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A B S T R AC T

Image and shape restoration techniques are increasingly important in application do-
mains which require high-quality 2D images and 3D shapes, but where only shapes
and images damaged by various types of defects are available. Many types of restora-
tion techniques have been proposed in the 2D image-processing and the 3D shape-
processing context, respectively. Well-known examples of such techniques include
digital inpainting, denoising, and morphological gap filling. However efficient and
effective, such methods have several limitations with respect to the shape, size, distri-
bution, and nature of the defects they can find and eliminate.

Skeletonization describes a set of techniques aiming at the detection and computa-
tion of simple descriptors that capture well a shape’s geometry, topology, and symme-
try. Many such descriptors have been proposed in the literature, ranging from simple
2D medial axes of digital binary images, up to complex medial surfaces and curve
skeletons used to describe high-resolution 3D shapes.

This thesis researches the possibility of using skeletal structures for the design and
implementation of 2D image and 3D shape inpainting methods, based on the under-
lying intuition that the geometry, topology, and symmetry data jointly captured by
skeletons greatly help controlling the restoration process. We start exploring the above
hypothesis by studying the use of 2D skeletons for the restoration of two-dimensional
images. To this end, we show that skeletons are indeed useful and efficient descriptors
that support three different kinds of image restoration – semantic inpainting, salient
gap filling, and digital hair removal. To explore our hypothesis in the 3D case, we first
overview the existing state-of-the-art 3D skeletonization methods, and conclude that
no such method provides us with the features required by efficient and effective prac-
tical usage. We next propose a novel method for 3D skeletonization, and show how it
complies with our desired quality requirements, which makes it thereby suitable for
our shape restoration context. Based on this method, we describe two different types
of 3D shape restoration – gap filling and wire-artifact removal.

The joint results of our study show that skeletons are indeed effective tools to design
a variety of shape restoration methods. Separately, our results show that suitable algo-
rithms and implementations can be conceived to yield high end-to-end performance
and quality of skeleton-based restoration methods. Finally, our practical applications
involving the above-mentioned restoration methods show that these can generate com-
petitive results when compared to existing state-of-the-art in application areas such as
digital hair removal and wire artifact removal.
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S A M E N VAT T I N G

Technieken voor restauratie van digitale afbeeldingen en vormen worden steeds be-
langrijker voor applicaties waarin hoge kwaliteit 2D beelden en 3D vormen nodig
zijn, maar waarin men alleen vormen en beelden heeft die beschadigd zijn door ver-
schillende types defecten. Veel technieken hiervoor zijn bekend in de context van 2D
beeldbewerking en 3D vormbewerking. Voorbeelden hiervan zijn digital inpainting,
ruisverwijdering (denoising), en morphologische gap filling. Hoewel efficiënt en ef-
fectief, dergelijke methodes hebben beperkingen ten opzichte van de vorm, grootte,
distributie, en aard van de defecten die zij kunnen vinden en verwijderen.

Skeletonisatie beschrijft een set van technieken gericht op de detectie en bereke-
ning van simpele descriptoren die de geometrie, topologie, en symmetrie van vormen
afvangen. Veel dergelijke descriptoren zijn voorgesteld in de literatuur, variërend van
eenvoudige 2D mediale assen (medial axes) tot complexe mediale oppervlakken en
curve skeletten die worden gebruikt om hoge-resolutie 3D vormen te beschrijven.

Dit proefschrift onderzoekt de mogelijkheid om skeletale structuren te gebruiken
voor het ontwerp en de implementatie van 2D-beeld en 3D-vorm inpainting, geba-
seerd op de intuitie dat de geometrie, topologie, en symmetrie afgevangen door ske-
letten van groot hulp zijn voor het restauratieproces. We beginnen de bovengenoemde
hypothese te verkennen door het bestuderen van het gebruik van 2D skeletten voor
de restauratie van tweedimensionale beelden. Daartoe laten we zien dat skeletten in-
derdaad nuttige en efficiënte descriptoren zijn voor de ondersteuning van drie types
herstel van beelden – semantische inpainting, saillante gap-filling en digitale ontha-
ring. Om onze hypothese in het 3D geval te verkennen, creëren wij eerst een overzicht
van de huidige state-of-the-art 3D skeletonisatiemethodes, waaruit we afleiden dat
geen dergelijke methode de eigenschappen heeft voor efficiënt en effectief praktisch
gebruik. Vervolgens stellen wij een nieuwe 3D skeletonisatiemethode voor en laten
zien hoe deze voldoet aan onze gewenste kwaliteitseisen, waardoor deze geschikt is
voor ons vormrestauratiecontext. Op basis van deze methode beschrijven wij twee
verschillende types van 3D vormrestauratie – 3D gap filling en draad-artefact verwij-
dering.

De gezamenlijke resultaten van onze studie laten zien dat skeletten inderdaad effec-
tieve instrumenten om een verscheidenheid van vormrestauratiemethodes te ontwer-
pen. Daarnaast laten onze resultaten zien dat geschikte algoritmen en implementaties
kunnen worden bedacht om hoge prestaties en kwaliteit van skeletgebaseerde restau-
ratiemethoden te garanderen. Tenslotte laten onze praktische toepassingen, die de bo-
vengenoemde restauratiemethodes gebruiken, zien dat deze concurrerende resultaten
kunnen genereren in vergelijking met de state-of-the-art op toepassingsgebieden zoals
digitale ontharing en metaaldraad-artefact verwijdering.
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1I N T RO D U C T I O N

The last decades have witnessed an enormous increase of applications revolving
around the manipulation of two-dimensional and three-dimensional image content.
This increase has been fueled by several factors, such as the advent of low-cost and
high-performance computing platforms; the appearance of affordable high-resolution
content acquisition devices such as two-dimensional (2D) digital cameras and three-
dimensional (3D) scanners; and the development of increasingly more powerful and
versatile algorithms and techniques for the analysis, synthesis, and processing of the
aforementioned content. Many industries are thriving on such applications, such as
medical imaging, videosurveillance, 3D printing, geoinformatics, video and movie
production, and computer games, to mention just a few.

While the use of 2D and 3D digital content has many flavors, a significant fraction
of applications thereof focuses on the extraction, interpretation, and manipulation of
high-level information from plain 2D images and 3D scans. Arguably the most salient
high-level information type pertaining to such digital content are shapes. Loosely put,
shapes are subsets of 2D images or 3D volumes that share specific topological, geo-
metrical, spatial, or appearance-related properties, and describe particular classes of
objects present in the acquired content. Examples hereof are many: humans or vehi-
cles identified in 2D still images or motion videos acquired by cameras; organs or parts
thereof present in 2D X-ray imagery, 2D microscope imagery, or 3D computer tomog-
raphy (CT) or magnetic resonance imaging (MRI) scans; geographical relief forms
present in 2D satellite and geosurveillance imagery; and physical objects scanned by
3D laser scanners or 3D time-of-flight cameras. Reasoning about shapes present in an
image offers significantly more powerful ways to interpret and leverage the flood of
imagery ‘big data’ available to us. Indeed, the majority of applications using 2D and
3D images center on detecting, quantifying, and interpreting such shapes present in
the raw image data, as these, and not the raw image data, capture the actual concerns
and questions of the involved stakeholders.

