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 ABSTRACT   

This study investigates the relationship between autoimmune disease otitis and gut microbial community 

abundance by using machine learning as an aid in the medical decision-making process. Stool samples of 

healthy and otitis diseased infants were obtained from the curatedMetagenomicData package. Class 

imbalance present in the dataset was handled by oversampling a minority class. Afterwards, we built 

several machine learning models (support vector machine, k-nearest neighbour, artificial neural networks, 

random forest and gradient boosting) to predict otitis from gut microbial samples. The best overall accuracy 

was obtained by the random forest classifier, 0.99, followed by support vector machine and gradient 

boosting algorithms, both achieving 0.96 overall accuracy. We also obtained the most informative 

predictors as potential microbial biomarkers for the otitis disease. The obtained results showed better 

accuracy in prediction of otitis from microbial metagenome than previously proposed methods found in 

literature.  
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1. Introduction 

Human beings possess a microbial community (also known as microbiome) composed of different bacteria, 

archaea, fungi, protists and viruses. 500-1000 species of bacteria are estimated to exist in the human body, 

each with thousands of genes indicating genetic diversity. Furthermore, every one of us has a unique 

microbiome that varies in taxonomic composition [1]. There are also differences in microbial diversity and 

community composition across different body sites. The most studied site in the human body is the gut 

microbiome, as it contains large and diverse microbial communities. The change in the composition of the 

intestinal microbiome community and its interaction with the immune and nervous system has been found to 

correlate with different illnesses.  This condition of imbalance in the gut has been found to be associated with 

various diseases such as cancer, inflammatory bowel disease, allergy, schizophrenia, asthma, hypertension, 

etc. [2]. The fact that 50% of the human being cell population is composed of bacteria attracted researchers' 

interest for deeper investigation [3]. Recent advances in high throughput sequencing have led to increased 

availability of microbiome data resulting in a large amount of microbiome-related research in disease 

diagnostic, prediction and therapeutics. In addition, due to the rise in computer processing power and storage 

capacity, machine learning methods are increasingly used in microbiome analysis.  Many studies have 
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explored the relationship between the taxonomical abundance of bacteria and the presence of specific 

diseases. 

For example, Beck et al. [4] used logistic regression and random forest classifiers to analyze the relationship 

between the microbial community and bacterial vaginosis (BV). By using random subsets of features the 

authors identified features linked to BV that are in line with other performed studies.    

Zhu et al. [5] used MicroPto, a computational tool to perform metagenomic data analysis considering reads of 

known and unknown microbial organisms to investigate the association between viruses and complex 

diseases. The results of the performed research show that including reads from unknown organisms increases 

the disease prediction accuracy based on metagenomic data. The authors also showed that some viruses have 

an important role in developing colorectal cancer and liver cirrhosis, but not in type-2 diabetes. 

Casimiro-Soriguer et al. [6] used 1042 fecal metagenomic samples from seven publicly available studies to 

perform meta-analysis using machine learning. They used functional metagenomic profiles instead of 

taxonomic profiles to predict colorectal cancer (CRC) and distinguish CRC from adenoma. They observed 

that functional profiles reach superior accuracy in predicting CRC and adenoma conditions than taxonomic 

profiles. 

Vatanen et al. [7] showed that Bacteroides lipopolysaccharide (LPS) is structurally distinct from E. coli l LPS 

and inhibits innate immune signaling and endotoxin tolerance by following the gut microbiota development of 

222 infants in Northern Europe (Russian, Finnish, and Estonian children) from their birth until the age of 

three. The authors also trained a set of random forest classifiers using genus-level data from samples collected 

between 170 and 260 days of age. They were able to predict the country from which the samples belong with 

high accuracy of 0.94 for Finns versus Russians but low accuracy of 0.55 between Finns and Estonians. 

