and severe when average ≥ 30. 

Alencar [37] Model based on the Hurst’s R/S principles, namely considering the time intervals between snore events, and the 

average number of snore events per unit time. 

Nandakumar [53,54] Peak detection algorithm for identify the transitions points at which the EEG signal changes from an increasing to a 

decreasing trend. 
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fuzzy data, combined with an inference model. The SRN is a typi-

cal ANN with an additional set of units, called context units aim-

ing to provide recurrence on the network. The RBFNN is commonly

used for modeling nonlinear problems and presents one hidden

layer of nodes that perform a fixed nonlinear transformation with

no adjustable parameters and it maps the input space onto a new

space, and a network output obtained from the linear combination

of weighted with connecting weights [64] . The SVM attempts to

determine the tradeoff between minimizing the training set error

and maximizing the margin in order to achieve the best general-

ization characteristics that may lead to trustworthy decisions. In

addition, LS-SVM, aims to solve linear equations by using equality

constraints and a least squares loss function which greatly reduces

the computational complexity [65] . Finally, the PNN approximates

the class-conditional probability distributions by finite mixtures of

product components under the assumption that probability distri-

butions can be estimated. 

3.2.2. Regression 

Regression is the process of learning relationships between in-

puts and continuous outputs from example data, which enables

predictions for novel inputs. Several techniques were observed
uch as, the nonlinear autoregressive network with exogenous in-

uts (NARX) [66] , the Logistic regression (LR) [67] , and the Multi-

inear regression [68] (MLR). The NARX, is used for time series

rediction and modeling, in particular, when they are noisy, and

epresent a nonlinear system not easily approached through ana-

ytical means. The LR is used to analyze the relationship between

redictors, and an outcome that is dichotomous responses such as

he presence or absence of an apnea event. In addition, the MLR

s commonly used to model the impact of numerous independent

actors on the dependent outcome being examined. 

.2.3. Instance-based 

Such methods typically build up an instance of training data

nd compare new data to the instance using a similarity measure

n order to find the best match and make a prediction. The k-

earest neighbor (kNN) [69] , the Fuzzy set [70] , and the Learning

ector quantization (LVQ) [71] were the observed instance-based

echniques. The kNN predicts objects “values” or class member-

hips based on the k closest training samples in the feature space,

nd selected according to the similarity metrics such as: Euclidean

istance, or Manhattan distance. On the contrary, the LVQ it heav-

ly relies on the possibility to pick instances as members of the
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ata space and to adapt these representatives smoothly by means

f vectorial updates triggered by the data. The Fuzzy set aims to

epresent uncertainty and vagueness and to formalize tools for

ealing with the fuzzy logic. 

.2.4. Bayesian algorithms 

The classical Bayesian classifier consists of the following steps:

dentification of the number of classes, fitting a distribution (e.g.

aussian) to the histogram of the selected outer beams, and as-

igning classes to the rest of the beam angles according to the dis-

ribution. The observed model is related with a multivariate nor-

al model for the distribution of each class [47] . 

.2.5. Reinforcement learning 

Reinforcement learning models formalize the process through

hich stimulus-reward predictions are acquired and used to guide

hoice behavior. Two techniques were observed such as the Hidden

arkov Model (HMM) [72] and the Artificial immune recognition

ystem (AIRS) [73] . On the one hand, the HMM can express com-

lex Markov processes where a finite set of discrete unobserved

hidden) states emit the observations according to some probabil-

ty distribution. On the other hand, the AIRS is a resource limited

lgorithm, in which the used immune mechanisms are resource

ompetition, clonal selection, affinity maturation and memory cell

ormation [14] . 

