
 

CRANFIELD UNIVERSITY 

 

 

 

HANI ALQAAN 

 

 

 

AUTOMATIC PIPELINE SURVEILLANCE AIR-VEHICLE 

 

 

SCHOOL OF AEROSPACE, TRANSPORT SYSTEMS & 

MANUFACTURING 

 

 

Doctorate of Philosophy Degree 

 

Supervisor:  Dr. Al Savvaris 

February 2016  



 

 

 



 

CRANFIELD UNIVERSITY 

 

SCHOOL OF AEROSPACE, TRANSPORT SYSTEMS & 

MANUFACTURING 

 

 

Doctorate of Philosophy Degree 

HANI ALQAAN 

 

Automatic Pipeline Surveillance Air-Vehicle 

 

 

Supervisor:  Dr. Al Savvaris 

February 2016 

 

This thesis is submitted in partial fulfilment of the requirements for 

the degree of PhD  

© Cranfield University 2016. All rights reserved. No part of this 

publication may be reproduced without the written permission of the 

copyright owner. 



 

  



i 

 

ABSTRACT 

 

 

 

This thesis presents the developments of a vision-based system for 

aerial pipeline Right-of-Way surveillance using optical/Infrared sensors mounted 

on Unmanned Aerial Vehicles (UAV). The aim of research is to develop a highly 

automated, on-board system for detecting and following the pipelines; while 

simultaneously detecting any third-party interference. The proposed approach 

of using a UAV platform could potentially reduce the cost of monitoring and 

surveying pipelines when compared to manned aircraft. The main contributions 

of this thesis are the development of the image-analysis algorithms, the overall 

system architecture and validation of in hardware based on scaled down Test 

environment. 

To evaluate the performance of the system, the algorithms were coded using 

Python programming language. A small-scale test-rig of the pipeline structure, 

as well as expected third-party interference, was setup to simulate the 

operational environment and capture/record data for the algorithm testing and 

validation.  

The pipeline endpoints are identified by transforming the 16-bits depth data of 

the explored environment into 3D point clouds world coordinates. Then, using 

the Random Sample Consensus (RANSAC) approach, the foreground and 

background are separated based on the transformed 3D point cloud to extract 

the plane that corresponds to the ground. Simultaneously, the boundaries of the 

explored environment are detected based on the 16-bit depth data using a 

canny detector. Following that, these boundaries were filtered out, after being 

transformed into a 3D point cloud, based on the real height of the pipeline for 
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fast and accurate measurements using a Euclidean distance of each boundary 

point, relative to the plane of the ground extracted previously. The filtered 

boundaries were used to detect the straight lines of the object boundary (Hough 

lines), once transformed into 16-bit depth data, using a Hough transform 

method. The pipeline is verified by estimating a centre line segment, using a 3D 

point cloud of each pair of the Hough line segments, (transformed into 3D). 

Then, the corresponding linearity of the pipeline points cloud is filtered within 

the width of the pipeline using Euclidean distance in the foreground point cloud. 

Then, the segment length of the detected centre line is enhanced to match the 

exact pipeline segment by extending it along the filtered point cloud of the 

pipeline. 

The third-party interference is detected based on four parameters, namely: 

foreground depth data; pipeline depth data; pipeline endpoints location in the 

3D point cloud; and Right-of-Way distance. The techniques include detection, 

classification, and localization algorithms.  

Finally, a waypoints-based navigation system was implemented for the air-

vehicle to fly over the course waypoints that were generated online by a 

heading angle demand to follow the pipeline structure in real-time based on the 

online identification of the pipeline endpoints relative to a camera frame.  
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  Chapter 1

Introduction 

 

 

 

1.1 Background 

Maintaining the integrity of oil and gas pipelines, that may run hundreds of 

miles through desolate terrain, is a highly demanding and manpower-intensive 

proposition. An unchecked leak can result in environmental disasters and costly 

disruptions to business. It is in the interest of any company to maintain the value 

of its pipelines and guard them effectively against any damage caused by third- 

parties or any other defects. 

Today, the pipeline corridors are surveyed by regular foot, vehicle patrols or 

using fixed-wing aircraft or helicopters. These patrols prevent developments 

and events, which could place the pipelines, the surroundings of pipelines or 

security of supplies at risk. 

As a result of global progress in high-resolution remote sensing and computer 

vision technology, it is now possible to design a highly automated airborne 

surveying system with remote sensors and context-oriented image processing 

software, to carry out these types of surveillance and monitoring missions. 

The main aim of this project is to develop a vision based low-cost aerial 

technology for monitoring and routine inspections of pipeline’s rights-of-way. 

The technology is envisaged to compose a suite of sensors (for example 

Optical/Infrared, 3D LIDAR). In addition, computer vision techniques integrated 
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onboard the UAV platform, which comprise of; detection and visual tracking of 

the pipeline structure, anomalies detection algorithms and video data relay to 

the ground station. The development of these algorithms is performed in this 

research by designing and programming methods in terms of mathematical, 

physical and statistical functions for acquiring, processing, analysing, and 

understanding the images. 

The developed system is envisaged to provide efficient and continuous support 

to pipeline infrastructures. The technology can be adjusted to the particular 

requirements to define the most suitable cost package depending on fuel, 

communication support, embedded sensors, etc. It is envisaged that the data 

could then be fused with other vital information (for example, internal erosion) 

obtained from other sensors and fed into the operating surveying system to 

define the status of the infrastructure, as well as of the surrounding area (for 

example environmental risks caused by leakages).   

1.2 Project Aim & Objectives 

The main aim of this research is to develop a vision based system for low-

cost aerial technology for surveillance and routine inspections of lengthy 

pipelines and their Rights-of-Way.  

The system includes a suite of remote sensors (such as, Optical/Infrared, 3D 

scanner system) integrated on-board a UAV platform. In addition to that, a 

developed computer vision algorithms for image processing in real-time for 

detection and visual following of the pipeline structure, anomalies detection, and 

video data relay to the ground station, were developed as part of the.  

The key objectives of this project are summarized as follows: 

 Develop a computer vision algorithm to estimate the position of the 

endpoints of the pipeline segments in the frames sequence in near real-

time to automatically keep track/follow the pipeline.  
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 Develop a vision-based pipeline auto tracking algorithm, able to operate 

without GPS, based on the detected pipeline endpoints information in 

real-time. 

 Develop a computer vision algorithm to detect anomalies and third-

party activities in the vicinity of the pipeline structure and relay this 

information to the ground operator for visualisation and analysis. 

 Integrate a video transmission datalink to transmit the data from the 

aerial platform to the Ground Control Station (GCS) with minimum 

latency. 

 Test and validate the developed pipeline surveillance system using a 

scaled-down experimental setup in the laboratory. 

1.3 Contribution to Knowledge 

The contribution to knowledge of the project can be divided into two parts. 

First, the author had to develop the computer vision algorithms for detecting the 

pipeline and the third party interference. This included the testing and 

modifications of several image processing algorithms.  Secondly, once the 

developed algorithms were optimised to run at sufficiently high update rate (i.e. 

near real-time), since this was a key success criteria in the project. They had to 

be integrated with the UAV autopilot system to create the complete aerial 

surveillance and monitoring system. In summary the contribution to knowledge 

can be summarised as follows: 

1. The development of the computer vision approach for implementation on 

an on-board UAV embedded system for pipeline detection. The 

algorithms are able to run at a high update rate (near real-time), thus 

enabling the tracking and following of the pipeline structure by the UAV. 

 

2. The video/images from the UAV platform are transmitted via a datalink to 

the ground control station to detect any third party activities and 
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infringements of the pipeline right-of-way (e.g. by JCBs, trucks etc.). The 

information are then processed on the workstation by the developed 

detection algorithms (using Haar classifier) for alerting the ground 

operator. 

 

3. The pipeline detection algorithms are integrated with the UAV autopilot 

system to enable the UAV aerial platform to follow the pipeline and 

operate autonomously. Therefore, minimising the operator workload.  

1.4 Publication 

Alqaan, H., Mannberg, M. & Savvaris, A., 2012. Automatic Pipeline Detection 

for UAVs, Infotech@ Aerospace 2012, Orange County, USA. 

1.5 Thesis Outline 

This thesis is composed of eight chapters. Chapter One introduces the 

background regarding the project aims, objectives, and the contributions to 

knowledge. Chapter Two presents the literature review carried out covering 

previous and related works. This is followed by Chapter Three, which presents 

the overall concept of monitoring the pipeline's Right-of-Way (ROW) in real-time 

using a depth sensor mounted on a UAV platform. In addition, it explains and 

demonstrates the hardware, communications and the experimental setup of the 

system. Chapter Four describes the computer vision algorithm developed for 

the pipeline segment endpoint identification. Next, Chapter Five presents the 

computer vision algorithm for detecting third-party interference. Chapter Six 

presents the air-vehicle autopilot waypoint navigation system. Then, Chapter 

Seven covers performance results and evaluation of this research. Finally, 

Chapter Eight discusses, confirms, concludes and remarks on the automatic 

pipeline surveillance air-vehicle research carried-out in the project. 
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  Chapter 2

Literature Review 

 

 

 

2.1 Introduction 

This chapter presents the review of related research and work that were 

carried-out in this project as part of the literature review. This review starts with 

an overview of a pipeline’s integrity. Then, moves to the characteristics of the 

existing pipeline infrastructure. Following that, the current systems that have 

already been developed to monitor the pipeline, in general, are discussed. 

Then, the types of suitable aerial platforms that could be employed are 

described. The “second” part of the literature review covers existing computer 

vision techniques and applications. In addition, there is a brief survey of existing 

wireless communications systems and technology. Finally, a brief overview of 

the costs of current monitoring systems is covered at the end of the chapter. 

2.2 Pipeline Integrity Overview 

Hazardous transmission pipeline failures are an occasional occurrence but 

have the potential to cause major risks to population, properties and the 

environment, besides economic costs. During the last decades, pipelines have 

caused fires and explosions that killed more than 200 people and injured more 

than 1,000 people nationwide in the USA (Guadalupe-Blanco River Authority 

(GBRA), 2010). For example, In Dec. 2010, (San Martin Texmelucan, 2010), 

Mexico reported a massive oil pipeline explosion that laid waste to parts of a 

central Mexican city, incinerating people, cars, houses and trees as gushing 



 

6 

 

crude turned streets into flaming rivers. At least 28 people were killed, 13 of 

them children, in a disaster that authorities blamed on oil thieves. Also, on April 

2010, another pipeline ruptured (Anthony, 2012), near Solomon, Kansas, US, 

because of previous excavation damage and about 1,659 barrels of natural 

gasoline were lost. Furthermore, the Saudi petroleum pipeline and export 

network and energy sector, in general (U.S. Energy Information Administration 

(eia), 2010), has been a terrorist target in the past. In February 2006, Saudi 

security prevented an attempted suicide bomb attack on the Abqaiq petroleum 

processing facility, after Al-Qaeda leadership called for renewed attacks against 

the country's economic backbone. So, many companies have recorded many 

incidents throughout their pipeline's route. Their defects are analysed and 

reported quantitatively that were either because of physical or operational 

causes.  

The Pipeline and Hazardous Materials Safety Administration (PHMSA) (Baker, 

2009) reported primary causes of the significant incidents of potentially 

hazardous liquid transmission pipeline with percentages between 1988 to 2008  

as shown in Figure ‎2-1. 

 

Figure ‎2-1: Causes of Significant Pipeline Incidents on Hazardous Liquid 

Transmission Pipelines from 1988-2008 (Baker, 2009) 
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Also, (Palmer et al., 2004) reported the quantities of causes of onshore oil 

pipeline incidents in Western Europe between 1971 and 1995 as shown in 

Table ‎2-1. 

Table ‎2-1: Onshore Oil Pipeline Incidents in Western Europe in 1995 (Hopkins et 

al., 1999) 

Cause Number 
Annual Average 

(1991-95) 
Annual Average 

(1971-95) 

Mechanical Failure 4 5.2 38% 3.5 25% 

Operational 1 1 7% 1 7% 

Corrosion 1 2.6 19% 4.1 30% 

Natural hazard 0 0.4 3% 0.6 4% 

Third-party activity 4 4.2 31% 4.5 33% 

 

According to Table ‎2-1, third-party interference (such as JCBs, gouges, dents, 

and so forth) has been reported at high percentage as a cause of incidents in 

comparison to the other threats in the oil pipeline as well as in the gas pipeline 

as shown in Table ‎2-2. 

Table ‎2-2: Onshore Gas Pipeline Incidents in Western Europe in 1970-1997 

(Hopkins et al., 1999) 

Cause rate 

Hot tap by error 5% 

Ground movement 6% 

Corrosion 15% 

Construction/material defect 18% 

Third-party activity 50% 

Other/unknown 6% 

 

Because of these failures in the transmission pipelines, it is necessary to 

increase attention of public safety, also the direct cost of the failures affecting 
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the pipeline operators, and lessen these risks as much as possible by surveying 

the integrity of these pipelines and their Right-of-Way. Based on these results 

obtained from (Baker, 2009; Hopkins et al., 1999), it is essential to find a 

reliable technique that is capable of improving the integrity of these pipelines by 

early detection of third-party activities, or any leak already occurring in real-time 

and reporting their positions. So, some issues are required to be identified to 

help design such a system, which includes the necessary specifications of main 

pipeline networks (width, length, materials, surrounding environment, and so 

forth) and the possible methods that could be used to survey the pipelines and 

its corridor. 

For pipelines that are deemed dangerous, such as those carrying gas and high-

pressure oil, preventive measures to detect potential threats are more important 

than measures to detect real damages. In actual practice, dangerous pipelines 

are regularly patrolled by specialised personnel, either on foot, by vehicles, or 

even by helicopters. However, this kind of manual checking is laborious, 

economically expensive and is not seen to be efficient or necessarily useful. 

Therefore, there is an increasing necessity for automatic, continuous, and low-

cost pipeline monitoring systems. 

2.3 Pipeline Infrastructure Characteristics 

Initially, some of the pipeline specifications are required to be known to 

design such a surveillance system. Based on the reports carried-out by 

(Canadian Energy Pipeline Association (CEPA), 2010; Hopkins, 2002; U.S. 

Energy Information Administration (eia), 2010), there are many types of 

pipelines utilised to transport oil and gas around the world which are listed 

below:  

i. Flow lines & Gathering Lines – These short distance lines gather variety 

products in an area and move them to process facilities. They are usually 

small diameter from 50 mm (2”) to 305 mm (12”).  
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ii. Feeder Lines - These pipelines move the oil and gas fluids from 

processing facilities, storage, and so forth, to the main transmission lines. 

They can be up to 508 mm (20”) in diameter.  

iii. Transmission Lines – These are the main conduits of oil and gas 

transportation as shown in Figure ‎2-2. They can be very large in 

diameter as, for example, in Russia, where they are around 1422 mm 

(56”) in diameter; or very long, such as in the case in the USA’s liquid 

pipeline system that is over 250,000 km (155,000 miles) in length. Crude 

oil transmission lines carry different types of product, to refineries or 

storage facilities.  

iv. Product Lines - Pipelines carrying refined petroleum products from 

refineries to distribution centres are called product pipelines.  

v. Distribution Lines - These allow local, low-pressure, allocation from a 

transmission system. Distribution lines could have in some cases large 

diameter, but most are under 152 mm (6”) diameter. 

 

Figure ‎2-2: Transmission Pipeline in the Americas (Hopkins, 2002)  

One of the largest transmission pipelines systems in the world is the Trans-

Alaska Pipeline System (TAPS) (Welch, 2010). It was designed and constructed 

to move oil from the North Slope of Alaska to the northern most ice-free port-

Valdez in Alaska as shown in Figure ‎2-3. The pipeline route covers 800 miles 

from Prudhoe Bay to the port of Valdez. It has a 48 inch diameter particular 

cold-weather steel material. Pump stations are located every 50 to 200 miles 

along the pipeline. They contain centrifugal pumps used to maintain movement 
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of oil within the pipeline. Pump station sites, which may cover on area that 

exceed 25 acres, may also include large liquid storage tanks. 

Saudi Aramco operates more than 9,000 miles of petroleum pipelines 

throughout the country based on (U.S. Energy Information Administration (eia), 

2010). Two major pipelines are 745 miles long and are called Petrolane, also 

known as the East-West Pipeline, which runs across Saudi Arabia from its 

Abqaiq complex to the Red Sea, as shown in Figure ‎2-4. The Petrolane system 

consists of two pipelines 56 inch and 48 inch diameter, respectively. Moreover, 

in the Eastern province, the pipeline between Riyadh and Dhahran is about 236 

miles long; and a smaller 220 miles long between Riyadh and Qassim to the 

north. 

 

Figure ‎2-3: Trans-Alaska Pipeline System (TAPS) (Welch, 2010) 
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Figure ‎2-4: Oil and Gas Pipeline Infrastructure - the Middle East (U.S. Energy 

Information Administration (eia), 2010) 

Examples of the type of environments where pipeline infrastructure is built/pass 

through are illustrated in Figure ‎2-5. As shown, the environments are so 

diverse, ranging from arid terrains, forest to all year snow-covered areas. 

 

Figure ‎2-5: Environments of pipeline infrastructure, Ref: Image collection was 

produced from reference (Oil & Gas Pipeline, 2011) 
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2.4 Pipeline Monitoring Systems  

Several Systems are currently available or under development for observing 

and reporting third-party interference and activity in the vicinity of the pipeline. 

Some of them were already reviewed by (Burkhardt and Crouch, 2003), or 

reporting leaks from pipes as in (Murvay and Silea, 2012). These methods are 

classified in this review into aerial or built-on/in monitoring systems, within 

pipeline or Right-of-Way infrastructures. 

2.4.1 Built-On/In Monitoring Systems 

The built-on/in surveillance systems are technologies utilized for ground 

surveys of pipelines integrity, which are performed inside the pipeline or on its 

surface or its district. These methods include fiber optic (Huang et al., 2007), 

evanescent sensing (Culshaw and Dakin, 1996), acoustic sensing (Jin and 

Eydgahi, 2008; Park et al., 2007), Cathodic Protection (CP) (Joseph and 

Winslow, 1982), Impressed Alternating Cycle Current (IACC) (Anupama et al., 

2014), flow monitoring (Murvay and Silea, 2012), and Software based dynamic 

modelling (Murvay and Silea, 2012). 

The fibre optic system is typically utilized to generate a broadband acoustic 

signal to detect leaks or third-party intrusion. This acoustic pressure will induce 

an optical phase signal in the parallel optical fibre fixed on the surface of the 

pipes. The system can detect and locate several leaks or intrusions along the 

pipeline at the same time. On the other hand, this technology requires particular 

and complicated installation to enhance sensitivity in the pipeline (leak) and the 

Right-of-Way (intrusions). 

The evanescent sensing is a kind of on-pipe monitoring system. It is an optical 

fibre buried along with the pipe to sense and monitor the local changes of 

pressure or concentration using lasers and optical detectors. Once natural gas 

leaks, the local pressure or density of the gas will change, which leads to 

change in the transmission characteristics of the optical fibre.  
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Acoustic or sonic monitoring system is a non-destructive method, which 

typically analyses pressure measurements throughout the pipeline. If there is a 

region at which a noise is generated, it indicates a leak. The technology could 

detect the location of any leak as well as third-party activities. However, to 

monitor long pipelines, many sensors need to be installed. One downside of this 

technology is that it has high false alarm rates when detecting small leaks. 

Cathodic Protection (CP) monitoring system can be used for detection of 

corrosion, leaks, and third-party contacts. This technology works by measuring 

the variation in the current paths of cathodic protection once any interference is 

made. The detection range is short; and again it has a high false detection due 

to breaches in pipe coating and the influence from 60 Hz (and harmonics) 

signals from other sources. 

The IACC technology consists of impressing electrical signals on the pipe by 

generating a time-varying voltage between the pipe and the soil at alternate 

locations where pipeline access is available. It has the same advantages and 

disadvantages of the CP method. 

Flow monitoring devices measure the rate of change of pressure or the mass 

flow at different sections of the pipeline. If the rate of change of pressure or the 

mass flow at two locations in the pipe differs significantly, it could indicate a 

potential leak. The major advantages of the system include the small cost of the 

system as well as non-interference with the operation of the pipeline. The two 

disadvantages of the system include the inability to pinpoint the leak location, 

and the high rate of false alarms. 

Software based dynamic modelling monitors various flow parameters at 

different locations along the pipeline for leak detection. These flow parameters 

are then included in the model to determine the presence of natural gas leaks in 

the pipeline. The major advantages of the system include its ability to monitor 

continuously, and also the non-interference with pipeline operations. However, 
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dynamic modelling methods have a high rate of false alarms and are expensive 

for monitoring an extensive network of pipes. 

In general, the built-on/in systems are very effective in terms of, cost and effort 

for installation and maintenance and have difficulties in dealing with ageing and 

long pipelines and complex terrains. 

2.4.2 Aerial Monitoring Systems 

The aerial monitoring systems are a remote sensing technique that can 

automatically provide a real-time surveillance of pipelines and Right-of-Way at a 

distance; delivering optical, acoustical, or microwave information. These 

technologies have been widely used in the aerial surveillance field for over a 

decade now. As quoted by (Fung et al., 1998), the National Energy Board and 

the gas pipeline industry concluded, after several studies, that current remote 

sensing technologies have the potential to be applied to pipeline Right-of-Way 

monitoring. A project was launched to identify where the use of remote sensing 

may provide cost-effective solutions and reduce the current amount of ground 

surveys. However, some key elements are required to develop and build an 

aerial monitoring system, which include: 

 Sensors (Hardware); 

 Platform to carry the payload and perform the mission (Hardware); 

 Data processing (Hardware & software); 

 Communication technology for data rely (Hardware & software). 

The remote sensing techniques are classified, based on the sensor used, into 

passive or active (Schowengerdt, 2006). The active sensor uses its energy 

source to illuminate the target and measure the reflected radiation. For leak 

detection, the active sensor illuminates the area around the pipeline with a laser 

or a broadband source. Monitoring the absorption or scattering that are caused 

due to the presence of substance molecules around the surface can be 

performed using a set of sensors operating at specific wavelengths. If there is a 
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notable absorption or scattering around the pipeline, then a leak could 

potentially exist. In recent years, many active monitoring systems have been 

developed to detect leaks from pipelines; these include, Tunable Diode Laser 

Absorption Spectroscopy (TDLAS) (Zhang et al., 2009), Laser Induced 

Fluorescence (LIF) (McStay et al., 2007), Coherent Anti-Raman Spectroscopy 

(CARS) (Eckbreth, 1977), and Fourier Transform Infrared Spectroscopy (FTIR) 

(Mahamuni and Adewuyi, 2009), diode laser absorption (Iseki et al., 2000), 

millimeter Wave (mmW) Radar systems (Gopalsami and Raptis, 2001), 

backscatter imaging (McRae and Kulp, 1993; Spoonhower et al., 2006), 

broadband absorption (Spaeth and O’Brien, 2003), and LIDAR systems 

(Owechko et al., 2010; Prasad and Geiger, 1996; Roper and Dutta, 2005; Tao 

and Hu, 2002). 

Diode laser absorption uses the same technology as LIDAR with the crucial 

difference being that diode lasers are used instead of the more expensive 

pulsed lasers. However, one downside is that if only a single wavelength is 

used, the system can be prone to false alarms since the laser can be absorbed 

equally well by dust particles.  

Broadband absorption systems utilize low-cost lamps as the source; thus, 

significantly reducing the cost of the active system. Monitoring is conducted at 

multiple wavelengths, so that the system is less prone to false alarms.  

Millimeter wave radar systems have been used to detect the chemicals used in 

the pipeline leak detection system itself. It measures the variation of scattering 

properties of the radioactive substance leaks around the pipeline, which could 

potentially indicate a leak.  

Backscatter imaging utilizes a carbon-dioxide laser to illuminate the area above 

the pipeline. They are mainly used in natural gas pipelines, since the gas 

scatters the laser light very strongly. This scattered signature is imaged using 

an infrared imager or an infrared detector in conjunction with a scanner.  
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LIDAR systems typically employ a pulsed laser as the illuminating source. It 

measures the molecules’ energy absorption at specific wavelengths in the 

electromagnetic spectrum.  

All the active systems described previously use a source and obtain either 

transmitted or scattered images to determine the presence of a leak. These 

systems can be mounted on moving vehicles, air-vehicle or on-location. The 

advantages of these systems include the capability to monitor over an extended 

range. Furthermore, the ability to monitor third-party interference or leaks even 

if there are no differences in temperature between the liquid and the 

surroundings. Also, under specific conditions, these techniques have a high 

spatial resolution and sensitivity. However, these systems still have high, false 

rate alarms. 

Passive monitoring systems are similar to active ones in many aspects. 

However, the major difference between active and passive techniques is that 

passive techniques do not require a source. Either the radiation emitted by the 

natural gas or the background radiation serves as the source. It makes passive 

systems less expensive in some respects. However, since a strong radiation 

source is not used, far more expensive detectors and imagers have to be used 

with passive systems. 

The two major types of passive systems used for monitoring leaks from natural 

gas pipelines are thermal imaging (Kulp, 1997; Weil, 1993) and multi-

wavelength imaging (Althouse and Chang, 1995; Bennett et al., 1996; Marinelli 

and Green, 1996; Smith and Laubscher, 1999).  

Thermal imaging detects natural gas leaks from pipelines due to the differences 

in temperature between the natural gas and the immediate surroundings. This 

method can be used in moving vehicles, helicopters or portable systems and 

can cover several miles or hundreds of miles of pipeline per day. Usually, 

expensive thermal imagers are required to pick up the small temperature 

differential between the leaking natural gas and the surroundings. Also, thermal 
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imaging will not be effective if the temperature of the natural gas is not different 

from that of the surroundings. 

Multi-wavelength or hyperspectral imaging can be accomplished either in 

absorption mode or emission mode. For obtaining gas concentrations utilizing 

multi-wavelength emission, the gas temperatures have to be much higher than 

the surrounding air. Multi-wavelength emission measurements have been 

typically used in the past to obtain single point concentrations in hot combustion 

products (Sivathanu and Gore, 1991; Sivathanu et al., 1991). 

Multi-wavelength absorption imaging utilizes the absorption of background 

radiation at multiple wavelengths to directly image the gas concentration, even 

in the absence of temperature gradients between the gas and the surrounding 

air. This technique has been used to monitor natural gas leaks in industrial 

settings very successfully. The advantage of employing multi-wavelength 

passive systems is that they are relatively immune to false alarms, and can be 

utilized for remote monitoring without being constantly watched over. The only 

drawback, however, of multi-wavelength or hyperspectral imaging is that it 

typically utilizes very sensitive sensors which are expensive. 

The proposed approach in this project is similar to the use of an imagery 

system, such as the Light Detection And Ranging (LIDAR) system. A 

commercial manned air-vehicle monitoring pipeline Right-of-Way could need 

relatively minimum modifications for the installation of such a system on the 

aircraft. On operation, it could reveal any JCBs, trucks or other earth-moving 

equipment in the vicinity of the pipeline (Fung et al., 1998; Randell, 2010). The 

advantage of the proposed system is that it can detect the pipeline structure 

and Right-of-Way in real-time, provide the location of defects due to a third-

party and reduce the amount of data transmission, i.e. required bandwidth. 

Thereafter, it can use computer vision techniques to detect and classify any 

object in the pipeline surrounding environment. The other advantage of this 

technology (Shaochuang et al., 1999), is that it has an active laser pulse that is 

not influenced by the shadow angle of the sun which, in turn, reduces their 
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influence on data acquisition. Moreover, when compared with Photogrammetry, 

it avoids loss of information when transformed from 3D to 2D, has an accurate 

elevation; has multi-beam echo acquisition to get high-density data, is suitable 

for a high level of automation, and has real-time capability to produce a digital 

elevation model (DEM). 

To emulate the LIDAR system, the sensor proposed to be used in this project is 

“ASUS Xtion Pro Live”. It uses a projected, structured light pattern to estimate 

the depth from the sensor to the view of the environment. The depth sensor is 

proposed to optimize the description of objects based on elevation contrast. 

2.5 Aerial Platforms 

One of the main, aerial monitoring elements is the platform itself that will 

bear the sensor instruments. Figure ‎2-6, shows some common platforms used 

for aerial monitoring, for example, air-vehicle, balloons, satellites, spacecraft, 

probes, rovers, launch air-vehicles, etc. (NASA tutorial on remote sensing, 

2011)  

 

Figure ‎2-6: Common remote sensing platforms (NASA tutorial on remote sensing, 

2011) 
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Nowadays, the Unmanned Aerial Air-vehicle (UAV) is an emerging technology 

being adapted for use in a wide range of applications in the field of remote 

sensing, and monitoring. The UAV can be remotely operated or, for more 

complicated and expensive systems, fly autonomously based on pre-

programmed flight paths (Witayangkurn et al., 2011). This type of dull and 

repetitive mission makes UAVs an attractive solution for monitoring the length of 

pipeline routes and detecting any threats or leaks around it.  

According to (Zongjian, 2008), the limitation of using satellites is due mainly to 

the high launch/flight costs, slow and weather-dependent data collection, 

restricted manoeuvrability, limited availability, flying time, and lower ground 

resolution. On the other hand, the UAV could operate relatively close to the 

pipeline, which in turn means it needs to use less expensive sensors to achieve 

the same high-resolution image as a satellite system. Also, it could provide real-

time information and can cover the rights-of-way of a large segment of the 

pipeline quickly and efficiently (for example, when compared to foot patrols) 

(Roper and Dutta, 2006).  

Following the recent San Bruno disaster, caused by a leaking gas pipeline, 

Mundus Group, a company that specializes in unmanned aerial air-vehicles 

(UAVs), suggested equipping UAVs with detector instrumentation to provide 

remote sensing of potentially leaking gas infrastructure in the US (The Business 

of Photonics, 2010). 

 

Figure ‎2-7: [Left] Breguet-Richet Gyroplane No.1, 1907 [Right] Quadrotor (Devaud 

et al., 2012) 
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A quadrotor UAV platform will be used in the project to carry-out the tests. 