Common challenges in microbiome research often include dealing with high dimensional data low sample 

size, data heterogeneity and scarcity, imbalanced class size, etc. In [8], the authors handled extreme class 

imbalance by computing the size of the largest class (healthy) and randomly resampling from every class until 

each class had the same number of samples. Sayyari et al. [9] addressed low sample size by introducing the 

TADA algorithm. The algorithm uses available data and a statistical generative model taking into account 

phylogenetic relationships between microbial species, to create new samples augmenting existing ones.  

In a recent study, Khan et al. [8] developed a multiclass microbiome disease classifier using  

curatedMetagenomicData. To perform the classification, the authors used random forests (RF), deep neural 

networks (DNN), and graph convolutional neural networks (GCN) machine learning models. They observed 

that in general, GCN performed similar or better than DNN.  Implemented classifiers were able to distinguish 

between 18 different diseases and healthy controls achieving greater than 70% accuracy on a dataset of over 

7000 samples, 92% average area under the receiver operating characteristic curve (AUC) and 50% average 

area under precision recall (AUPR). In the performed multiclass classification, overall accuracy obtained for 

the otitis disease was 12% by GCN, 13% by DNN and 0% by the RF classifier. Periodontitis was the most 

accurately classified disease with 93% overall accuracy achieved by all three models. However, the RF model 

achieved an excellent accuracy (99%) in classification of healthy vs. non-healthy samples. 

In this study we analyzed the relationship between taxonomical abundances of the gut microbial community 

extracted from the fecal samples and otitis disease using machine learning approach using the 

curatedMetagenomicData. We also identified the most important microbial community related to otitis.  Otitis 

is a group of inflammatory diseases of the middle ear. It mostly appears in young children as a result of 

pulling at the ear, increased crying, and poor sleep. Other causes can be decreased eating and a fever. Otitis 

was also found to be associated with hearing loss [10].    
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2. Materials and Methods 

2.1. Dataset 

The otitis data selected for this study was obtained from the curatedMetagenomicData [11]. With the large 

availability of shotgun metagenomic data, curatedMetagenomicData was generated as an initiative by Pasolli 

et al. [11] to provide a standardized microbiome data that will allow the study of taxonomic composition and 

functional potential of microbiome to the research community.  It contains uniformly processed taxonomic 

and metabolic functional profiles for more than 5,500 whole metagenome shotgun sequencing samples from 

26 publicly available studies, providing a standardized, microbiome data for novel analysis. More specifically, 

the data includes species-level taxonomic profiles expressed as relative abundance from kingdom to strain 

level, presence of unique clade-specific markers, the abundance of unique clade-specific markers, abundance 

of gene families, metabolic pathway coverage, and metabolic pathway abundance collected from different 

body sites. This study uses species-level relative abundance data. Microbial taxonomic abundances for each 

sample were generated by MetaPhlAn2, and metabolic functional potential was computed with HUMAnN2. 

Standardized metagenomic data and its manually curated metadata are integrated and documented as 

ExpressionSet objects distributed through the Bioconductor ExperimentHub.  

For otitis disease prediction, we used the available Operational Taxonomic Units (OTU) table. OTU tables are 

an essential part of the microbial data study. They are made by clustering DNA sequences based on their 

similarity (usually 97%) to represent the abundance of a particular bacterial taxon [12]. After clustering, a 

table that records corresponding abundances per sample is generated.  

Obtained otitis data contains 785 samples from infants aged between 33 days and 3 years collected from the 

subject stool, and the available OTU table consists of 1584 taxa. The proportion of samples belonging to 

healthy controls is 78%, 14% to otitis diseased infants, and remaining 8% belong to infants with other 

autoimmune diseases.    