However, the path from acquiring raw 2D and 3D images to extracting useful and
usable shapes embedded in such images, is long and complicated. Many problems
can occur in this process – the separation of shapes from surrounding unstructured
so-called background (a process usually known as segmentation); the elimination of
irrelevant variations in shape size, orientation, and noise (a process usually known
as regularization); the computation of relevant metrics on the extracted shapes, such
as size, thickness, topological structure, and boundary curvature (a process usually
known as quantification); and the encoding of shapes into simple and compact repre-
sentations which allow efficient operations such as shape classification, registration,
matching, and retrieval (a process known as descriptor extraction).

1.1 T H E R E G U L A R I Z AT I O N C H A L L E N G E

Among the above-mentioned challenges pertaining to the usage of 2D and 3D shapes,
a fundamental one sticks out: regularization. As outlined above, regularization in-
cludes all processing operations applied to a shape, extracted from raw 2D or 3D im-
agery by segmentation methods, aiming to eliminate many types of variations present
in segmented shapes which, by themselves, do not further provide information or
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I N T RO D U C T I O N

added-value to the subsequent shape-analysis operations implied by the application
domain.

In general, shape regularization is a hard problem, as it attempts to enforce high-
level constraints on the shapes extracted by potentially any types of methods. Many
classes of regularization methods exist, depending on the specific shape aspects which
are to be guaranteed or, conversely, on the shape aspects which are deemed irrelevant
to the application context, and thus are to be eliminated. For example, geometrical
regularization methods aim to produce shapes having a given boundary smoothness,
which is achieved by applying various filtering techniques that preserve coarse-scale
details and eliminate small-scale details deemed to be noise [224]. Morphological
regularization methods aim to produce shapes having given sizes, genii, or minimal
thicknesses [197]. Other more specialized methods aim to produce shapes that respect
higher-level invariants such as branching structure or correspondence to a given prior
family [61].

1.2 S H A P E A N D I M AG E R E S T O R AT I O N

Within the family of shape regularization methods, two important classes can be identi-
fied. The first class can be loosely described as working globally: Given a shape S and
a shape template T , one aims to produce a regularized version SR of S so that SR obeys
the characteristics imposed by T . Such methods are extremely powerful as they aim
to guarantee high-level properties of the regularization SR. An example of global reg-
ularization methods are techniques based on active contours, which enforce desirable
geometric and topological constraints on the regularized shapes by explicitly building
these constraints into the regularization model [119]. However, designing such global
regularization methods is very hard, since, in general, there are many ways in which a
shape S can be modified to comply with a set T of global properties. The second class
of regularization methods has a local nature: Given a shape S and a set of (spatially)
local criteria C, one aims to produce a regularized version SR of S so that SR obeys C
over every local neighborhood of SR having a given size. Local regularization meth-
ods are, in general, easier to design and implement than their global counterparts, and
also more computationally efficient, given their local nature. A well-known example
of local regularization is low-pass filtering aimed at ensuring that the resulting shape
SR has a given boundary smoothness [61].

Within the class of local regularization methods, restoration methods occupy a par-
ticular place. The origin of such methods is based on the fact that 2D and 3D image
acquisition is subject to many local errors. Examples of such errors are color artifacts,
cracks, and fine-scale noise present in digitized versions of old paper photographs or
prints [23]; geometrical and topological noise present on the boundaries of shapes seg-
mented from low-contrast, high-noise scans [226]; larger-scale details, such as inscrip-
tions or logos that obliterate parts of images [64, 230] or hairs that obliterate tumor
areas in dermoscopic images [104, 138, 242]. As such, the acquired shapes S can be
thought of being versions of the original shapes under scrutiny, but ‘contaminated’ by
local defects. Restoration methods propose to eliminate such defects by a two-step pro-
cess: First, the defect areas are detected using priors describing the expected shapes.
Next, the defect areas are restored using information in neighboring reliable areas, and
possibly global constraints. Such methods are, in many contexts, also known under
the name of inpainting methods [26]. This name stems from the traditional procedure
of manually restoring 2D paintings by locating damaged regions, followed by recon-
structing image content in these regions by extrapolating, or ‘in painting’, content
outside these regions into the regions themselves [23, 24, 38, 46, 64, 144, 169, 230].
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1.3 S T RU C T U R A L S H A P E D E S C R I P T O R S

Inpainting methods have shown their strong added-value in several contexts involv-
ing the restoration of 2D images. In general, these methods are extremely versatile
with respect to the type of restorations they can cover; robust and fast, thus applicable
on large and complex imagery; and, last but not least, simple and generic to imple-
ment. However, such methods operate by excellence locally, following the analogy
with classical inpainting, where the damaged zone is reconstructed based on informa-
tion present in a small neighborhood of the defect. While this allows enforcing many
types of local desirable properties on the reconstructed areas, such as smoothness and
texture, other equally important desirable properties have a global nature, e.g., shape
topology, thickness, and symmetry. Enforcing such global properties during restora-
tion is not trivial. Separately, classical inpainting methods decouple the detection of
damaged zones from their restoration. While the restoration proper is generally well
taken care of, the detection of damaged zones is typically application-dependent, and
not covered by the inpainting proposal itself.

1.3 S T RU C T U R A L S H A P E D E S C R I P T O R S

The problem of combining local and global reasoning about shapes is crucial in many
areas of shape analysis and processing, and as such, has received much attention. The
problem is typically approached by extracting a number of so-called shape descriptors
from the available 2D or 3D shapes. Such descriptors are designed to capture impor-
tant shape properties, such as planarity, corners, edges, concave and convex bound-
ary regions, local shape thickness, global symmetry relations, the shape’s part-whole
structure, and the shape’s topology, in ways that allow one to use such information
efficiently and effectively for the desired analysis and processing tasks.

One particular class of shape descriptors is formed by medial axes, also known
as skeletons. Medial axes have been introduced in 1973 by Blum in the context of
analyzing two-dimensional binary images [34]. One major property of skeletons is
their ability to encode the topological information present in a shape, i.e., the shape’s
genus but also its part-whole structure, compactly and onto a structure of lower di-
mensionality than the shape itself. For instance, classical skeletons of 2D binary im-
ages are sets of 1D curves, which can be easily analyzed to detect and reason about
shape features such as part tips, number and size of parts, and how parts are joined
to create the shape. If information on the distance of each skeletal point to its closest
shape-boundary point is added to the skeleton, one obtains the so-called medial axis
transform (MAT), which allows reconstructing shapes from their skeletons, i.e., pro-
vides a dual shape representation to the classical boundary representation [135, 203].
Additional information linking skeletal points to their closest boundary points can
be added by the so-called feature transform [203], which allows reasoning about the
shape boundary’s convexity and also detect features such as edges and corners. Finally,
skeletal representations can also be modeled as multiscale objects, which allows pro-
gressive simplification, denoising, classification, and other level-of-detail analyses for
shapes [80, 168, 186, 187, 229].