Recently, Many platforms such as this have been developed and built to 

achieve indoor/outdoor for search and rescue, or surveillance missions as 

shown in Figure ‎2-7 (Devaud et al., 2012; Gupte et al., 2012). The first 

quadrotor in history was designed by Louis Breguet in 1908 (Young, 1982) as 

shown on the left in Figure ‎2-7. This type of platform has the capability to follow 

a trajectory or waypoints of pipeline position, while ensuring stability, performing 

automatic vertical take-offs and landings, as well as hovering above identified, 

moving or stationary targets, such as threats around the pipeline or any other 

failure. The increased level of UAV autonomy will reduce the human operator’s 

workload and increase the mission performance as shown in Figure ‎2-8. 

 

Figure ‎2-8: Unmanned Air-Vehicles (UAVs) autonomy level 

2.6 Computer Vision Techniques 

Many security and surveillance systems, that have already been developed 

and built, rely on the use of computer vision algorithms. Using image processing 

and analysis techniques, these monitoring applications automatically and 

remotely generate intelligent and useful descriptions of the monitoring 

environment (Koo et al., 2012; Nagai et al., 2009; Piciarelli et al., 2013). The 

descriptions in the computer vision field are interpreted based on features, 

boundaries, regions, and 3D models. Each technique is proposed based on the 

required description. However, in this project, four interpretations are needed to 
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achieve this goal, namely: extraction and tracking of the pipeline structure, third-

party interference identification near the pipeline route, and leak detection.    

2.6.1 Pipeline Detection & Tracking 

In the open literature, work of several researchers and research centres 

focusing on the development of automatic target detection using computer 

vision for UAVs, can be found. For autonomous control purposes, several of the 

proposed methods are based on GPS (Dillman, 2002; Hasan et al., 2009; Low 

and Wang, 2008), vision (Dobrokhodov and Kaminer, 2006; Frew et al., 2004; 

Mondragón and Campoy, 2010; Mondragon et al., 2007; Rathinam et al., 2005), 

Digital Elevation Map (DEM) (Collins et al., 1998; Kanade et al., 2004; Nagai et 

al., 2009; Navarro-Serment, 2010), and a fusion of data (Du and Teng, 2007; 

Sohn et al., 2008). It is known that the GPS estimates the target position in the 

global frame while the other approaches estimate the position locally; therefore, 

some of the proposed approaches can follow the target objects locally as 

waypoints, landmarks or paths/trajectories. 

In this project, the target required to be tracked is the pipeline, so in the 

computer vision field tracking the pipeline needs to be described first then its 

position can be localised. Due to the nature of the pipelines, the robust 

description that could be used as an indicator of pipeline structure is the linear 

segment. A number of vision-based techniques have been developed to extract 

this feature, such as combining the points of edges into lines (Cook and Delp, 

1998; Nevatia and Ramesh Babu, 1980), Hough Transform (HT) (Agrawal et al., 

1996; Antolovic, 2008; Gonzalez and Woods, 2003; Illingworth and Kittler, 

1988), Random Sample Consensus (RANSAC) (Behrens et al., 2003; Nistér, 

2005), vanishing point (Rathinam et al., 2008; Schindler et al., 2006; Tsai, 

Chang and Chen, 2006; Wang et al., 2004), learning algorithm (Rathinam et al., 

2005), spline model (Wang et al., 2000).  

Detecting pipelines by linking edge points can be achieved by determining 

positions and orientations of these points, then approximate the pipeline by 
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piecewise linear segments. However, it is a weak method to detect pipelines 

with the line because sometimes it is difficult to differentiate in colour. 

Hough Transforms (HT) is one of the robust methods for finding the pipeline 

structure in an image. Once the feature points in the image space are detected, 

converting them into parameter space by using Hough transform can be done 

using the approach as shown in Figure ‎2-9. Then, the peak point in parameter 

space is evidence that there might be a line passing through that point that can 

be tuned by a number of points threshold.   
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Figure ‎2-9:  [Left]: Image Space, [Right]: Parameter space or Hough space 

(Antolovic, 2008) 

RANSAC is a voting algorithm that uses the minimum number observations 

(data points) required to estimate the underlying model parameters (Fischler 

and Bolles, 1981). It works by selecting a random sample of the minimum 

required size to fit the pipeline model, then it computes a putative pipeline 

model from the sample set. Following that, it detects the set of inliers to this 

pipeline model of the whole data set and loops the same process until a model 

with the most inliers over all samples is found. It is robust method for detecting 

pipelines. However, computational time grows quickly with a fraction of outliers 

and the number of parameters; moreover, it is not suitable for detecting multiple 

inlier structures. 
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The vanishing point is the candidate point based on the probability of at least 

two perspective projections of intersected line segments which are, in 3D, 

mutually parallel. The advantage of this approach is that it accurately detects 

the 3D linear structure. However, it is computationally complex and intensive.  

Learning algorithms could be used to detect the pipeline using off-line modelling 

a cross-section profile of the pipeline at one raw of pixels and detect it by using 

the profile matching algorithm in real time. However, the algorithm fails with 

noisy boundaries of pipelines which is an issue considering that pipelines are 

built/found in different environments and terrains. 

Spline modelling describes the prospective effect of parallel line boundaries of 

the pipeline by modelling piecewise polynomials of degree n with function 

values and the first n-1 derivatives that agree at the points where they join. 

Although it can detect pipeline structure, it cannot describe it in the case of any 

noise or broken boundaries line points; and, it also needs extra computations.  

As a result, the proposed approach for this project to describe the pipeline 

structure as a combination of Hough transforms and RANSAC algorithms. 

These methods are robust and require lower computation than the others. The 

Hough transforms are used to describe the boundaries of the pipeline and 

RANSAC to emphasize that the boundaries are modelling the pipeline structure.   

2.6.2 Third-Party Interference Monitoring  

One of the main monitoring tasks is the detection and warning of any third-

party, interference activities near the pipeline route in real-time. Since many 

sources of intrusions that potentially exist in the vicinity of the pipeline which 

include personnels, cars, trucks, and so forth, the proposed sensing technique 

is based on optical/point cloud data since the point cloud was already used in 

detecting the pipeline in the previous step. However, based on the point cloud 

data, there is different computer vision algorithms, can be used in this project to 
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determine the regions of interest, then analyse the synchronized optical data at 

that region to detect the targets such as third-parties interference.  

Many algorithms have been developed to reconstruct a 3D point cloud model 

for segment regions of interest such as 3D region growing (Jarząbek-Rychard 

et al., 2010; Revol-Muller and Peyrin, 2000), 3D Hough transform (Borrmann et 

al., 2011; Tarsha-Kurdi, 2007), 3D recognizing structure (Vosselman and Gorte, 

2004), and 3D RANSAC (Behrens et al., 2003; Huang et al., 2011; Kanade et 

al., 2004; Nagai et al., 2009; Rathinam et al., 2005). 

A 3D, region growing, segmentation algorithm works on the principle of merging 

all neighbouring pixels to satisfy a homogeneity criterion starting from an initial 

set of seeds. The first process in an automated system is the unsupervised 

location of the seeds which is based on prior-knowledge of anatomical 

structures, such as humans, cars, trucks, and so forth; and their typical tracer 

uptake. The outcome of this data is taken into account to calculate certain 

parameters required for locating the seeds. This method is suitable to fit the 

high variability of the tracer uptake. Since both local and global parameters are 

taken into account in the merging process, this type of algorithms are 

competationally demanding.  

The 3D Hough transform algorithm is often used to segment the 3D models of 

objects in point cloud sets. It is achieved by detecting the parameters of straight 

line segments, circular or elliptical cross sections that are subsequently tracked 

through the 3D point cloud. It maps the input sets of point cloud into zero-

dimensional point sets in parameter space whose maxima represent object 

candidates. This approach is robust for 3D-dimensional parametric object 

detection. For a relatively large number of parameters it leads to extra space 

and time complexity. 

A 3D recognizing structure algorithm has been used for object segmentation 

based on point cloud sets. This approach requires a predefined structure cue in 

the 3D point cloud set that is indicative of the object categories present in the 
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scene. Data training is then carried-out to match those cues for semantic 

segmentation. 

A 3D RANSAC algorithm has been used to detect basic shapes in random point 

clouds. The algorithm decomposes the point cloud into an inliers specific 

structure of inherent shapes and outliers random residual points. Each detected 

inliers point serves as a representation of a set of corresponding points of the 

object shape. However, this algorithm is robust even in the presence of many 

outliers’ points and in the presence of a high degree of noise. Moreover, this 

approach has lower computational load, compared to the other methods 

discussed previously. 

Hence for this project, the proposed method to segment objects in the vicinity of 

pipeline routes will be based on RANSAC. It scales well to the size of the input 

point cloud, the number and size of the shapes within the data. Point sets with 

large samples are robustly decomposed within a reasonable computational 

time. Moreover, the algorithm is conceptually simple and easy to implement. 

Application areas include measurement of physical parameters, scan 

registration, surface compression, hybrid rendering, shape classification, 

meshing, simplification, approximation and reverse engineering. 

Since it is difficult to classify the third-party activities using only point cloud data, 

the combination with optical data is proposed in this project. In computer vision 

there is a variety of algorithms, which have been proposed that are capable of 

assigning the segmented targets from the derived inliers reconstructed 3D 

models, using the alignment optical image data to obtain the desired category in 

order to consume the processing time and reduce the resulting classes. These 

supervised Machine Learning algorithms deal with single pixels or group of 

pixels in a segmented area. They include parallelepiped classifier (Rahman and 

Afroz, 2013), maximum likelihood classifier (Abkar et al., 2000), decision tree 

classifier (Pal and Mather, 2001), minimum distance classifier (Haala and 

Brenner, 1999; Wacker and Landgrebe, 1972), and multiple trained cascaded 

Haar classifier (Breckon and Barnes, 2009; Gaszczak et al., 2011).  
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The parallelepiped classifier is one of the most commonly used supervised 

classification algorithms for multispectral images, where the threshold of each 

class is defined in the training data to determine whether a given pixel is within 

the class or not (as shown in Figure ‎2-10). The interest region for each category 

is defined by a minimum and maximum pixel value on each axis of the 

segmented region. The accuracy of the classification depends on the selection 

of the minimum and maximum pixel values in lieu of the population statistics of 

each class. In this respect, it is very important that the distribution of the 

population of each category is well understood. This classifier is simple and 

easy to run having to make fewer assumptions regarding the character classes. 

In addition, the processing time will be minimum when compared to other 

classifiers. However, the accuracy will be low, especially when the distribution in 

feature space has covariance or dependency with oblique axes while the 

parallelepipeds are rectangular, which leads the classes to overlapping.  

 

Figure ‎2-10: Semantic concept of parallel piped classifying in 3D feature space 

(Rahman and Afroz, 2013) 

The decision tree classifier is a multistage based classifier that compares the 

data with a range of properly selected features to break up a complex decision 

into simpler decisions. The selection of features is determined by an 

assessment of the spectral distributions of separability of the classes. The 
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procedure of this method, in general, involves the following steps: first splitting 

nodes, then determining which nodes are terminal; finally class labels are 

assigned to those terminal nodes based on a majority vote when it is assumed 

that certain categories are more likely than others. This classifier requires lower 

computing time than the other classifiers and, by comparison, the statistical 

errors are avoided. However, the accuracy depends completely on the design of 

the decision tree and the selected features. 

The minimum distance classifier is used to classify new image data to classes 

that minimize the distance between the image data and the class in multi-

feature space as shown in Figure ‎2-11. The distance is defined as an index of 

similarity so that the minimum distance is identical to the maximum similarity. 

The distances which are often used in this method include Euclidian distance 

when the variance of the population classes is different to each other; 

Normalized Euclidian distance when there is a difference in variance; and 

Mahalanobis distance when there is a correlation between axes in feature 

space. 

 

Figure ‎2-11:  Concept of minimum distance classifier (Rahman and Afroz, 2013) 

The maximum likelihood classifier is another popular method of classification in 

computer vision and remote sensing. It is based on a statistical decision 

criterion to assist in the classification of overlapping signatures where a pixel 

with the maximum likelihood is classified into the corresponding class of highest 

probability. When the variance-covariance matrix is symmetric, the likelihood is 
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the same as the Euclidian distance, while the determinants are equal to each 

other; the likelihood becomes the same as the Mahalanobis distances. The 

maximum likelihood method has the advantage of being more accurate 

methods, however, at the expense of extra computation processing time. 

The multiple trained cascaded Haar classifier algorithms have been used in 

object detection and recognition applications. This classifier was originally 

developed for face detection, however, it is not restricted to just detecting faces. 

Therefore, as described by (Bradski and Kaehler, 2008), it can be used to 

classify any moving or stationary object that is typically rigid and has blocky 

features that make it distinct. Based on the work published by (Monteiro et al., 

2006) to detect pedestrians, it proves that this classifier is a robust and rapid 

approach for object detection. It forms a copulative set of weak classifiers into a 

strong classifier. Each weak classifier uses rectangular areas, called Haar-like 

features as shown in Figure ‎2-12, to compare with the trained features of the 

desired object in a given orientation in the image. The Haar feature values are 

computed as the sum of differences between differing rectangular sub-regions 

at a localized scale which, although limited in scope as individual features, can 

be computed extremely efficiently. Individually, they are weak discriminative 

classifiers, but when combined as a conjunctive cascade, a powerful 

discriminative classifier can be constructed, capable of recognizing common 

structures over varying illumination, base colour and scale.  

 

Figure ‎2-12:  Types of Haar-like features (Viola and Jones, 2004) 

The classifier is trained using a set of a few hundred positive and negative 

objects training images (separate set of positives and another for the 
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negatives). The use of boosting techniques then facilitates classifier training to 

select a maximal discriminant subset of these Haar-like features, from the 

exhaustive and over the complete set, to act as a multi-stage cascade. In this 

way, the final cascaded Haar classifier consists of several key simpler (weak) 

classifiers that all forms a stage in the resultant complex (strong) classifier. 

These simpler classifiers are essentially degenerative decision-tree classifiers 

that take the Haar-like feature responses as input to the weak classifiers and 

return a Boolean pass/reject response. A given region within the image must 

then achieve a pass response from all of the weak classifiers in the cascade to 

be successfully classified as an instance of the object that the strong overall 

classifier has been trained upon. The classifier is then evaluated over a query 

image at multiple scales and multiple positions using a search window 

approach. Despite this apparent exhaustive search element of the classifier, the 

nature of the cascade (sorted in order of most discriminating features) allows 

earlier rejection of the majority of such windows with a minimal evaluator (and 

hence computational) requirement. In this way, the Haar cascade classifier thus 

successively combines more complex classifiers in a cascade structure which 

eliminates negative regions, as early as possible, during detection but focuses 

attention on promising regions of the image. This detection strategy dramatically 

increases the speed of the detector, provides an underlying robustness to 

changes in scale and maintains achievable real-time performance. Moreover, it 

is capable of detecting both static and moving objects within the scene. 

The algorithm that is proposed in this project to identify and recognize third-

party interference is Haar classifier. Where each one classifies specifically 

trained object features of the known third-party activities at different categories 

of orientations and then uses a matching algorithm in the test image. 

2.6.3 Oil Leak Monitoring  

Another important factor that could help with increasing the integrity of the 

pipeline route is a vision based real-time, oil leak detection system. Leaks, 

which may be caused by any defects on the pipeline, can be detected using 
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RGB imaging. The leak is detected as a slick of petroleum around the pipeline. 

In the optical image scene, the visual descriptions of this oil slick could be 

identified, in general, by using a surface texture or feature colour variation. 

However, these may benefit from other cues such as shape or time coherence.  

The surface texture is defined by three characteristics of surface roughness, 

waviness, and form. It could be used to describe the surface properties of an oil 

slick. Many applications have been developed to describe the surface texture in 

computer vision. They include road texture (Paquis et al., 2000), human skin 

texture (Fiedler et al., 1995; Kenet et al., 1998), fabric texture (Kumar, 2008), 

and composite material texture (Chen et al., 2011).  

Colour variation is based on the wavelength variance of the reflected, emitted, 

or transmitted light. This information could be used efficiently to extract the oil 

slick from the surrounding pipeline. In computer vision objects can be identified 

by using colour variation analysis, which is much faster than using texture 

analysis. Again in the literature, different applications can be found that 

addresses how to extract the objects based on the colour variation; such as 

roads (He et al., 2004), human skin (Hjelmås and Low, 2001; Kovac et al., 

2003), and fires (Ahuja, 2004).  

In this project, the same approach of classification of the colour variation to 

extract the oil slick around the pipeline is proposed.  

2.7 Wireless Communications 

Today, wireless communication has become the most popular method for data 

and information exchange technology. It provides a real-time data transmission 

over a distance without the need to use any wires or cables. The data from the 

platform is received at the ground control station in near real-time. Recently, 

many standard Wi-Fi technologies have been developed (Toshihiro, 2010) to 

transmit and receive the data wirelessly using different standards such as IEEE 

802.11b, IEEE 802.11g, and IEEE 802.11a.  
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Some factors were taken into account in this project when it came to selecting 

the most efficient Wi-Fi method. These include coverage range, transmission 

speed, and power consumption to trade-off between them. As shown in 

Figure ‎2-13, the coverage ranges vary from 50 to 150 meters. The rate of data 

transmitted (bandwidth efficiency) range is from 1.6 Mbps to 54 Mbps.  

The proposed Wi-Fi method in this project is IEEE 802.11g. This method is an 

extension to IEEE 802.11b. It transmits the data at 54Mbps and covers up to 

150 meters within 2.4 GHz. It has lower power consumption than the other, and 

the devices are physically smaller. It is also worth mentioning that, it is cheaper 

than the other options. 

 

Figure ‎2-13: Directions of wireless technologies (Toshihiro, 2010) 

2.8 Pipeline Monitoring Costs 

The cost-benefit examples are considered based on the Gasunie pipeline 

system (Palmer, 2002). The study, which was sponsored by seven companies, 

shows that using satellites for surveillance costs approximately 3.5 times as 

much as using helicopters (manned air-vehicle), for obtaining the same benefit, 

as shown in Table ‎2-3. 
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Table ‎2-3: A summary of cost-benefit comparison result (Palmer, 2002) 

 Satellite Helicopter 

Frequency of survey (days) 14 14 

Basic cost per km ($) 16 3.5 

Fraction of activities detected 0.41 0.39 

Cost benefit ($) 6,336,221 1,771,411 

 

2.9 Chapter Summary 

This literature review chapter presented a review of related research and 

work found in the open literatures that were carried-out by other researchers 

and institutes. The major cause of defects in the oil and gas pipeline is third-

party interference. The main characteristics of some of the existing pipeline 

infrastructure in the world were outlined and presented, such as configurations, 

dimensions, and diversity of the environments. The existing built-on/in 

monitoring systems are effective in terms of cost and effort of installation and 

maintenance but have difficulties to deal with ageing and long pipelines in 

complex terrains. It may be concluded that the most suitable aerial techniques 

are to be used in this project visual depth and colour information. However, as 

for the type of platform, Unmanned Air-vehicle (UAV) was found to be suitable 

platform that could be used for remote sensing applications, with many benefits 

compared to the other aerial platforms. For following and tracking the pipeline, a 

waypoints navigation technique will be used. 

The technique that was proposed to identify the pipeline endpoints is based on 

vision information, and it is a combination of Hough transforms and RANSAC 

algorithms. As for the proper technique to detect third-party activities Haar 

classifier is proposed. To detect oil leaks, colour variation and classification 

technique is proposed, to extract the oil slicks around the pipeline. Finally, to 

relay the video data from the aerial platform to the GCS, the IEEE 802.11g 

technique is proposed.  
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  Chapter 3

General System Overview and 

Experimental Setup 

 

 

 

3.1 Introduction 

This chapter presents an overview of the vision-based aerial pipeline 

surveillance system structure. This system was proposed based on the 

research requirements and limitations which are also described. In general, the 

architecture of this system includes both the hardware and software 

components. These components are distributed into three parts; namely, the 

aerial platform, Ground Control Station (GCS), and the test-rig. The aerial 

platform is proposed to carry out the hardware components, which also includes 

the embedded systems board to run the software that was developed to carry-

out the surveillance mission. The Ground Control Station (GCS) is also 

proposed to assist in performing the pipeline structure surveillance mission by 

executing part of the image processing algorithm onsite. Finally, the test-rig is 

used to validate the system in real-time running both the pipeline detection and 

monitoring algorithms along with third-party detection and classification. The 

proposed hardware components in each sub-system are described in detail, 

including the specifications and the general layout of these main parts. 
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3.2 System Requirements and Limitations 

The Unmanned Aerial Vehicle (UAV) is proposed to be used as the primary 

aerial platform for monitoring and surveying the pipeline structure in this 

research. However, this platform must be able to perform the following tasks 

along the pipeline Right-of-Way (when it is scaled in the test-rig setup, it is 

assumed to be around 10 m on both sides of the pipeline centreline). 

a) Identifying the endpoints of the pipeline structure, in real-time, based 

on the visual depth information, relative to the depth sensor frame. To 

localize the pipeline segment endpoints, online for the purposes of 

auto tracking and detecting the objects in vicinity of the pipeline. 

b) Tracking the pipeline structure without using a GPS, in real-time, 

based on the localization of the pipeline segment endpoints to keep 

monitoring the route of the pipeline structure. 

c) Detecting the third-party activites within the Right-of-Way of the 

pipeline route, in real-time, based on the localization of the pipeline 

segment endpoints to monitor the pipeline structure from any threat in 

the vicinity. 

d) Relaying the data into the ground station in near real-time to alert the 

ground operator of any issues/third-party interference. 

3.2.1 The Operational Requirements 

The operational requirements of the system are listed below: 

1) Feature identification and detection should be at sensitivity and 

specificity rates of at least 75%.  

2) Feature identification and detection should have false negative and 

false positive rates of no more than 25%.  

3) Localization accuracy of the features should be within a few meters at 

full scale.  

4) 10 m data coverage is required at each side of the pipeline corridor.  
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5) It must be able to monitor the pipeline infrastructure at least once a 

day.   

6) Data transmission must be in near real-time. 

3.2.2 Limitations 

The selection of the complete system (i.e. ground and air) components and 

equipment was made taking into account the limitations and constraints listed in 

Table ‎3-1. 

 

Table ‎3-1: Hardware constraints 

Objectives Measure for effectiveness of solution 

Max payload ~ 1000 g 

Operation Indoor at low-level (1 m – 4 m) 

Power capacity ~ 4900 mAH 

Flight time 
A total flight time of at least 10 minutes for the 
quadcopter with the entire required payload. 

Pipeline structure 
5 cm overground 3-5 m length, 1.2 cm width. (1m:50m 
scale) 

Communication range ~ 10 meters for indoor test purpose 

OS support Linux Ubuntu 10.10, X86, 32/64 bit 

Depth Image VGA (640x480): 30 fps 

GCS-PC processor 
Intel Core i5 2.4 GHz processor and 8 GB RAM 
memory. 

Embedded processor 
Quad-Core ARM® Cortex A9 processor at 1GHz RAM 
memory of 1GBytes of 64-bit wide DDR3 @ 532MHz 

 

3.3 System Architecture 

This section presents the proposed high-level system architecture of the 

visual-based, pipeline structure surveillance as shown in Figure ‎3-1. This 

architecture is divided into three parts, which are the aerial platform, ground 

control station, and router. 
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Figure ‎3-1: General system architecture of the vision-based aerial pipeline 

surveillance system 

The aerial platform payload includes the remote sensor that provides visual 

data of the pipeline structure at high resolution. On-board data processing is 

carried-out and the data is transmitted to the ground station in real-time, so to 

track the pipeline structure automatically. The aerial platform consists of an 

EO/IR camera for image capture, a data recording, an on-board embedded 

processor for algorithms processing, autopilot controller to navigate the 

platform, power supply and, finally, a data link for the UAV command and 

control and data transmission. The ground control station receive/transmit the 

recorded data, process the computationally demanding parts of the developed 

algorithms, and stream the video data of the explored environment to the 

ground operator. The ground station consists of a workstation to process the 

algorithms and a data link for the UAV command, control and data transmission. 

The router is proposed to simply pass the data between the aerial platform and 



 

37 

 

the ground station. The test-rig is proposed to evaluate and validate the system 

which involves a small-scale pipeline structure and small samples of third-party 

interference objects. 

3.4 Aerial Platform  

This section describes, in detail, the integrated hardware components and 

the developed software on-board the aerial platform. Also, it describes how to 

setup and interface them together.  

3.4.1 Hardware Components 

This section presents the hardware components that are on-board the aerial 

platform as part of the surveillance system. The hardware includes the following 

components: 

1) The Gaui 500X Quadrotor (aerial UAV platform). 

2) Asus Xtion Pro Live (RGB/depth vision sensor). 

3) Nitrogen x6 board (processor board to run a computer vision algorithm).  

4) ArduPilot Mega (microcontroller board to control the dynamics of the 

platform with assisting of the built-in autopilot, IMU, and GPS). 

5) 3DR uBlox (GPS Module). 

6) XBee module (Wi-Fi RF Module for wireless telemetry data 

transmissions).  

7) Li-Po battery (Power supply for the embedded boards). 

More information is described in the following subsections. 

3.4.1.1 Gaui 500X Quadrotor 

The Gaui 500X Quadrotor is a light weight UAV platform as shown in 

Figure ‎3-2 that is proposed to carry out the imagery sensor payload and the 

other corresponding components to perform in real-time the pipeline 

surveillance mission automatically (Multi-Rotor Technology (MRT), 2012).  
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The efficiency and load of the propeller are optimized, for improved wind 

resistance over other quads. It utilizes GU-344 (three-axis stabilizing system) 

for both beginners and professionals in combination with other electronics for 

FPV flying that makes it a very stable air-vehicle. The maximum flying weight is 

between 1100g to 2000g, depending on payloads used, such as batteries, 500X 

GAUI Motors/ESCs, cameras, processing boards and other related equipment. 

The main reason for selecting this platform is the maximum take-off weight, 

which is the total weight of the payload components and the UAV platform itself 

with all the systems as shown in Table ‎3-2.  

 

Table ‎3-2: Weight details of the payload components 

Item Weight 

Battery 3S 323g 

Crane II 96g 

ASUS Xtion Pro Live 218g 

Battery 2S 83g 

Nitrogen 6x board 88g 

Mount 150g 

TOTAL 1000g 

 

Operation mode and flight characteristics are similar to those of helicopters 

without complex transmissions. It has a collapsible body design that greatly 

reduces crash damage and allows for easy repairs. With four brushless motors 

and 18A Electro Speed Controller (ESC), the 500X is really powerful and 

responsive. The specifications are listed in Table ‎3-3 below. 
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Table ‎3-3: GAUI 500X Quadrotor specifications (Multi-Rotor Technology (MRT), 

2012) 

Item Specification 

Weight (g) 670 

Max Flying weight (g) Up to 2000  

Platform diameter (mm) 500 

Motors 960 kV, scorpion model 

Electro Speed Controller (ESC) Brushless 18A 

Flight efficiency 
Standard battery (2S 2000mAh), for flight times longer 
than 12min. With a high-capacity battery, the flight 
time will be 20 min or longer. 

 

 

Figure ‎3-2: GAUI 500X Quadrotor platform (Multi-Rotor Technology (MRT), 2012) 

3.4.1.2 ASUS Xtion Pro Live 

Two vision data are acquired as main inputs to provide the function of colour 

(RGB) and the depth (elevation at down projection) information of the vision 

target scene. So, in the market, many sensors exist to provide them either, 

individually, using two separate sensors or together as one sensor. However, 

using one platform that combines all of them is superior in terms of cost, weight, 

interface, integration and operation. Hence, the proposed sensor used in this 

project is the ASUS Xtion Pro Live. This sensor provides combined functions of 
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RGB colour information and per-pixel depth information. The sensor includes 

RGB camera; IR structured light source, and a second camera dedicated to IR 

detection that provides depth information as shown in Figure ‎3-3.  

 

Figure ‎3-3: ASUS Xtion Pro Live Sensor (ASUS, 2012) 

It was chosen for its low price £138 and low weight of 218 g, as shown in 

Figure ‎3-4 that guarantees that the Quadrotor payload limit remains at around 

of 1kg. 

 

Figure ‎3-4: Asus Xtion Pro Live weight measurement 

The technology of obtaining the depth is based on the structured light 

technique. Precision is similar to that of Time of Flight (ToF) cameras, 1cm 

more or less, with a limited range between 0.8-3.5 m, but they tend to have 

trouble seeing small objects and have to be indoors. The resolution and speed 

of this sensor are similar to the conventional VGA cameras, usually 640 by 480 

at 30 fps. The technical specifications are shown in Table ‎3-4. 
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Table ‎3-4: ASUS Xtion Pro Live sensor specifications (ASUS, 2012)  

Item Specifications 

Power consumption <  2.5W 

Depth range 0.8m to 4m 

Field of view 58° H, 45° V, 70° D (Horizontal, Vertical, Diagonal) 

Sensors RGB & Depth & Microphone (x2) 

Depth Image Size 
VGA (640x480): 30 fps 
QVGA (320x240): 60 fps 

Resolution SXGA (1280*1024) 

Platform Intel X86 & AMD 

OS support 
Windows 7 32/64, XP, Vista 
Linux Ubuntu 10.10, X86, 32/64 bit 
Android 

Interface USB 2.0 

Software OpenNI SDK bundled 

Programming language C/C++ (Windows), C++ (Linux), and JAVA 

Dimensions 180mm x 35mm x 50mm 

Operating Environment Indoor 

Weight 218g 

 

The IR camera and the IR projector form a stereo pair with a known baseline. 

Hence, a structured light technique works by projecting a fixed pattern of 

infrared light from the IR projector such as a grid of lines, or a constellation of 

points or dark speckles on top of the scene's objects as shown in Figure ‎3-5. 

This pattern is seen distorted when looked at from a perspective different from 

the projector. By analysing this distortion, information about the depth can be 

retrieved, and the surface reconstructed. 

Depth is calculated by triangulation against a known pattern from the projector. 

