139 research outputs found

    Novel spectral imaging instrumentation for environmental sensing in extreme environments

    Get PDF
    Spectral imaging techniques provide a valuable means of improving our understanding of the world around us. Environmental monitoring approaches that utilise these techniques are, therefore, essential to our understanding of the effects of climate change. Hyperspectral imaging applications are of particular benefit to a broad range of environmental monitoring scenarios, providing rich datasets that combine both spectral and spatial information, enabling intricate features and variations to be visualised. However, to date, most commercially available hyperspectral instrumentation remains bulky and expensive, significantly limiting their user-base and accessibility. These factors substantially limit the use of these instruments resulting in much of our information coming from a few well-resourced research teams across a limited number of more easily accessed field locations. These limitations, have a compounded effect on the quality and robustness of hyperspectral data outputs, particularly within more extreme settings, as the comparatively small sample of more accessible locations is not necessarily representative of the much larger whole. This thesis presents on the development and testing of three novel low-cost hyperspectral imaging instruments designed specifically for environmental monitoring applications, providing valuable, low-cost alternatives to currently available commercial systems. Specifically, the three instruments presented within this thesis are: a low-cost laboratory-based hyperspectral imager, a semi-portable instrument capable of accurate data capture within a laboratory setting; the Hyperspectral Smartphone, an ultra-low-cost smartphone-based fully portable hyperspectral imager; and a low-cost high-resolution hyperspectral imager capable of resolving mm-scale spatial targets. All instruments were rigorously tested to analyse and evaluate their performances. Each instrument was shown to perform well across a range of environmental monitoring applications demonstrating that expensive commercial instrumentation is not required to achieve accurate and robust hyperspectral imaging. These low-cost instruments could promote the widespread dissemination of accessible hyperspectral imaging equipment, facilitating the democratisation of hyperspectral measurement modalities across environmental monitoring applications and beyond

    Remote Sensing of the Aquatic Environments

    Get PDF
    The book highlights recent research efforts in the monitoring of aquatic districts with remote sensing observations and proximal sensing technology integrated with laboratory measurements. Optical satellite imagery gathered at spatial resolutions down to few meters has been used for quantitative estimations of harmful algal bloom extent and Chl-a mapping, as well as winds and currents from SAR acquisitions. The knowledge and understanding gained from this book can be used for the sustainable management of bodies of water across our planet

    Automatic Pipeline Surveillance Air-Vehicle

    Get PDF
    This thesis presents the developments of a vision-based system for aerial pipeline Right-of-Way surveillance using optical/Infrared sensors mounted on Unmanned Aerial Vehicles (UAV). The aim of research is to develop a highly automated, on-board system for detecting and following the pipelines; while simultaneously detecting any third-party interference. The proposed approach of using a UAV platform could potentially reduce the cost of monitoring and surveying pipelines when compared to manned aircraft. The main contributions of this thesis are the development of the image-analysis algorithms, the overall system architecture and validation of in hardware based on scaled down Test environment. To evaluate the performance of the system, the algorithms were coded using Python programming language. A small-scale test-rig of the pipeline structure, as well as expected third-party interference, was setup to simulate the operational environment and capture/record data for the algorithm testing and validation. The pipeline endpoints are identified by transforming the 16-bits depth data of the explored environment into 3D point clouds world coordinates. Then, using the Random Sample Consensus (RANSAC) approach, the foreground and background are separated based on the transformed 3D point cloud to extract the plane that corresponds to the ground. Simultaneously, the boundaries of the explored environment are detected based on the 16-bit depth data using a canny detector. Following that, these boundaries were filtered out, after being transformed into a 3D point cloud, based on the real height of the pipeline for fast and accurate measurements using a Euclidean distance of each boundary point, relative to the plane of the ground extracted previously. The filtered boundaries were used to detect the straight lines of the object boundary (Hough lines), once transformed into 16-bit depth data, using a Hough transform method. The pipeline is verified by estimating a centre line segment, using a 3D point cloud of each pair of the Hough line segments, (transformed into 3D). Then, the corresponding linearity of the pipeline points cloud is filtered within the width of the pipeline using Euclidean distance in the foreground point cloud. Then, the segment length of the detected centre line is enhanced to match the exact pipeline segment by extending it along the filtered point cloud of the pipeline. The third-party interference is detected based on four parameters, namely: foreground depth data; pipeline depth data; pipeline endpoints location in the 3D point cloud; and Right-of-Way distance. The techniques include detection, classification, and localization algorithms. Finally, a waypoints-based navigation system was implemented for the air- vehicle to fly over the course waypoints that were generated online by a heading angle demand to follow the pipeline structure in real-time based on the online identification of the pipeline endpoints relative to a camera frame