Overall, skeletons capture both geometrical and topological information about a
shape, and allow accessing this information in a multiscale fashion. As such, skele-
tons form the basis of many types of shape analysis and processing applications, such
as shape matching and retrieval [152], shape denoising [225, 226], shape segmenta-
tion [15, 184, 185], and shape metrology [79, 109]. Recent methods allow the robust
and efficient computation of 2D skeletons [80, 229] and also 3D skeletons [102, 109]
for large and complex real-world 2D and 3D images. As such, skeletons emerge as a

3



I N T RO D U C T I O N

powerful descriptor that supports shape processing applications which need to com-
bine local and global information about the shape.

1.4 R E S E A R C H Q U E S T I O N

Summarizing the above discussion, we note two main aspects. First, a main challenge
for 2D and 3D shape reconstruction resides in the difficulty of designing good de-
tectors for damaged regions that capture a wide spectrum of local and global shape
properties. Secondly, a main advantage of skeletal shape descriptors resides in pre-
cisely providing joint information on local and global shape properties. The above
two aspects lead us to the formulation of this thesis’ main research question:

Can skeletal descriptors be used to design efficient and effective shape restoration
methods, based on inpainting techniques, that produce shapes having a wide set of
both local and global desirable properties?

To construct a path towards answering the above research question, several aspects
have to be considered. Globally put, all these aspects regard the concrete ways in
which the above-stated research question is further elaborated to a more concrete level
where actual experiments and algorithm designs can be proposed. The most important
such aspects are outlined below.

1. Detection vs restoration: The effect of the aforementioned desirable shape prop-
erties has to be studied for both the process of detecting damaged regions, and
also for the inpainting process itself that is used to reconstruct these regions. As
already mentioned, the above steps of detection and inpainting proper are typi-
cally separated in classical shape reconstruction pipelines. However, when both
local and global properties are considered, it may be of added value to treat the
two steps jointly. This aspect is further elaborated in Chapters 3, 4, 5, and 9.

2. Skeletonization choice: The success of shape reconstruction based on skele-
tal descriptors strongly relies on the quality of these descriptors. This quality
involves first and foremost ‘functional’ properties thereof, such as accuracy,
centeredness, thinness, and detail control, which are well known in the skele-
tonization literature [59]. However, ‘non-functional’ properties of skeletoniza-
tion methods, such as computational scalability, robustness to noise, ease of
use, and availability are equally important [191]. While all above properties are
well-known in skeletonization research and practice, it is far from clear which
methods optimally comply with them – or, in simple words, which skeletoniza-
tion method should one use as the building brick of future shape-processing
applications. This aspect is further elaborated in Chapters 6 and 7.

3. Shape representation: Shape analysis and processing knows two major types
of representations. Boundary representations (b-reps) describe only the inter-
face separating the interior of a solid shape from the embedding space, e.g. as a
point cloud or mesh. Volumetric representations describe every single (sample)
point of the embedding space in terms of it being exterior, on the boundary, or
interior to the shape. Both representations have their specific advantages and
limitations, and these aspects naturally propagate to the construction and usage
of shape skeletons. Choosing one of the above representations has far-reaching
consequences in terms of the types of methods that can be further used to an-
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1.5 S T RU C T U R E O F T H E T H E S I S

alyze and/or process shapes. This aspect is further discussed in Chapters 2, 6,
and 7.

1.5 S T RU C T U R E O F T H E T H E S I S

The above-mentioned research question and related challenges are treated in the
remainder of this thesis as follows. At a high level, Chapter 2 covers related work
concerning both 2D and 3D shapes. Chapters 3-5 cover restoration techniques for 2D
shapes. Chapters 6-9 cover restoration techniques for 3D shapes. A detailed overview
of each chapter is given next.

Chapter 2 presents related work in the two main domains covered by this thesis –
shape reconstruction (with a focus on inpainting methods) and shape skeletonization.
From this overview, it can be seen next that few inpainting methods jointly use local
and global information for defect detection and reconstruction, leaving thus an open
area for research. Separately, our survey of skeletonization methods shows that their
practical application, e.g. in our context of shape reconstruction, is far from trivial,
since most such methods have many complex assumptions and limitations.

Chapter 3 starts exploring the possibilities of global techniques for image restoration
using a relatively simple example – the elimination of artifacts from low-resolution
2D facial images. The global aspect of the proposed method resides in the usage of
statistical properties, computed over an entire collection of images, to both detect the
damaged regions and restore these. The proposed method is shown to deliver good
results for artifact elimination for a wide range of facial images when compared with
three other well-known inpainting techniques, both in qualitative terms and also in
terms of structural image quality metrics.

Chapter 4 continues the exploration of 2D image restoration within a more spe-
cialized context. Specifically, we study here the joint detection and elimination of
so-called structural gaps present in binary 2D images, i.e. thin and elongated cracks
that (nearly) fragment the input image into various components. We show how such
gaps can be robustly and efficiently detected and classified as being different from
small-scale detail present on the shape boundary, and also eliminated by reconstruc-
tion. Key to detection, classification, and recostruction is the usage of 2D shape
skeletons, which allow an elegant way to reason about the type of gaps with respect
to the shape structure, and also a simple way to fill the desired gaps in a controlled
manner. The added-value of our gap-detection-and-filling technique is demonstrated
on several use-cases including robust 2D image segmentation, image denoising, and
automatic hair removal from dermoscopy images.

Chapter 5 zooms in on a specific application of image restoration: digital hair re-
moval (DHR). This application is a very good use-case of our overall proposal of
skeleton-based inpainting, for several reasons. First, DHR is well known to be a hard
and important problem in dermoscopy, specifically the preparation of acquired images
for further automated diagnosis. Secondly, the characteristics of the artifacts to be de-
tected and removed (hairs) are complex, spanning a mix of structural, geometrical,
and color-related attributes. Finally, many images and techniques are available for
testing and comparison. We propose here a new method for DHR that jointly detects
and eliminates hairs by extending our earlier gap-detection technique (Chapter 4)
to treat 2D skeletons obtained from a full threshold-set decomposition of an input
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grayscale image. Qualitative and quantitative comparison of our method with five
known DHR techniques shows the advantages of our proposal.

Chapter 6 moves our exploration of skeleton-based shape restoration to the 3D
domain. As outlined earlier in Sec. 1.4, many skeletonization methods exist in the
literature, but a detailed quantitative and qualitative comparison of their performance
with respect to several desirable quality criteria is still missing. On the other hand,
such a comparison is critical for the selection of an optimal skeletonization method to
be used next in our shape restoration context. Chapter 6 presents the first part of such
a comparison, where we consider curve skeletons computed by mesh-based methods,
which are a relatively new development in the skeletonization arena, as compared
to classical voxel-based skeletons. We compare six such mesh-based methods and
one classical voxel-based method from the perspective of six accepted quality crite-
ria. The obtained results show that mesh-based methods are not always superior to
voxel-based methods from all considered viewpoints, and thus likely not the desired
candidate for us to use next.