The pattern is memorized at a known depth. For a new image, the depth is 

calculated at each pixel, and a small correlation window (9x9 or 9x7) is used to 

compare the local pattern at that pixel with the memorized pattern at that pixel 

and 64 neighbouring pixels in a horizontal window. Then, the best match gives 

http://en.wikipedia.org/wiki/Structured-light_3D_scanner
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an offset from the known depth, regarding a pixel which is called disparity. The 

device performs other interpolation of the best match to get the sub-pixel 

accuracy of 1/8 pixels that provide the known depth of the memorized plane, 

and the disparity. However, the estimated depth of each pixel is calculated by 

triangulation. 

 

 

Figure ‎3-5: Sensor projection of infrared structured light pattern 

 

Then, the depth of each pixel produces 3D data in the form of a point cloud. A 

point cloud is a set of points in three-dimensional space, each with its XYZ 

coordinates. So, every point corresponds to exactly one pixel of the captured 

images in the case of stereo, ToF or structured light cameras.  

To mount the Asus Xtion Pro Live on the Gaui 500X Quadrotor platform, a step-

down configuration Gimbal was selected to integrate them which is called Gaui 

Crane II, as shown in Figure ‎3-6. Moreover, the Asus Xtion Pro Live hardware is 

connected to the Embedded Board using a USB cable.  
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Figure ‎3-6: Gaui Crane II Gimbal 

To interact between the pixels of the depth and colour images with their 

corresponded real world coordinates, a 3D real world model needs to be 

constructed. To interact with the depth and colour images, an accurate camera 

calibration for depth and colour images is carried-out offline. This calibration is a 

process performed to compute the true intrinsic parameters of the camera, such 

as focal length, centre image position, and lens distortion. Besides, computing 

the extrinsic parameters (relative transform between the depth and the colour 

cameras), it also includes rotations and translation parameters. 

The calibration was performed offline on the colour and depth cameras to find 

the intrinsic and extrinsic parameters by using the same approach as (Herrera 

et al., 2012). This approach was designed to calibrate simultaneous multicolour 

cameras, a depth camera, and the relative transform between them. First, the 

intrinsic parameters of both colour and depth cameras are calibrated. Then, the 

relative transform between the cameras (extrinsic calibration) was calibrated by 

computing the rotation and translation parameters to enable the alignment 

between them. 

The approach requires only a planar surface with a simple checkerboard pattern 

to be imaged from various poses as shown in Figure ‎3-7. The checkerboard 

corners provide suitable constraints for the colour images while the planarity of 

the points provides constraints on the depth images. The pixels at the borders 
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of the calibration object can be ignored and, thus, depth discontinuities are not 

used. For this purpose, Kinect Calibration Toolbox for Matlab was used. 

 

Figure ‎3-7: Samples of calibration images at various poses 

For the colour camera, the checkerboard corners are extracted from the colour 

intensity image using a corner detection algorithm in image processing to obtain 

the colour intrinsic parameters as shown in Figure ‎3-8. Then, a homography is 

computed for each colour image using the known positions of the corners in 

world coordinates and the relative pixels in the colour image coordinates. After 

that, each homography imposes constraints on the intrinsic parameters that are 

solved with a linear system of equations. The distortion coefficients are initially 

set to zero. 

 

Figure ‎3-8: Checkerboard corner detection in a colour image 
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The same method is applied to the depth camera to obtain the depth intrinsic 

parameters, in which the noisy four corners of the plane are extracted manually 

in the depth image as an initial guess because the checkerboard is not visible, 

as shown in Figure ‎3-9. Then, a homography is computed for each depth image 

using the corner positions in plane coordinates and the relative pixels in the 

image depth coordinates. This computation will produce the focal lengths, 

centre points, and the transformation parameters. 

 

Figure ‎3-9: Plane’s corner detection in depth image (red boxes) 

3.4.1.3 Nitrogen 6x Embedded Board  

In order to increase the level of autonomy at the quadrotor, an embedded 

board was added on-board the platform to process the computer vision 

algorithms that control the dynamic of the platform in real-time. The embedded 

processor board that is proposed in this project is based on the Nitrogen 6x as 

shown in Figure ‎3-10.  

 

Figure ‎3-10: Nitrogen 6x embedded board (Boundary Devices, 2012) 
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This specific embedded board was chosen for several reasons, such as the 

limited size and weight and the built-in Wi-Fi module, as shown in Figure ‎3-11 

that was used to communicate with the ground control station (GCS).  

 

Figure ‎3-11: Nitrogen 6X Add-on Ti-Wi Module (Boundary Devices, 2012) 

The Nitrogen 6X is a highly integrated development system based on the next 

generation Quad-Core ARM-Cortex A9 processor from Freescale, the i.MX6. 

This processor supports a wider and faster memory bus (64-bit DDR3 1066 

MHz), integrated HDMI, Gigabit Ethernet and additional display channels with a 

high level of integration. It is a low-cost development platform. Additional 

highlights of the board are listed below (Boundary Devices, 2012): 

 Quad-Core ARM® Cortex A9 processor at 1GHz. 

 RAM memory of 1GBytes of 64-bit wide DDR3 @ 532MHz. 

 Board Dimensions: 4.5″ x 3″. 

 2MB Serial Flash. 

 Three display ports (PRGB, LVDS, HDMI). 

 Parallel camera port with OV5642 Interface. 

 Multi-stream-capable HD video engine delivering 1080p60 decode, 

1080p30 encode and 3D video playback in HD. 

 Superior 3D graphics performance with quad shaders for up to 200 Mt/s. 

 Separate 2-D and/or Vertex acceleration engines for an optimal user 

interface experience. 

 Serial ATA (SATA). 

 Dual SDHC card slots. 

 PCI express port. 

 Analog (headphone/mic) Audio. 
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 10/100/1G Ethernet with Power over Ethernet support. 

 2 RS-232 Serial ports. 

 10-pin JTAG interface. 

 I2C/GPIO/SPI. 

 High-speed USB ports (2xHost, 1xOTG). 

 CAN port. 

 Real Time Clock. 

 Ti-Wi 802.11 b/g/n Wi-Fi+BT. 

 Supports Android 4.3, Embedded Linux, and WinCE7.0 Operating 

Systems. 

The Nitrogen 6x board runs a Linux-based operating system. The computer 

vision algorithms were coded in Python with the aid of OpenCv and OpenNi 

libraries.  

The Linux operating system installed on the Nitrogen6x is Debian GNU-Linux. 

Debian is a Linux distribution with access to online repositories hosting software 

packages. Debian officially hosts free software in its repositories but also allows 

commercial 3rd party software to be installed. Furthermore, it gives the 

possibility to install all the dependencies and libraries required to use the Asus 

Xtion Pro Live. 

The Open Natural Interaction (OpenNI) is a multi-language framework and an 

open source application that is used to interface the Xtion Pro Live sensor on 

this system by providing functions capable of acquiring depth data from the 

Asus Xtion Pro Live. It could be used with any depth sensor such as Xbox 

Kinect or Asus Xtion.  

The OpenNI framework gives the interfaces either for the physical apparatus or 

the middleware components, as seen in Figure ‎3-12, by compiling it with 

OpenCV library (OpenNI, 2012).  
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Figure ‎3-12: OpenNI Framework (OpenNI, 2012) 

OpenCV is an Open Source Computer Vision library that includes many built-in 

algorithms, as described by (Opencv dev team, 2012). It is free for both 

academic and commercial use. It has C++, C, Python and Java interfaces and 

supports Windows, Linux, Mac OS, iOS and Android. OpenCV was designed for 

computational efficiency and has a strong focus on real-time applications. 

Written in optimized C/C++, the library can take advantage of multi-core 

processing. Enabled with OpenCL, it can benefit from the hardware acceleration 

of the underlying heterogeneous compute platform.  

OpenCV has a modular structure, which means that the package includes 

several shared or static libraries. The following modules are available (Opencv 

dev team, 2012): 

 Core - a compact module defining basic data structures, including the 

dense, multi-dimensional array Mat and basic functions used by all other 

modules. 
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 imgproc - an image processing module that includes linear and nonlinear 

image filtering, geometrical image transformations (resize, affine and 

perspective warping, generic table-based remapping), colour space 

conversion, histograms, and so on. 

 Video - a video analysis module that includes motion estimation, 

background subtraction, and object tracking algorithms. 

 calib3d - basic multiple-view geometry algorithms, single and stereo 

camera calibration, and object pose estimation, stereo correspondence 

algorithms, and elements of 3D reconstruction. 

 features2d - salient feature detectors, descriptors, and descriptor 

matchers. 

 Objdetect - detection of objects and instances of the predefined classes 

(for example, faces, eyes, mugs, people, cars, and so on). 

 Highgui - an easy-to-use interface to video capturing, image and video 

codecs, as well as simple UI capabilities. 

 gpu - GPU-accelerated algorithms from different OpenCV modules. 

To interface the Nitrogen 6X embedded board to the Asus Xtion Pro live 

hardware, the attached Xtion’s USB cable is plugged into one of the USB ports 

onboard. Furthermore, the Nitrogen6x is interfaced to the Ardupilot Mega via 

the serial port UART1. 

3.4.1.4 ArduPilot Mega Microcontroller Board 

The proposed hardware to control the Quadrotor platform is the ArduPilot 

Mega (APM). APM is a fully programmable open source autopilot system that 

requires a GPS module and sensors to create a functioning Unmanned Air-

vehicle (UAV) (ArduPilot, 2013). It can control many platforms, such as fixed-

wing air-vehicle, multi-rotor helicopters, traditional helicopters, as well as ground 

rovers. It has full autopilot capability for autonomous stabilization, waypoint 

based navigation and two-way telemetry using XBee wireless modules. Also, it 

supports 8 RC channels with four serial ports.  
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This controller consists of the main processor board as shown in Figure ‎3-13, 

and the APM firmware that is a code runs onboard to control the chosen UAV 

platform as shown in Figure ‎3-14.  

The ArduPilot Mega was selected due to the following features (ArduPilot, 

2013): 

 Controller designed to be used with autonomous air-vehicle, multicopters 

(tri, quad, hex, oct, and so forth), traditional helicopters, car or boat. 

 Based on a 16MHz Atmega2560 processor. 

 Built-in hardware failsafe that uses a separate circuit (multiplexer chip 

and ATMega328 processor) to transfer control from the RC system to the 

autopilot and back again. Includes ability to reboot the main processor in 

mid-flight. 

 Dual-processor design with 32 MIPS of on-board power. 

 Supports of 3D waypoints and mission commands (limited only by 

memory). 

 It comes with a 6-pin GPS connector (EM406 style). 

 It has 16 spare analog inputs (with ADC on each) and 40 spare digital 

input/outputs to add additional sensors. 

 Four dedicated serial ports for two-way telemetry and in-flight command 

using the powerful MAVLink protocol. 

 It can be powered by either the RC receiver or a separate battery. 

 Hardware-driven servo control, which means less processor overhead, 

tighter response and no jitters. 

 The autopilot can process eight RC channels (including the autopilot 

on/off channel). 

 LEDs for power, failsafe status, autopilot status and GPS lock. 

 4MB of on-board data logging memory. Missions are automatically data-

logged and can be exported to KML. 

 It has full autopilot software, including IMU and ground station/mission 

planning code. 
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Figure ‎3-13: ArduPilot Mega Autopilot board (ArduPilot, 2013) 

 

Figure ‎3-14: ArduPilot Mega onboard firmware (ArduPilot, 2013) 

The communication between the Nitrogen 6x and the ArduPilot has been 

obtained using a serial port UART with the following configuration parameters: 

 Baud rate=9600 

 Stop bit=1 

 Parity=None 

The software has been developed for both the Nitrogen 6x and the ArduPilot. 

Concerning the embedded board, which works with a Linux-based OS, the 

“Termios” library was used for the ArduPilot, while the Arduino integrated 
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development environment (IDE) provides the main tools for serial port 

programming. 

The anatomy of a program performing serial I/O is as follows: 

 An open serial device with standard system called open. 

 Configure communication parameters and other interface properties 

with the help of specific functions and data structures. 

 Use system calls read and write for reading from, and writing to the 

serial interface. 

 Close device with the system called close when done. 

3.4.1.5 3DR uBlox GPS 

The 3DR uBlox GPS module has an on-board compass kit, and it is the 

most recommended and compatible module to be used with the APM mounted 

on the aerial platform. This module provides the telemetry data of the aerial 

platform to the Ground Control Station (ArduPilot, 2013). 

Features and Specifications: 

 ublox LEA-6H module. 

 5 Hz update rate. 

 25 x 25 x 4 mm ceramic patch antenna. 

 LNA and SAW filter. 

 Rechargeable 3V lithium backup battery. 

 Low noise 3.3V regulator. 

 I2C EEPROM for configuration storage. 

 Power and fix indicator LEDs. 

 Protective case. 

 APM compatible 6-pin DF13 connector. 

 Exposed RX, TX, 5V and GND pad. 

 38 x 38 x 8.5 mm total size, 16.8 grams. 
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This GPS is connected with the ArduPilot Mega flight controller Board using two 

cables, as shown in Figure ‎3-15, which are: 

1. Four-position cable to connect the GPS MAG port to the APM I2C port. 

2. Five-position-to-six-position cable to connect the GPS port to the APM 

GPS port. 

 

Figure ‎3-15: 3DR uBlox GPS with ArduPilot Mega hardware interface (ArduPilot, 

2013) 

The 3DR uBlox GPS with Compass is already pre-configured for compatibility 

with APM autopilot. 

3.4.1.6 Xbee 802.15.4 Transceiver 

The XBee-PRO® OEM RF module is an IEEE 802.15.4 compliant solution, 

that satisfies the unique needs of low-cost, low-power wireless sensors (DIGI, 

2014). This module when mounted on the aerial platform can send/receive the 

telemetry data wirelessly, as shown in Figure ‎3-16. 

The advantages and limitations of this module are as follows: 

 Operate at ISM 2.4 GHz frequencies. 

 Easy-to-use.  
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 Requires minimal power and provides reliable delivery of critical data 

between devices.  

 It can send a live telemetry data as the airframe progresses through the 

mission 

 A new mission could be sent while the UAV flies without having to land.  

 The range of operation has been tested out for half a mile with no loss in 

connection; the connection has been found to drop off at 3/4 of a mile. 

 It is capable of operating at a temperature rating (-40 to 85°C). 

 Approved for use in Europe, Canada, Australia, and the United States. 

 It supports advanced networking & low-power modes. 

 

 

Figure ‎3-16: XBee transceiver (DIGI, 2014) 

Onboard the aerial platform, the XBee module (pins) is connected with the 

ArduPilot Mega (Teleport) using the 3DR four-wire XBee cable and XBee 

adapter to interface them together as shown in Figure ‎3-17. 

  

 

Figure ‎3-17: XBee & APM hardware interface (ArduPilot, 2013) 
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Then, to interface them together, it is required to set up the right port and the 

baud rate (APM default is 57600 bps) by using the moltosenso Network 

Manager or using the GCS mission planner directly. 

3.4.1.7 Li-Po Battery 

The Gaui 500X Quadrotor has a standard battery (2S 2000mAh), for flight 

times longer than 12 min. With a high-capacity battery, the flight time will be 20 

min or longer. The Nitrogen 6X board requires a 5V/3A max power source. 

However, a high discharge Li-Po 1300mAh battery has been chosen using 

three Cells at 11.1V. A DC/DC converter to 5V has been integrated to provide 

up to 60 minutes of practical work as shown in Figure ‎3-18. 

 

Figure ‎3-18: Li-Po 1300mAh battery & DC/DC converter 

3.4.2 Software Development 

This section presents the software development structure for the embedded 

board on-board processing on the aerial platform. This structure consists of five 

algorithms as shown in Figure ‎3-19. At the beginning, pre-processing algorithms 

are proposed to acquire the optical/depth data from the sensor, and transform 

the depth from IR (pixels) into 3D point cloud (meter). Then, the second part of 

the algorithm is required to identify the pipeline segment endpoints using the 

depth information of the explored environment as an IR (pixels) and 3D point 

cloud (meters) formats. Once the endpoints of the pipeline segment are 

identified, the auto tracking algorithm for the pipeline structure is proposed to 
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navigate the UAV into the course waypoints that are generated online based on 

the pipeline endpoints and send the commands into the autopilot processor. 

Simultaneously and finally, an algorithm is proposed to transmit visual 

information of the explored view into the Ground Control Station (GCS) 

including IR image, RGB image, 3D point cloud data, plane parameters (A, B, 

C, and D), and endpoints (EPs) locations of the pipeline segment. Samples of 

the approach have been coded in this research to develop the algorithms as 

mentioned in Appendix A using the Python programing language. 
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Autopilot Commands

 

Figure ‎3-19: The aerial platform software process 
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3.5 Ground Control Station (GCS) 

This section describes the hardware components and their integration and 

the software development that is used to build and develop the compatible 

Ground Control Station (GCS) for this project.  

3.5.1 Hardware Components 

This section presents the hardware components that are built in the ground 

control station platform to integrate and build the surveillance system. The 

proposed GCS’s platform consists of the following hardware components, as 

shown in Figure ‎3-1: 

1. Workstation to process the data receiving from the aerial platform and 

stream them in RGB format in near real-time. 

2. XBee transceiver to transmit/receive the telemetry data. 

3. Wi-Fi module and Router to pass the data between the aerial platform 

and ground station. 

More information is detailed in the following subsections. 

3.5.1.1 Workstation 

The workstation of the Ground Control Station can be any of a variety of 

laptops or desktops. In this project, the PC that was used is a 64-bit Linux 

operation system that has an Intel Core i5 2.4 GHz processor and 8 GB RAM 

memory. 

3.5.1.2 XBee 802.15.4 Transceiver 

The XBee module used in the GCS is similar to the one described in 

(Section 3.4.7). The only difference is that one was interfaced with the ArduPilot 

Mega, but here it interfaces with a Notebook PC. However, the easiest way to 

interface the XBee module with the Notebook PC (USB port) is by using the 

FTDI cable with FTDI adapter as shown in Figure ‎3-20. 



 

58 

 

 

Figure ‎3-20: XBee module & FTDI cable for interface with the PC 

3.5.1.3 Wi-Fi Module and Router 

To communicate with the aerial Quadrotor platform and the GCS 

wirelessly, it was proposed to use a built-in Wi-Fi module at each one of them 

with a 2.4 GHz frequency band. So, a hardware router was proposed to link 

between them which is a networking device used to simply pass data between 

the wireless networks. 

3.5.2 Software Development 

In the Ground Control Station (GCS), the proposed software development 

structure processes are implemented on the ground workstation and consist of 

three algorithms that are data receiving, third-party interference detection, and 

data streaming in near real-time as shown in Figure ‎3-21. The data receiving 

algorithm receives the data from the aerial platform, such as IR image, RGB 

image, 3D point cloud data, plane parameters (A, B, C, and D), and endpoints 

(EPs) locations of the pipeline segment. Then, an algorithm is proposed to 

detect the third-party interference based on the received information. Finally, 

the explored view, in near real-time, is streamed to the ground operator, 

including the detection information of any activity of third-party interference 

using ground station mission planner software.  

Mission Planner is a full-featured ground station application for the APM open-

source autopilot project as shown in Figure ‎3-22. It is used in this project to 

control the aerial platform and provide the telemetry and video data in real time. 

The GCS with the Mission Planner allows the UAV Pilot to plan the automated 

segment of their flight visually. This segment plan is done in a point-and-click 
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fashion, placing waypoints (WPs) on a satellite map displayed in the Mission 

Planner. The mission is uploaded to the APM and assigned to a programmable 

switch on the DX7s Transmitter. During the flight, the Pilot only has to press the 

switch to initiate the automated mission. 

Data 
Receiving

Data 
Streaming

Ground Operator

Aerial Platform Data

Third-Party 
Interference 

Detection

 

Figure ‎3-21: GCS software processing 

 

Figure ‎3-22: ArduPilot Mega GCS application (ArduPilot, 2013) 
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This application has many advantages such as the following: 

 Easy point-and-click waypoint entry, using Google Maps/Bing/Open 

street maps/Custom WMS. 

 Select mission commands from drop-down menus. 

 Download mission logs files and analyse them. 

 It configures the APM settings of the Quadrotor airframe. 

 Interface with a PC flight simulator to create a full hardware-in-the-loop 

UAV simulator. 

 It shows the output from APM’s serial terminal. 

Due to the high data rate required to be transmitted, such as video and 

telemetry data, a User Datagram Protocol (UDP) has been selected to perform 

an efficient and simple connectionless transmission. This protocol does not 

establish a prior communication when it sends data to the other hosts. To use 

UDP, an application uses a datagram socket, which binds a combination of an 

IP address and a service port on both ends, and, as such, establishes host-to-

host communication. Data sent to a given socket can be read on a matching 

socket on the receiving side, this way of working is the so called Server/Client 

model. 

 

Figure ‎3-23: Server/Client Scheme 

The client/server describes the communication mode of cooperating programs 

in an application on separate hardware. The server provides a function or 

service for one or more clients, simultaneously, which initiates communication 

to requests for such services as shown in Figure ‎3-23. Two scripts have been 

https://en.wikipedia.org/wiki/Datagram_socket
https://en.wikipedia.org/wiki/Port_number
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written in Python to achieve this method, one for the Client and one for the 

Server. The block scheme is shown in Figure ‎3-24. Figure ‎3-25 demonstrates 

the wireless streaming of the depth and RGB images using the server/client 

networking method.  

 

Figure ‎3-24: Flow chart of communication 

 

Figure ‎3-25: Streaming a video wirelessly 
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3.6 Test Site 

The test-rig developed in this project is aimed at  testing and validiating the 

vision based pipeline surveillance system. This rig should include a real or 

sample components of the following: 

 Pipeline structure to identify the endpoints of the segment and track it as 

shown in Figure ‎3-26. 

 Third-party objects for detecting them as shown in Figure ‎3-27. 

 Moreover, miscellaneous objects to validate the detection. 

 

 

 

Figure ‎3-26: Pipeline structures samples, Ref: Image collection was produced 

from reference (Oil & Gas Pipeline, 2011) 

 

Figure ‎3-27: Third-party interference samples, Ref: Image collection was 

produced from reference (Pipeline’s Third-Party Interference, 2011) 
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3.6.1 A Small-Scale Prototype of a Survey Site 

The survey sites in this project are a set of images that involve a pipeline 

structure and, at least, one third-party interference objects within a small set of 

that imagery. Due to the struggle of finding a real pipeline structure in the UK 

and third-party interference, in addition to the vision sensor capabilities and 

limitations, the set imagery of the survey sites was captured indoors with a 

small-scale prototype, containing a pipeline structure and samples of third-party 

interference, as shown in Figure ‎3-28.  

 

 

 

Figure ‎3-28: Small-scale of the survey sites 



 

64 

 

3.7 System Integration 

However, the full system proposed to monitor the pipeline Right-of-Way, is 

fully integrated in this project, which includes both the hardware components 

and software development as shown in Figure ‎3-29. 
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Figure ‎3-29: Experimental setup layout 

The aerial platform for surveying the pipeline and its Right-of-Way is fully 

integrated and includes the proposed hardware components design, as shown 

in Figure ‎3-30, and the developed software, as demonstrated in Figure ‎3-31. 
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Figure ‎3-30: Aerial system integration in Catia design 

 

 

Figure ‎3-31: Aerial platform & payloads integration 

3.8 Chapter Summary 

In this chapter, the overall architecture of the automatic pipeline aerial 

surveillance system, requirements and limitations were presented and 

described. The architecture describes the high-level design concept of the 

system that involves both the hardware and software components of the aerial 

platform, ground staion and test-rig. The system requirements were described 

in terms of the payload and operational requirements. The limitations of the 
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system that led to the choice of equipment and sub-systems to meet the 

requirements, were listed as well. The system/platform limitations such as 

weight, processing speed, power, communication range and speed were also 

addressed. The overall proposed experimental setups, required to be 

implemented to test and validate the performance of the aerial pipeline Right-of-

Way surveillance system, were also described in this chapter.  
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  Chapter 4

Pipeline Endpoints Identification 

 

 

 

4.1 Introduction 

This chapter presents the development of the vision-based algorithm that 

is used onboard the Unmanned Aerial Air-vehicles (UAV), to identify and 

localize the endpoints of the pipeline structure in real-time. The first objective of 

this chapter is to develop a reliable algorithm capable of estimating the 

endpoints position of the pipeline segments throughout the frame sequences in 

near real-time. The aims of this development are to keep track/follow the 

pipeline online, down-sample the data in each frame by filtering the region that 

is an outlier of the Right-of-Way to focus the processing on the data located 

within the Right-of-Way region. This leads to reducing the computational cost to 

detect any third-party interference and any defects.  

In this project, two methods are proposed to identify and localize the over-

ground pipeline structure. One is based on the standard camera (RGB 

intensities) and the other is based on the IR sensor (depth intensities). Different 

computer vision techniques were used with each sensor. The proposed 

techniques are capable of detecting and localizing the pipeline with high 

detection and processing rates. The techniques are described in detail in the 

following sections. Furthermore, the experimental setup, simulation, analysis 

and performance evaluations are performed for each method and are described 

in this chapter.  
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4.2 Visible-Based Pipeline Endpoints Identifications 

This section describes the proposed visible-based algorithm used to detect 

and localize the pipeline structure using a UAV mounted with a standard visible 

camera. This algorithm is proposed to detect and localize the endpoints of the 

pipeline structure, efficiently in real time, based on the colour intensity in order 

to keep track of the pipeline and maintain monitoring and surveying.  

Image processing techniques were used to develop this algorithm. The first step 

of the processing involves enhancing the image data to improve the edge 

detection performance. Then, the boundaries of the features are detected in the 

sense of the image by using a canny edge detector. Afterward, the boundary 

candidates are extracted to represent a straight line using the Hough Transform 

method. Following this, the straight lines are filtered by comparing them with 

known pipeline segments in the area, allowing fast and accurate pipeline 

identification. This step enables the system to reject with high degree of 

reliablity inaccurate measurements while retaining the correct pipeline 

detections and location.  

Several image sets and two aerial videos, captured by the standard camera, 

were used to test and analyse the system. The performance of this algorithm 

was evaluated using a Matlab/Simulation environment to verify that the system 

is capable to reliably detect and localize the pipeline structure with a low cost 

aerial platform, with high detection rate and fast processing time.  

4.2.1 Image Acquisition 

Two images are used to demonstrate how the proposed algorithm detects 

the pipeline as shown in Figure ‎4-1. These images were captured by (Pipeline 

Surveillance Company - Not for Public Release, 2012) from a manned air-

vehicle from two different views and in various environments, at a resolution 

estimated to be greater than 0.5 m per pixel. It is worth mentioning that the two 

images were captured at different altitudes. 
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Figure ‎4-1: Two images of a pipeline at various environments (Pipeline 

Surveillance Company - Not for Public Release, 2012) 

 

4.2.2 Pipeline Detection & Localization Algorithm 

Since the most recognizable feature of the pipeline structure that is easily 

detectable in the standard RGB image is the shape, the development 

commenced with detection of the line as a shape. However, there are many 

different methods to detect line features in image processing applications. In 

this project, the proposed algorithm to detect the pipeline is demonstrated in 

Figure ‎4-2. 
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Figure ‎4-2: Camera-based pipeline detection algorithm 
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At first, the RGB data is acquired from the sensor. Then, those RGB colours are 

converted into HSV colours to simplify and enhance the analysis. After that, a 

canny edge detector is implemented to detect the edges as points based on the 

differentiation of the colour intensity. Then, based on those points of the edges, 

a Hough Transform method is implemented to construct a solid line 

configuration that potentially refers to the pipeline in the image. Finally, the lines 

constructed are represented as waypoints. 

4.2.2.1 Contrast Enhancement 

In order to obtain optimum edge detection, the contrast is enhanced. This 

enhancement can be done by improving the intensity (luminance) which is the 

total amount of light passing through a particular area. The RGB colour space 

describes colours based on the intensities of Red, Green, and Blue channels, 

respectively, which are not always suitable for colour based applications. 

Therefore, it is useful to transform it into Hue, Saturation & Value (HSV) colour 

space. It describes colours in the same way as the human eye senses colour, 

where a colour is represented by its Hue (H) and Saturation (S). The saturation 

adds white light to distinguish between the components of each surface by its 

lightness (such as metallic for pipe, asphalt for the road, water in a lake or sea, 

and on forth). Value (V) describes the overall intensity or strength of the light. A 

detailed description of the HSV colour space can be found in Gonzalez and 

Woods (2003). 

Figure ‎4-3 demonstrates the difference between the intensity of RGB colour 

space and value components of HSV colour space in two images with different 

environments. Figure ‎4-4 shows the effect of this improvement when an edge 

detector has been applied. 
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Figure ‎4-3: (Left): Intensity (Grey colour) of RGB colour space, (Right): Value (V) 

component of HSV colour space 

4.2.2.2 Edge Detector 

The second step in the algorithm of line detection is finding the edges for the 

Hough Transform. However, the optimal method used in this research to detect 

the edges is the canny edge detector which is developed by Canny (1986). The 

output of this detector is a binary image represented by points based on the 

differentiation of the colour intensity as demonstrated in Figure ‎4-4.  

The process of this method starts by smoothing (blurring) the image to eliminate 

noise. Then, it finds where the high magnitude of image gradients is to highlight 

regions that have a high spatial derivative. The algorithm then tracks through 

these regions and suppresses any point that is not at the maximum region (non-

maximum suppression) and marks only local maxima as edges. The gradient 

array is now further decreased by hysteresis. Hysteresis is used to track 

throughout the remaining points that have not been suppressed. Hysteresis 

uses two thresholds to the gradient to determine the potential edges. When the 
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gradient magnitude is below the lower threshold, it is set to zero (no edge). If 

the gradient magnitude is above the high threshold, it makes a strong edge. If 

the gradient magnitude is between them, it is set to zero, unless it connects to a 

strong edge with a gradient above the high threshold. 

 

 

 

Figure ‎4-4: The edges detected as a binary image based on the RGB intensity 

(Left), and the HSV value component (Right) 

 

4.2.2.3 Hough Transform  

Hough Transforms (HT) is a robust method for finding lines in the image that 

was developed by (Hough, 1962). The image features (points) that are detected 

by the canny edge detector at particular (𝑥, 𝑦) coordinates is evidence that there 

might be a line passing through some of those points.  
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Figure ‎4-5:  (Left) Image space and (Right) Parameter space or Hough space 

(Antolovic, 2008) 

The process steps of achieving Hough Transform method are as follows: 

 Line detection: Accumulate tracings of the parametric sinusoid (𝜌, 𝜃) in 

Hough space for each pixel (𝑥, 𝑦) in image space by using the Equation 

(‎4-1) from (Antolovic, 2008) as shown in Figure ‎4-5.   