  

2.2. Preprocessing and feature selection 

As a first preprocessing step, we removed all the samples annotated as infant autoimmune disease other than 

otitis and all phylum-level taxa with NA (not available) values, leaving a total of 721 otitis and healthy 

samples in the dataset. Then, to ensure comparability of data across samples we performed min-max 

normalization using the following formula: 

𝑦𝑖 =
𝑥𝑖− min (𝑥) 

max(𝑥)− min (𝑥)
                (1) 

where the 𝑥𝑖 is the 𝑖𝑡ℎdata instance, 𝑚𝑖𝑛(𝑥) and 𝑚𝑎𝑥(𝑥) are the minimum and maximum values respectively, 

𝑦𝑖 is the obtained minimization result. Afterwards, we analyzed 1584 taxa for possible outliers. Taxonomy 

filtering was done to only keep the effective taxa. We explored the relationship of prevalence and total 

abundance at the phylum level (Fig. 1). Prevalence indicates the number of samples in which a genus was 

positively detected, while total abundance indicates the average fractional representation of a single genus 

only when present. Some bacteria such as Acidobacteria, Candidatus_Saccharibacteria, Chlorobi, 

Apicomplexa, Deinococcus_Thermus, Synergistetes, Tenericutes, Verrucomicrobia, and Euryarchaeota 

appeared to have low prevalence at the phylum level, meaning they do not appear in many samples. Filtering 

was thus done to remove the taxa present in less than 0.01% across all samples. This reduced the amount of 

false-positive bacteria. It also considerably lowered the dimensionality of the dataset from 1584 to 178 taxa, 

reducing the number of OTUs (i.e. the initial features) to be used as inputs into the machine learning methods. 
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One of the challenges in this study was dealing with large class imbalance present in the dataset. Class 

imbalance occurs when the dataset has a considerable disproportion of samples belonging to different classes. 

In general, imbalanced data results in reduced model accuracy where the model is biased towards the majority 

class. This is a serious concern, since we are typically most interested in the correct classification of the 

minority class. By decreasing the class imbalance, the overall accuracy of the learning models increases. In 

particular, prediction of the minority class is improved [13], [14]. After data preprocessing was performed, 

85% samples belonged to the healthy class and 15% belonged to otitis.  The class imbalance problem was 

handled by simply generating new sample data by randomly oversampling the minority class (i.e. otitis). This 

resampling method was selected due to its simplicity, which has also shown to yield successful results. In 

addtion, many resampling methods have been observed to perform similarly [15].  Otitis samples were 

generated to be equal in numbers to the healthy samples.  Afterwards, to optimize the hyperparameters we 

retrained the classifiers models with different configurations. 

For comparison purposes, classification was performed using both imbalanced and balanced data.  Finally, to 

identify the most informative microbiome taxa for the prediction of otitis, feature importance was performed.    

 

2.3.  Methods 

We built five models for otitis classification: k-nearest neighbors (K-NN) [16], support vector machines 

(SVM) [17], artificial neural networks (ANN) [18], gradient boosting (GB) [19], and random forest (RF) [20]. 

These methods are some of the most common methods used in microbiome host trait prediction [21], [22]. For 

each method, hyperparameter optimization was performed. A brief summary of each method is as follows: 

  

Figure 1. Taxa prevalence and total counts at phylum level before filtering unique taxa 



 PENVol. 10, No.2, March 2022, pp.138-146 

142 

 

K-NN algorithm is one of the simplest machine learning methods that assignes the test sample to a label based 

on the nearest k training samples in the feature space. Nearest neighbours are computed by using a distance 

metric in a multidimensional feature space.    

SVMs are a popular machine learning algorithm that apply a kernel which is a mathematical function that 

maps the inputs into a multidimensional space. The model aims to maximize the margin between the samples 

while minimizing the error when separating the data. Some common SVM kernels include linear, polynomial, 

sigmoid and radial basis function kernels.  

ANN algorithm is another frequently used algorithm applied to medical problems. ANN is made up of 

interconnected neurons to form a network. The general architecture consists of an input layer, hidden layer(s), 

and an output layer. The input neurons are task specific (e.g. OTUs for microbiome data), however the 

number of hidden layers need to be determined. Neurons in each layer are connected to the neurons in the next 

layer by a weighted connection. During the training phase, ANN aims to minimize the error between the 

desired output and the predicted output by adjusting the weights. Weight adjustment is done using the 

backpropagation algorithm that uses the gradient descent method to minimize the error.  