Chapter 7 extends the comparison started in Chapter 6 to consider both 3D surface
and curve skeletons. We restrict our study to voxel-based methods, as mesh-based
methods did not show a strong superioirity in our earlier exploration (Chapter 6).
Moreover, voxel-based methods naturally fit the context of volumetric shape restora-
tion using inpainting methods. In this chapter, we compare four surface and six curve
skeletonization methods that operate on voxel shapes, based on the same set of criteria
used in our earlier comparison. Additionally, we consider computational scalability as
an important criterion. Finally, we propose several techniques for quantitative compar-
ison of curve and surface skeletons. Overall, this chapter presents, to our knowledge,
the broadest recent comparison of 3D curve and surface skeletonization methods,
with added value beyond our specific shape restoration context.

Chapter 8 follows from the finding of the joint work in Chapters 6 and 7: There
is no method for computing 3D curve and surface skeletons that optimally satisfies
our desirable criteria required for practical usage. Given this, we propose here a new
voxel-based skeletonization method that aims to unify design principles present in the
most successful skeletonization methods covered by our study. The resulting method,
dubbed an ‘unified framework’ for planar, curve, and surface skeletonization, com-
bines the principles of contraction, boundary collapse, and advection present in many
existing methods in a single advection-based model. Thereby, the presented frame-
work allows computing all known types of medial skeletons by a single formulation,
and also in a multiscale fashion. Presented results show that skeletons computed by
our method comply well with the desirable quality criteria outlined in Chapters 6
and 7, yield very similar results to several well-known skeletonization methods, and
are efficient to compute for large 3D volumes.

Chapter 9 covers our last part of exploring the use of skeletons for shape restoration
by considering the elimination of gaps and cracks in 3D volumetric shapes. Two
methods for this use-case are presented. The first method adapts the 2D gap-filling
approach presented in Chapter 4 to efficiently treat a 3D grayscale volume in a per-
slice manner. The method is applied to the task of wire artifact removal from Cone
Beam Computer Tomography (CBCT) volumetric images, where we show that its
application delivers significantly less noisy 3D reconstructions of the scanned shapes.
The second method extends the 2D gap-filling approach in Chapter 4 to use 3D sur-
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face skeletons to remove more complex cracks and indentations present in generic
3D shapes. The method is compared with classical morphological techniques for gap
elimination (closing), showing a better capability to both preserve details and remove
the undesired gaps.

Chapter 10 concludes the thesis by revisiting the original research question in the
light of our obtained results. Both strong aspects and challenging aspects of the meth-
ods proposed in this thesis are reviewed, and directions for future research in the field
are outlined.
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2R E L AT E D W O R K

As outlined in Chapter 1, Sec. 1.4, our main research question concerns the poten-
tial of using skeletal descriptors to perform defect restoration on 2D and 3D shapes.
As such, related work naturally segments into work on digital image restoration and
inpainting (Sec. 2.1) and shape skeletonization (Sec. 2.2). Both these aspects are de-
tailed next.

2.1 D I G I TA L I M AG E R E S T O R AT I O N A N D I N PA I N T I N G

The restoration of works of art such as painting, drawing and geometric patterns has
always been a fascinating occupation of many professionals who helped recover the
fragments of the past to know, understand and appreciate the history of the world.
Manual restoration requires a specialized formation and time [131]. Fortunately, with
advances in technology and science, several techniques have emerged that help users
restore digital images.

One important class of such techniques is globally known under the name inpaint-
ing [23, 26]. The technique inherits its name from the manual process of restoring
small-scale damaged areas in oil or canvas paintings by artists who incrementally
close these areas by ‘painting inwards’ from their boundaries, by reproducing the col-
ors of undamaged image areas close to these boundaries. In the last 15 years, several
so-called digital inpainting techniques have emerged. According to Tauber et al [223],
digital image inpainting refers to any methods that fill-in holes of arbitrary topology
in images so that they seem to be part of the original image. These techniques, also
called image completion or image fill-in [26], aim to simulate the process of inpaint-
ing performed by manual artists by computerized methods, so as to automatically
recognize and restore defect areas. Accordingly, digital inpainting can be defined as
follows: Given an image I : Ω ⊂ Z2 → Rd , having either grayscale (d = 1) or color
(d = 3) pixels, define a damaged area D ⊂ Ω where restoration needs to take place.
Next, inpainting can be seen as an operator I which takes (I,D) as input and outputs
a restored image Ir : Ω⊂ Z2→ Rd , so that

a) Ir = I over Ω\D;

b) Irpreserves, over D, the salient features of I at points in Ω\D close to ∂D.

Digital inpainting has many applications, such as creating restoration previews of dig-
ital scans of physical paintings, prior to the actual physical restoration [190]; creating
digital restorations of works of art which do not admit physical restoration [23]; re-
moving undesired artifacts like text and logos from digital content [230]; and general-
purpose editing of digital content to create artistic effects [64]. Following the formal
definition of inpainting outlined earlier, practical inpainting tools work in two steps.
First, the damaged region D of the input image I is selected, using automatic defect
detection or manual selection. Secondly, the desired inpainting operator I is applied
on (I,D) to yield the restored image Ir = I (I,D).

Given the above, a survey of inpainting methods should cover two separate aspects:
(a) the detection of the inpainting domain D; and (b) the definition of the inpainting
operator I . However, the largest part of inpainting methods in existence focus only
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on aspect (b) above, i.e., assume that the inpainting domain D is given. As a recent
survey on inpainting [26] puts it: “The region [D] is always given by the user, so the
localization of [D] is not part of the inpainting problem”. The same survey notes that
the vast majority of inpainting methods treat D as a hard constraint, i.e. preserve the
input image I over Ω\D. As such, our next discussion of inpainting methods focuses
solely on the definition of I .

Following Bertalmio et al. [26], inpainting methods can be classified in three
groups: patch-based methods, sparse methods, and differential/variational methods.
These method classes are discussed next.

2.1.1 Patch-based inpainting methods

Patch-based methods are characterized by the fact that they synthesize the values of
image pixels in D in blocks, rather than individually. Also, for the synthesis process,
blocks of pixels outside D are used. This allows replicating various types of character-
istics of the undamaged image Ω\D inside D. One of the earliest inpainting methods
in this class proceeds precisely like this [76]: The area D is filled in increasing dis-
tance from ∂D. For each pixel x ∈ ∂D, let P(x) be a small square block of pixels in
Ω \D centered at x. The color I(x) is set to the color of the pixel y ∈ Ω \D whose
block P(y) is most similar to P(x).

