994 research outputs found

    Skeletonization methods for image and volume inpainting

    Get PDF

    Skeletonization methods for image and volume inpainting

    Get PDF

    Object oriented image segmentation on the CNNUC3 chip

    Get PDF
    We show how a complex object oriented image analysis algorithm can be implemented on a CNNUM chip for video-coding. Besides the applied linear operations, several gray-scale nonlinear template operations are also emulated using algorithmic solutions.Office of Naval Research (USA) NICOP N68171-98-C-9004European Commission DICTAM IST-1999-19007, TIC 99082

    Emergence of the mitochondrial reticulum from fission and fusion dynamics

    Get PDF
    Mitochondria form a dynamic tubular reticulum within eukaryotic cells. Currently, quantitative understanding of its morphological characteristics is largely absent, despite major progress in deciphering the molecular fission and fusion machineries shaping its structure. Here we address the principles of formation and the large-scale organization of the cell-wide network of mitochondria. On the basis of experimentally determined structural features we establish the tip-to-tip and tip-to-side fission and fusion events as dominant reactions in the motility of this organelle. Subsequently, we introduce a graph-based model of the chondriome able to encompass its inherent variability in a single framework. Using both mean-field deterministic and explicit stochastic mathematical methods we establish a relationship between the chondriome structural network characteristics and underlying kinetic rate parameters. The computational analysis indicates that mitochondrial networks exhibit a percolation threshold. Intrinsic morphological instability of the mitochondrial reticulum resulting from its vicinity to the percolation transition is proposed as a novel mechanism that can be utilized by cells for optimizing their functional competence via dynamic remodeling of the chondriome. The detailed size distribution of the network components predicted by the dynamic graph representation introduces a relationship between chondriome characteristics and cell function. It forms a basis for understanding the architecture of mitochondria as a cell-wide but inhomogeneous organelle. Analysis of the reticulum adaptive configuration offers a direct clarification for its impact on numerous physiological processes strongly dependent on mitochondrial dynamics and organization, such as efficiency of cellular metabolism, tissue differentiation and aging

    Characterization and Reduction of Noise in Manifold Representations of Hyperspectral Imagery

    Get PDF
    A new workflow to produce dimensionality reduced manifold coordinates based on the improvements of landmark Isometric Mapping (ISOMAP) algorithms using local spectral models is proposed. Manifold space from nonlinear dimensionality reduction better addresses the nonlinearity of the hyperspectral data and often has better per- formance comparing to the results of linear methods such as Minimum Noise Fraction (MNF). The dissertation mainly focuses on using adaptive local spectral models to fur- ther improve the performance of ISOMAP algorithms by addressing local noise issues and perform guided landmark selection and nearest neighborhood construction in local spectral subsets. This work could benefit the performance of common hyperspectral image analysis tasks, such as classification, target detection, etc., but also keep the computational burden low. This work is based on and improves the previous ENH- ISOMAP algorithm in various ways. The workflow is based on a unified local spectral subsetting framework. Embedding spaces in local spectral subsets as local noise models are first proposed and used to perform noise estimation, MNF regression and guided landmark selection in a local sense. Passive and active methods are proposed and ver- ified to select landmarks deliberately to ensure local geometric structure coverage and local noise avoidance. Then, a novel local spectral adaptive method is used to construct the k-nearest neighbor graph. Finally, a global MNF transformation in the manifold space is also introduced to further compress the signal dimensions. The workflow is implemented using C++ with multiple implementation optimizations, including using heterogeneous computing platforms that are available in personal computers. The re- sults are presented and evaluated by Jeffries-Matsushita separability metric, as well as the classification accuracy of supervised classifiers. The proposed workflow shows sig- nificant and stable improvements over the dimensionality reduction performance from traditional MNF and ENH-ISOMAP on various hyperspectral datasets. The computa- tional speed of the proposed implementation is also improved

    Cosmological Histories for the New Variables

    Get PDF
    Histories and measures for quantum cosmology are investigated through a quantization of the Bianchi IX cosmology using path integral techniques. The result, derived in the context of Ashtekar variables, is compared with earlier work. A non-trivial correction to the measure is found, which may dominate the classical potential for universes on the Planck scale.Comment: 14, CGPG-94/2-

    Handwritten Character Recognition of South Indian Scripts: A Review

    Full text link
    Handwritten character recognition is always a frontier area of research in the field of pattern recognition and image processing and there is a large demand for OCR on hand written documents. Even though, sufficient studies have performed in foreign scripts like Chinese, Japanese and Arabic characters, only a very few work can be traced for handwritten character recognition of Indian scripts especially for the South Indian scripts. This paper provides an overview of offline handwritten character recognition in South Indian Scripts, namely Malayalam, Tamil, Kannada and Telungu.Comment: Paper presented on the "National Conference on Indian Language Computing", Kochi, February 19-20, 2011. 6 pages, 5 figure

    Focused ion beam tomography of WC-Co cemented carbides

    Get PDF
    The microstructure of three different grades of WC-Co cemented carbides (hardmetals) has been reconstructed in three dimensions after sequential images obtained by focused ion beam. The three dimensional microstructual parameters are compared against the well-known two dimensional parameters of grain size, phase percentages and mean free path. Results show good agreement with the exception of individual grain recognition, which could not be univocally segmented. In the case of mean free path, the three-dimensional image depicts a more realistic description of the metal interconnections in the composite. Aiming for a simple example of direct application of these FIB tomography outcomes, reconstructed real microstructure for the coarser hardmetal grade studied was translated in a finite element modelling mesh, and elastic residual stresses were estimated from sintering to room temperature. Calculated thermal stresses agree with experimental results and show significant local variations in their value due to the complex microstructure of cemented carbides.Postprint (author's final draft
    corecore