 
                       𝜌 = 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 𝑠𝑖𝑛 𝜃 (‎4-1) 

Where: 𝜌 is the shortest distance from the corner of the image space to the 

straight line, 𝜃 is the angle between the shortest distance 𝜌 and the 

horizontal axis (width) in image space, and (𝑥, 𝑦) represents the width and 

height of the pixel in image space.  

 Peaks detection: the intersection points in Hough space between the curves 

which represent a straight line at parameter values (𝜌, 𝜃) as shown at the 

right graph in Figure ‎4-5. However, as more curves are intersected at that 

point, the more the line becomes solid, which represents the number of 

points corresponded.   

 Linking the lines: Once a set of peaks has been detected in Hough space, it 

remains to be determined if there is a line segment associated with those 
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peaks, as well as start and ending points. For each peak, the first step is to 

find the location of all non-zero pixels in the image space that contributed to 

that peak and construct line segments based on those pixels. 

 

Figure ‎4-6: The longest line detection using Hough Transform 

4.2.2.4 Filtering & Enhancement 

Finally, based on the lines detected by Hough Transform; the longest line 

was identified as a pipeline candidate. This assumption is based on the idea 

that there will only be one main line feature within the image, Figure ‎4-6. 

However, if there are many features in a line, such as multi-segments, then it 

will not be suitable to just choose the longest line which will lead to missing the 

other lines, as shown in Figure ‎4-7.  

 

Figure ‎4-7: True & false detection of multi-lines detection using Hough 

Transform  
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However, to identify the right line segments and improve the performance of the 

detection algorithm, the pipeline candidates are projected from the image frame 

to the world by transforming the pixel coordinates (𝑥𝑖, 𝑦𝑖) into 3D-world 

coordinates (𝑋, 𝑌, 𝑍). These line segments are then compared to the existing 

pipeline waypoints within each frame to determine the correct detection as 

described in Figure ‎4-8. 
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Figure ‎4-8: Filtering & enhancement of pipeline detection 

4.2.2.5 Geo-Referencing 

In order to calculate the errors between the known pipeline segments and 

the lines detected by the vision algorithm, the first step is to geo-reference the 

line features found in the image. It is an important issue to project the camera 

measurements into measurements in the real 3D world because scenes are not 

only 3D; they are also physical spaces with physical units. Consequently, the 

relation between the camera’s coordinate frame and the world coordinate 

system is a critical component in any attempt to reconstruct a 3D scene. 
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In order to implement this, the camera is calibrated to model the camera’s 

geometry and to estimate the distortion properties of the lens. These 

measurements define the intrinsic parameters of the camera. When these 

factors are known it is possible to use homography transform to project points 

from the image plane to the ground plane (assuming the terrain is flat). 

Once the Hough lines are projected into the 3D world coordinate system, the 

endpoints of the pipe are estimated based on the distance between the existing 

pipeline, Hough lines, and their parallelism. 

4.2.2.6 Real Pipeline Endpoints Identification and Localization 

Before estimating the position of the pipeline endpoints, the endpoints of the 

real pipeline segment that pass through the image need to be identified, to 

avoid matching incorrect areas as described in Figure ‎4-9. 

 

Figure ‎4-9: Real pipeline endpoint identification 
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To identify the endpoints of this pipeline segment, the following steps were 

developed as follows: 

1) Predefine the entire real pipeline endpoints for each segment 

[(xp(1)
, yp(1)

), (xp(2)
, yp(2)

)]. 

2) Calculate the image corners in the real world based on the resolution of 

the original image frame [(xUR, yUR), (xUL, yUL), (xDR, yDR), (xDL, yDL)]. 

3) Determine the maximum and minimum frame boundaries 

(Fxmax
, Fxmin

, Fymax
, Fymin

). 

4) Calculate the interception of each line segment with the edges of the 

frame [(PxU
, PyU

), (PxD
, PyD

), (PxL
, PyL

), (PxR
, PyR

)]. 

5) Determine the maximum and minimum boundaries for each predefined 

endpoint within the edges of the frame (PXmax(1)
, PXmin(1)

, PYmax(1)
, PYmin(1)

). 

6) Decide if the pipeline segment falls within the image: 

a. If the entire segment falls within the frame, confirm these 

endpoints. 

b. If one endpoint of the predefined line segment meets the 

condition, while the other endpoint falls outside the frame, confirm 

the acceptable point and calculate the second endpoint from the 

interception endpoint. 

c. If neither of the pipeline endpoints falls within the frame, but the 

segment is crossing the image, identify the interception points at 

the edges of the image. 
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4.2.2.7 Pipeline Position Estimation 

Estimating the position of the pipeline is achieved by comparing a 

predefined number of lines detected by Hough Transform with the predefined 

real position of the pipeline endpoints at each frame and selecting the nearby 

one. The geometric calculations used in this project are shown in Figure ‎4-10, 

where the distance and parallelism between two lines are calculated. First, the 

length (𝑙) of the real pipeline segment that is passing through the image is 

calculated using Pythagorean Theorem (Boljanovic, 2006) as shown in 

Equation (‎4-2): 

 
𝑙 = √(xp1

− xp2
)
2
+ (yp1

− yp2
)
2
 (‎4-2) 

Where: 𝑙 is length of the real pipeline segment that is covered in the image 

frame. (xp1
, yp1

) and (xp2
, yp2

) are the width and height of the first and second 

endpoints of the real pipeline segment relative to the image frame, respectively. 

Similarly, calculating the distances (𝑙11, 𝑙12, 𝑙21, 𝑎𝑛𝑑 𝑙22), that are located 

between the endpoints of the real pipeline and the endpoints of the detected 

Hough lines as denoted in Figure ‎4-10 using again Pythagorean Theorem 

(Baer, 2005) as shown in Equation (‎4-3) to Equation (‎4-6). 

 
𝑙11 = √(xp1

− xH1
)
2
+ (yp1

− yH1
)
2
 (‎4-3) 

 
𝑙12 = √(xp1

− xH2
)
2
+ (yp1

− yH2
)
2
 (‎4-4) 

 
𝑙21 = √(xp2

− xH1
)
2
+ (yp2

− yH1
)
2
 (‎4-5) 

 
𝑙22 = √(xp2

− xH2
)
2
+ (yp2

− yH2
)
2
 (‎4-6) 

Where: 𝑙11, 𝑙12, 𝑙21, 𝑎𝑛𝑑 𝑙22 are the distances between each endpoint of the 

real pipeline segment with each endpoint of the detected Hough line segment. 

x and y refer to the north and east coordinates, respectively. p and H refer to the 



 

79 

 

real pipeline and the Hough line segments, respectively. 1 and 2 denote the first 

and second endpoints of each segment, respectively.  

After that, the angles α1 and α2, represented in Figure ‎4-10, are calculated 

using the law of cosines formula (Boljanovic, 2006) as in Equation (‎4-7) and 

Equation (‎4-8): 

 
𝑙11
2 − 𝑙12

2 − 𝑙2 + 2𝑙12𝑙 𝑐𝑜𝑠 𝛼1 = 0 (‎4-7) 

 
𝑙22
2 − 𝑙21

2 − 𝑙2 + 2𝑙21𝑙 𝑐𝑜𝑠 𝛼2 = 0 (‎4-8) 

Then, the shortest distances 𝜌1 𝑎𝑛𝑑 𝜌2 are determined that are located at the 

first and second endpoint of the Hough line segment and the real pipeline 

segment as denoted in Figure ‎4-10 using the law of sines formula (Boljanovic, 

2006) as shown in Equation (‎4-9) and Equation (‎4-10).  

 𝜌1 = 𝑙12 𝑠𝑖𝑛 𝛼1 (‎4-9) 

 𝜌2 = 𝑙21 𝑠𝑖𝑛 𝛼2 (‎4-10) 

Hence, the distance 𝜌𝑎 between the Hough line segment and the real pipeline 

segment is calculated by averaging the shortest distances of each endpoint 

(ρ1, ρ2) as indicated in Figure ‎4-10 using Equation (‎4-11).  

 𝜌𝑎 =
𝜌1 + 𝜌2

2
 (‎4-11) 

In addition, the parallelism factor (𝜌𝑝) used to measure the parallelism of any 

pair of straight lines is obtained based on the absolute difference between the 

normal lines of each endpoint using Equation (‎4-12): 

 𝜌𝑝 = |𝜌1 − 𝜌2| (‎4-12) 
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Finally, based on the obtained distance (𝜌𝑎) and the parallelism factor (𝜌𝑝), the 

line is selected to represent the candidate pipeline based on the limitations of 

the distance between any pair of lines as well the parallelism factor. 

 

Figure ‎4-10: Geometric calculations for pipeline position estimation 

4.2.2.8 Simulation Results 

First, the Hough Transform algorithm was implemented in Matlab/Simulink to 

evaluate the performance of the system. Several image sets have been 

analysed, and two aerial videos have been used to test the system. The first 

video has been captured by an air-vehicle flying over the Trans-Alaska Pipeline 

in the United States while the second video shows a pipeline being constructed 

in the United Kingdom to allow testing of false positives. 

Table ‎4-1: Performance of Hough transforms detection rates 

Data 
Source 

Number of 
Frames 

Successful 
Detections 

Detection 
Rate 

1st Video 1200 1100 94% 

2nd Video 45 30 66% 
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The detection rate of this system was measured by running the algorithm on the 

two image sets as in Table ‎4-1. In first video set, the system detects the pipeline 

with a success rate of 94% over 1200 frames. The second video is used to 

stress-test the system regarding false detection, which causes the detection 

rate to drop to 66%. This reduction comes from the fact that the system fails 

when there are no pipelines in a frame. In the second video, the pipeline is still 

being constructed leading to a large number of false detections where the 

pipeline segments have not been joined. This test was used to check the 

capability of detecting the objects in the image whatever they are true or false. 

So, later, the filtering was used to reduce the false detection. 

 

4.2.3 Experimental Setup 

In order to validate this pipeline detection approach, a lab experiment was 

performed as shown in Figure ‎4-11 which includes the following: 

1. CCD camera sensor to provide the RGB images. 

2. Small-scale pipeline structure. 

3. Tripod to hold the camera sensor. 

4. Two parallel channels to keep the heading. 

5. Moving trolley (Plate). 

The experimental investigations of detecting the pipeline structure were 

performed based on an optical camera sensor as shown in Figure ‎4-12 and the 

characteristics of which are tabulated in Table ‎4-2.  
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Figure ‎4-11: Experimental setup 

Table ‎4-2: Camera specifications (Canon, 2011) 

Type 1/2.3 type CCD 

Focal Length 5.0 – 20.0 mm (35 mm equivalent: 28 – 112 mm) 

FOV ± 47º 

Frame size 
(resolution) 

640 x 480 pixels 

Frame Rate 25 fps 

Weight 
185 g (including battery/batteries and memory 
card) 

 

 

Figure ‎4-12: Camera sensor (Canon, 2011) 
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4.2.4 Experimental Results 

A camera tripod was mounted on a moving plate in the lab to simulate the 

footage obtained during steady flight over a pipeline. The camera was placed 

west of the pipeline and mounted at a height of 90 cm, looking down with a 30 

degree roll angle. It was moved from south to north at a constant speed, 

thereby simplifying the calculation of the camera’s current position. Two parallel 

channels are mounted on the ground at the linear path to keep the heading of 

the camera constantly. This gives an idealized vision of the scene that would be 

seen by the UAV. 

A short video (25 seconds) was recorded along a small pipeline of 1.2 cm 

diameter and 4.5 m length as shown in Figure ‎4-11 to evaluate the algorithm 

off-line. The sensor used to record the video is a standard CCD digital camera 

with approximately 47 degree horizontal view angle. The frame rate and 

resolution are 25 fps and (640×480) pixels, respectively. The detection 

algorithm was implemented in Matlab/Simulink simulation environment. 

 

 

Figure ‎4-13: Numbers of the detected pipeline segments 
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Figure ‎4-13 shows the number of segments detected and compares it with the 

number of lines that should be detected at each frame along the pipeline’s 

length.  

The position error between the detected pipeline and the real one is shown in 

Figure ‎4-14. As illustrated in Figure ‎4-14 when the algorithm are tested in a 

controlled lab environment with the pipeline having only 1-segment in the 

captured image frame, it can achieve about 99% detection rate.  

 

 

Figure ‎4-14: Position error percentage 

 

However, when considering a pipeline consisting of 3-segments, as shown in 

Figure ‎4-15, the average detection rate slightly reduces to approximately 96%. 

This reduction comes from the number of Hough lines that are used to select 

the correct line in the image frame. Therefore, if the line segment in the image 

frame is long compared to the other segments, the detection algorithm fixes on 

that segment and hence improving the detection rate. 
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Figure ‎4-15: Pipeline structure 

Figure ‎4-16 shows the initial robustness test results in which the algorithm is 

able to detect the pipeline and ignore the false detection of either a secondary 

pipe or other visually similar objects.  

 

 

Figure ‎4-16: Results of pipeline detection 
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Figure ‎4-17 shows results of the pipeline structure and the endpoints history of 

the line segment at each image frame through the whole pipeline structure 

route. 

 

Figure ‎4-17: Pipeline segments endpoints history 

As seen, the endpoints of the pipeline segments were identified successfully 

along the lengthy pipeline which represents the endpoints behaviours at each 

captured image frame (30 fps). Hence, this identification requires the GPS data 

of the air-vehicle in addition to the GPS database of the pipeline structure itself. 

So, another algorithm is required to be developed which can identify the 

endpoints of the pipeline without relying on the GPS data of the air-vehicle and 

the pipeline structure. 
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4.3 Depth-Based Pipeline Endpoints Identification 

This section describes the proposed depth-based algorithm used to detect 

and localize the pipeline structure using an aerial platform equipped with a 

depth sensor. This algorithm was proposed to achieve an on-board reliable 

automatic system capable of identifying and localizing the pipeline structure, in 

real-time with a low cost aerial platform based on the depth intensity in order to 

keep track of the pipeline and maintain monitoring and surveying.  

Once again use of computer vision techniques, were used to develop this 

algorithm. The processing of this algorithm commences with a transformation 

from 2D depth information into 3D point clouds. Following this, a RANSAC 

approach is used to detect the plane in the density of that 3D point cloud and to 

filter out the ground from non-ground points. Once the non-ground points have 

been found, they are then transformed back into the 2D depth matrix in order to 

implement the 2D edge detection. If the edges are, detected, then they are 

again convert into 3D points to geometrically filter out the points that are higher 

than a predefined height, relative to the plane of ground detected. It is 

performed based on the standard height of the existing pipelines with a 

hysterises margin, in order to remove points by that might due to buildings or 

any high objects. Again, once points are found, they are converted into a 2D 

depth array using 2D Hough transforms to extract the possible line structures. 

Then, the lines detected are converted into 3D points to geometrically check the 

parallelism and the distance between any two lines which refers to the possible 

structure of the pipeline. Finally, if the conditions are satisfied, the waypoints of 

the position of that pipeline’s position are measured by picking up the endpoints 

of the pipeline segment. 

The Kinect sensor was chosen in this project to provide the depth information of 

the scene in order to obtain more accurate detection than the colour information 

which has a high noise due to lighting effects.  
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The performance of this algorithm was tested indoors due to limitations of 

finding a real over-ground pipeline, and secondly due to the sensor limitations. 

Python and OpenCV library environment where used to verify that the system is 

capable of detecting and localizing reliably the pipeline structure from the air, 

with a high detection rate and fast processing time.  

4.3.1 Requirements  

In order to process the algorithms of pipeline detection in this project, two 

inputs are required to accomplish the processing as shown in Figure ‎4-18, 

namely they are: 

a) A 2D depth array (data acquisition). 

b) The intrinsic calibration model of the depth image. 

 

Data Acquisition Detection WaypointsIRI[u,v,d] N, xN, yN

Sensor Calibration 

Parameters
KIR

 

Figure ‎4-18: Depth-based pipeline endpoints identification 

 

4.3.1.1 Data Acquisition 

The first step of any computer vision system is the image acquisition. 

Once the image has been acquired, various techniques of processing can be 

applied to perform different computer vision tasks to the image. The sensor 

used in this stage of processing is the Kinect Xbox. This section describes how 

this sensor streams the depth data for computer vision analysis. 

Two open source drivers/libraries are available to be used to stream this data in 

this project, which are Libfreenect (by OpenKinect community) and OpenNI 
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(Open Natural Interface). More information about those drivers is already 

described in chapter three. 

By default, the depth image has a resolution of 640x480 pixels (u, v) where each 

pixel has 11-bit depth data. This data has a raw depth value (draw) varying from 

0 to 2047 for each pixel which indicates the distance between the principal 

plane of the IR camera and a point in the scene, measured perpendicularly to 

the main plane through that pixel.  

This depth map is provided by the Kinect as a greyscale image of an array as 

shown in Figure ‎4-19. In this figure, a darker coloured pixel represents a spot 

location nearer to the depth camera, while a brighter pixel locates farther to the 

camera depth. Moreover, the white regions are areas that the camera cannot 

see given the shooting angle. In a grayscale image, black is defined with a 

value of 0 and white is defined with a value of 256.  

 

 

Figure ‎4-19: Kinect greyscale image of a depth array 
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4.3.1.2 IR Intrinsic Calibration Model 

The intrinsic calibration model of the depth image is required in this chapter 

to assist processing of the pipeline detection algorithm as shown in Figure ‎4-18. 

The same model has already been performed in (section 4.2.2). The purpose of 

this model is to project the IR image coordinates into world coordinates (meter).  

4.3.2 Identification algorithm 

This section presents the overall design of the proposed identification 

algorithm of the pipeline structure endpoints based on the depth data as 

demonstrated in Figure ‎4-20. The processes used to develop this algorithm are 

listed as follows:  

a) 3D point clouds mapping of the explored view based on the depth data.  

b) Filtration of the coplanar and non-coplanar 3D point cloud and transform 

them back into 2D depth map. 

c) Edge detection of the non-coplanar using 2D depth map and transform it 

again into 3D point clouds.  

d) Thresholding the elevation of the non-coplanar edges using their 3D 

point cloud data, and then transform them into 2D depth map. 

e) Detecting the possible line structures using 2D depth map of the 

thresholded edges and then transform them into 3D point cloud map. 

f) Confirm if any pair of the lines detected in (e) satisfy the required 

geometric conditions of the pipeline configuration (such as parallelism, 

distance between them, corresponding to the non-coplanar 3D point 

cloud). 

g) Finally, estimating the position of the endpoints of the pipeline segments 

(Endpoints) relative to the camera frame.   

More details of these processes are described in the following sections of this 

chapter. 
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Figure ‎4-20: Depth-based pipeline endpoints identification algorithm 

4.3.2.1 3D Point Cloud Mapping  

A point cloud mapping is a 3D dataset of points, representing the scene’s 

depth that is relative to the sensor’s coordinates, in the real world’s metric 

coordinates. The goal of this task is to develop an algorithm that can map and 

reconstruct the point cloud from the depth map. It is proposed in this project to 

assist detecting the pipeline structure geometrically by using the real spatial 

information about the objects in the scene.  
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In order to reconstruct the 3D point cloud in real time, the depth image is 

projected along the intrinsic calibration model of the depth sensor. This section 

describes the approach of how to transform the depth map into a dense 3D 

point cloud of the scenes in world space coordinates. So, let the depth map of 

size 𝑢 × 𝑣 pixels be 𝐼𝑑. Moreover, the corresponding 3D point cloud 𝑃3𝐷 of each 

pixel is reconstructed using the depth value 𝐼𝑑(𝑢, 𝑣, 𝑑). First, rebuilding the N × 3 

matrix of the depth map coordinates into a homogeneous scene coordinates 

N × 4 matrix as shown in form (‎4-13) below: 

 𝐼𝑑 = [
𝑢
𝑣
𝑑
] → [

𝑢
𝑣
𝑑
1

] = 𝐼𝑑ℎ (‎4-13) 

Where: 𝐼𝑑(𝑢, 𝑣) represents the matrix of the depth with a value 𝑑 at each pixel 

location (𝑢, 𝑣), 𝑢, 𝑣 𝑎𝑛𝑑 𝑑 represent pixel height, pixel width, and depth value of 

the image, respectively. 

Then, the homogeneous depth matrix (𝐼𝑑ℎ) is projected into 3D world 

homogeneous scene coordinates (𝑃ℎ3𝐷) using the intrinsic calibration model of 

the depth sensor (𝐾𝐼𝑅) as shown in Equation (‎4-14): 

 𝑃ℎ3𝐷 = [

𝑋𝑤

𝑌𝑤

𝑍𝑤

𝑊𝑤

] = 𝐾𝐼𝑅 . 𝐼𝑑ℎ (‎4-14) 

Where: 𝑋𝑤, 𝑌𝑤, 𝑎𝑛𝑑 𝑍𝑤  are the 3D world coordinates, and  𝑊𝑤 is the 

homogeneous factor. 

After that, the 3D world homogeneous scene coordinates (𝑃ℎ3𝐷) are converted 

into inhomogeneous scene coordinates (𝑃3𝐷) by dividing the fourth factor to get 

the 3D point cloud as in Equation (‎4-15): 

 𝑃3𝐷 = [
𝑋𝑤

𝑌𝑤

𝑍𝑤

] = [

𝑋𝑤 𝑊𝑤⁄

𝑌𝑤 𝑊𝑤⁄

𝑍𝑤 𝑊𝑤⁄
] (‎4-15) 
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So, Figure ‎4-21 illustrates the construction of the 3D point cloud (𝑃3𝐷) of the 

expected scene of this project that involves pipeline structure, third-party 

objects, and the ground plane. The processing rate of this approach is about 2 

fps.  

  

Figure ‎4-21: 3D point cloud mapping 

4.3.2.2 Plane Detection & Filtration in a Point Cloud 

The plane detection in point cloud is a kind of filtration used to separate 

between the objects and the ground in the scene based on the elevation data. 

The objective of this task in this project is to develop an algorithm capable of 

detecting a plane robustly in a dense 3D point cloud in a real-time. The 

approach proposed to process the plane detection in this project is based on a 

Random Sampling Consensus (RANSAC) algorithm that is widely used for this 

kind of detection in computer vision.  
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The principle of this algorithm is to find the best plane in a random and very 

large number of 3D point clouds. This principle is explained in details by 

(Derpanis, 2010; Fischler and Bolles, 1981). 

First, it selects a three-point randomly and calculates the parameters of the 

corresponding plane. Then it filters out the coplanar point and non-coplanar 

point based on a given threshold. After that, it iterates these procedures a 

number of times; at each time, it compares the new count of the obtained 

coplanar point with the last highest one being saved. Once it is greater than the 

previous one, it replaces the count of the coplanar point. The inputs required for 

this algorithm are as follows: 

 The 3D point cloud list. 

 The tolerance threshold of the distance between the chosen plane 

and the other points.  

 The foreseeable-support is the maximum feasible points belonging to 

the same plane. It is deduced from the point density and the 

maximum foreseeable ground plane surface. 

 The probability (𝜶) is a minimum probability of finding at least one 

good set of observations in (N) trials. It usually lies between 0.90 and 

0.99. 

Algorithm 1 describes the plane extraction in detail. 

Algorithm 1: RANSAC for plane detection 

1:  bestSupport = 0;  

2:  bestPlane(3,1) = [0, 0, 0]; 

3:  bestStd = ∞;  

4:  i = 0; 

5:  e = 1 - forseeable-support/length(point-list) 

6:  N = round(log(1 − α)/log(1 − (1 −e)) 

7:  while i ≤ N do 

8:      j = pick 3 points randomly among (point-list) 

9:      pl = pts2plane(j) 

10:     dis = dist2plane(pl, point-list) 

11:     s = find(abs(dis) ≤ t) 
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12:     st = Standard-deviation(s) 

13:     if (length(s) > bestSupport) or (length(s) = bestSupport   

and st <bestStd) then 

14:           bestSupport = length(s) 

15:           bestPlane = pl;  

16:           bestStd = st 

17:     end if 

18:     i = i + 1 

19: end while 

 

The depth data used to validate the plane extraction consists of the pipeline 

structure and third-party interference object, as shown in RGB image data in 

Figure ‎4-22. 

 

 

Figure ‎4-22: RGB of expected sample of pipeline and third-party objects 

 

The result of the proposed plane detection algorithm shows how the coplanar 

points of the plane extracted efficiently, which represent the ground and the 
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remaining non-coplanar points represent the objects in the scene as shown in 

Figure ‎4-23. 

 

 

Figure ‎4-23: Coplanar & non-coplanar filtration in the 3D point cloud 

 

4.3.2.3 Edge Detection of Objects (Non-Coplanar) 

The edge detection is performed in the 2D depth image of the non-coplanar 

region of interest which represents the object boundaries. It is proposed to be 

used in the pipeline detection algorithm to map the boundaries of the objects 

based on their real elevation contrast rather than the colour contrast which is 

later used to extract the potential line structure automatically. The canny edge 

detector is proposed in this system to detect the boundaries of the objects 

which is one of the most robust methods for edge detection. 

The process of this edge detector is already described in (Section 4.2.3.2) 

through multi-steps, where here it is based on the depth image rather than the 

colour image. 
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Figure ‎4-24: Object boundary detection 

 

The visual performance of the proposed edge detection algorithm is 

represented in Figure ‎4-24 as a depth image and a 3D point cloud. The results 

verify the performance reliability of the object boundary detection algorithm.  
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4.3.2.4 Boundary’s Height Filtration 

This section presents the developed filtration algorithm of the boundary’s 

height information of the objects (non-coplanar) relative to the ground detected 

in (section 4.3.3.2) to reduce the sample density, noisy points and 

computational process also increase the chance of finding the pipeline in those 

points. In this project, this algorithm is proposed to remove the boundaries 

(edges) that have an elevation higher than the maximum elevation of the 

existing pipelines (1.2 m based on the Alaskan pipeline), considering a small 

margin. The proposed approach used to perform this filtration is 3D RANSAC.  

In order to perform this algorithm, three inputs are required which are: 

 3D point cloud of the edges (𝑃3𝐷𝑒𝑑𝑔𝑒𝑠
) 

 Plane parameters [𝐴, 𝐵, 𝐶, 𝐷] 

 Maximum height of the existing pipeline (𝐻𝑚𝑎𝑥𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒
) 

The RANSAC algorithm assumes the edge points are comprised of below 

the maximum height (inlier) and above it (outlier). The maximum height is 

predefined to match the highest elevation of the existing pipelines or the user 

requirement with a consideration of a small tolerance margin. First, as 

described in Algorithm 2, it initializes the inlier and outlier lists separately. Then, 

it calculates the distance of each point in the edges list to the candidate plane 

by using the standard equation of a plane in three-dimensional (Boljanovic, 

2006) as in Equation (‎4-16).  

 𝑑(𝑃𝑙𝑎𝑛𝑒(𝐴, 𝐵, 𝐶, 𝐷), 𝑃𝑜𝑖𝑛𝑡(𝑥, 𝑦, 𝑧)) =  𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 (‎4-16) 

Where: 𝑑 is the distance between the point and the plane. 𝐴, 𝐵, 𝐶, 𝑎𝑛𝑑 𝐷 are the 

plane parameters. 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 are the 3D world coordinates of the point. 

Once the distance of the point is below or equals the threshold of predefined 

maximum height, it will append the point automatically into the inlier list, 

otherwise it will append it into the outlier. 
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Algorithm 2: RANSAC for boundaries height filtration 

1:  point-list = [P3D-edges]; 

2:  plane = [A, B, C, D]; 

3:  h-max = maximum height; 

4:  height-inlier = [ ]; 

5:  height-outlier = [ ]; 

6:  for p in point-list: 

7:     dis = abs[A*p[1]+B*p[2]+C*p[3]+D] 

8:     if (dis ≤ h-max): 

9:          height-inlier.append(p) 

10:         height-inlier.append(p) 

11: return height-inlier, height-outlier 

 

The algorithm was tested on the 3D point cloud data of the object boundaries 

and is illustrated in Figure ‎4-25. The result shows that the performance of this 

algorithm is efficient for implementation it in this project. The processing rate of 

this algorithm is about 2 fps.  

 

Figure ‎4-25: 3D point cloud of objects boundary’s height filtration 
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Once the 3D point cloud of the object's boundary height was filtrated out, it is 

transformed into a raster in 2D depth image to prepare it for the Hough 

transforms in the next step, as shown in Figure ‎4-26. 

 

Figure ‎4-26: Depth image of objects boundary’s height filtration 

4.3.2.5 Straight Lines Detection 

This section describes the proposed algorithm used to detect straight line 

structure based on the borders of the objects that are found and shown in 

Figure ‎4-26. The proposed method used in this step is the classical Hough 

transform, which is commonly proposed in computer vision applications to 

detect the straight line structure.  

The requirements of this algorithm are: 

 The binary image of the edge detection. 

 The endpoints parameters 𝑆(𝐱𝐇(𝟏)
, 𝐲

𝐇(𝟏)
, 𝐱𝐇(𝟐)

, 𝐲
𝐇(𝟐)

) of the detected 

lines. 

 The shortest distance in Hough space 𝝆 in pixels.  

 The polarity of the shortest distance 𝜽 in radians. 

 The minimum number of intersections to detect a line. 
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 The minimum number of points that can form a line. Lines with less 

than this number of points are disregarded. 

 Maximum gap between two points to be considered in the same line.  

The details of how this algorithm works were presented in 4.2.3.3 in this thesis. 

The output of this algorithm is a 2D depth data of the detected line's endpoints. 

The expected output of this step is a 3D point cloud of the line's endpoints by 

performing a transformation. 

4.3.2.6 Pipeline Verification 

This section describes the approach developed to identify the potential line 

candidate as a real pipeline structure by using a standard geometric calculation 

and RANSAC. However, due to the probability that the straight lines detected in 

the previous section, could represent different objects than the pipeline or might 

be the result due to noise. So, the pipeline detection algorithm should be 

enhanced to identify the real pipeline structure more precisely. 