The patch-based inpainting idea is extended by the so-called exemplar-based in-
painting [64]. The key changes proposed pertain to prioritizing the inpainting of pix-
els x ∈ ∂D that correspond to high-gradient regions, such as edges, in Ω\D ending at
∂D, so that such edges are better preserved inside the region to inpaint; and inpainting
entire blocks of pixels rather than individual pixels, which makes the method preserve
texture patterns better and also computationally faster. A further speed-up of patch-
based inpainting was proposed by Ashikhmin [12], by reducing the search space for
the most-similar block P(y) to get the color to inpaint for a pixel x ∈ ∂D to pixels y
close to x. This essentially makes the method linear in the number of pixels ‖D‖ to
inpaint.

More recent exemplar-based methods use a search-and-replace, rather than a
texture-synthesis, strategy. In other words, the information to derive the inpainting
from is searched in a (large) set of similar images, rather than outside the damaged
region D of the image to inpaint. For instance, Hays and Efros [99] proposed a
method for so-called ‘scene completion’ where the user first (manually) segments
areas D to be inpainted in an image, and next the method searches images similar to
areas surrounding D in a large databases containing millions of photographs taken
from the Internet. The selected region D is next synthesized by mixing information
from the most similar images found in the database. Whyte et al. [240] propose a
similar method which uses a more advanced set of transforms to map information
from similar images in the database to the region D to inpaint, including geometric
and photometric registration. These additional transforms ensure a better fusion of the
information retrieved from the database with the local context of the image to inpaint.
A similar exemplar-based method to [99] is proposed by Li et al. [144]. Like [99], the
most similar image to the context Ω\D of the image to inpaint is sought in a database,
yielding a raw inpainting result. This result is next adapted to the local context Ω\D
by filtering and color-transfer functions.

In recent years, many other types of exemplar-based inpainting methods have been
proposed, aiming to provide a better propagation of salient image structures from the
undamaged area Ω \D to the damaged area D. For example, Du et al. [74] extract
such information using a hierarchical segmentation of the undamaged area, and prop-
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agate it inside the damaged area using the variational Mumford-Shah-Euler model
for image-attribute propagation [78], discussed further in Sec. 2.1.3. Interestingly, the
same method has also been used for image segmentation. This method gives better re-
sults than other inpainting methods for images having a large number of detail edges.
Separately, Zhao and Li [145] separate inpainting in a pass that detects salient struc-
tures using the image wavelet transform, propagate these inside the damaged region
using curve fitting, and fill gaps between such structures using classical local texture
synthesis. Other exemplar-based methods propose different heuristics for the priority
of filling image patches in the damaged region, as well as searching for the best-
matching patch in the undamaged region to gather information from [32, 53, 118].

2.1.2 Sparse inpainting methods

Following the success of the first patch-based inpainting methods such as [12, 64, 76],
several researchers have considered the problem of inpainting as an optimization prob-
lem – or in other words how to search the best-matching patches to fill the damaged
region in a ‘dictionary’ of patches that describe the undamaged image portion. The
sparse aspect of such methods relates to the definition of a compact dictionary whose
patches can efficiently describe the damaged area in visually plausible ways.

In the above context, Elad et al. [77] proposed an image decomposition model into
geometric and texture components, similar in spirit to the way images can be seg-
mented in so-called superpixels, or zones having strong internal coherence [147]. As
such, their model can be used for both image segmentation and image inpainting. The
above model has been extended to image denoising [4], small-hole inpainting [153],
and video-sequence inpainting [154].

Overall, sparse methods can achieve excellent results, as shown e.g. in [154]. How-
ever, they are more complex to implement than basic patch-based methods. Also, their
increased quality comes with the cost of additional parameters that one has to tune to
obtain the desired optimal results.

2.1.3 Differential/variational inpainting methods

In contrast to patch-based and sparse inpainting methods, differential and variational
inpainting methods take a very different approach: Instead of iteratively searching for
a local way to inpaint a small image portion (a pixel or a patch), they look for global
formulations that restore all damaged pixels in D based on solving a partial differential
equation (PDE) or a variational problem. In both cases, the equation to solve captures
both the fact that the restored image Ir should match the original image I outside the
damaged area (boundary conditions), and the fact that the restored image should obey
various local smoothness and continuity properties.

Arguably the simplest way to restore small damaged areas of an image is by using
local filtering, which essentially blur or smooth out information from the undamaged
area inwards in the damaged area. An early example hereof is presented by Ogden
et al. [167] who use Gaussian filter pyramids for this purpose. However, given the
isotropic and smoothing nature of such filters, this type of restoration can only handle
(very) small-scale damaged areas, like holes. A similar approach is taken in [169]
where a simple 3×3 filter is used for speed.

More advanced approaches aim to capture higher-order image features present in
the undamaged area and extrapolate these smoothly within the damaged area. For
instance, Mason and Morel propose to extrapolate the isophotes (isolines of constant
luminance) of a grayscale image as elastic curves [157]. The model can also be used
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for color images by applying it independently on the three channels of the image
represented in e.g. Lab color space.

The first use of the term ‘digital image inpainting’ was proposed by Bertalmio et
al. [23]. In this approach, the image smoothness information, estimated by the im-
age Laplacian, is propagated along the isophotes directions, estimated by the image
gradient rotated 90 degrees. A separate study shows that the above type of inpaint-
ing is closely related to an incompressible Navier-Stokes flow that would ‘move’
grayscale values along isophotes [24]. A related approach, called the total variation
(TV) model, uses an Euler-Lagrange equation coupled with anisotropic grayscale
diffusion to better maintain the directions of the isophotes inside the inpainted
area [46]. The TV method is further enhanced by the Curvature-Driven Diffusion
(CCD) model [47], by driving diffusion along the isophotes directions and thus allow-
ing one to inpaint thicker regions with high quality. While all above methods produce
high-quality inpainting results, implementing the respective PDE solvers is relatively
complicated and also can be computationally expensive. Aiming to alleviate such
issues, Telea [230] proposed an inpainting method based on the fast marching method
(FMM) [198]. In this approach, pixels in D are inpainted in increasing distance order
to ∂D, similar to how a painter would do. The color of an inpainted pixel x ∈ ∂D is
synthesized by an anisotropic weighting of pixels in Ω\D close to x, so as to preserve
the isophotes’ directions as well as possible. This method is fast (O(‖D‖ log‖D‖), sim-
ple to implement, and gives good results for complex-shaped, crossing, but relatively
thin damaged regions, and has been as such included in the popular OpenCV image-
processing toolkit [170]. However, for thicker damaged regions, the method produces
significantly more blurring than more advanced differential/variational methods, and
than most exemplar-based methods.

a)

b) c)

d) e)

Figure 2.1: Comparison of inpainting methods. (a) Original image. (b,c) Damaged image and
restoration by the method in [230]. (d,e) Damaged image and restoration by the
method in [35].