Gradient boosting is an ensemble method that applies boosting to iteratively update the weights for each weak 

learner (in general decision trees) in order to improve the predictions of misclassified samples. The algorithm 

uses the gradient descent method on a loss function to update the predictions.  

RF method is another ensemble method that builds a “forest” of decision trees to make a prediction. For each 

decision tree, random forest applies bootstrap aggregation, where subsets of randomly selected samples are 

used for the training set. In addition, each decision tree is trained with a random subset of features. The final 

decision is made by combing the results of many decision trees by computing the majority vote for 

classification or by averaging decision tree results for regression tasks. 

3. Results and discussion  

 

To estimate the model performance and mitigate overfitting, stratified k-fold (k=10) cross-validation was 

used. Briefly, k-fold cross-validation randomly splits the data into k folds (i.e. subsets) approximately of the 

same size, where the data in k-1 folds is used for the training set and the data in the remaining fold is used for 

the test set. Due to stratification, each fold approximately contains equal proportion of each class as in the 

complete dataset.  The model is then trained on the training set and validated on the test set. The procedure is 

repeated k times, where each time, different fold is used for validation and remaining folds for training. 

Performance results are obtained by averaging the validation results. 

The most common performance measures applied for diagnostic predictors are measured in terms of the  

overall accuracy, sensitivity, and specificity defined as follows:  

  

Accuracy =
(TP+TN)

(TP+FP+FN+TN)
                                                               (2) 

Sensitivity =
TP

(TP+ FN)
                                (3) 

Specificity =
TN

(TN+FP)
                                                                                                                                      (4)                                              

 

where true positives indicate correctly classified otitis samples; true negatives indicate correctly classified 

healthy samples; false positives indicate incorrectly classified otitis samples, and false negatives indicate 

incorrectly classified healthy samples. Accuracy refers to the correctly classified samples. Sensitivity refers to 

the ability of a test to correctly classify an individual as diseased (also called true positive rate or TPR).  

Specificity is the ability of a test to correctly classify an individual as disease-free (also called true negative 

rate or TNR).   
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Performance results using class imbalanced data are displayed in Table 1. Overall accuracy of 0.85 was 

achieved by all tested classifiers. Furthermore, the results show that classifiers performed well when 

classifying the majority class, i.e. healthy cases. Obtained specificity for all methods was 0.93 and above.   

However, a poor classification was observed across all classifiers to correctly classify otitis samples (i.e. the 

rare occurrences in our dataset that we are most interested in predicting): sensitivity results range from 0.0 for 

K-NN method, to 0.16 achieved by GB.  

 

Table 1. Binary classification results using class imbalanced data 

Algorithm Accuracy Sensitivity Specificity 

K-NN 0.85 0.0 0.97 

SVM 0.85 0.01 0.93 

ANN 0.85 0.0 100 

RF 0.85 0.06 0.98 

GB 0.85 0.16 0.96 

  
Table 2. shows the results of each classifier on balanced class data. The table also shows optimized 

hyperparameter values. With a balanced class size data, all classifiers achieved high overall accuracy: RF 

0.99, SVM and GB 0.96, K-NN 0.93, ANN 0.89. All methods  except GB (with very low specificity) also 

achieved high sensitivity and specificity results. Sensitivity: SVM and K-NN 0.99, RF 0.97, GB 0.92 and 

ANN 0.81. Specificity: GB 0.1, RF 0.99, ANN 0.98, SVM 0.93, KNN 0.87. The results show that the 

sensitivity score for all classifiers was considerably increased when compared with the sensitivity score 

obtained with class imbalanced data. 