The main requirements of this approach are as follows: 

 The endpoint’s list of the lines (𝑆) already obtained in the previous 

section.  

 A tolerance value (𝑡𝑤) indicates the expected maximum width of the 

actual pipeline in meters. 

 Another tolerance value (𝑡𝑙) denotes to the minimum, acceptable length 

of the pipeline in meters. 

 Vicinity’s minimum number of 3D point cloud (𝑁𝑣𝑚
) required to accept the 

line segment as a real pipeline.  

The outlined statements of the proposed problem’s solutions are clarified as 

follows: 

1) What is the distance between the parametric lines 𝑑(𝑃, 𝐿) with 

considering parallelism? 

2) Is the distance 𝑑(𝑃, 𝐿) less or equal to the defined tolerance value (𝑡𝑤)? 
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3) If (2) satisfied, what is the centre parametric line (PsM
, PeM

)? 

4) If (3) satisfied, what is the length of the centre line (𝑙𝑀)? 

5) Is the length of the new segments (𝑙𝑠) equal or greater than the tolerance 

(𝑡𝑙)? 

6) If (5) satisfied, how many points lie in a vicinity of the line segments (𝑁𝑣)?  

7) Is the number of points (𝑁𝑣) equal or greater than the vicinity’s minimum 

number of points (𝑁𝑣𝑚
)? 

The proposed technique solving this problem consists of a geometrical 

calculation and RANSAC method. First, it selects one line 𝐿(𝑃𝑠, 𝑃𝑒) and checks 

its distance with the remaining lines by calculating the perpendicular distance 

between the points in the remaining lines and the selected line in order to avoid 

the nonparallel lines. This is done by using the formula (Boljanovic, 2006) in 

Equation (‎4-17) that computes the distance between a point and a line in n-

dimensional to find the distance between the selected line 𝐿(𝑃𝑠, 𝑃𝑒) and the start 

points of the rest of the segments 𝑑(𝑃, 𝐿), as well the end points simultaneously. 

Then, the difference between them is checked to not exceed a specific margin 

in order to satisfy the semi-parallelism and if they satisfy the required tolerance 

(𝑡𝑤).  

VL

Pe

Ps

VP

P

d(P, L)

 

Figure ‎4-27: Geometry of the distance from a point to a line  

 

 
𝑑(𝑃, 𝐿) =

|𝑉⃑ 𝐿
⃑⃑  ⃑ × 𝑉⃑ 𝑃|

|𝑉⃑ 𝐿|
 (‎4-17) 



 

103 

 

𝑉⃑ 𝐿 is the direction vector of the line 𝐿(𝑃𝑠, 𝑃𝑒) and 𝑉⃑ 𝑃 is the direction vector of the 

points (𝑃) to the start point in the line (𝑃𝑠). After that, the centre line segment 

𝐿𝑀(𝑃𝑠𝑀
, 𝑃𝑒𝑀

) is calculated by using the average formula as shown in Equation 

(‎4-18) to locate the midpoints that lie between the endpoints of any two 

parametric lines. 

 
𝐿𝑀(𝑃𝑠𝑀

, 𝑃𝑒𝑀
) = (

𝑃𝑠1 + 𝑃𝑠2

2
,
𝑃𝑒1

+ 𝑃𝑒2

2
) (‎4-18) 

Where: (𝑃𝑠1 , 𝑃𝑒1
) and (𝑃𝑠2 , 𝑃𝑒2

) refer to the start and end points of the first and 

second line segments, sequentially. Then, the standard Euclidean distance 

(Boljanovic, 2006) as shown in Equation (‎4-19) is used to calculate the length of 

the centre line (𝑙𝑀) in order to make a decision either it is greater or equal to the 

predefined tolerance value (𝑡𝑙), not lower. 

 
𝑙𝑀(𝑃𝑠𝑀 , 𝑃𝑒𝑀

) = √(𝑥𝑒𝑀
− 𝑥𝑠𝑀)

2
+ (𝑦𝑒𝑀

− 𝑦𝑠𝑀)
2
+ (𝑧𝑒𝑀

− 𝑧𝑠𝑀
)
2
 (‎4-19) 

Where: 𝑙𝑀 is the length of centre line segment. 𝑃𝑠𝑀
, 𝑃𝑒𝑀

 are the start-point and 

end-point of the centre line segment, respectively. (𝑥𝑠𝑀
, 𝑦𝑠𝑀

, 𝑧𝑠𝑀
) 𝑎𝑛𝑑 (𝑥𝑒𝑀

,

𝑦𝑒𝑀
,  𝑧𝑒𝑀

) are the 3D world coordinates of the start-point and end-point of the 

centre line segment, respectively. 

Once the centre lines satisfied the geometrical requirements, now one more 

step is required to verify the pipeline by calculating the weight of inlier points to 

the centre lines. So, the RANSAC method (Derpanis, 2010; Fischler and Bolles, 

1981) is proposed to be used to compute the weight of the point clouds that are 

in-line with the centre line within a tolerance value referring to the maximum 

radius of the real pipeline. 

The results in Figure ‎4-28 and Figure ‎4-29 show that the performance of this 

approach is robust and capable of detecting the over-ground pipeline structure 

in real-time based on the depth data, with a processing rate of about 2 fps.  
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Figure ‎4-28: Pipeline identification in 3D point clouds 

 

 

Figure ‎4-29: Pipeline identification in RGB image (for demonstration) 
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4.3.2.7 Pipeline Position Estimation  

Estimating the position of the pipeline is the final step in the pipeline 

detection algorithm based on the depth information. It represents the position of 

the endpoints of the pipeline (EPs) relative to the camera reference to provide 

the location of the pipeline endpoints accurately, automatically, and near real-

time. Those EPs are deducted to assist tracking the pipeline automatically, in 

addition, detecting any third-party interference around the pipeline location. 

Once the pipeline is already verified in the previous step, the endpoints of the 

centre line PsM
, PeM

, that is previously obtained, are representing the required 

EPs. 

4.3.3 Performance 

This section evaluates the performance of the depth-based aerial pipeline 

detection algorithm. To evaluate the performance of this algorithm, four indexes 

were considered to confirm the capabilities, which are sensitivity, specificity, 

false positive and false negative. Sensitivity and specificity relate to how likely 

the decision is correct while the false positive and false negative correspond to 

the errors. 

 Sensitivity defined as the ratio of the number of the detected pipeline 

structure where the pipeline, in fact, relates to the total number of the 

present pipeline in the test. 

 Specificity defined as the ratio of the number of the non-detected pipeline 

structure where the pipeline, in fact, does not exist to the total number of the 

absent pipeline in the test. 

 False positive, defined as the ratio of the number of detecting pipeline 

structure where the pipeline, in fact, does not exist to the total number of the 

detected pipeline in the test. 
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 False negative, defined as the ratio of the number of not detected pipeline 

structure where the pipeline, in fact, exists to the total number of the not 

detected pipeline in the test. 

In order to obtain an efficient performance, the algorithm should have high 

sensitivity and specificity and a low false positive and false negative ratio. Four 

tests were performed using this algorithm. The first one include a pipeline with a 

flat surface, the second includes a pipeline with a flat surface and objects, the 

third one includes a pipeline with the non-flat surface, and the last one includes 

a pipeline with non-flat surface and objects. 

Table ‎4-3: Performance results of pipeline endpoints identification 

 

Test 1 Test 2 Test 3 Test 4 
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Presence 98 2 97 3 98 2 96 4 

Absence 1 99 2 98 3 97 3 97 

Sensitivity 98.00% 97.00% 98.00% 96.00% 

Specificity 99.00% 98.00% 97.00% 97.00% 

False Positive 1.01% 2.02% 2.97% 3.03% 

False Negative 1.98% 2.97% 2.02% 3.96% 

 

As results show in Table ‎4-3, the performance of the pipeline endpoints 

identification algorithm are capable efficiently of identifying the pipeline and 

estimate the position with a high detection rate under different circumstances.  

4.4 Chapter Summary 

In this chapter, two main algorithms were proposed and developed to 

identify the pipeline endpoints from the air and operate in near real-time, which 

are visible-based and IR-based data. Both of them were evaluated 
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experimentally and have confirmed the capabilities and reliabilities of identifying 

the pipeline endpoints in terms of identification decision, positioning accuracy, 

and processing load. The disadvantage of the visible-based algorithm is that it 

is dependent on the real database of the pipeline, which must be known, but the 

IR-based algorithm is capable of recognizing the pipeline without any external 

cues. The IR-based algorithm is capable of providing the position of the 

endpoints of the pipeline and the plane parameters of the ground in near real-

time, which will be used in the auto tracking of the pipeline and the third-party 

detection. 
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  Chapter 5

Third-Party Interference Detection 

 

 

 

5.1 Introduction 

Today, one of the main defects of pipeline safety in the world is due to third-

party interference, almost involving 40% of the pipeline integrity defects. So, to 

reduce this kind of problem, it is necessary to develop and build a reliable 

algorithm, capable of detecting and localizing any third-party interference, 

automatically in real-time. Therefore, integrating a small aerial platform such as 

a UAV equipped with a vision sensor and in the appropriate computer vision 

algorithms is one of the promising solutions to accomplish this mission and that 

is part of the focus of this project. Hence, the aim of this chapter is to develop 

and build an efficient algorithm based on aerial IR and RGB vision data, 

capable of automatically detecting any third-party interference and instantly 

alarming the operation centre with vision and location evidence.  

The algorithm proposed in this project contains three aspects, namely: 

detection, classification, and localization. The detection algorithm task is to 

detect the regions of interest of the objects geometrically based on the 

remaining point cloud obtained from the pipeline detection algorithm in the 

previous chapter after extracting the ground and the pipeline regions. While, the 

classification part was proposed to recognize third-party objects by using a 

Machine Learning (ML) technique after being filtered into objects Inlier the ROW 

and then transformed into the RGB image. Additionally, the localization was 

proposed to locate the centre position of the region of the third-party object 
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once classified using the measurements of the relative centre position of the 

area to the sensor reference.  

The reliability of this algorithm is evaluated indoors in this chapter due to the 

sensor and the pipeline limitations. The evaluation is estimated using a small 

scale sample (scene) of a pipeline and some third-party objects. The results 

demonstrate the capability and accuracy of recognizing the third-party objects 

with a high degree of detection rate and efficient processing speed. A complete 

overview of the algorithm is illustrated in Figure ‎5-1 and addressed in detail 

(section 5.2) below. 
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Figure ‎5-1: Third-party interference detection algorithm 
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5.2 Third-Party Objects Detection  

This section describes the approach used in this project to automatically 

detect and estimate the position of the third-party interference objects in the 

vicinity of the pipeline structure in real-time using a fusion of depth and RGB 

images.  

5.2.1 Objects Detection 

The detection of objects in this project is to find any object that is found only 

around the Right-of-Way of the pipeline. The algorithm used is a 3D RANSAC in 

3D point clouds to find the objects Inlier the ROW of the pipeline and a 

transformation to align those data with the RGB data. The details of this 

algorithm are explained in the following section. 

5.2.1.1 Point Cloud of the Objects Inlier the ROW 

This section describes the filtration process of the objects that lie within 

the pipeline Right-of-Way strip based on the filtered Outlier point cloud of the 

pipeline to concentrate only on the regions of interest over the image scene. 

The proposed algorithm used in this project to filter those point clouds is a 

simple Outlier removal algorithm that removes the points that are farther than a 

predefined threshold distance from a line segment. This threshold refers to the 

strip distance of the pipeline Right-of-Way. The line segment is known by the 

endpoints of the pipeline already obtained in the previous chapter. 

The simple Outlier removal algorithm is an iterative process which is described 

in the following steps: 

 Computing the corresponding linearity of the 3D non-ground point cloud 

by calculating the shortest distance 𝑑(𝑃3𝐷 , 𝐿) of each point cloud (𝑃3𝐷) 

into the pipeline segment (𝐿) using ecludean distance fourmuls 

(Boljanovic, 2006) as in Equation (‎5-1). 
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𝑑(𝑃3𝐷 , 𝐿) =

|𝑉⃑ 𝐿
⃑⃑  ⃑ × 𝑉⃑ 𝑃|

|𝑉⃑ 𝐿|
 (‎5-1) 

 

Where 𝑉⃑ 𝐿 is the direction vector of the line 𝐿(𝑃𝑠,  𝑃𝑒) and 𝑉⃑ 𝑃 is the direction 

vector of the point (𝑃) to the start-point in the line (𝑃𝑠). 

 Proving if this distance 𝑑(𝑃, 𝐿) is less than or equal to the predefined 

threshold (𝑡𝑙), it will then append its corresponding point (𝑃) as Inlier 

(𝑃𝐼𝑛), otherwise it will be Outlier (𝑃𝑂𝑢𝑡) using Equation (‎5-2).  

 𝑃 = {
𝑃𝐼𝑛     𝑖𝑓 𝑑(𝑃, 𝐿) ≤ 𝑡 
𝑃𝑂𝑢𝑡    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 (‎5-2) 

 

 

 

Figure ‎5-2: 3D point cloud of the detected objects 
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Figure ‎5-2 represents the 3D point cloud construction of the detected objects 

that are corresponded to the predefined Right-of-Way strip. 

5.2.1.2 RGB of the Objects Inlier the ROW   

Projection of the 3D point cloud map into the RGB map is used in the project 

to align the interested region in the IR map after being processed with the RGB 

map in order to achieve more processing on the RGB map or for exposing in 

colour. Now, the 3D point cloud map only contains geometry information while 

the RGB has colour information which all of them require for the purpose of this 

project. However, the problem is that there is a difference between the 

corresponding pixels in the 3D point cloud and RGB map. So, in this section, a 

projection of each pixel in the 3D point cloud map into its corresponding pixel of 

the RGB map is proposed and described. 

Building a 4xN homogeneous matrix (Theoharis et al., 2008) of the given IR 

map (𝐼𝑑ℎ) from the original 3xN matrix (𝐼𝑑) is shown in Equation (‎5-3). 

 

𝐼𝑑 = [
𝑢
𝑣
𝑑
] → [

𝑢
𝑣
𝑑
1

] = 𝐼𝑑ℎ (‎5-3) 

After that, the 3D rotation (𝑅) with 3D translation (𝑇) matrices in one matrix are 

combined. Then, their homogenous matrix is built by adding the last raw data to 

multiply it with the homogenous matrix (Theoharis et al., 2008) of the IR data as 

shown in Equation (‎5-4) in order to transform it into a homogenous matrix for 

the RGB matrix. 

 

𝐼ℎ𝑅𝐺𝐵 = [

u′

v′

d′

1

] = [

R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz

0 0 0 1

] [

𝑢
𝑣
𝑑
1

] (‎5-4) 

Finally, the transformed RGB data (u′, v′) is extracted from the homogenous 

RGB matrix (𝐼ℎ𝑅𝐺𝐵) by dividing the fourth element and eliminating the third 

element (𝑑′) to get the default matrix of the RGB (𝐼𝑅𝐺𝐵). 
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Figure ‎5-3: RGB data of the detected objects 

As shown in Figure ‎5-3, it represents the result of the object detection in an 

RGB image after filtering out the background, the pipeline, and the Right-of-

Way Outlier objects. These results will be used to classify the objects as an 

intrusion or not. 

5.2.2 Third-Party Objects Classification 

The classification of the third-party is to recognize the objects that have 

already been detected in (Section 5.2.1.2) based on its features. To recognize 

the third-party objects in real time, the Haar classifier algorithm, firstly published 

by Viola and Jones (2004), to detect face's features in images in real-time, will 

be used. The Haar classifier is one of the supervised Machine Learning 

classification techniques. This classifier is capable of running online and at a 

high detection rate based on real-time video footage.  

Haar-like features consider adjacent rectangular regions at a particular location 

in a detection window, then sum up the pixel intensity values in each region and 

compute the difference between these sums (Viola and Jones, 2004). This 

difference is then used to categorize subsections of an image. 



 

115 

 

This classifier works as follows: 

1) Create sample images (offline) 

2) Haar Training (offline) 

3) Performance testing of the classifier (Online). 

5.2.2.1 Collect & Create Samples 

First, this classifier requires collecting a set of positive and negative sample 

images to be trained with a few illuminations and pose variations that are 

undistorted. As much as the number of samples is increased, the performance 

increases. The positive samples only contain the target object and, in this 

project, some of the third-party objects are selected. Also, it is essential to 

provide some negative specimens, which do not contain the target object being 

trained for, to supply the training. A small set of positive and negative samples 

are shown below in Figure ‎5-4 and Figure ‎5-5, respectively. 

 

 

 

Figure ‎5-4: Some of the positive samples used to train the classifier 
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Figure ‎5-5: Some of the negative samples used to train the classifier 

After collecting the samples, the target object is cropped to get the positive 

training samples from the positive image with a proper size sub-window of the 

image with sensible widths and heights to include only the object. Cropping is 

achieved manually for each sample by using any photo editing tool; clipper 

image software was used for this purpose.  

5.2.2.2 Haar Training 

This section describes the Haar training algorithm based on the integral 

image in order to process the Haar features of the object candidate in constant 

time. The cascade of stages is proposed to eliminate non-object candidates 

quickly. Each stage consists of many different Haar features. Each of them is 

classified by a Haar-feature classifier to generate an output to the stage 

comparator. The stage comparator sums up the outputs of the Haar feature 

classifiers and compares this value with a stage threshold to determine if the 

stage should be passed or not. If all stages are passed the object candidate is 

concluded to be third-party interference. These terms will be discussed in more 

detail in the following sections  

5.2.2.2.1 Haar-Like Features 

Haar-like features are a rectangular group of pixels representing the contrast 

variances between their adjacent instead of using the intensity values of the 

pixels that determined their relative dark and light area as shown in Figure ‎5-6. 
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Figure ‎5-6: Basic types of Haar-like features (Viola and Jones, 2004) 

Those rectangle features can be computed rapidly and in constant time with any 

size of rectangular pixel group in order to detect any objects with various sizes 

by using the integral image algorithm, first used by Viola and Jones (2004), 

which is defined in Equation (‎5-5): 

 𝑖𝑖(𝑥, 𝑦)  =  ∑ ∑ 𝑖(𝑥́, 𝑦́)

𝑦́≤𝑦𝑥́≤𝑥

  (‎5-5) 

Where: (𝑖𝑖) represents the value of the integral image at any pixel (𝑥, 𝑦) for the 

given original image (𝑖) at the pixel (𝑥́, 𝑦́) as shown in Figure ‎5-7 by summing up 

the intensity values of all the pixels starting from the top left location at point (0, 

0) to the location of the target point (𝑥, 𝑦).  

 

Figure ‎5-7: Integral image (Viola and Jones, 2004) 

Moreover, the integral image can be computed in one pass through the total 

pixel intensity values of the image using Equation (‎5-6): 

   𝑖𝑖(𝑥, 𝑦)  =  𝑖𝑖(𝑥 − 1, 𝑦)  +  𝑠(𝑥, 𝑦) (‎5-6) 
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Where (𝑠) is the sum of the cumulative row as defined in Equation (‎5-7) with the 

initial conditions 𝑠(𝑥, −1)  =  0, and 𝑖𝑖(−1, 𝑦)  =  0.  

 𝑠(𝑥, 𝑦)  =  𝑠(𝑥, 𝑦 − 1)  +  𝑖(𝑥, 𝑦)  (‎5-7) 

Once the integral image of the original image has been obtained, it is used to 

extract any rectangle of the described Haar-like features in Figure ‎5-6. Hence, 

the value of any rectangle sum is simply computed in four array references as 

obvious in the notation in Figure ‎5-7 at right. For instance, the value of the 

integral image at location 1 is the sum of pixels in rectangle A, at location 2 is 

(A+B), at location 3 is (A+C), and at location 4 is (A+B+C+D). So, the sum of 

the original image (𝑖) over the rectangle D can be defined in Equation (‎5-8):  

 ∑ 𝑖(𝑥, 𝑦) = 𝑖𝑖(𝐷) + 𝑖𝑖(𝐴) − 𝑖𝑖(𝐵) − 𝑖𝑖(𝐶)

𝑥0≤𝑥≤𝑥1,𝑦0≤𝑦≤𝑦1

 (‎5-8) 

 

5.2.2.2.2 Learning Algorithm 

Because there are too many rectangular features expected in each 

standard sub-window it would be computationally expensive to evaluate all of 

them. Fortunately, there is a small number of features and it is efficient enough 

to represent the target object. So, an AdaBoost learning algorithm is employed 

to select both the efficient feature and train its corresponded strong classifier as 

related to the work of Viola and Jones (2004). This algorithm constructs a 

strong classifier as a weighted linear combination of some weak classifiers 

weighted based on their accuracy. Hence, each single rectangle of the Haar-like 

feature could be considered as a weak classifier once it has the least weighted 

error which means it is efficient to reject regions that are highly unlikely to 

contain the target object.  

An AdaBoost algorithm performs a sequence of boosting trial t on the giving set 

of sample images (𝑥1, 𝑦1), …… , (𝑥𝑛, 𝑦𝑛), where 𝑛 is the number of image sample. 

At the beginning, weights are initialized over the given set of sample images 
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using 𝑤1,𝑖 = 1

2𝑛𝑠
, 1

2𝑝𝑠
  for 𝑦𝑖 = 0,1 where 𝑛𝑠 and 𝑝𝑠 is the number of negative and 

positive samples, respectively. At each trial, each image receives a weight 

determining its importance by normalizing the weights in Equation (‎5-9). 

 𝑤𝑡,𝑖 ←
𝑤𝑡,𝑖

∑ 𝑤𝑡,𝑗
𝑛
𝑗=1

 (‎5-9) 

Then, for each feature, train the weak classifiers (ℎ𝑗) represented in Equation 

(‎5-10) which involves width and height pixel of the sub-window of the image 

(𝑥𝑠𝑤), a feature (𝑓𝑗), a threshold (𝜃𝑗) and a polarity (𝑝𝑗) indicating the direction of 

the inequality sign. 

 
ℎ𝑗(𝑥𝑠𝑤, 𝑓, 𝑝, 𝜃) = {

1    𝑖𝑓 𝑝𝑗𝑓𝑗(𝑥𝑠𝑤) <  𝑝𝑗𝜃𝑗

 0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (‎5-10) 

The error (𝜖𝑗) is evaluated with respect to 𝑤𝑡 as in Equation (‎5-11): 

 𝜖𝑗 = ∑ 𝑤𝑖|ℎ𝑗(𝑥𝑠𝑤𝑖
) − 𝑦𝑖|

𝑖
 (‎5-11) 

However, the classifier that has a lowest weighted error is selected as the most 

efficient weak classifier. After that, the weights are updated to emphasize the 

examples that were misclassified by using Equation (‎5-12). 

 
𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝛽𝑡

1−𝜖𝑖 (‎5-12) 

Where 𝜖𝑖 = 0 if example 𝑥𝑠𝑤𝑖
 is classified correctly, 𝜖𝑖 = 1 otherwise, and 

𝛽𝑡 = 𝜖𝑡
1−𝜖𝑡

.  

Finally, the strong classifier (ℎ) as shown in Equation (‎5-13) is a weighted 

combination of the T weak classifiers that are weighted according to their 

accuracy. 

 
ℎ(𝑥𝑠𝑤) = {1    𝑖𝑓 ∑ 𝛼𝑡(𝑥𝑠𝑤)ℎ𝑡(𝑥𝑠𝑤)

𝑇

𝑡=1
≥

1

2
∑ 𝛼𝑡(𝑥𝑠𝑤)

𝑇

𝑡=1

 0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

 (‎5-13) 
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Where T is the number of weak classifiers ℎ𝑡, 𝛼𝑡 = 𝑙𝑜𝑔 1

𝛽𝑡
. 

5.2.2.2.3 Cascade Classifier Structure 

This section describes the cascade classifier structure that is used to 

increase the detection performance of the target objects while radically reducing 

computation time. The overall structure of the cascade classifier consists of a 

sequence of strong classifiers arranged in a degenerate decision tree as shown 

in Figure ‎5-8. Each strong classifier involves a boosted set of weak classifiers. 

A positive decision from the first strong classifier triggers the evaluation of a 

second strong classifier that has also been adjusted to achieve very high 

detection rates, and so on for each strong classifier. So, the target object is 

detected once all the strong classifiers have been passed. A negative decision 

at any strong classifier leads to the immediate rejection of the sub-window 

before more complex classifiers are called upon to achieve low, false positive 

rates. 

 

 

Figure ‎5-8: Cascade classifier structure (Viola and Jones, 2004) 
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5.2.3 Third-Party Objects Localization 

This section describes the approach used to estimate the position of the 

detected third-party interference objects relative to the sensor reference. Once 

the third-party candidate objects are classified using the Haar classifier 

approach, the pixel located at the centre of the outcome sub-window of the 

Haar classifier, is converted into its corresponding point cloud to represent the 

locations of the third-party objects that relate to the sensor reference as 2D data 

(𝑥3𝑟𝑑, 𝑦3𝑟𝑑). 

5.3 Performance Evaluation 

This section represents and evaluates the performance of the proposed 

algorithm used to detect the pipeline third-party interference objects, aerially 

and in real time. Four statistical performance indexes are considered to 

evaluate and estimate the accuracy of this proposed algorithm which are 

sensitivity, specificity, false positive and false negative. Sensitivity and 

specificity relate to how likely the decision is correct; either the third-party 

objects exist or do not exist respectively while the false positive and false 

negative correspond to the errors. 

 Sensitivity defined as the ratio of the number of the detected pipeline third-

party interference objects where the third-party objects, in fact, exist to the 

total number of the present third-party objects in the test. 

 Specificity, defined as the ratio of the number of the not detected pipeline 

third-party interference objects where the third-party objects, in fact, doesn't 

exist to the total number of the absent third-party objects in the test. 

 False positive, defined as the ratio of the number of detecting pipeline third-

party interference objects where the third-party objects, in fact, doesn't exist 

to the total number of the detected third-party objects in the test. 
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 False negative, defined as the ratio of the number of not detected pipeline 

third-party interference objects where the third-party objects, in fact, exists to 

the total number of the not detected third-party objects in the test. 

The algorithm should have high sensitivity and specificity and low false positive 

and false negative ratios to confirm the performance capability. Two sets of 

indoor frames were captured from the air using the pipeline detection algorithm 

that was described in Chapter Four to evaluate the performance of this 

algorithm which comprises trained third-party objects and the second set 

includes a mix of empty (Black) and not trained objects framers. The captured 

frames represent the remaining data (region of interest) after removing the 

background and the pipeline regions. The algorithm was tested online by sliding 

a search window through each frame image and checking whether an image 

region at a certain location is classified as third-party objects or not. The 

performance result of this test is presented in Table ‎5-1. 

 

Table ‎5-1: Performance results of third-party interference detection 

 Detected Undetected 

Presence 1826 174 

Absence 32 1968 

Sensitivity 91.30% 

Specificity 98.40% 

False Positive 1.72% 

False Negative 8.12% 

Processing Rate (f/s) 2 

 

According to Table ‎5-1, the performance of the third-party interference detection 

algorithm shows that it has the capability to detect correctly at a high rate of 

91% and reject correctly at 98%. Also, it has an acceptable low detection error 

rate of 1.7% of incorrectly detecting and 8% of missed detection. So, the overall 
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performance and accuracy of the algorithm is efficient to detect the pipeline 

third-party interference objects and estimate its position with reliable 

performance. 

 

 

Figure ‎5-9: Demonstration of the pipeline’s third-party interference detection 

Figure ‎5-9 shows an image where the algorithm is employed and it correctly 

detects the third-party intervention.    

5.4 Chapter Summary 

In this chapter, filtrations and Haar classifier algorithms were proposed 

and developed to automatically detect and localize the pipeline third-party 

interference objects within the Right-of-Way in real-time. The performance 

outcome of this method was proofed experimentally using an indoor set of 

frames captured from above to emulate an aerial platform. The result shows 

that it is capable of efficiently detecting the pipeline third-party interference 

objects and, additionally, it can perform operations in real-time with an update 

rate of about 8 frames per second. 
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  Chapter 6

Air-Vehicle Autopilot Waypoints 

Navigation 

 

 

 

6.1 Introduction 

The aerial following of the pipeline is one of the main requirements that 

could assist in providing an automatic real-time monitoring of the pipeline Right-

of-Way integrity. In this project, a 2D waypoints tracking algorithm capable of 

following the pipeline structure accurately and in real-time was proposed and 

developed. While simultaneously maintaining the desired altitude; this tracking 

algorithm produces heading and altitude demands to control the attitude errors 

of the air-vehicle. This technique is mainly based on the real-time vision position 

estimation of the pipeline segment endpoints that were described previously in 

chapter four. Those endpoints represent the pipeline segment at each image 

scene. The position and speed of the UAV platform also need to be taken into 

account with regards to the acceptable speed of running the algorithm.  

For security and safety reasons, the air-vehicle cannot fly directly over the 

pipeline. So, the first step in this algorithm is configuring the waypoints of the 

reference air-vehicle's course based on the estimated endpoints of the pipeline 

segments to produce target, past, and future course waypoints. Then, it 

calculates the path angles change between the current and next courses. After 

that, based on the configured target waypoint of the course, the algorithm 

computes how far the air-vehicle from that waypoint (proximity distance) is. 
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Simultaneously, it computes the turn anticipation distance (TAD) that 

corresponds to the course target waypoint. Once the proximity distance 

becomes equal to or lowers than the TAD, then the air-vehicle starts turning by 

updating the target waypoint and computing the desired heading. Also, due to 

safety considerations, as well as further maintaining autonomy of the system 

and keeping tracking the pipeline, it was decided that the system must have an 

autonomous capability that commands the air-vehicle to initiate loiter phase 

once it lost the vision-based EPs or detects some threats around the pipeline. 

The piper cub flight control system developed in Matlab/Simulink environment is 

proposed to evaluate the tracking algorithm performance. This model was 

upgraded to be convenient with the requirements of this project. It comprises 

the piper cub dynamic model, its stability augmentation system, and the 

autopilot controllers. For the evaluation purpose in this chapter, the input 

waypoints representing the pipeline position were predefined offline. The 

performance of this algorithm presents an acceptable result that is reliable to 

track the pipeline robustly and in real time. 