Variational methods for image inpainting work by defining an integral cost func-
tion that tries to both preserve Ir close to I on the undamaged image area and also
ensure various desirable smoothness properties for Ir over the damaged area. For ex-
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ample, Esedoglu et al. combine the well-known Mumford-Shah segmentation model
for images with Euler’s elastica model for (isophote) curves to cast inpainting in a vari-
ational setting [78]. However, this approach leads to complex high-order differential
equations whose robust and efficient numerical solving is delicate. Another approach
is presented by Tschumperlé [234], where the damaged area is first roughly filled in
by simple advection of colors on ∂D, and next refined by anisotropic diffusion that
incrementally propagates the structure (texture) of image outside D into the damaged
area. Separately, Bornemann and März [35] model inpainting by advecting image col-
ors from the undamaged area into the damaged area D along the integral curves of a
so-called coherence vector field that extrapolates the directions of the image gradient
into D. This method yields very high quality results for damaged regions of moderate
thickness at a very low computational cost, roughly in line with much simpler (and
lower-quality) methods such as [230] (see Fig. 2.1).

Overall, differential/variational methods excel in inpainting regions with guaran-
teed smoothness and continuity properties for various relevant image aspects, such as
isophotes, and color and luminance gradients. Compared to patch-based and sparse
methods, they also come with solid mathematical underpinning which allows one to
reason about the properties of the reconstructed image. However, globally speaking,
differential/variational methods are far less able to reconstruct texture-rich areas of
significant thickness, as compared to patch-based and sparse methods. As such, more
recent methods attempt to combine the strengths of the above method classes by using
various heuristics [25, 42, 73, 130, 200].

Summarizing the discussion on image inpainting, we can say with reasonable con-
fidence that the current state-of-the-art offers a rich palette of methods that suit most
application contexts in terms of the desired characteristics of the restored region, pri-
ors of the input image and/or the damaged areas, and speed vs implementation com-
plexity of the method. However, as mentioned in the beginning of Sec. 2.1, most such
methods focus purely on the restoration problem, and less on the automatic detection
of damaged areas to restore next.

2.1.4 3D inpainting

Three-dimensional (3D) inpainting aims, in essence, to cover similar goals to classical
2D image inpainting: Given a shape Ω ⊂ R3, 3D digital inpainting aims at restoring
parts of the shape’s surface ∂Ω or shape volume Ω so that the modified (restored)
portions appear to seamlessly fit with the surrounding parts of the restoration domain.

The vast majority of 3D inpainting methods are confined to the first category out-
lined above, i.e., aim to restore parts of a shape’s surface ∂Ω. Such methods work
analogously to their 2D image-inpainting counterparts described in Sec. 2.1: Given
the shape surface ∂Ω, a so-called inpainting domain D ⊂ ∂Ω is first determined, so
that it includes the areas to be restored (inpainted). Next, the inpainting method of
choice is executed so as to replace D by surface elements which are similar with re-
gions of ∂Ω close to D.

One of the most typical applications for such methods is to repair 3D surfaces by
filling holes. In this setting, the inpainting domain D cna be seen as carving a num-
ber of holes on the 3D surface ∂Ω. As such, these methods are also known under
the name of hole filling methods. Applications of hole filling are numerous, ranging
from the generation of watertight 3D meshes from meshes containing cracks, removal
of meshing defects (mesh fairing) [54, 55] and 3D surface reconstruction from mesh
pieces, such as generated during the reconstruction of surfaces from unstructured point
clouds [134]. Besides 3D surface hole filling, 3D inpainting is also used in the con-
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text of view interpolation in image-based rendering, multi-view construction of stereo
models of scenes, and filling cracks and repairing imperfections in volumetric 3D
shapes.

3D surface hole-filling methods typically work on mesh-based discretizations of
∂Ω [21, 22, 245]. Such methods perform inpainting using either implicit surface rep-
resentations [65, 82, 114] or explicit surfaces [75]. Other methods perform the 3D sur-
face repairing by reconstructing the surface stitching a sequence of 2D images (views)
of the damaged surface [96]. Kawai et al. [121–123] present some methods for surface
and texture completion on 3D surfaces. Such methods work by minimizing various en-
ergy functions for shape and texture similarity [122, 123] or analyzing the principal
curvature of the 3D shape to inpaint [121]. There are many further methods for surface
completion in 3D mesh datasets [43, 115, 238]. However, for our goal of volumetric
restoration, i.e. the identification and removal of hole-like defects that affect a 3D
densely-sampled volume, much fewer methods exist. In this specific context, we have
found only one such method proposed by Janaszewski et al. [111], which treats the
detection and filling of tunnels in 3D shapes. However, besides tunnels, many more
types of hole-like defects can exist in 3D volumes, e.g., cracks, cuts, indentations, and
all such defects can have a wide spectrum of distributions of size and noisiness. As
such, the area of 3D inpainting is clearly open for additional research.

2.2 S H A P E S K E L E T O N I Z AT I O N

Skeletons, also called medial axes or medial descriptors, have been introduced more
than 50 years ago by Blum as compact and simple descriptors able to capture the ge-
ometry and topology of a 2D shape [33, 34]. Given these properties, skeletons have
subsequently emerged as being efficient and effective tools for a wide range of shape
analysis and processing operations, including shape recognition, matching, and re-
trieval, path planning, metrology, and computer animation [203]. Skeletons are com-
puted from 2D and 3D shapes by various methods known globally under the name of
skeletonization. In the following, we first overview the main definitions and proper-
ties related to skeletons (Sec. 2.2.1), followed by a survey on skeletonization methods
(Sec. 2.2.2). Given our focus on 3D shape processing, the following discussion will
be naturally focused on definitions, properties, and algorithms related to skeletons of
3D shapes.

2.2.1 Definitions

Given a 2D or 3D binary shape Ω ⊂ R{2,3} with boundary ∂Ω, a convenient way to
introduce skeletons is to first define the shape’s distance transform DT∂Ω : R{2,3} →
R+

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖. (2.1)

The so-called surface skeleton of Ω is next defined as

S(Ω) = {x∈Ω |∃f1, f2 ∈ ∂Ω,f1 6= f2,‖x−f1‖= ‖x−f2‖= DT∂Ω(x)} (2.2)

where f1 and f2 are the contact points with ∂Ω of the maximally-inscribed ball in Ω

centered at x [93, 187], also called feature transform (FT) points [217] [102] [109]
or image points [203]. In the case that the shape is two-dimensional, i.e. Ω ⊂ R2,

14



2.2 S H A P E S K E L E T O N I Z AT I O N

definition 2.2 yields the classical 2D skeleton, also called medial axis [61, 203]. The
tuple (S(Ω),DT∂Ω) is known as the medial axis transform (MAT). If S(Ω) and DT∂Ω

are exactly computed, the MAT allows an exact reconstruction of the shape Ω from
it, which makes the MAT a dual representation, as opposed to the classical boundary
representation of shapes.