   
Table 2. Binary classification results using class balanced data 

Algorithm Hyperparameter Configuration Accuracy Sensitivity Specificity 

K-NN K = 1 0.93 0.99 0.87 

SVM kernel: RBF, cost:64, gamma: 

0.00471 

0.96 0.99 0.93 

ANN hidden layers: 1 (5 hidden nodes), 

learning rate 0.01 

0.89 0.81 0.98 

RF no. of features: 2, no. of trees: 500 0.99 0.97 0.99 

GB no. of trees: 250, interaction depth: 

5, shrinkage  (learning rate): 0.1, 

minobsinnode no. (min. no. of 

observations in trees’ terminal 

nodes) : 10 

0.96 0.92 0.1 

  

From the tested methods (Table 2.), random forest achieved the highest overall accuracy (0.99) as well as high 

scores for both sensitivity (0.97) and specificity (0.99). In general, random forest is one of the most successful 

machine learning algorithms. Main reasons for its successful performance is that it is an ensemble-based 

method that successfully combines bootstrap aggregation (i.e. each model performs bootstrap sampling of the 

original training data) with random feature selection to provide the essential diversity and low correlation 

between the decision trees that tends to reduce both overfitting and error due to bias. Feature importance was 

thus performed using the random forest classifier to establish microbial taxa that have the most predictive 

power in the classification of otitis.  Fig. 2, shows 20 most important features (OTUs).  Identified OTUs 

(representing species-level abundance of particular bacterial taxon) were then mapped to the genus level using 

the taxonomy table and are as follows: Villanelle, Streptococcus, Siphoviridae, Clostridium, Sutterella, 
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Parasutterella, Neisseria, Granulicatella, Eubacterium, Subdoligranulum, Bacteroides, Escherichia, Blautia, 

and Bifidobacterium. From the 14 identified bacteria, the highest impact to the classification accuracy was 

found to be the abundance of Villanelle, Clostridium and Bifidobacterium bacteria. The identified bacteria can 

further be explored by the microbial community researchers as potential microbial biomarkers for otitis.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

4. Conclusion 

In this work we performed classification of otitis in infants aged 33 days to 3 year using otitis microbiome 

data obtained from the curatedMetagenomicData. After the initial exploratory analysis, data preprocessing 

was performed that included missing values removal, data normalization and outlier removal by removing low 

prevalence bacteria at the phylum level, (using a threshold of 0.01%). We then built five machine learning 

models for otitis classification: support vector machine, k-nn, artificial neural networks, random forest and 

gradient boosting. Even though achieved overall accuracy for all tested models was 0.85, very low sensitivity 

was observed across all models (between 0.0 – 0.16). Due to the highly class-imbalanced data, oversampling 

the minority class was done using random sampling to handle the class imbalance. Afterwards, 

hyperparameter tuning was performed for each model. This resulted in an increased overall accuracy with 

random forest method outperforming other methods (0.99). More importantly sensitivity was substantially 

increased for all models. For the RF model, sensitivity increased from 0.06 for imbalanced class size data to 

0.97 for balanced class size data. The results of the specificity were also slightly improved (from 0.98 to 0.99). 

High results obtained by the random forest method are in line with the multiclass disease classification results 

obtained by Khan et al. [8] on the same dataset (curatedMetagenomicData). High results were achieved when 

the authors performed binary classification of non-healthy vs. healthy samples (0.99 overall accuracy achieved 

by RF). However, authors achieved low accuracy for otitis disease in multiclass classification (highest 

accuracy of 0.13 was obtained by deep neural network model).   

 Figure 2. Random Forest feature importance plot 
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Finally, we identified 14 genus bacteria that have the most impact on the target class. From the identified 14 

bacteria, Villanelle, Clostridium and Bifidobacterium bacteria were the three highest ranking bacteria found to 

be most predictive of the target class.  

The identified bacteria may further be used by the researchers towards personalized medicine as a potentially 

modifiable novel otopathogens for bacterial therapeutics to treat otitis in infants. Future work can also include 

other demographic-related data such as age, gender, and country to further analyze the relationship between 

the gut microbiome and otitis media disease. This analysis would help to answer to what extent does 

demographic-related data affect the development of microbiome and hence the health status of an individual.  
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