    2018 Faculty Excellence Showcase, AFIT Graduate School of Engineering & Management

    Get PDF
    Excerpt: As an academic institution, we strive to meet and exceed the expectations for graduate programs and laud our values and contributions to the academic community. At the same time, we must recognize, appreciate, and promote the unique non-academic values and accomplishments that our faculty team brings to the national defense, which is a priority of the Federal Government. In this respect, through our diverse and multi-faceted contributions, our faculty, as a whole, excel, not only along the metrics of civilian academic expectations, but also along the metrics of military requirements, and national priorities

    Drones and Geographical Information Technologies in Agroecology and Organic Farming

    Get PDF
    Although organic farming and agroecology are normally not associated with the use of new technologies, it’s rapid growth, new technologies are being adopted to mitigate environmental impacts of intensive production implemented with external material and energy inputs. GPS, satellite images, GIS, drones, help conventional farming in precision supply of water, pesticides, fertilizers. Prescription maps define the right place and moment for interventions of machinery fleets. Yield goal remains the key objective, integrating a more efficient use or resources toward an economic-environmental sustainability. Technological smart farming allows extractive agriculture entering the sustainability era. Societies that practice agroecology through the development of human-environmental co-evolutionary systems represent a solid model of sustainability. These systems are characterized by high-quality agroecosystems and landscapes, social inclusion, and viable economies. This book explores the challenges posed by the new geographic information technologies in agroecology and organic farming. It discusses the differences among technology-laden conventional farming systems and the role of technologies in strengthening the potential of agroecology. The first part reviews the new tools offered by geographic information technologies to farmers and people. The second part provides case studies of most promising application of technologies in organic farming and agroecology: the diffusion of hyperspectral imagery, the role of positioning systems, the integration of drones with satellite imagery. The third part of the book, explores the role of agroecology using a multiscale approach from the farm to the landscape level. This section explores the potential of Geodesign in promoting alliances between farmers and people, and strengthening food networks, whether through proximity urban farming or asserting land rights in remote areas in the spirit of agroecological transition. The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons 4.0 license

    Hyperspectral, thermal and LiDAR remote sensing for red band needle blight detection in pine plantation forests

    Get PDF
    PhD ThesisClimate change indirectly affects the distribution and abundance of forest insect pests and pathogens, as well as the severity of tree diseases. Red band needle blight is a disease which has a particularly significant economic impact on pine plantation forests worldwide, affecting diameter and height growth. Monitoring its spread and intensity is complicated by the fact that the diseased trees are often only visible from aircraft in the advanced stages of the epidemic. There is therefore a need for a more robust method to map the extent and severity of the disease. This thesis examined the use of a range of remote sensing techniques and instrumentation, including thermography, hyperspectral imaging and laser scanning, for the identification of tree stress symptoms caused by the onset of red band needle blight. Three study plots, located in a plantation forest within the Loch Lomond and the Trossachs National Park that exhibited a range of red band needle blight infection levels, were established and surveyed. Airborne hyperspectral and LiDAR data were acquired for two Lodgepole pine stands, whilst for one Scots pine stand, airborne LiDAR and Unmanned Aerial Vehicle-borne (UAV-borne) thermal imagery were acquired alongside leaf spectroscopic measurements. Analysis of the acquired data demonstrated the potential for the use of thermographic, hyperspectral and LiDAR sensors for detection of red band needle blight-induced changes in pine trees. The three datasets were sensitive to different disease symptoms, i.e. thermography to alterations in transpiration, LiDAR to defoliation, and hyperspectral imagery to changes in leaf biochemical properties. The combination of the sensors could therefore enhance the ability to diagnose the infection.Natural Environment Research Council (NERC) for funding this PhD program (studentship award 1368552) and providing access to specialist equipment through a Field Spectroscopy Facility loan (710.114). I would like to thank NERC Airborne Research Facility for providing airborne data (grant: GB 14-04) that made the PhD a challenge, to say the least. My sincere gratitude goes to the Douglas Bomford Trust for providing additional funds, which allowed for completion of the UAV-borne part of this research

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    C and SM lunar orbital science study, volume 2 Final report

    Get PDF
    Experiment descriptions and cost estimates for CSM lunar orbital science stud

    Air Force Institute of Technology Research Report 2019

    Get PDF
    This Research Report presents the FY19 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    Aeronautics and Space Report of the President - Fiscal Year 2008 Activities

    Get PDF
    The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a "comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year." In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year's report covers activities that took place from October 1, 2007, through September 30, 2008
    • …
    corecore