Surface skeletons consist of several 3D manifolds with boundaries which meet
along a set of Y-intersection curves [48, 66, 141]. Figure 2.2a shows an example of sur-
face skeleton computed for an elephant shape. Surface skeletons can be computed by
voxel-based or mesh-based methods [18, 36, 102, 171, 218]. Analogously, 2D medial
axes consist of several 2D curves which meet along a set of so-called junction points
or bifurcations. Consequently, the structure of 2D medial axes is considerably simpler
than the structure of 3D surface skeletons. This has led to the emergence of tens of
methods that are able to compute 2D medial axes in real-time for complex 2D shapes
represented as polygonal contours [168] or, alternatively, as binary images [61, 229].
In contrast, until recently, computing 3D surface skeletons has been considered a com-
plex and computationally expensive problem. However, as we shall also discuss later
on, recent research has made it possible to compute 3D surface skeletons with com-
parable degrees of accuracy and computational scalability as earlier methods for com-
puting 2D skeletons [109].

(a) (b)

Figure 2.2: Skeletons of a 3D shape: (a) surface skeleton; (b) curve skeleton. Both skeletons are
computed by the method presented further in this thesis in Chapter 8.

Besides surface skeletons, 3D shapes admit a second type of medial structure, typ-
ically called the curve skeleton. In contrast to surface skeletons, curve skeletons are
loosely defined as 1D structures “locally centered” within the input shape Ω. Fig-
ure2.2b shows the curve skeleton corresponding to the same elephant shape from
which the surface skeleton in Fig. 2.2a has been extracted. Given the above loose-
ness in defining what local centeredness precisely means, curve skeletons admit a
large variety of both implicit and explicit definitions [58]. As a consequence, besides
them being 1D piecewise-curve structures and being homotopic to the input shape,
there are no other formal properties that emerge from their definition and that are,
thus, respected by all existing curve-skeletonization methods out there. The lack of a
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unanimously accepted formal definition has also led to many methods which compute
curve skeletons following not necessarily identical definitions. This makes it hard to
analytically compare, and reason about, the properties of the produced curve skele-
tons. For instance, a formal relationship between the surface and curve skeletons of
a given 3D shape is still not unanimously accepted. For instance, although it is com-
monly accepted that the curve skeleton should be centered within the surface skeleton
of the same shape, only few skeletonization methods use and/or enforce this prop-
erty [187, 228].

In the above context of providing a formal curve-skeleton definition, Dey and Sun
proposed one of the first analytic definitions of curve skeletons based on the me-
dial geodesic function (MGF), where the curve skeleton is defined as the locus of
points having at least two equal-length shortest geodesics on ∂Ω between their fea-
ture points [70, 178]. Reniers et al. extended the MGF to regularize curve skeletons
by assigning each skeleton point an importance equal to the area bounded by such
geodesics [187], inspired by the so-called 2D collapse metric [168, 229]. A GPU im-
plementation of the above metric was presented in [109].

2.2.2 Overview of Skeletonization Methods

Surface and curve skeletons can be computed by thinning, field, and mesh-based
methods (see e.g. [58, 191]). Such methods can be further classified based on whether
they use a volumetric (voxel-based) sampling of the input shape Ω or a boundary
(typically mesh-based) sampling of the shape’s surface ∂Ω. A brief review of skele-
tonization methods follows next.

Thinning: Thinning methods remove ∂Ω voxels (or pixels in 2D) while preserving
connectivity until a minimal structure –the skeleton – is left [18, 62, 171, 179]. Al-
though simple and fast, thinning can be sensitive to Euclidean transformations. Tools
from mathematical morphology [197] were among the first used to compute curve
skeletons by thinning. The residue of openings, based on Lantuéjoul’s formula [136],
usually leads to disconnected skeleton branches, whereas methods based on homo-
topic thinning transformations [29, 136, 158, 171] yield connected skeletons. Con-
straining thinning by distance-to-boundary order [11, 179, 220] or flux-order [175]
further enforces centeredness. Recent distance-ordered thinning methods have shown
their ability to compute high-quality surface and curve skeleton of 3D voxel-based
shapes representations [11]. However, just as the field methods (discussed next), thin-
ning methods are challenged by the need to maintain an expensive dense volumetric
sampling of the input shape. This inherently limits their scalability and computational
efficiency for large, high-resolution, 3D shapes.

Field methods find S(Ω) along singularities of DT∂Ω or related more general
fields [91, 102, 125, 142, 189, 229, 237] and can be efficiently done on GPUs [41,
217, 218]. General-field methods use fields smoother (with fewer singularities) than
distance transforms [5, 13, 58, 98], and thus are more robust for noisy shapes. Siddiqi
et al. find the skeleton as the non-zero divergence locus of ∇DT∂Ω [204]. However,
∇ · (∇DT∂Ω), with ∇· the divergence operator, can be non-zero also at non-skeletal
points. Torsello and Hancock correct this for a more accurate 2D skeleton detection by
a momentum conservation principle ∇ · (ρ∇DT∂Ω) = 0, where ρ is the mass density
on the evolving boundary ∂Ω [14]. Rossi and Torsello extend this idea to compute
3D surface skeletons [188]. However, this method does not compute curve skeletons
and does not model the curve-surface skeleton relationship. Field methods can also
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compute 3D curve skeletons by backprojecting 2D skeletons of 2D projections [150]
or axis-aligned slices [229] of the shape back into 3D. Field methods have been pro-
posed for both voxel and mesh shapes.

Mesh-based methods have emerged as a consequence of the high costs implied by
voxel-based methods. As mentioned earlier, voxel-based methods typically require
significant resources to store and process the large voxel volumes required to capture
the fine details of complex 3D shapes. To be used on 3D meshes, such methods require
a costly voxelization step. Mesh-based methods address these cost issues by working
directly on a mesh representation of ∂Ω.

Mesh-based methods include Voronoi diagrams [72] and subsets thereof [8], mesh
contraction in normal direction [15, 41, 146, 221], mean-shift-like clustering [105],
and union-of-balls approaches [109, 151, 159]. Such methods use meshed shape rep-
resentations and thus scale well to handle high-resolution models [109, 151]. Early
mesh methods used Voronoi diagrams to compute polygonal skeletons [71]. Amenta et
al. compute the Power Crust, an approximation of a surface and its medial axis by a
subset of Voronoi points [8]. Other methods use edge collapses [146], starting from
a mesh segmentation [120]. Surface skeletons can be extracted from oriented point
clouds [109, 151] or polygon meshes [141, 161] by searching for maximally inscribed
balls tangent at at least two shape points. Curve skeletons can be extracted from point
clouds as centers of cloud projections on a cut plane which optimizes for circular-
ity [221].