 

6.2 UAV Platform 

The Piper J‐3 Cub 40 platform as shown in Figure ‎6-1 was used in this 

chapter as a prototype to develop the tracking algorithm. This platform is a 

lightweight fixed-wing UAV that has three conventional control surfaces, which 

are the aileron, elevator and rudder. Hitec servo actuates each control surface.  

The propulsion system is made up of a 1.29 KW Electric-Brushless-Dualsky 

Xmotor Series. The main platform specifications are detailed in Table ‎6-1. 
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Figure ‎6-1: Piper J‐3 Cub 40 aerial platform 

 

Table ‎6-1:  Piper J‐3 Cub 40 general specifications 

Wing Span 2.040 m 

Profile chord 0.3070 m 

Wing reference area 0.6290 m2 

Length 1.25 m 

Weight (includes Payloads) 5.65 Kg 

Engine 
Electric-Brushless-
Dualsky Xmotor 
Series 

Power Unit 
Li-Po 4-Cell pack 
8000mAh, 14.8 V 

Engine power 1.29 KW 

 

6.3 Waypoints Navigation Algorithm 

This section describes the proposed waypoints navigation algorithm in this 

project, as shown in Figure ‎6-2. The aim of this algorithm is to enable 2D 

waypoints tracking by navigating the air-vehicle through a reference course of 



 

128 

 

waypoint coordinates during the required altitude (ℎ𝑑) which is acquired and 

maintained within the flight control system already developed by Moghimi 

(2009). The waypoints could be predefined offline prior the flight or online in real 

time. This algorithm produces the heading demand (𝜓𝑑), that maintains the 

UAV platform tracking the pipeline and turns smoothly between the WPs 

transition. The heading demand is then sent into the flight control system which 

goes through the heading controller and ultimately translates into bank demand 

(𝜙𝑑).  

 

Waypoints 

Tracking
FCSψd 

Vision-Based 

Waypoints
PWPs

x, y, z, vx, vy, vz

GPS

 

Figure ‎6-2: High-level block diagram of waypoints navigation 

 

 

The proposed waypoints tracking algorithm requires two inputs to process the 

tracking/following algorithm that are:  

1) The vision-based endpoints (𝐸𝑃𝑠) that represent the pipeline segments 

that are already described in the pipeline detection algorithm in chapter 

four. 

2) The UAV platform position (x𝑎 , y𝑎, z𝑎) and velocity (v𝑥 , v𝑦, v𝑧) data that 

can be obtained from the flight control model.  

The processing structure of the tracking algorithm is presented in Figure ‎6-3 

and described in more detail below. 
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Figure ‎6-3: Waypoints navigation block diagram 

 

6.3.1 Real-time Course Waypoints Generation 

This section describes the real-time air-vehicle’s course waypoints 

generation algorithm to keep the air-vehicle following the pipeline, taking the 

pipeline integrity issue as shown in Figure ‎6-4 into consideration. To preserve 

the pipeline integrity, the air-vehicle should not fly over the pipeline directly, so a 
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reference ground course waypoints (current (𝑊𝑃𝑐), target (𝑊𝑃𝑡) and future 

(𝑊𝑃𝑓)) should be generated for the air-vehicle at the right-side of the pipeline 

segment with a particular distance based on the online sequences of the 

pipeline segment endpoint (𝐸𝑃𝑠) and the air-vehicle position (𝑃𝐴).  

 

Future

Pipeline

Flight Course      

Past

Target

FutureTarget

N

E

Pipeline Waypoint

Course Waypoint

RT

Past

DcT

Course Segment

Turn Radius

C
u
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en

t

Next

PA

Aircraft Position

 

Figure ‎6-4: The reference ground course configuration 

 

This configuration determines the structure of the pipeline waypoints, which first 

selects the nearest pipeline endpoint to the air-vehicle position as a current 

pipeline endpoint (𝐸𝑃𝑐) which also determines the current segment of the 

pipeline then the other corresponding endpoint of the current pipeline segment 

is considered as a target pipeline endpoint (𝐸𝑃𝑡) and the corresponding 

endpoint of the next pipeline segment is considered as a future pipeline 

endpoint (𝐸𝑃𝑓). Notice, when there is just one pipeline segment, the pipeline 

target (𝐸𝑃𝑡) and future (𝐸𝑃𝑓) endpoints’ coordinates become equivalents. After 

that, the algorithm computes the required course waypoints (𝑊𝑃𝑠) for the air-
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vehicle based on the pipeline endpoints (𝐸𝑃𝑠). If there is just one pipeline 

segment available it is easy to compute the course waypoints (𝑊𝑃𝑠) directly by 

using Equation (‎6-1) to find the parallel segment which represents the direct 

course segment. 

 
𝑊𝑃𝑐,𝑡,𝑓(𝑥, 𝑦) = 𝐸𝑃𝑐,𝑡,𝑓(𝑥, 𝑦) − (𝑅 ×

(−𝑑𝑦𝑐,𝑛, 𝑑𝑥𝑐,𝑛)

√𝑑𝑥𝑐,𝑛
2 + 𝑑𝑦𝑐,𝑛

2
) (‎6-1) 

Where: 𝑑𝑥𝑐,𝑛 = 𝐸𝑃𝑡,𝑓(𝑥) − 𝐸𝑃𝑐,𝑡(𝑥) and 𝑑𝑦𝑐,𝑛 = 𝐸𝑃𝑡,𝑓(𝑦) − 𝐸𝑃𝑐,𝑡(𝑦) represent 

north and east vectors of either the current or the next segments. 𝑅 represents 

the offset distance between the pipeline and the air-vehicle's course. 𝑐, 𝑡, 𝑓 

denotes the current, target, and future waypoints, respectively. 

However, if there are more than one pipeline segments, the target and future 

course waypoints are computed based on the interactions between the current 

course segments already computed unless the current waypoint is considered 

equal to the one already calculated in Equation (‎6-1).  

6.3.2 Change Estimation of  the Course Angle  

In order to manoeuvre the camera view to follow the changeable pipeline 

segment vectors with a steady and uninterrupted view, the course angle change 

(∆𝒳𝑇) is estimated based on the difference between the current segment angle 

(𝒳𝑐) and the next segment angle (𝒳𝑛) using Equation (‎6-2). Those angles are 

computed based on the corresponding north and east of the configured course 

waypoints (WPs) relative to the image frame as denoted in Figure ‎6-4 by using 

the arctangent formula (Boljanovic, 2006) shown in Equation (‎6-3) and Equation 

(‎6-4), respectively.  

 

 ∆𝒳𝑇 = 𝒳𝑛 − 𝒳𝑐 (‎6-2) 
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 𝒳𝑐 = arctan (
𝑊𝑃𝑡𝑛𝑜𝑟𝑡ℎ

− 𝑊𝑃𝑐𝑒𝑎𝑠𝑡

𝑊𝑃𝑡𝑛𝑜𝑟𝑡ℎ
− 𝑊𝑃𝑐𝑛𝑜𝑟𝑡ℎ

) (‎6-3) 

 

 𝒳𝑛 = arctan (
𝑊𝑃𝑓𝑛𝑜𝑟𝑡ℎ

− 𝑊𝑃𝑡𝑒𝑎𝑠𝑡

𝑊𝑃𝑓𝑛𝑜𝑟𝑡ℎ
− 𝑊𝑃𝑡𝑛𝑜𝑟𝑡ℎ

) (‎6-4) 

Where: ∆𝒳𝑇 is the estimated change of course angles. 𝒳𝑐 is the current 

segment angle relative to the image frame. 𝒳𝑛 is the next segments angle 

relative to the image frame. 𝑊𝑃𝑡𝑛𝑜𝑟𝑡ℎ
 is the north coordinate of the target 

waypoint. 𝑊𝑃𝑐𝑒𝑎𝑠𝑡
 is the east coordinate of the current waypoint. 𝑊𝑃𝑓𝑛𝑜𝑟𝑡ℎ

 is the 

north coordinate of the future waypoint. 𝑊𝑃𝑐𝑛𝑜𝑟𝑡ℎ
 is the north coordinate of the 

current waypoint. 𝑊𝑃𝑡𝑒𝑎𝑠𝑡
 is the east coordinate of the target waypoint. Finally, 

𝑊𝑃𝑡𝑛𝑜𝑟𝑡ℎ
 is the north coordinate of the target waypoint. 

6.3.3 Turn Anticipation Distance Estimation  

Turn Anticipation Distance (TAD) (Moghimi, 2009) represents the distance 

from the air-vehicle to the course target waypoint (𝑊𝑃𝑡), that is required to 

change the course into a circular trajectory tangent to the current course 

segment and the next course segment to smooth the transition from one course 

to another while keeping the deviation from reference path as small as possible. 

TAD is computed based on three parameters once the course angle changes, 

which are air speed of the air-vehicle (𝑉𝐴), change of course angles (∆𝒳𝑇), and 

the air-vehicle average rate of turn (𝒳̅̇) using Equation (‎6-5).  

 𝑇𝐴𝐷 =
𝑉𝐴

𝒳̅̇
tan (

∆𝒳𝑇

2
) (‎6-5) 

Where: 𝒳̅̇ is the air-vehicle average rate of turn which is estimated based on a 

constructed lookup table with assuming the air-vehicle maximum turn rate (at a 

maximum bank angle). 𝑉𝐴 is the air speed of the air-vehicle.  
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6.3.4 Proximity Distance 

The proximity distance is the distance from the air-vehicle position (𝑃𝐴) to the 

course target waypoint (𝑊𝑃𝑡) as shown in Equation (‎6-6) (Moghimi, 2009), to 

assist making a turn decision and update the target waypoint (𝑢𝑊𝑃𝑡) of the 

course once the air-vehicle has reached close enough to the target waypoint 

(𝑊𝑃𝑡) and becomes equal or more than the obtained turn anticipation distance 

(TAD).  

 
proximity distance = √(𝑃𝐴𝑛

− 𝑊𝑃𝑡𝑛
)
2
+ (𝑃𝐴𝑒

− 𝑊𝑃𝑡𝑒
)
2
 (‎6-6) 

Where: 𝑃𝐴𝑛
 𝑎𝑛𝑑 𝑃𝐴𝑒

 are the north and east coordinates of the aircraft position 

with relative to the image frame. 𝑊𝑃𝑡𝑛
 𝑎𝑛𝑑 𝑊𝑃𝑡𝑒

 are the north and east 

coordinates of the target waypoint relative to the image frame. 

6.3.5 Heading Demand 

The algorithm estimates the heading demand that is required to follow the 

course waypoints based on the corresponded air-vehicle position. 

6.3.6 Loitering 

Due to safety considerations, as well as further maintaining autonomy of the 

system and keeping tracking the pipeline, it was proposed that the system must 

have an autonomous capability that commands the air-vehicle to initiate loiter 

phase once a waypoint WP is lost for any reason or when it detect any defects 

around the pipeline or at the end of the flight when reaching the last, predefined 

WP. In the loiter phase, the air-vehicle start a steady and stable, continuous 

banking.  

 𝜓𝑙 = 𝜓 + 5 ∗ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑖𝑚𝑒 (‎6-7) 
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The heading of the loitering (𝜓𝑙) algorithm works by increasing the input 

heading command (𝜓), continuously at each sample time, by an increment 

value of five times the sample time as in Equation (‎6-7). 

6.4 Platform Flight Control System 

In this section, the flight control system of the Piper Cub platform is 

introduced to assist in evaluating the performance of the proposed tracking 

algorithm. It is the latest model that was developed for this platform at Cranfield 

University by (Moghimi, 2009). This model was constructed using 

Matlab/Simulink environment. The model comprises three sub-models that are: 

1) 6DOF dynamics model; 

2) Stability Augmentation System (SAS); 

3) Autopilot controllers. 

Each one of them is described more details in the following sub-sections.  

6.4.1 Platform 6DOF Dynamic Model 

The linear and nonlinear 6DOF dynamics models of the Piper Cub platform 

were developed in a Matlab/Simulink environment. The nonlinear dynamic 

model consists of the following sub-models: 

1. Aerodynamic model; 

2. Propulsion model; 

3. Total forces and moments model; 

4. Equations of motion model; 

5. Mass and inertia model; 

6. ISA atmosphere model. 

The block diagram of this model is presented in Appendix B. The linear model 

acquires elevator, aileron, rudder, and throttle as inputs and produces 12 state 

space variables as outputs.  



 

135 

 

6.4.2 Stability Augmentation System Model 

The Piper Cub platform has a conventional high‐wing configuration with zero 

sweep angles, which means it is naturally stable. However, since it is relatively 

lightweight and supposed to be flown outdoors and exposed to wind effects, it 

will have weak stability and control issues that could lead to not following the 

waypoints properly unless it has a Stability Augmentation System (SAS) on-

board. So, this system was already developed by (Moghimi, 2009) to prevent 

excessive control commands and unstable flight conditions. Also, it enables the 

air-vehicle to have acceptable flight handling qualities according to the 

international UAV standards and assures stable flight throughout the flight 

mission. 

The classic PID controller was used to develop this system. The general 

architecture is basically based on the standard model that was developed by 

(Stevens and Lewis, 1992). However, changes have been made in the 

architecture wherever necessary to improve the handling qualities response of 

the air-vehicle. The developed system consists of three controllers that are: 

1) Pitch SAS; 

2) Roll SAS; 

3) Yaw SAS.  

Pitch SAS has pitch angle and pitch rate feedback; roll SAS contains rolling 

angle and rolling rate feedback while yaw SAS only benefits from yaw rate 

feedback. All feedback loops have their particular gains that were initially 

obtained from linear SAS design that's already been designed by (Saban, 

2006), and was re-tuned manually for the Piper Cub model during the 

simulations. Those gains that were re-tuned for each type of the SASs are 

presented in the table in Appendix C. 
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6.4.3 Autopilot Model 

The autopilot model of this platform is designed to be capable of 

automatically tracking/following the pipeline structure in real time, while taking 

into account the platform limitations. This model was developed based on the 

standard PID controller by (Moghimi, 2009). It consists of three controllers, 

which are: 

1) Altitude holds controller; 

2) Heading holds controller; 

3) Auto-throttle (Speed) controller. 

Those controllers were successfully designed and their capabilities were 

proofed to automatically acquire the desired altitude, heading, and speed to 

assist the air-vehicle’s in following the course waypoints properly. 

6.5 Simulation Results  

This section represents the simulation results of the 2D waypoints 

tracking/following algorithm that was designed and developed to evaluate its 

performance using Matlab/Simulink environment in this chapter. The 

performance is assessed in the following subsections.  

6.5.1 Waypoints Navigation Performance 

This section presents the performance evaluation of the proposed 

tracking/following algorithm and how it is capable of keeping track of the 

pipeline at the flight level and loitering phases. The pipeline waypoints were 

generated offline to match the required missions that were proposed. The 

platform speed and altitude were initialized as 15 m/s and 400 ft (100 m), 

respectively. Wind speed is considered as zero in this simulation.  

Figure ‎6-5 shows that the heading controller performance is acceptable, though 

there was a small deviation from the reference when the air-vehicle flew 
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between the waypoints, which can be reduced by further tuning of the heading 

controller. Also, it shows the stability of the loitering behaviour. 

 

 

Figure ‎6-5: Air-vehicle course projected on reference path (Start waypoint A; end 

waypoint J) 
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When air-vehicle reaches the final waypoint (J), it starts a loitering manoeuvre. 

6.5.2 Heading Performance 

This section presents the performance of the heading controller and how the 

demand heading angle keeps track of or follows the desired course in cruise 

and loitering modes.  

 

 

Figure ‎6-6: Heading virus course 

 

Figure ‎6-6 shows the performance of the heading controller and how it follows 

the course of the cruise flight (from the beginning to 760 sec) and loitering mode 

(from 760 sec to the end). 

6.5.3 Roll SAS Performance 

This section demonstrates the dynamic behaviour of the bank angle along 

the flying mission at cruise and loitering modes to represent the performance of 

the roll SAS and the heading autopilot model. 
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Figure ‎6-7: Bank angle history 

 

The history of the bank angle variation is shown in Figure ‎6-7. Roll SAS is 

responsible for preventing very rapid changes in bank angle, and limiting its 

magnitude within ‐60 and +60 degree range. If the bank angle change rate is 

too high, it could result in a bank angle magnitude going beyond the specified 

limit, and therefore severely endangering flight stability and safety. As seen in 

Figure ‎6-7, the SAS is able to keep the bank angle within the desired limits. 

However, the bank angle experiences slight undesirable low and high-frequency 

oscillations after each turn phase. Undesirable high-frequency oscillations are 

also observed when the air-vehicle is in loitering phase. However, this gets 

suppressed automatically afterwards as shown in the figure above. Both of the 

addressed undesirable phenomena can be alleviated by further tuning of 

heading autopilot and Roll SAS controller and feedback gains. As a conclusion, 

the Roll SAS and heading autopilot performance are acceptable, having the 

potential to be further tuned for improved performance. 
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6.5.4 Altitude Performance 

This section demonstrates how the air-vehicle is capable of keeping the 

desired altitude while moving throughout the waypoints. 

 

Figure ‎6-8: Altitude history 

Figure ‎6-8 shows that the altitude hold controller is able to maintain the 

commanded altitude at the required 400 ft during cruise flight, the oscillations 

are observed due to the turn to follow the required course. 

6.5.5 Pitch SAS Performance 

This section presents the dynamic behaviour of the longitudinal attitudes that 

evaluate the performance of the pitch SAS throughout the cruise and loitering 

modes. 

Figure ‎6-9 illustrates the air-vehicle, longitudinal angles, and variation history. 

The pitch angle (θ) is maintained within ‐8 to +8 degrees during most of the 

flight time, with a maximum value of 18 degrees at the beginning. The angle of 

attack (α) is kept well within -4 to +4 degree range at all times, which will ensure 
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the air-vehicle is far away from the stall condition. The path angle (ɣ) mostly 

remains within ‐6 to +6 degrees throughout the flight. The overall assessment of 

air-vehicle longitudinal dynamic behaviour concludes that pitch SAS is well able 

to ensure the stability of the air-vehicle in cruise flight and loitering mode. 

 

Figure ‎6-9: Longitudinal angles history 

 

6.5.6 Speed Performance 

This section presents the air speed performance throughout the cruise and 

loitering modes. Figure ‎6-10 shows the airspeed history, having high, oscillatory 

behaviour and relatively consistent moderate deviation from the reference value 

(15 m/s). These oscillations are mainly because of imperfectness of the engine 

propeller geometry, which makes the propeller efficiency, low and causes 

undesirable engine model outputs. The solution to this problem is selecting a 

more efficient propeller for the engine that will deliver higher efficiency, as well 

as higher propeller power coefficient (𝑪𝒑) and propeller thrust coefficient (𝑪𝑻) 

values at lower advance ratio (𝑱).  
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Figure ‎6-10: Airspeed history 

6.5.7 Loitering Performance 

This section presents the aerial platform loitering mode performance of the 

pipeline structure tracking/following algorithm.   

 

Figure ‎6-11: Loitering Mode 
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Figure ‎6-11 demonstrates the performance of the loitering mode of the UAV 

once it reaches the last waypoint, where it keeps turning until it gets the 

commands to land or go back again through the waypoints.  

6.6 Chapter Summary 

In conclusion, automatic tracking/following the pipeline structure using aerial 

platform equipped with vision sensor was presented in this chapter by 

implementing a vision-based 2D waypoints tracking algorithm. This algorithm 

was designed and developed to keep the aerial platform track/follow the 

pipeline structure automatically. The pipeline structure is represented by its 

endpoints, which are acquired online using the vision-based automatic pipeline 

detection algorithm which was presented earlier in chapter four.  

The performance of the algorithm was evaluated in Matlab/Simulink simulation 

environment. The input waypoints that represent the pipeline structure were 

predefined offline due to some limitations. The results show a robust and 

adequate performance of the proposed algorithm for automatically 

tracking/following the pipeline structure.    
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  Chapter 7

Performance and Evaluation of the 

Vision-Based Aerial Pipeline 

Surveillance System 

 

 

 

7.1 Introduction 

This chapter presents the results and evaluates the performance of the 

complete integrated automatic pipeline surveillance system. This 

representations and evaluations were implemented in each of the following, 

developed algorithms: 

 Identification of the pipeline’s segment endpoints; 

 Detection of third-party interference; 

 Following/tracking the pipeline structure.  

As mentioned previously, in order to represent and evaluate those algorithms, 

indoor flight tests were performed to produce the required data due to the 

difficultly and lack of aerial ability (in the public domain) of real pipeline data. In 

addition to the limitations the data/video obtained, do not have IMU and depth 

information. The experimental data sets, produced in these tests, consists of 

synchronized depth (16-bit) and RGB (8-bit) images that have a resolution of 

480Χ640 pixels and were captured at 30 fps using depth/optical sensor (ASUS 

Xtion) mounted on a Gaui 500X quadrotor platform. The aerial platform  to fly 
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over the field test at a “scaled”  average speed of 4 cm/s and at altitudes range 

of 100 cm to 120 cm. The experimental setup for those field test data sets 

includes a small-scale prototype of the pipeline structure (around 3 m length 

and 1.2 cm width), as well as expected small third-party interference objects.  

The pipeline’s endpoints identification was computed and evaluated using 

statistical parameters such as sensitivity, specificity, false negative and false 

positive rates. While, the accuracy of the position of the identified endpoints, 

was represented and evaluated based on the ground-truth position and the 

behaviour of the position at each frame, relative to the camera frame.  

Likewise, the performance of detecting the third-party interference was 

represented and assessed in terms of the rates of the detection and the 

processing speed. The detection rate was estimated by using sensitivity, 

specificity, false negative and false positive rates. The processing speed of the 

algorithm was estimated based on the average processing time of each frame. 

Finally, the behaviour performance of following/tracking the pipeline structure 

was represented and evaluated based on the following list: 

 2D positions of the generated waypoints of the course, relative to the 

camera frame. 

 3D Positions of the air-vehicle, relative to the camera frame. 

 3D Orientation of the air-vehicle, relative to the camera frame 

 Longitudinal distance of the air-vehicle, relative to the front-endpoint of 

the current pipeline segment. 

 Lateral distance of the air-vehicle, relative to the pipeline segment. 

 Lateral distance of the air-vehicle, relative to the pipeline as a line. 

 Processing speed.  

Comparison with ground-truth was made to validate the results. More detail and 

description is given in the following sub-sections. 
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7.2 Test-Rig 

Different tests were performed to represent and evaluate the performance of 

each algorithm, which include the pipeline segment endpoints identification, 

third-party interference objects detection, and pipeline following algorithms. In 

those tests, each data set consists of depth (16-bit) and RGB (8-bit) images 

with a resolution of 480x640 pixels and were captured indoors at 30 fps using 

an ASUS Xtion sensor mounted on a Quadrotor. The Quadrotor flies over a 

small scale-pipeline at an average speed of 5 cm/s and altitudes of 100 cm, to 

120 cm. The sensor angular Field-of-View (FOV) as specified by the 

manufacturer are 57° horizontally and 43° vertically. The proposed Right-of-

Way distance (ROW) is 15 cm on each side, to match the real Right-of-Way 

distance of 30 meters. The sighting area comprises of a small-scale pipe 

prototype (around 3 m length and 1.2 cm width) as well as expected small third-

party interference objects as described in Table ‎7-1, below.  

Table ‎7-1: Flight tests description 

 Frames No 
Altitude 

(cm) 
Pipeline 

Third-party 
interference 

Test 1 1450 100 absent absent 

Test 2 1480 120 absent absent 

Test 3 1410 100 present absent 

Test 4 1610 120 present absent 

Test 5 1420 100 present present 

Test 6 1450 120 present present 

These tests were performed at the presence and away from the pipeline, at 

different altitudes, to assess the effect of pixels resolution change and the 

performance of the pipeline endpoints identification. To evaluate the 

performance of the pipeline detection, the tests were performed at the presence 

of the pipeline at different altitudes. Moreover, to assess the performance of the 

third-party interference detection, the proposed tests are performed with the 

presence and absence of the third-party interference at the pipeline, presence 

and absence of the other objects, and at a variation of altitudes. The proposed 
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scenario of those indoor flight tests has a unique measurement and 

configuration for all of them as shown in Figure ‎7-1 with just playing with the 

pipeline, objects and third-party interference objects and changing the altitudes.   
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Figure ‎7-1: Indoor test-rig general configuration of the proposed flight-tests 

scenarios of the pipeline surveillance system 

7.3 Endpoints Identification of the Pipeline  

This section represents and evaluates the performance of the identification 

algorithm of the pipeline’s endpoints while the air-vehicle follow/track the 

pipeline structure as shown in Figure ‎7-1. This algorithm was evaluated in terms 

of the capablity, accuracy and compatational load. The capablity was 

represented and evaluated based on the results of the following statistics 

factors, which are sensitivity, specificity, false positive and false negative ratios. 

While, the accuracy is based on the ground-truth data and the position 

behaviour of the pipeline’s endpoints, relative to the camera frame. The 

computation was assessed by estimating the processing speed (frame per 

second). However, sensitivity and specificity relate to how likely the decisions of 
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identifying the endpoints are correct when there is a pipeline or not, 

respectively. While the false positive and false negative estimate the errors of 

that decisions. So, to obtain a reliable and capable identification performance, 

the algorithm should have high sensitivity and specificity ratios, simultaneously, 

low false positive and false negative ratios. To obtain an accurate identification, 

the position of the identified endpoints was validated with the ground-truth data 

as well as the behaviour.  

Four flight tests were prepared and performed to identify the endpoints of the 

pipeline structure and provide the required data sets to represent and evaluate 

the performance of this algorithm. The information of each flight test is 

described in Table ‎7-1. 

7.3.1 Capability 

This section represents and evaluates how much the algorithm is capable of 

identifying the endpoints of the pipeline structure using sensitivity, specificity, 

false positive, and false negative ratios. However, the sensitivity ratio of the 

pipeline endpoints’ identification is the percentage of the correctly identified 

endpoints of the pipeline at each frame to the total number of frames that 

involve a pipeline. This ratio is proposed to estimate the correct decision of the 

identification at the presence of the pipeline. Two flight tests were performed, to 

represent these ratios, which are test 1 and 3, described in Table ‎7-1. 

Figure ‎7-2 demonstrates the sensitivity performance of pipeline endpoints 

identification at different altitudes.  

The performance results of this ratio are shown in Table ‎7-2. The sensitivities of 

identifying the endpoints, at 100 cm and 120 cm altitudes, are 90.57% and 

90.81%, respectively, which means, at those roughly high rates, the algorithm is 

capable of correctly and efficiently identifying the endpoints.Hence, evaluating 

the developed algorithms at different altitudes when the pipeline is present in 

the frame, tests the algorithm ability and performance in dealing with variations 

in pixel resolution. 
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[a] Captured at 100 cm  height and present of different objects 

 
[b] Captured at 120 cm  height and without objects 

Figure ‎7-2: Demonstration of the pipeline endpoints identification capabilities at 

the presence of the pipeline structure (sensitivity rate), (a) captured at 100 cm 

altitude with present of objects (interruption) and (b) captured at different 

altitude 120 cm (resolution variety) without objects presented 
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The false negative ratio of the pipeline endpoints’ identification is the 

percentage of the unidentified endpoints of the pipeline in the presence of the 

pipeline into the total number (absence and presence) of the unidentified 

endpoints of the pipeline. This ratio is to estimate the error of the endpoints’ 

identification in the presence of the pipeline. To represent the performance of 

this ratio, flight tests 1 and 3, which are described in Table ‎7-1, were performed. 

Figure ‎7-3 demonstrates the false negative performance of pipeline endpoints 

identification at different altitudes. 

The performance results of the false negative ratio are shown in Table ‎7-2. The 

estimation results of the false negative ratio of the third-party interference 

detection, at 100 cm, 120 cm height, are 8.69%, and 9.4%, respectively, which 

means, at those roughly low rates, the algorithm is capable of efficiently 

identifying the endpoints correctly in the presence of the pipeline with small 

errors in case of the variation in pixel resolution. 

 

Figure ‎7-3: Demonstration of the pipeline endpoints identification error at the 

present of the pipeline structure (false negative rate) captured at 100 cm altitude 
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The specificity ratio of the pipeline endpoints identification is the percentage of 

the unidentified endpoints of the pipeline at the absence of the pipeline into the 

total number of the absent pipeline. This ratio is proposed to confirm the 

capability of the unidentified endpoints of the pipeline correctly. Two flight tests 

were performed to represent this ratio. Tests 2 and 4 described in Table ‎7-1. 

Figure ‎7-4 represents the specificity ratio behaviour at different altitudes.  

The results of this ratio are shown in Table ‎7-2. The specificities of the 

unidentified endpoints, at 100 cm, 120 cm altitudes are 96.41%, and 96.42%, 

respectively, which means the correct decision of not identifying the endpoints 

is effective when there is a variation in the pixel resolution. 

 

Figure ‎7-4: Demonstration of the pipeline endpoints identification capabilities at 

the absence of the pipeline structure (Specificity rate) captured at 100 cm 

altitude 

The false positive ratio of the pipeline endpoints identification is the percentage 

of the identified endpoints at the absence of them into the total number 

(absence and presence) of the identified endpoints. This percentage is 

proposed to estimate the error of the identification in the absence of the 
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pipeline. Flight tests 2 and 4 are used to represent this ratio, which are 

described in Table ‎7-1. Figure ‎7-5 demonstrates the false positive performance 

of the endpoints’ identification at different altitudes.  

The performance results of this ratio are summarized in Table ‎7-2. The 

estimations of the false negative ratio of the pipeline endpoints identification, at 

100 cm, 120 cm height are 3.91%, and 3.5%, respectively. That means, at 

those low rates, the algorithm is capable of efficiently identifying the third-party 

interference correctly in the absence of the pipeline and with the variations of 

pixel resolution. 

 

Figure ‎7-5: Demonstration of the pipeline endpoints identification error at the 

absent of the pipeline structure (false positive rate) captured at 120 cm altitude 

As the results show in Table ‎7-2, the performance of the pipeline endpoints’ 

identification algorithm confirms the capability of identifying the endpoints of the 

pipeline correctly with a high sensitivity rate of 90% and low error rate of 5%. 