.2.6. Dimensionality reduction 

Dimensionality reduction models aims to summarize or de-

cribe data using less information. Three techniques were observed

uch as the Linear discriminant analysis (LDA) [74] , the Rough set

75] and the Fuzzy logic [70] . The LDA finds the direction vector

uch that projected data have the largest possible between-class

eparation while the within-class variance is kept as small as pos-

ible. On the contrary, the Rough set comprises a combination of

wo sets: the lower and the upper approximation. The lower ap-

roximation is made up of elements that definitely belong to the

et, whereas the upper approximation is composed of elements

hat possibly belong to the set. The difference between them de-

nes the boundary region of the rough set [76] . The Fuzzy logic

epresents a possibility logic model that uses reasoning to explain

hether an event is about to happen. 

.2.7. Ensemble learning 

Ensemble methods direct to train multiple independent models,

nd to combine its predictions aiming to obtain the overall predic-

ion. Several techniques were observed such as, the Adaboost [77] ,

he Bagging [78] , the Binary hierarchical classification structure

BHC) [79] , and the error correcting output code (ECOC). The Ad-

boost, focuses on learning the misclassified examples and trains

lassifiers in an iterative way, in order to obtain a final decision

ased on the weighted majority voting rule for each classifier. The

agging directs to address potential instabilities stem from sources

uch as either data or parameter uncertainty in order to obtain a

uitable predictor. The BHC aims to combine different classification

odels in a top-down or bottom-up hierarchy. Finally, the ECOC

ims to build a set of classifiers that involves the manipulation of

he desired outputs representing the classification of each sample

n the training set. 

.2.8. Decision tree 

These models train on data for classification and regression

roblems based on decisions fork in tree structures. The C4.5 al-

orithm uses a measure of information gain ratio for selecting an

nput variable in each node. This variable selection process is based

n the precise probabilities calculated from the training set. 
.3. Beneficial and challenging effects 

The efficacy of the selected features and its effects on the classi-

ers’ accuracy is highlighted [18,25,26,28,30,32,34,35,44,51,52,55] ,

s well as the opportunity for the design of outperformed mod-

ls based on a multi-signal combination [16,17,45,50] . In addition,

he application of wavelets in extracting features was found to al-

ow better quantification of the frequency components associated

ith the SAS [16,17,19] . On the contrary, the combination of classi-

ers is also appreciated [46,48] . The validation of the model using

 large sample of data and/or additional databases is an observed

eed [13,34,37,48,51] . The challenge for the development of reli-

ble, minimally invasive, and ubiquitous systems for use in home

ettings as a solid alternative to the PSG, the standard clinical test

or SAS in medical settings, is observed [37,39,42,50,53,54] . 

On the one hand, threshold-based methods revealed its suitabil-

ty to detect discrepancies, and abnormalities in the signal process-

ng, such as ECG, EEG, EMG, among others. However an efficient

alibration is required in order to enable these models for differ-

nt severities of apnea [25,44] . 

On the other hand, related with ML technologies, the overfitting

aised by complex models for the classification of apnea conditions

s identified [47] . On the contrary, when inflexible models lead to

nderfitting is also an observable limitation [13] . Ideally, a model

hould provide an auto-adaptive and no external-human action de-

endency [11] . 

Moreover, authors in [21,23,24,29,33,46] suggested that the im-

lementation of computerized systems may reduce the cost and

ime needed for an accurate diagnosis. Only two studies; [41,55] ,

xhibit a predictive model for the apnea condition while the re-

aining are focused to detect apnea events, therefore, for diagno-

is and/or screening purposes. Finally, the clinical acceptance of all

he included studies is limited because were simply not designed

s an RCT. 

. Discussion 

In this study, we presented an overview of the classification

echniques on the prediction and/or detection of SAS by conduct-

ng a systematic review study on articles written during 2005–

015. A multi-step process was performed to select the studies,

.e. they were searched for in databases by using terms to iden-

ify related studies; some were excluded based on the criteria of

xclusion, while relevant studies were included based on analy-

is of their titles and abstracts. Finally, the case studies were ob-

ained based on full text reading. From a high-level overview, the

bserved classification techniques fell into two thematic categories

f models, such as threshold-based, and ML. On the one hand, as

resented in Table 4 , when the identification of the categories re-

ies on several parameters thresholds, which require an appropri-

te selection of values, is called by threshold-based classification.

n the other hand, in this study, we presented a mind map (see

ig. 3 ) related with the different ML techniques observed on com-

uterized systems on SAS. The ML were clustered as follows: neu-

al networks, regression, instance-based, Bayesian algorithms, re-

nforcement learning, dimensionality reduction, ensemble learning,

nd decision trees. 