Simultaneously, it is capable of discriminating the pipeline from the other 

objects at a high specificity rate of 96% and low error rate at 9%.  
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Table ‎7-2: Performance results of the pipeline endpoints identification algorithm 

Pipeline 
Endpoints 

Identification 
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Presence 
Test 1 Test 3 

1277 133 1462 148 

Absence 
Test 2 Test 4 

52 1398 53 1427 

Sensitivity 90.57% 90.81% 

Specificity 96.41% 96.42% 

False Positive 3.91% 3.50% 

False Negative 8.69% 9.40% 

7.3.2 Accuracy 

This section represents the position performance of the identified endpoints 

of the pipeline’s segment, relative to the camera frame. This representation is 

undertaken to assess the quality of the endpoints identification and confirm its 

position accuracy. The data sets of test 3 and 4, described above in Table ‎7-1, 

were used to perform this assessment. Each endpoint of the pipeline segment 

is represented in terms of the north (𝑋𝑬𝑷), east (𝑌𝑬𝑷), and height (ℎ𝑬𝑷) positions, 

which (𝑋𝑬𝑷) and (𝑌𝑬𝑷) relative to the camera frame, while (ℎ𝑬𝑷) position relatives 

to the estimated ground plane. Figure ‎7-6 illustrates the estimated north 

positions behaviour of the backward (𝑋𝐸𝑃𝑏
) and forward (𝑋𝐸𝑃𝑓

) endpoints of the 

identified pipeline segment, relative to the origin of the camera frame throughout 

frames’ sequence of each flight test that was proposed to confirm the quality 

performance of the identification. Additionally, the north ground-truth position of 

the backward (𝑋𝐸𝑃𝑏𝑑
) and forward (𝑋𝐸𝑃𝑓𝑑

) endpoints, shown in red and blue 

respectively, is also represented for the validation purpose of the algorithm. As 

seen, the grey and black dots represent the estimated north position of the 

identified backward (𝑋𝐸𝑃𝑏
) and forward (𝑋𝐸𝑃𝑓

) endpoints throughout each frame 

of the flight tests, which also represent the length of coverage of the pipeline 

segment. 
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Figure ‎7-6: behaviour of the estimated backward (𝑿𝑬𝑷𝒃
) and forward (𝑿𝑬𝑷𝒇

) north 

position of the pipeline segment endpoints relative to the camera frame, and the 

desired north position of the backward in (𝑿𝑬𝑷𝒃𝒅
) and forward in (𝑿𝑬𝑷𝒇𝒅

) 

endpoints, while, [Top]: captured at 100 cm altitude, [Bottom]: captured at 120 

cm altitude 
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While following the pipeline, the behaviour of the estimated North position of 

each identified endpoint should be constant throughout each frame. Several 

cases potentially affect the performance, that are:  

1 Variation of air-vehicle position; 

2 Variation of air-vehicle orientation; 

3 Camera vibrations; 

4 Proximity to the pipeline endpoint; 

5 False positive identifications of the pipeline endpoints; 

6 Partial detection of the pipeline segment. 

However, as seen in Figure ‎7-6, the estimations of the north positions 

[𝑋𝐸𝑃𝑏
, 𝑋𝐸𝑃𝑓

] of the endpoints approximately keep the expected behaviour for 

different heights. 

Figure ‎7-7 shows the estimated east position (𝑌𝑬𝑷) behaviour of the identified 

forward (𝑌𝐸𝑃𝑓
) and backward (𝑌𝐸𝑃𝑏

) endpoints of the pipeline, relative to the 

origin of the camera frame throughout each frame sequence of the flight tests, 

which were proposed for the position evaluation. Additionally, for the validation 

purpose of the algorithm the East ground-truth positions of the backward (𝑌𝐸𝑃𝑏𝑑
) 

and forward (𝑌𝐸𝑃𝑓𝑑
) endpoints are shown in red and blue, respectively. As seen, 

the grey and black dots represent the estimated east position of the identified 

backward (𝑌𝐸𝑃𝑏
) and forward (𝑌𝐸𝑃𝑓

) endpoints at each frame. While following the 

pipeline, the east position (𝑌𝑬𝑷) should always be constant, except in the 

following cases:  

1 Variation of altitude; 

2 Variation of roll angle; 

3 Variation of heading angle; 

4 The proximity of pipeline endpoint; 

5 Partial detection of the pipeline segment. 

However, as can be seen in Figure ‎7-7, under the conditions of flight tests 1 and 

3, which are [-11.8 cm, -11.8 cm] and [-9.06 cm, -9.06 cm], respectively; the 
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east positions’ estimation [𝑌𝐸𝑃𝑏
, 𝑌𝐸𝑃𝑓

] of the endpoints keeps the same location, 

relative to the camera’s origin. 

Figure ‎7-8 shows the estimated height position behaviour of the identified 

forward (ℎ𝐸𝑃𝑓
) and backward (ℎ𝐸𝑃𝑏

) endpoints of the pipeline, relative to the 

origin of the camera frame throughout the frames’ sequence of each flight tests, 

which were proposed for the position evaluation. Additionally, the ground-truth 

positions of the height of the backward (ℎ𝐸𝑃𝑏𝑑
) and forward (ℎ𝐸𝑃𝑓𝑑

) endpoints 

are shown as solid lines in grey and black, respectively, for the validation 

purpose of the algorithm. As seen, the grey and black dots represent the 

estimated height position of the identified backward (ℎ𝐸𝑃𝑏
) and forward (ℎ𝐸𝑃𝑓

) 

endpoints at each frame. While following the pipeline, the height position should 

always be constant, except in the following cases:  

1) Variation of altitude; 

2) Variation of pitch angle; 

3) Variation of roll angle; 

4) Ground extraction error. 

However, as seen in Figure ‎7-8, the height positions estimation [ℎ𝐸𝑃𝑏
, ℎ𝐸𝑃𝒇

] of 

the endpoints keep the same location, relative to the ground, under conditions 

of flight tests 1 and 3 which are [3.48 cm, 2.02 cm] and [4.33 cm, 1.3 cm], 

respectively. 

Table ‎7-3 summarizes the performance results of the 3D position of the 

identified endpoints of the pipeline. Based on that, the proposed algorithm is 

capable and valid to identify the endpoints of the pipeline with good 

performance. 
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Figure ‎7-7: Behaviours of the estimated backward (𝒀𝑬𝑷𝒃
) and forward (𝒀𝑬𝑷𝒇

) east 

position of the pipeline segment endpoints relative to the camera frame, and the 

desired east position of the backward in (𝒀𝑬𝑷𝒃𝒅
) and forward in (𝒀𝑬𝑷𝒇𝒅

) endpoints, 

[Top]: captured at 100 cm altitude, [Bottom]: captured at 120 cm altitude  
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Figure ‎7-8: Behaviours of the estimated backward (𝒉𝑬𝑷𝒃

) and forward (𝒉𝑬𝑷𝒇
) 

height of the pipeline segment endpoints relative to the ground, their mean 

values (𝒉̅𝑬𝑷𝒃
) and (𝒉̅𝑬𝑷𝒇

), their standard deviations (𝒉𝑬𝑷𝒃𝒔𝒕𝒅
) and (𝒉𝑬𝑷𝒇𝒔𝒕𝒅

), and the 

ground-truth height of both of them (𝒉𝑬𝑷𝒅
), [Top]: captured at 100 cm altitude, 

[Bottom]: captured at 120 cm altitude 
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Table ‎7-3: Results of the 3D position of the pipeline’s endpoints and errors 

relative to the camera frame coordinates 

T
es

t  Ground-truth Mean-estimated std error 

Endpoint 𝑋𝐸𝑃𝑑
 

(𝑐𝑚) 

𝑌𝐸𝑃𝑑
 

(𝑐𝑚) 

ℎ𝐸𝑃𝑑
 

(𝑐𝑚) 
𝑋̅𝐸𝑃 
(𝑐𝑚) 

𝑌̅𝐸𝑃 
(𝑐𝑚) 

ℎ̅𝐸𝑃 
(𝑐𝑚) 

𝑋𝐸𝑃𝑠𝑡𝑑
 

(𝑐𝑚) 

𝑌𝐸𝑃𝑠𝑡𝑑
 

(𝑐𝑚) 

ℎ𝐸𝑃𝑠𝑡𝑑
 

(𝑐𝑚) 
𝛿𝑋𝐸𝑃 
(𝑐𝑚) 

𝛿𝑌𝐸𝑃 
(𝑐𝑚) 

𝛿ℎ𝐸𝑃 
(𝑐𝑚) 

1 

backward 55 -12 5 54 -11.8 3.48 3.21 4.8 2.24 1 -0.2 1.52 

forward -51 -12 5 -52 -11.8 2.02 2.68 5.5 1.87 1 -0.2 2.98 

3 

backward 65 -10 5 66 -9.06 4.33 2.9 5.1 4.46 -1 -0.94 0.67 

forward -65 -10 5 -65.5 -9.06 1.3 2.43 6.5 2.78 0.5 -0.94 3.7 

 

7.4 Third-Party Interference Detection and Classification 

This section represents and evaluates the performance of the proposed 

algorithm used to detect the third-party interference in near real-time while the 

air-vehicle follow/track the pipeline structure as shown in Figure ‎7-1. This 

algorithm was represented and evaluated in terms of the capablity and 

compatational load. Four statistical performance indexes were considered to 

assess the capability of the detection and classification, namely: sensitivity, 

specificity, false positive and false negative ratios. Sensitivity and specificity 

relate to how likely the decision of the detection is correct; either the third-party 

objects are present or absent, respectively; while the false positive and false 

negative corresponds to the rate of the detection error. The algorithm should 

have high sensitivity and specificity ratios, while keeping low false positive and 

false negative ratios in order to have a good detection performance. However, 

the estimation of the processing speed (frame per second) was used to 

represent and evaluate the computational load of the algorithm. Four flight tests 

were carried-out to detect and classify the third-party interference and provide 

the required data sets to represent and evaluate the performance of the 

algorithm. These flight tests involve test 3, 4, 5, and 6 that are described in 

Table ‎7-1.  
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7.4.1 Capability 

This section represents and evaluates how much this algorithm is capable to 

detect and classify the third-party interference using sensitivity, specificity, false 

positive, and false negative ratios. The sensitivity ratio of the third-party 

interference objects detection is the proportion of the correctly detected third-

party interference when present to the total number (detected and undetected) 

third-party intervention. This proportion is used to estimate the correct decision 

of the detection in the presence of the third-party interference objects. Two flight 

tests were made (test 5 and 6) to evaluate this, as described in Table ‎7-1. 

Figure ‎7-9 demonstrates the performance of the sensitivity rate of the third-party 

interference detection at different altitudes. The performance results of the 

sensitivity ratio are summarized in Table ‎7-4. The estimated sensitivities rates 

of detecting third-party interference, at 100 cm and 120 cm altitudes are 88.5% 

and 87.5%, respectively; which means, at those high rates, the algorithm is 

capable of efficiently detecting third-party interference correctly. The tests also 

validate the performance of the developed algorithms in the case where there 

are variations in the pixel resolution. 

The false negative ratio of the third-party interference detection is the 

percentage of not detecting the third-party when present out of the total number 

(absence and presence) of the undetected third-party intervention. This ratio is 

to estimate the error rate of the detection when third-party interference are 

present. Flight tests 5 and 6, described in Table ‎7-1, are used to represent this 

ratio. Figure ‎7-10 illustrates the performance of the false negative rate of third-

party interference detection for different altitudes. The performance results of 

the false negative ratio are shown in Table ‎7-4. The estimations results of the 

false negative ratio of the third-party interference detection, at 100 cm and 120 

cm height, are 11.44% and 12.38%, respectively; which means, at those low 

rates, the algorithm is again capable of efficiently detecting the third-party 

interference correctly when present, with small error in case of the variation of 

pixel resolution. 
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[a] Captured at 100 cm  height 

 
[b] Captured at 120 cm  height 

Figure ‎7-9: Demonstration of third-party interference detection capabilities at the 

presence of them (sensitivity rate), (a) captured at 100 cm altitude and at present 

of other objects (interruption effects) and (b) captured at different altitude 120 cm 

(resolution effects) 
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[a] Captured at 100 cm height 

 
[b] Captured at 120 cm height 

Figure ‎7-10: Demonstration of third-party interference detection error at the 

presence of them (false negative rate), (a) captured at 100 cm altitude and at 

presence of other objects (interruption effects) and (b) captured at different 

altitude 120 cm (resolution effects) 
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The specificity ratio of the third-party interference detection is the percentage of 

not detecting third-party interference at the absence of it into the total number 

(detected and undetected) of the absent third-party interference. This 

percentage is used to estimate the correct decision of the detection in the 

absence of the third-party interference objects.  

Two flight tests, that were performed to assess this proportion. Tests 1 and 3, 

are tabulated in Table ‎7-1. Figure ‎7-11 illustrates the performance of the 

specificity rate of the third-party interference detection at different altitudes. The 

performance results of the specificity ratio are shown in Table ‎7-4. The 

specificities rates of detecting the third-party interference, at 100 cm and 120 

cm altitudes are 89% and 88.5%, respectively; which means, at those high 

rates, the algorithm is capable of efficiently detecting the third-party interference 

correctly in the absence of the third-party interference and in the case of 

variation in pixel resolution. 

The false positive ratio of the third-party interference detection is the percentage 

of detecting the third-party interference at the absence of it into the total number 

(absence and presence) of the detected third-party intervention. This 

percentage is proposed to estimate the error of the detection in the absence of 

third-party interference. To represent this ratio, flight tests 1 and 3, which are 

tabulated in Table ‎7-1, are used.  

Figure ‎7-12 shows the performance of the false positive rate of third-party 

interference detection at different altitudes. The performance results of the false 

positive ratio are summarized in Table ‎7-4. The estimations of the false 

negative ratio of the third-party interference detection, at 100 cm and 120 cm 

height are 11.06% and 11.62%, respectively; which means, at those low rates, 

the algorithm is capable of efficiently detecting the third-party interference 

correctly in the absence of the third-party interference and in case of variations 

in pixel resolution. 
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[a] Captured at 100 cm  height 

 

 
[b] Captured at 120 cm  height 

Figure ‎7-11: Demonstration of third-party interference detection capabilities at 

the absence of them (Specificity rate), (a) captured at 100 cm altitude and at 

presence of other objects (interruption effects) and (b) captured at different 

altitude 120 cm (resolution effects) 
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[a] Captured at 100 cm  height 

 
[b] Captured at 120 cm  height 

Figure ‎7-12: Demonstration of third-party interference detection error at the 

absence of them (false positive rate), (a) captured at 100 cm altitude and at 

presence of other objects (interruption effects) and (b) captured at different 

altitude 120 cm (resolution effects) 
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According to Table ‎7-4, the performance of the third-party interference detection 

algorithm shows that it has the capability to correctly detect the third-party 

interference at a high rate of 88% and also reject correctly at 89%. 

Simultaneously, it has an acceptable low detection error rate of 11% of 

detecting other objects and a low rate of 12% of missing the third-party 

interference. So, the overall performance and accuracy of the algorithm are 

sufficient in detecting the third-party interference objects, providing reliable 

performance. As can be seen in Table ‎7-4, the average processing speed to 

detect the third-party interference at each frame employing the on-board 

processor that was described in (section 3.4.3) is around 2 frames/second, 

which is sufficient to run the detection algorithm of the third party interference in 

near real-time. 

Table ‎7-4: Performance results of the third-party interference detection algorithm 

Third-party interference detection 
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Presence 
Test 5 Test 6 

177 23 175 25 

Absence 
Test 3 Test 4 

22 178 23 177 

Sensitivity 88.50% 87.50% 

Specificity 89.00% 88.50% 

False Positive 11.06% 11.62% 

False Negative 11.44% 12.38% 

Processing rate (fps) 2 2 

7.5 Pipeline Following/Tracking 

This section presents and evaluates the performance of the pipeline 

following/tracking algorithm in real-time, as described in chapter 6. It is carried-

out to confirm the capability and accuracy of generating the course waypoints 

(𝑊𝑃𝑠) online based on the identified endpoints (𝐸𝑃𝑠) of the pipeline. Validating 

the capability and accuracy of the waypoints navigation system, that was 
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developed to follow/track the pipeline structure by the air-vehicle, based on the 

generated waypoints (𝑊𝑃𝑠) of the air-vehicle’s course, and finally proof the 

capability of processing this algorithm on-board. The performance of each was 

represented and evaluated offline based on the data logged in real-time, during 

the flight tests (1 and 3), that were described in Table ‎7-1, in the previous sub-

section.  

7.5.1 Course Waypoint Generation  

This part represents and evaluates the performance of the real-time 

generation of the air-vehicle’s course waypoints (𝑊𝑃𝑠), as shown in Figure ‎7-13, 

to confirm the accuracy of generating the air-vehicle’s course waypoints (𝑊𝑃𝑠) 

online once the pipeline has been detected while following the pipeline. The 

current (𝑊𝑃𝑐) and target (𝑊𝑃𝑡) course waypoints are planned to construct the 

current-course segment of the air-vehicle based on the pipeline segment and 

the air-vehicle position, to keep the air-vehicle following the pipeline based on 

the desired cross-follow distance (𝑑𝑐𝑓𝑑
). While the target (𝑊𝑃𝑡) and future (𝑊𝑃𝑓) 

course waypoints are proposed to make the cross-course segment, used to 

constrain the air-vehicle to acquire a turn around the forward-endpoint (𝐸𝑃𝑓) of 

the pipeline segment once the pipeline’s relative point (𝑃𝑟) starts passing the 

forward-endpoint (𝐸𝑃𝑓) of the pipeline segment or in case the air-vehicle is far 

away from the initial current waypoint (𝑊𝑃𝑐) by more than the required cross-

follow distance (𝑑𝑐𝑓𝑑
). However, the initial target waypoint (𝑊𝑃𝑡) will then be 

replaced by future waypoints (𝑊𝑃𝑓). The purpose of this evaluation is to 

represent the behaviour and quality assessments of generating the air-vehicle’s 

course waypoints (𝑊𝑃𝑠) in real-time, based on the detected pipeline segment 

endpoints (𝐸𝑃𝑠), and the desired cross-follow distance. The pipeline segment’s 

endpoints (𝐸𝑃𝑠) are visually detected online at 2 fps. The desired cross-follow 

distance is proposed to be 20 cm to preserve the pipeline integrity and avoid 

collisions with another monitoring system by taking into account, the sight 

coverage of the pipeline length and Right-of-Way and the air-vehicle turn radius. 
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Figure ‎7-13: Cases results of the real-time configuration of the air-vehicle course 

waypoints (𝑾𝑷𝒔) based on the visual information of the pipeline segment 

endpoints (𝑬𝑷𝒔)  
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The position performance of the generated air-vehicle’s course waypoints is 

represented in this chapter. Figure ‎7-14 and Figure ‎7-15, respectively, 

represent the 2D position generation in real-time of the course waypoints with 

respect to the camera frame in the frames sequence, where the air-vehicle flies 

at 100 and 120 cm altitude. As shown, the current, target, and future course 

waypoints (𝑊𝑃𝑐, 𝑊𝑃𝑡, 𝑎𝑛𝑑 𝑊𝑃𝑓) are represented in black, brown, and blue 

,respectively. In addition, to the pipeline’s relative point (𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) that is denoted 

in grey.  

As shown in Figure ‎7-14, when the pipeline’s relative point (𝑌𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) is located 

within the pipeline segment, the east position of the current waypoint (𝑌𝑊𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡
) 

assumed to be 20 cm away, to keep the disered cross-follow distance (𝑑𝑐𝑓𝑆
), 

from that point. The curve should be constant to keep aligned the camera frame 

with the vector of the pipeline structure. However, once the pipeline’s relative 

point (𝑌𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) starts leaving the endpoint of the pipeline segment, this will lead 

the air-vehicle to turn around that endpoint and the current waypoint (𝑌𝑊𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡
) 

will begin to converge to catch up the the pipeline’s relative point (𝑌𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) and 

reduces the cross-follow distance (𝑑𝑐𝑓𝑆
) to zero once crossing the segment at 

the frames 500 and 1080 at 100 cm altitude as well as at the frames 500 and 

1200 at 120 cm altitude, then return again to keep the desired 20 cm distance. 

Simmilarly, the east position of the target waypoint (𝑌𝑊𝑃𝑡𝑎𝑟𝑔𝑒𝑡
) is assumed to 

have the same behavior of the current waypoint (𝑌𝑊𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡
) when the pipeline’s 

relative point (𝑌𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) is locating within the pipeline segment. On the other 

hand, when the pipeline’s relative point (𝑌𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) start passing the endpoint of 

the pipeline segment (over segment), the air-vehicle will begin the turning phase 

and the vector of the pipeline segment will change with respect to the vector of 

the air-vehicle (camera frame) which leads to change the configuration of the 

waypoints. So in this case, the east position of the target waypoint (𝑌𝑊𝑃𝑡𝑎𝑟𝑔𝑒𝑡
) will 

change to have the same behaviour as the future waypoint (𝑌𝑊𝑃𝑓𝑢𝑡𝑢𝑟𝑒
) where it 

is far away along the length of the covered pipeline segment as seen at the 
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frame periods (400-600) and (1000-1300) at 100 cm altiude and at (450-650) 

and (1150-1400) at the 120 cm altitude. 

Finally, the east position of the future course waypoint (𝑌𝑊𝑃𝑓𝑢𝑡𝑢𝑟𝑒
) should be 

opposite to the target waypoint (𝑌𝑊𝑃𝑡𝑎𝑟𝑔𝑒𝑡
), relative to the pipeline segment by 20 

cm distance once the pipeline’s relative point (𝑌𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) is located within the 

pipeline segment. While the pipeline’s relative point (𝑌𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) start passing the 

endpoint of the pipeline segment (over segment), the future course waypoint 

(𝑌𝑊𝑃𝑓𝑢𝑡𝑢𝑟𝑒
) will change to reach the maximum long coverage of the pipeline 

segment that are 60 cm at 100 cm altitude and 75 cm at 120 cm altitude, then 

will reduce gradually to be 20 cm. 

However, a small deviations occurred along the curves of the generated course 

waypoints (𝑊𝑃𝑠) at some of the frames that are due to the vector variation of the 

air-vehicle (camera frame) relative to pipeline segment, sensor calibration, 

vibrations of the sensor while flying, acceleration of the flight, and measurments 

errors.  

Based on the comparison between the results of 100 cm and 120 cm altitudes, 

the north (𝑋𝑊𝑃) and east (𝑌𝑊𝑃) position behaviours of the generated course 

waypoints were not affected when the pixels resolution are varied as shown at 

the top and bottom graphs in Figure ‎7-14.  
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Figure ‎7-14: Behaviour representation of the east position of the generated 

course waypoints relative to the camera frame includes pipeline’s relative point 

(𝒀𝑷𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆
), current waypoint (𝒀𝑾𝑷𝒄𝒖𝒓𝒓𝒆𝒏𝒕

), target waypoint (𝒀𝑾𝑷𝒕𝒂𝒓𝒈𝒆𝒕
), and future 

waypoint (𝒀𝑾𝑷𝒇𝒖𝒕𝒖𝒓𝒆
), while, [Top]: captured at 100 cm altitude, [Bottom]: captured 

at 120 cm altitude 
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As shown Figure ‎7-15, when the north position of the pipeline’s relative point 

(𝑋𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) is locating within the pipeline segment, the north position of the 

current waypoint (𝑋𝑊𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡
) aligns with the north position of the pipeline’s 

relative point (𝑋𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) around zero. However, once the north position of the 

pipeline’s relative point (𝑋𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) starts leaving the endpoint of the pipeline 

segment, the north position of the current waypoint (𝑋𝑊𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡
) will change, due 

to the vectors change between the reference (camera frame) and the pipeline 

segment, then return again to align with the north position of the pipeline’s 

relative point (𝑋𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
), as shown in Figure ‎7-15, around the frames 500 and 

1080 at 100 cm altitude and 500 and 1200 at 120 cm altitude.The north position 

of the target waypoint (𝑋𝑊𝑃𝑡𝑎𝑟𝑔𝑒𝑡
) should be located at the maximum north 

coverage of the pipeline segment that are 60 cm at 100 cm altitude and 75 cm 

at 120 cm altitude when the north position of the pipeline’s relative point 

(𝑋𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) is located within the pipeline segment and keep constant while 

following the length of pipeline, as shown in Figure ‎7-15, at frame periods (0-

300), (600-900), and (1200-1400) at 100 cm altitude; and (0-350), (650-950), 

and (1350-1600) at 120 cm altitude. On the other hand, when the north position 

of the pipeline’s relative point (𝑋𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) is just immersing the maximum north 

coverage of the pipeline segment, the north position of the target waypoint 

(𝑋𝑊𝑃𝑡𝑎𝑟𝑔𝑒𝑡
) will converge to the north position of the pipeline’s relative point 

(𝑋𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
) because the air-vehicle starts reaching the end of the pipeline 

structure.  Once the air-vehicle moves closer to the forward-endpoint (𝐸𝑃𝑓) of 

the pipeline segment, the position is supposed to smoothly reduce down until 

the half of the turn phase is completed, then back again into the full coverage 

position, as shown in Figure ‎7-15, throughout the frame periods (300-600), and 

(900-1200) at 100 cm altitude and (300-600), and (1000-1300) at 120 cm 

altitude. Similarly, the north position of the future waypoint is following the same 

behaviour of the north position of the target waypoint, i.e. once the north 

position of the pipeline’s relative point is locating within the pipeline segment or 

if it starts leaving the forward-endpoint (𝐸𝑃𝑓) of the pipeline segment. 
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Figure ‎7-15: Behaviour representation of the north position of the generated 

course waypoints relative to the camera frame includes pipeline’s relative point 

(𝑿𝑷𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆
), current waypoint (𝑿𝑾𝑷𝒄𝒖𝒓𝒓𝒆𝒏𝒕

), target waypoint (𝑿𝑾𝑷𝒕𝒂𝒓𝒈𝒆𝒕
), and future 

waypoint (𝑿𝑾𝑷𝒇𝒖𝒕𝒖𝒓𝒆
), while, [Top]: captured at 100 cm altitude, [Bottom]: captured 

at 120 cm altitude  
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7.5.2 Waypoints Navigation  

This section represents the performance of the waypoints’ navigation system 

and evaluates its accuracy and capabilities. Hence, the following items are used 

to evaluate this performance, which are: 

 Forward-follow distance (𝑑𝑓𝑓), between the pipeline’s relative point and 

the forward endpoint of the pipeline segment. Note: the desired forward-

follow distance is considered just throughout the cruise phase; whereas it 

neglects the comparison once the air-vehicle reaches the endpoint and 

turns around it. 

 Cross-follow distance (𝑑𝑐𝑓) is the shortest distance between the air-

vehicle and the pipeline’s relative point. 

 The 3D position of air-vehicle (𝑥, 𝑦, ℎ) relative to the camera reference 

frame. 

 The 3D displacements of the air-vehicle position (∆𝑥, ∆𝑦, ∆𝑧).  

 Air-vehicle’s orientations angles (θ, Φ, Ψ) relative to the camera frame. 

7.5.2.1 Follow Distance 

This section represents the performance of following/tracking the pipeline 

structure using 2D following distance (𝑑𝑓) and verifies how the air-vehicle could 

accurately follow the generated course waypoints (𝑊𝑃𝑠) in real-time and keep 

track of the pipeline structure. Since the pipeline following is based on the local 

camera frame, the evaluation criteria, used to assess the performance, is 

observed through any unexpected behaviour’s change to the estimated forward-

follow (𝑑𝑓𝑓) and cross-follow (𝑑𝑐𝑓)  distances, as shown in Figure ‎7-16, and 

compares them with their desired values, as shown in Figure ‎7-17. Based on 

the proposed tests scenario, there should be a straight-line phase to keep 

tracking the length of the pipeline and a turn-phase to return around the 

endpoints of the pipeline structure. The behaviour of the forward-follow (𝑑𝑓𝑓) 

and cross-follow (𝑑𝑐𝑓) distances is illustrated in Figure ‎7-16.  
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However, when the air-vehicle is performing the straight-line tracking, the 

distances of the forward-follow (𝑑𝑓𝑓) and cross-follow (𝑑𝑐𝑓) are approximately 

constant and steady at 50 cm and 20 cm, respectively, throughout the frame 

periods (0-350), (600-900), and (1200-1400) at 100 cm altitude. While, at 120 

cm altitude, they are constant and steady at 65 cm and 20 cm, respectively, 

throughout the frame periods (0-300), (600-900), and (1300-1600).  