The most common scenario observed is based on neural net-

orks. There are several reasons for which this may be considered

he method of choice, including the ability to extract complex rela-

ions in the problem domain [80–82] . However, this methodology

s limited in terms of knowledge visualization. Additionally, deter-

ining the adequate size of the hidden layer is vulnerable to poor

pproximations (caused by lack of nodes) and overfitting (from ex-

essive nodes) [76] . 
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As ML techniques are highly dependent on the underlying data,

research which uses highly specific datasets which are confined

to small samples of cases from distinct populations suffers from

limitations of generalizability of results. Thus, further research is

needed to validate the generality of SAS models on a larger dataset

or within different populations. On the contrary, hybrid approaches

(presented only in two studies [46,48] ) try to combine two or more

algorithms aiming to enhance the performance, remains under-

studied and thus further research is needed to validate the suit-

ability of these models on SAS. 

Moreover, since medical systems should have especial charac-

teristics such as high accuracy and reliability then clinical valida-

tion is highly recommended, for example using RCTs study design.

In fact, the effect of various classification models on algorithm’s

performance, remains poorly explored. 

Finally, due to the fact that the PSG requires an exhaustive test

in a hospital setting, high cost and discomfort to the patient, is

observable an effort to implement a non-invasive, accurate and

home-bound techniques based on a reduced and simplified set of

biometric signals. 

5. Conclusions and future directions 

This systematic literature review has synthesized and summa-

rized the existing classification techniques on the prediction and/or

detection of SAS. Forty-five studies were examined and the main

findings are summarized as follows: 

• (RQ1) the classification techniques have been used physician’s

decision-making to support the SAS include threshold-based

and machine learning models, which were clustered into neural

networks, regression, instance-based, Bayesian algorithms, rein-

forcement learning, dimensionality reduction, ensemble learn-

ing, and decision trees. All these models were combined in a

mind map (see Fig. 3 ). 
• (RQ2) The need for validation of the models either from the

clinical perspective using a randomized controlled trial, or from

the computer science perspective using a large and/or multiple

sample of data. In addition, the accuracy of the classification

models is related with the effective features selection. 

The growth in ML approaches in SAS is encouraging and stud-

ies show promising results and useful applications. However, from

a ML perspective, there is a need for predictive models and for

further comparative studies, which may evaluate the accuracy and

applicability of a range of ML approaches in different contexts. Fur-

thermore, recent studies using either nonlinear and nonstationary

time series analysis, or a reduced volume of data revealed its feasi-

bility and suitability to deal with apnea symptoms [83–88] . There-

fore, complementary studies should be addressed not only to eval-

uate the effect between the extraction and selection of features,

and the accuracy of the classification model, but also to design in-

novative models using time series principles whose roadmap may

include further research on either stochastic nonlinear time-delay

systems [89,90] or combined fault-tolerant with predictive control

[91,92] . 

Moreover, the design of reliable, minimally invasive, and ubiq-

uitous systems for use in home settings as a solid alternative to

the PSG, the standard clinical test for SAS in medical settings, is

both promising and challenging. 

Finally, some limitations of this review should be mentioned.

First, the studies included in this review presented diverse partic-

ipants/subjects and different clinical contexts of the apnea condi-

tion, meaning that assumptions about the generalizability of the

findings to the target population should be made with some cau-

tion. For this reason, comparisons between studies are also unsuit-

able. Second, every included study represents a non-randomized
ontrolled trial, which increases the heterogeneity and the risk of

he selection bias of this review. Third, some studies did not re-

ort clearly on the data that are used for SAS (e.g. the performance

etrics were not presented). Four, only English-language publica-

ions were included. 
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