In the proposed test scenario, there are two turn-phases, required to track the 

pipeline structure around each endpoint of the pipeline segment as shown at 

the rest of the frame periods.  However, both the forward-follow (𝑑𝑓𝑓) and cross-

follow (𝑑𝑐𝑓) distances are reduced smoothly once the air-vehicle starts turning 

around the endpoint, then increases again once the air-vehicle starts crossing 

the pipeline segment. As can be seen, the forward-follow distance (𝑑𝑓𝑓) started 

decreasing before the cross-follow distance (𝑑𝑐𝑓) from 50 cm and 65 cm of 100 

cm and 120 cm altitudes, respectively, due to the proximity distance between 

the air-vehicle and the endpoint of the pipeline segment. While the cross-follow 

distance (𝑑𝑐𝑓) still keeps its straight-line phase distance at 20 cm at each 

altitude until the forward-follow distance (𝑑𝑓𝑓) becomes zero. Once the forward-

follow curve (𝑑𝑓𝑓) is crossing zero, the turn-phase around the pipeline’s 

endpoint is starting and the cross-follow curve (𝑑𝑐𝑓) is decreasing to zero (air-

vehicle is converging from the course to the pipeline segment). If the cross-

follow distance (𝑑𝑐𝑓) is increasing again from zero, where the air-vehicle is 

crossing the segment of the pipeline, to 20 cm, where the air-vehicle is diverged 

from the pipeline segment to follow the course of the air-vehicle (straight-line 

phase). The forward-follow curve (𝑑𝑓𝑓) has a gap at each turn-phase, these 

gaps are generated once the air-vehicle is crossing the pipeline segment where 

the configuration of the forward and backward endpoints are changed.         
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Figure ‎7-16: Behaviours of the forward-follow (𝒅𝒇𝒇) and cross-follow (𝒅𝒄𝒇) 

distances, where, (𝒅𝒇𝒇𝒅
) and (𝒅𝒄𝒇𝒅

) are the desired values of the forward and 

cross follow distances, respectively, while, [Top]: captured at 100 cm altitude, 

[Bottom]: captured at 120 cm altitude  
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The errors of the forward-follow (𝛿𝑓𝑓) and cross-follow (𝛿𝑐𝑓) were represented in 

Figure ‎7-17 to evaluate the north and east positions’ accuracy of the air-vehicle 

when following the pipeline at different altitudes. The forward-follow error (𝛿𝑓𝑓) 

represents the difference between the ground-truth (𝑑𝑓𝑓𝑑
) and estimated (𝑑𝑓𝑓) 

forward-follow distances where those distances refer to the north coordinate’s 

length between the air-vehicle and the forward-endpoint (𝐸𝑃𝑓) of the pipeline 

segment, relative to the camera frame. The proposed ground-truth forward-

follow distances (𝑑𝑓𝑓𝑑
), are equal to 50 cm and 65 cm at 100 cm and 120 cm 

altitude, respectively. As shown in red, the forward-follow error (𝛿𝑓𝑓) shows how 

the pipeline is accurately forward-followed throughout the straight-line phase 

with a small error. At the turn-phases, the errors are neglected, because it is 

hard to know the ground-truth values of the forward-follow distance (𝑑𝑓𝑓𝑑
) while 

the air-vehicle is performing this phase. However, the errors of the forward-

follow (𝛿𝑓𝑓) were evaluated at these phases based on the behaviour of forward-

follow distance (𝑑𝑓𝑓) which is reasonable.  

The cross-follow error (𝜹𝒄𝒇) represents the difference between the cross-follow 

ground-truth (𝒅𝒄𝒇𝒅
) and estimated (𝒅𝒄𝒇) distances where those distances refer to 

the east coordinate’s length from the air-vehicle to the pipeline segment. The 

cross-follow ground-truth distance (𝒅𝒄𝒇𝒅
) was set to be around 20 cm at both 100 

cm and 120 cm altitudes. Similarly, the cross-follows error (𝜹𝒄𝒇) shows how the 

pipeline is accurately cross-followed throughout the sequential frames of the 

straight-phase with a small error as shown in blue in the figure.  

The reasons of those errors come from several sources such as the calibrations 

of the sensor, vibrations, background detection, and external light effects. 

However, it is worth nothing that no effects are due to the altitude variation. 
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Figure ‎7-17: Behaviours of the errors of the pipeline forward-follow (𝜹𝒇𝒇) and 

cross-follow (𝜹𝒄𝒇), [Top]: captured at 100 cm altitude, [Bottom]: captured at 120 

cm altitude  
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Figure ‎7-18: Behaviours of the pipeline cross-follow error based on the pipeline 

infinite (𝜹𝒄𝒇𝑰
) and pipeline segment (𝜹𝒄𝒇𝑺

), [Top]: captured at 100 cm altitude, 

[Bottom]: captured at 120 cm altitude  
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The errors of the cross-follow distances are represented in two ways as shown 

in Figure ‎7-18; the first one is represented with respect to the pipeline as a 

segment (𝛿𝑐𝑓𝑆
), and the other one is represented with respect to the pipeline as 

an Infinite line (𝛿𝑐𝑓𝐼
). The first approach is shown in grey, in which the air-

vehicle approximately keeps maintaining the generated course based on the 

cross-follow error (𝛿𝑐𝑓𝑆
) at both straight-line and turn phases. At the same time, 

the second method (black colour) confirms that the air-vehicle is able of 

following the pipeline based on the generated course waypoints (𝑊𝑃𝑠), as 

shown in the figure in the zero cross-follow error (𝛿𝑐𝑓) in straight-line follow 

phase. Then, the cross-follows error (𝛿𝑐𝑓) starts increasing to reach 20 cm once 

the air-vehicle start passing the pipeline segment to keep following the pipeline 

by turning around the forward-endpoint (𝐸𝑃𝑓) then back again to zero to meet 

the straight-line following phase with around zero error. 

7.5.2.2 3D Position of the Air-vehicle relative to Camera Frame   

This section represents and evaluates the performance of the 3D position of 

the air-vehicle (𝒙, 𝒚, 𝒉) relative to the camera frame while following the pipeline. 

The 2D position 𝑷𝑨(𝒙, 𝒚) of the air-vehicle relative to the camera frame 

reference, is supposed to be fixed throughout the frames’ sequence at each test 

while following the pipeline. The 2D position 𝑷𝑨(𝒙, 𝒚)  of the air-vehicle was 

measured in (cm) at frame rate of 2 fps while the depth camera position is held 

at the centre of the gravity of the air-vehicle at 100 cm altitude (𝒙𝒅, 𝒚𝒅, 𝒉𝒅) = (9, 

-1.75, 100) and orientation (𝜽𝒅, 𝝓𝒅, 𝝍𝒅) = (1o, -4.6o, 0o) and at 120 cm altitude 

(𝒙𝒅, 𝒚𝒅, 𝒉𝒅) = (9.5, -4.5, 120) and orientation (𝜽𝒅, 𝝓𝒅, 𝝍𝒅) = (2.3o, -4.6o, 0o). The 

performance accuracy of the air-vehicle 2D position 𝑷𝑨(𝒙, 𝒚) relative to the 

camera frame throughout the frame sequence at different altitudes is shown in 

Figure ‎7-19.   
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Figure ‎7-19: Behaviours of the 2D position of the air-vehicle (𝑷𝑨) relative to the 

camera frame coordinates, involved the desired 2D position (𝑷𝑨𝒅
), the mean 

value (𝑷̅𝑨), the standard deviation (𝑷𝑨𝒔𝒕𝒅
), while, [Top]: captured at 100 cm 

altitude, [Bottom]: captured at 120 cm altitude  



 

183 

 

As shown in Figure ‎7-19, the estimated 2D position (𝑃𝐴) of the air-vehicle, 

ground-truth (𝑃𝐴𝑑
), mean of measured (𝑃̅𝐴), and standard deviation (𝑃𝐴𝑠𝑡𝑑

) are 

presented in black, blue, red, and green, respectively, throughout the frames’ 

sequence for the two altitudes. The resulted errors (𝛿𝑃𝐴) between the ground-

truth 2D positions (𝑃𝐴𝑑
) and the mean of the estimated 2D positions (𝑃̅𝐴) is small 

for both of the altitudes, as tabulated in Table ‎7-5. These ground-truth 2D 

positions (𝑃𝐴𝑑
) are sited within the margin of the standard deviations (±𝑃𝐴𝑠𝑡𝑑

), 

hence confirming the performance capability and accuracy for maintaining 

ground-truth 2D positions (𝑃𝐴𝑑
) of the air-vehicle while following the pipeline.    

To check the system ability of maintaining the ground-truth altitudes, while the 

air-vehicle following the pipeline, tests were carried-out and the results of which 

are shown in Figure ‎7-20. the results of the mean, standard deviation and 

absolute error of estimated altitude vs ground-truth are tabulated in Table ‎7-5. 

As can be seen the mean estimated error is small (less than 1cm), and with the 

standard deviation margin. 

Finally, the results of the air-vehicle 3D position performance, which evaluate 

the air-vehicle’s position capability and accuracy relative to the camera frame 

while following/tracking the pipeline at different altitudes are detailed in 

Table ‎7-5. 

 

 Table ‎7-5: Results of 3D position of the air-vehicle and their errors relative to the 

camera frame coordinates at different altitudes 

ℎ 
(𝑐𝑚) 

Ground-truth Mean-estimated std error 

𝑥𝑑 
(𝑐𝑚) 

𝑦𝑑  
(𝑐𝑚) 

ℎ𝑑 
(𝑐𝑚) 

𝑥̅ 
(𝑐𝑚) 

𝑦̅ 
(𝑐𝑚) 

ℎ̅ 
(𝑐𝑚) 

𝑥𝑠𝑡𝑑 
(𝑐𝑚) 

𝑦𝑠𝑡𝑑  
(𝑐𝑚) 

ℎ𝑠𝑡𝑑 
(𝑐𝑚) 

𝛿𝑥 
(𝑐𝑚) 

𝛿𝑦 
(𝑐𝑚) 

𝛿ℎ 
(𝑐𝑚) 

100 9 -1.75 98 8.77 -2.19 98.02 0.91 0.76 0.45 0.23 0.44 0.02 

120 9.5 -4.5 118 10.1 -3.24 117.99 0.87 1.34 0.3 0.6 1.26 0.01 
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Figure ‎7-20: The estimated altitude of the air-vehicle (𝒉) relative to the camera 

frame coordinates, the desired altitude of the air-vehicle (𝒉𝒅), the mean value of 

the estimated altitude of the air-vehicle (𝒉̅), the standard deviation of the 

estimated altitude of the air-vehicle (𝒉𝒔𝒕𝒅), [Top]: captured at 100 cm altitude, 

[Bottom]: captured at 120 cm altitude  
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7.5.2.3 3D Position Displacements of the Air-vehicle 

This section represents the performance of the 3D position displacements of 

the air-vehicle that are measured among the frames sequence while following 

the pipeline to assess the potential effects of the following issues on the air-

vehicle position:  

 Sensor and air-vehicle vibrations. 

 Plane detection accuracy. 

 Air-vehicle acceleration. 

Two tests were carried-out to represent and evaluate the effects of these 

issues. These tests were performed at two different altitudes to identify any 

effects due to change in pixel resolution. As shown in Figure ‎7-21, the dots 

represent the estimated 3D position displacements. The mean error values of 

the population are very close to zero i.e. with a small standard deviation for both 

altitudes. The results tabulated in Table ‎7-6 show that the effects of the three 

above mentioned issues; namely: sensor and air-vehicle vibrations, plane 

detection accuracy and air-vehicle acceleration are negligible. 

 

Table ‎7-6: performance results of 3D position displacement and errors relative to 

the previous position at two altitudes scenarios 

ℎ 
(𝑐𝑚) 

desired Mean-estimated std error 

∆𝑥𝑑 
(𝑐𝑚) 

∆𝑦𝑑  
(𝑐𝑚) 

∆𝑧𝑑 
(𝑐𝑚) 

∆̅𝑥 
(𝑐𝑚) 

∆̅𝑦 
(𝑐𝑚) 

∆̅𝑧 
(𝑐𝑚) 

∆𝑥𝑠𝑡𝑑 
(𝑐𝑚) 

∆𝑦𝑠𝑡𝑑 
(𝑐𝑚) 

∆𝑧𝑠𝑡𝑑 
(𝑐𝑚) 

𝛿∆𝑥 
(𝑐𝑚) 

𝛿∆𝑦 
(𝑐𝑚) 

𝛿∆𝑧 
(𝑐𝑚) 

100 0 0 0 -0.001 0 0.001 0.45 0.44 0.14 0.001 0 0.001 

120 0 0 0 -0.001 -0.001 0.001 0.82 0.97 0.19 0.001 0.001 0.001 
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Figure ‎7-21: The estimated 3D position displacements of the air-vehicle 

(∆𝒙, ∆𝒚, ∆𝒛), their main values, and standard deviations, [Top]: captured at 100 cm 

altitude, [Bottom]: captured at 120 cm altitude  
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7.5.2.4 Orientations of the Air-Vehicle  

The orientation performance of the air-vehicle, relative to the camera frame 

while following the pipeline, is presented to test the reliability of the algorithm. 

This includes three-degrees of freedom for the air-vehicle’s: pitch, roll, and yaw 

angles at two altitudes, 98 and 118 cm, respectively, to discover the effects of 

the change in pixel resolution.   

As shown in Figure ‎7-22, the evolution of the estimated pitch angle, throughout 

the test, proves the ability of maintaining the desired pitch within 1 and 2.18 

degrees at 98 and 118 cm altitudes, respectively, while the air-vehicle flyies 

around the pipeline in straight-line phase (to follow the pipeline segment) and 

turn phase (to turn around the endpoint of the pipeline segment). The minor 

errors of 0.28 and 0.61 degrees at 98 and 118 cm altitudes, respectively, are 

small deviations of 0.44 and 0.65 degrees. These results confirm the reliability 

of the pitch angle performance at both pipeline following phases.  

Figure ‎7-23 shows that the evolution of the estimated roll angle throughout the 

test is capable of maintaining the desired roll of -5.25 and -4.6 degrees at 98 

and 118 cm altitudes, respectively, while the air-vehicle flying around the 

pipeline in the straight-line phase (to follow the pipeline segment) and turn 

phase (to turn around the endpoint of the pipeline segment). The low errors of 

0.14 and 0.29 degrees at 98 and 118 cm altitudes, respectively, are set within 

the low standard deviations of 0.51 and 0.44 cm. Hence again confirming the 

reliability of the roll angle performance in both pipeline following phases. 

Figure ‎7-24 shows that the evolution of the estimated yaw angle, throughout the 

test, is capable of maintaining the desired yaw of zero degrees at both 98 and 

118 cm altitudes, respectively, while the air-vehicle flying around the pipeline in 

a straight-line (to follow the pipeline segment) but during the turn phase (to turn 

around the endpoint of the pipeline segment), it was considered. The low errors 

of 0.14 and 0.29 degrees at 98 and 118 cm altitudes, respectively, are again sat 

within the low deviations of 0.51 and 0.44 degrees, confirming the reliability of 

the yaw angle performance in the straight-line phase. 
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Figure ‎7-22: The estimated air-vehicle’s pitch angle (𝜽), the desired pitch angle 

(𝜽𝒅), the mean value (𝜽̅), the standard deviation (𝜽𝒔𝒕𝒅), [Top]: captured at 100 cm 

altitude, [Bottom]: captured at 120 cm altitude  
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Figure ‎7-23: The estimated air-vehicle’s roll angle (𝝓), the desired roll angle (𝝓𝒅), 

the mean value (𝝓̅), the standard deviation (𝝓𝒔𝒕𝒅), [Top]: captured at 100 cm 

altitude, [Bottom]: captured at 120 cm altitude  
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Figure ‎7-24: The estimated air-vehicle’s yaw angle (𝝍), the desired yaw angle 

(𝝍𝒅), the mean value (𝝍̅), the standard deviation (𝝍𝒔𝒕𝒅), [Top]: captured at 100 cm 

altitude, [Bottom]: captured at 120 cm altitude 
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The results of the air-vehicle orientation performance, which evaluate the air-

vehicle’s orientation accuracy, relative to the camera frame while following the 

pipeline at two different altitudes, are detailed in Table ‎7-7. These results 

confirm the air-vehicle ability of following the pipeline with low orientation errors. 

 

Table ‎7-7: Results of air-vehicle orientations and their errors relative to the 

camera frame at different altitudes 

ℎ 
(𝑐𝑚) 

Ground-truth Mean-estimated std error 

𝜽𝒅 
(𝑑𝑒𝑔) 

𝝓𝒅 
(𝑑𝑒𝑔) 

𝝍𝒅 
(𝑑𝑒𝑔) 

𝜽̅ 
(𝑑𝑒𝑔) 

𝝓̅ 
(𝑑𝑒𝑔) 

𝝍̅ 
(𝑑𝑒𝑔) 

𝜽𝑠𝑡𝑑 
(𝑑𝑒𝑔) 

𝝓𝑠𝑡𝑑 
(𝑑𝑒𝑔) 

𝝍𝑠𝑡𝑑 
(𝑑𝑒𝑔) 

𝛿𝜽 
(𝑑𝑒𝑔) 

𝛿𝝓 
(𝑑𝑒𝑔) 

𝛿𝝍 
(𝑑𝑒𝑔) 

100 1 -5.25 0 1.28 -5.11 14.98 0.44 0.51 25.76 0.28 0.14 14.98 

120 2.18 -4.6 0 1.57 -4.89 21.39 0.65 0.44 40.89 0.61 0.29 21.39 

 

7.6 Chapter Summary 

This chapter represented and evaluated the performance of the vision-based 

aerial pipeline ROW surveillance system. This performance involves the 

pipeline endpoints’ identification, third-party interference detection, and the 

pipeline following algorithms. Due to the sensor limitations and the difficulty of 

finding above ground pipeline in the UK, indoor tests were performed to provide 

the desired data sets that are required to represent and evaluate the reliability 

of each algorithm in this system. Four tests were proposed to assess the 

performance of the pipeline endpoints identification algorithm, which include the 

attendance the pipeline structure and the altitudes difference. The presence of 

the pipeline in the image frame is used to assess the identification decision and 

the error when the pipeline exists, by estimating the sensitivity and false 

negative rates, respectively. It is also proposed to evaluate the quality and 

accuracy of the identification by analysing the performance of the position of the 

endpoints throughout the flight mission.  



 

192 

 

The test in which no pipeline is present in the image frame is used to assess the 

identification decision and its error, by estimating the specificity and false 

positive rates, respectively. Different altitudes tests were carried-out to identify 

and evaluate the effects on the performance of the identification, position, and 

processing speed when the pixel resolution changes. The result of these tests 

confirms that the system is capable of identifying the pipeline endpoints in near 

real-time efficiently with a high rate of identification and small errors.  It can also 

estimate the endpoints position accurately with a low error at a different 

resolution of pixels. 

Similarly, four tests were performed to demonstrate the performance of the 

third-party detection algorithm and the effect of changing altitudes. The 

presence of the third-party interference is used to assess the detection decision 

and its error, while tests in which the third-party interference exists in the image 

frame are checked by estimating the sensitivity and false negative rates, 

respectively. Analysing the performance of the position of the third-party 

interference throughout the flight mission is used to evaluate the quality and 

accuracy of the detection. The absence of the third-party interference in the 

image frame is used to assess the detection decision and its errors by 

estimating the specificity and false positive rates, respectively. The difference in 

altitudes is proposed to discover and evaluate the effects on the performance of 

the detection, position, and processing speed when the resolution of pixels 

changes. The result of the performance tests confirms that the system is 

capable of efficiently identifying the third-party interference on-board in near 

real-time with a high rate of detection and low errors. It can also estimate the 

third-party interference position accurately with a low error at a different pixel 

resolution. 

Two tests were performed at various altitudes involving a pipeline structure, to 

evaluate the performance of the pipeline’s following algorithm and confirm its 

capability. These tests involve the online course waypoints generation, 

waypoints navigation, and processing time. Based on the performance results, 

the system proved to be capable and accurate in autonomously following the 
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pipeline in real-time by using the vision-based identified endpoints of the 

pipeline to navigate the air-vehicle (quadrotor). 
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  Chapter 8

Discussions and Conclusions 

 

 

 

 

8.1 Introduction 

This chapter discusses, concludes and remarks on the automatic pipeline 

surveillance air-vehicle research by focusing on the discussions of the results, 

satisfactions of the aim and objectives, limitations, and future recommendations. 

8.2 Discussion of Research Results 

To emulate the aerial pipeline surveillance mission, a depth sensor (Asus 

Xtion) mounted on-board a fully-functional quadrotor UAV platform was 

proposed to provide depth data (represented as a 16-bits format) and RGB data 

(as 8-bits) of the explored environment in real-time.  

The endpoints of the pipeline segment were identified accurately in real-time 

based on two data types that are visibility and depth. Computer vision 

techniques were used to develop the visible-based pipeline endpoint 

identification algorithm. The first step involves the image processing algorithm 

that enhances the vision data to improve the edge detection performance. 

Then, the boundaries of the features are detected in the explored environment 

that are assessed, constructing a candidate straight boundary for the Hough 

transforms method, by using a canny edge detector. After that, based on the 

candidate’s boundaries, several straight lines representing the straight 
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boundaries of the objects were constructed using Hough Transform method. 

Following this, those straight lines were filtered by comparing them with known 

pipeline segment endpoints in the explored area, allowing fast and accurate 

pipeline endpoints identification. This allows the system to reliably reject 

inaccurate measurements while retaining the correct pipeline detections and 

location. Based on the experimental results, the performance is capable of 

identifying the endpoints of the pipeline in real-time. As was shown in the 

analysis carried-out in the project, this vision-based pipeline endpoint 

identification has several limitations. These include the need to have pipeline 

end point position information, to fuse/compare with the vision based detection 

system, to improve the detection rate and increase the confidence level in the 

system. 

Therefore, the depth-based pipeline endpoints identification technique was 

proposed, to complement the vision based approach. This technique includes 

3D point cloud mapping, foreground and background extraction, boundary 

detection, boundaries height filtration, boundaries straight line detection, 

pipeline verification and pipeline endpoints estimation. First, the 16-bits depth 

data of the explored environment were transformed into 3D point clouds’ world 

coordinates. Then, the foreground and background were extracted based on the 

transformed 3D point cloud to extract the plane that corresponds to the ground, 

using RANSAC approach. Simultaneously, the boundaries of the explored 

environment were detected based on the 16-bit depth data using Canny 

method. After that, these boundaries were filtered out, after being transformed 

into a 3D point cloud, based on the real height of the pipeline for fast and 

accurate measurements using a Euclidean distance of each boundary point 

relative to the plane of the ground extracted before. Then, those filtered 

boundaries were used to detect the straight lines of the object border (Hough 

lines), after being transformed into 16-bit depth data, using a Hough transform 

method. Following that, the pipeline was verified by estimating a centre line 

segment, in the 3D point cloud, between any two of those Hough line segments, 

after being transformed into 3D. That satisfy the following statements’ 
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parallelism, distance between each other meets the constraints of the real width 

of the pipeline, and the foreground correspondence that the length of the centre 

line segment corresponds to the foreground region. The length and endpoints 

position of the detected centre line segments were enhanced to match the exact 

pipeline by extending them along their inlier foreground. Finally, the pipeline 

endpoints were recomputed if locally exist multi-segments intersections 

representing the pipeline structure in the same frame by estimating the local 

intersection points between the segments. This technique was tested indoors 

using a small scale representation of pipeline structures. The results obtained 

confirm the capabilities of the proposed method in identifying the pipeline 

endpoints at real-time.  

Moreover, a computer vision technique was developed for real-time third-party 

interference detection based on four parameters; that are foreground 16-bit 

depth data, pipeline corresponds 16-bit depth data, pipeline endpoint location in 

the 3D point cloud and ROW proposed distance. This technique includes 

detection, classification, and localization algorithms. The detection was 

developed to detect any object, in general, within the pipeline’s ROW region 

and consider them as a third-party interference objects. This detection is then 

processed by filtering the foreground depth data to concentrate on the area of 

interest that is expected to have a third-party interference objects present, 

hence reducing the processing load, and increasing the detection accuracy. 

This filtration includes the subtraction of the pipeline and the ROW outlier’s 

areas. The pipeline area is filtered by subtracting the 16-bit depth matrix of the 

pipeline from the foreground directly. Then, the residual data, after being 

transformed into a 3D point cloud, is used to filter the ROW outliers area by 

using the Euclidean distance to reject any point outlier in the region of interest 

relative to the pipeline segment based on the ROW proposed distance. The 

detected objects are classified using Haar classifier, after data association and 

transformation is carried-out to sync with vision based data that are being 

recorded simultaneously. They are classified, for example into buildings, known 

vehicles, trees, and so on. The detected third-party interference objects were 
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then localized based on the camera frame using a centroid contour algorithm. 

The performance of this technique was experimentally validated using an indoor 

test, in which a small-scale of expected third-party interference objects are 

introduced. The results show that is the developed approach and algorithms are 

capable of efficiently detecting the third-party interference objects quickly at a 

high detection rate. The advantage of using an approach as the Haar classifier 

is that these types of can be trained off-line first, hence significantly improving 

the performance and speed of the algorithm. Another advantage is that new 

objects can be trained and detected by the algorithm.  

Finally, a waypoints-based navigation system was developed to enable the air-

vehicle to fly over an online generated course using heading demand to follow 

the pipeline structure autonomously in real-time. The waypoints are generated 

based on the online identification of the pipeline endpoints relative to camera 

frames. The proposed autopilot system, used to track the pipeline, consists of 

online waypoints generation for the air-vehicle’s course, change of course 

angle, turn anticipation distance estimation, proximity distance estimation, and 

heading demand calculation. The system was tested indoors. The performance 

was satisfactory, confirming the ability to follow the pipeline based on the 

received information.  

8.3 Fulfilment of Research Aim and Objectives 

In this research project, the use of a low-cost aerial platform was 

investigated successfully for surveillance and routine inspections of lengthy 

pipelines and their Rights-of-Way. The payload system consists of a camera 

and a depth sensor mounted on-board a quadrotor platform. The data from the 

payload system were processed using, computer vision algorithms and 

associated for a real-time detection and visual following of the pipeline 

structure, detection of anomalies through appropriate image recognition 

algorithm, and video data relay to the ground station.  
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The developed algorithms were effective in estimating the position of the 

pipeline segments endpoints in near real-time. Also, a real-time vision-based 

waypoints navigation algorithm was developed to automatically track the 

pipeline structure without relying on GPS data but based on the endpoints 

information of the pipeline segment. Moreover, the developed vision based 

algorithms were capable of detecting the anomalies in the vicinity of the pipeline 

structure in near real-time and visualize them for the ground operator. A video 

data transmission datalink was proposed to transfer the data from the aerial 

platform to the Ground Control Station (GCS). The complete pipeline 

surveillance system was successfully tested by integrating both the hardware 

and the developed software together. 

8.4 Research Limitations 

The limitations of this research are outlined as follows: 

 Although the processing speed of the on-board embedded system were 

adequate to perform some of the operations. As with all embedded 

system there are limit on the processing power. Therefore, the data 

processing was divided on-board (detection, tracking etc.) and off-board, 

on the GCS for the classification of 3rd party interference. 

 The focus of the project was to test the system for the surveillance and 

inspection of the over-ground pipeline structure. 

 The surveillance and inspection missions of the pipeline structure and its 

Right-of-Way covered only third-party activates. 

 The remote sensor mounted on the system to provide the 3D visual data 

can only work indoor. 

 A small-scale environment of pipeline structure and third-party activates 

were used in this research for the validation. Change in environmental 

factors e.g. sands, snow etc. were not considered.   
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8.5 Conclusion 

In conclusion, the fulfilments of the research aim and objectives were 

successfully accomplished. The algorithms’ developments and the system 

integration were presented and described. The performance results of the 

system were analysed and discussed. The limitations of the research were 

listed. Finally, the recommendations for the future work are covered in the 

section below (section 8.6). 

8.6 Future Work 

Below are some recommendation and improvements for future work: 

 Comparing the implemented computer vision techniques in this project 

with other techniques in terms of; quantity/quality performance and 

processing time. 

 Investigating for a hardware or software solutions to optimise and reduce 

the computational load of the developed algorithms that are processed 

on-board the aerial platform. 

 Developing a method to detect underground pipeline structures by fusing 

other sensors, such as magnetometer, which are suitable to extract the 

information of the pipeline remotely in near real-time based on the 

material differentiations. 

 Developing an algorithm to detect any oil or gas pipeline leak remotely in 

near real-time using suitable remote sensors such as thermal or 

hyperspectral. 

 Integrating a LIDAR or a stereo vision sensor instead of the ASUS Xtion 

to provide visual depth and RGB data and preparing the system for 

outdoor tests.   
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 Carry-out outdoor flight tests over one of the existing over-ground 

pipeline system such as Trans Alaskan to validate the performance of 

the proposed system in real operational environment. 
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APPENDICES 

A. Samples of methods coded in Python 

Code of Canny Edge Detector Method    

def edge_depth(IR_FG, depth_image, thrs1,thrs2):    

    q = depth_image 

    u, v = np.mgrid[:q.shape[0], :q.shape[1]] 

    IR_FG_uint8 = IR_FG.astype('uint8') 

    IR_edges = cv2.Canny(IR_FG_uint8,thrs1,thrs2 ) 

    IR_edges=cv2.bitwise_and(depth_image,depth_image,mask=IR_edges) 

    IR_edges = IR_edges.astype(np.uint16) 

    dd = 1 

    xyz_edges,uv_edges,uvd_edges=calibkinect.depth2xyzuv(IR_edges[::dd, ::dd], u,v) 

    return xyz_edges, uv_edges, uvd_edges 

Code of Hough Transform Method  

def Line(depth_image, edges,PointsInLine, minLineLength,maxLineGap, linesNo): 

     plinesd = cv2.HoughLinesP(edges.astype('uint8'), 1, np.pi/180, PointsInLine, 

np.array([]), minLineLength,maxLineGap)[0] 

    print plinesd 

    q = edges 

    dd = 1 

    u, v = np.mgrid[:q.shape[0]:dd, :q.shape[1]:dd] 

    HIGHT, WIDTH = edges.shape 

    imgHL1 = np.zeros((HIGHT, WIDTH)) 

    imgHL2 = np.zeros((HIGHT, WIDTH))    

    HT = [] 

    for ee in range(len(plinesd)):#[:linesNo]: 

        HTp = plinesd 

        P1Y = HTp[:,0] 

        P1X = HTp[:,1] 

        P2Y = HTp[:,2] 

        P2X = HTp[:,3] 

        imgHL1[P1X,P1Y]= depth_image[P1X,P1Y] 

        imgHL2[P1X,P1Y]= depth_image[P2X,P2Y] 

        xyz_HT_P1, uv_HT_P1, uvd_HT_P1= calibkinect.depth2xyzuv(imgHL1[::1, ::1], 

u, v) 

        xyz_HT_P2, uv_HT_P2 , uvd_HT_P2= calibkinect.depth2xyzuv(imgHL2[::1, ::1], 

u, v) 

        HT_data= np.hstack((xyz_HT_P1,uv_HT_P1, uvd_HT_P1,xyz_HT_P2, 

uv_HT_P2,    uvd_HT_P2)) 

    HT = np.array(HT_data)   

    return HT, plinesd 
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B. Simulink Model of 6DOF dynamics of Piper Cub 

 

 

C. PID controller’s gains and saturation limits of SAS’s of the Piper Cub 

UAV. 

 

Type 
PID Gains Saturation Limit 

(radian) P I D 

Pitch 0.1 0 0.05 ‐0.13 to +0.15 

Roll 
1.5 0 0 

‐0.157 to +0.157 
1.2 0 0 

Yaw 2 0 0 ‐0.35 to +0.35 

 