Contraction techniques are a separate, and more recent, subclass of mesh-based
skeletonization methods. Like field techniques, they evolve ∂Ω under various types of
normal flows, effectively collapsing it onto the surface-or-curve skeleton. Methods us-
ing a (constrained) Laplacian contraction by mean curvature flow deliver high-quality
curve skeletons [15, 40, 52], or even ‘meso skeletons’ mixes of surface and curve
skeletons [222]. Au et al. shrink the mesh via Laplacian smoothing until its volume
gets close to zero, followed by an edge-collapse (to extract the 1D curve skeleton) and
a re-centering step (to correct shrinking errors) [15]. Cao et al. extend this idea to ex-
tract curve skeletons from incomplete point clouds [41]. The ROSA method defines,
and extracts, curve skeletons using rotational, rather than positional, symmetry: ∂Ω

is cut with planes, and curve-skeleton points are found as the centers of planes which
minimize the variance between the plane’s normal and ∂Ω normals along the cut
curve [221]. Sharf et al. reverse the contraction direction: They find the curve skele-
ton as the centers of a set of competing fronts which evolve to approximate the input
surface [201]. A similar method is presented by Hassouna and Farag [98]. Telea and
Jalba define, and extract, curve-skeletons by contracting the surface skeleton S(Ω)
(computed as in [151]) inwards, along the gradient of the 2D distance transform of
∂S(Ω), i.e. define the curve-skeleton as the result of a two-step skeletonization [228].

Given their computational scalability and high-quality results, mesh contraction
techniques have emerged as likely candidates for the best 3D surface-and-curve skele-
tonization methods in existence [15, 109, 159, 222]. However, in the same time, other
authors present strong arguments that vote in favor of recent voxel-based skeletoniza-
tion methods [11, 191]. To the present moment, a very limited number of comparison
studies exist that pitch voxel-based methods against mesh-based methods to see which
method-class is able to produce better skeletons from the perspective of a number of
desirable criteria. As such, the question of which (class of) methods produces better
skeletons is still an open one.
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Multiscale skeletons: Apart from the method itself used to extract curve and/or sur-
face skeleton, a separate aspect is of crucial importance in skeletonization. This aspect
is related to the fact that the skeletonization operation, seen as a function that acts on
the space of 3D shapes with results in the space of 3D (surface or curve) skeletons,
is not Cauchy or Lipschitz-continuous with respect to changes of its argument. In
simple terms: even very small changes to a shape Ω, with respect to e.g. a Hausdorff
distance metric, can yield very large changes of S(Ω), with respect to the same dis-
tance metric. This phenomenon is known under several names, such as the instability
of skeletonization, the emergence of so-called ‘spurious’ branches, and the lack of ro-
bustness of skeletons. In practice, this issue is of high importance: Small changes can
easily occur on 3D shape surfaces, caused e.g. by discretization, shape acquisition, or
numerical issues. As even tiny such changes can cause massive modifications to the
emerging skeletons, ways are needed to control the skeletonization process.

The process of removing the effect of the above-mentioned small-scale shape
changes in the resulting skeletons is known under the generic name of regularization.
Formally speaking, regularization can be seen as an operator R that takes a skeleton
S(Ω) as input and delivers a ‘clean’ skeleton S̃(Ω), so that R(S(Ω)) is continuous
with respect to small changes in Ω in the sense mentioned above. Regularization is
typically done by first defining a so-called importance measure ρ : Ω→ R+ which is
large for important skeletal branches and small for branches caused by noise or small-
scale details on ∂Ω. Hence, upper-thresholding ρ delivers the desired regularized
skeleton S̃(Ω) [66, 199].

Following several authors [109, 159, 187], one can distinguish between local and
global importance measures. Local measures cannot separate locally-identical, yet
globally-different, contexts (see e.g. [187], Fig. 1). Thresholding local measures can
disconnect skeletons. Reconnection needs extra work [155, 176, 204, 218], and makes
pruning less intuitive [199]. Local measures include the angle between the feature
points and distance-to-boundary [8, 86, 218], divergence-based [36, 204], first-order
moments [189], and points where ∇DT∂Ω is multi-valued [215, 216]. Leymarie and
Kimia topologically simplify point-cloud skeletons to capture Y-intersection curves
and skeleton sheet boundaries in medial scaffolds [141]. A good survey of such meth-
ods is given in [203].

Global measures, in contrast, monotonically increase from the skeleton boundary
∂SΩ inwards. Thresholding them yields connected skeletons which capture skeleton
details at a user-given scale. Miklos et al. approximate shapes by unions of balls
(UoB) and use UoB medial properties [94] to simplify skeletons [159]. Dey and Sun
introduce the medial geodesic function (MGF), equal to the shortest-geodesic length
between feature points [70, 178]. Reniers et al. [187] extend the MGF for surface
and curve skeletons using geodesic lengths and surface areas between geodesics, re-
spectively, inspired by the so-called collapse metric used to extract multiscale 2D
skeletons [79, 168, 229]. A fast GPU implementation of this extended MGF is given
in [109].

The MGF and its 2D collapse metric counterpart have an intuitive geometric mean-
ing: They assign to a skeleton point p the amount of shape boundary that corresponds,
or ‘collapses’ to, p by some kind of boundary-to-skeleton mass transport. Skeleton
points p with low metric values correspond to small-scale shape details or noise;
points p with large metric values correspond to large-scale shape details. This allows
an easy simplification of the skeleton: Thresholding by a value τ eliminates all skele-
ton points which encode less than τ boundary length or area units. If the collapse
metric monotonically increases from the skeleton boundary to its center, thresholding
delivers a set of connected and nested skeleton approximations, also called a multi-
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scale skeleton [70, 79, 187, 229]. As such, global importance measures do not serve
only the purpose of skeleton regularization (by elimination of spurious noise-induced
skeleton branches), but also the more complex purpose of skeleton simplification.

While global importance measures do, thus, serve the joint and important purposes
of regularization and multiscale simplification, they also come with several challenges.
Firstly, computing such measures for 3D surface and curve skeletons is quite involved
and computationally expensive, even when using recent GPU methods [109]. More
importantly, from a theoretical perspective, is the fact that there is no unified way to
define multiscale skeletal importance for 2D medial axes, 3D surface skeletons, and
3D curve skeletons. Indeed, while several methods allow computing such multiscale
importance metrics, as discussed above, and while all such methods essentially use an
intuition based on the collapse of mass transported from ∂Ω to the skeleton by some
sort of advection process, there is no formal definition and computational model for
simulating such a collapse process. As such, the various existing global importance
metrics used for skeleton regularization share the same property mentioned earlier for
curve skeletons – the lack of an unified formulation able to be used to derive properties
from it.

2.2.3 Properties

For the vast majority of shapes, skeletons cannot be computed analytically, for a num-
ber of reasons. First and foremost, typical shapes available in application domains
where skeletonization is needed do not come in an analytic form, e.g., described
in terms of explicit or implicit functions, but as sampled representations. Examples
hereof are 2D binary images and 3D binary (voxel) volumes, 2D polygonal contours
and 3D polyhedral meshes, and 3D unstructured point clouds. Sampling introduces,
by definition, a certain amount of errors or accuracy loss. As such, one has to prac-
tically work with the skeletons that are computed from such (approximative) shapes.
Consequently, such skeletons will also suffer from various degrees of inaccuracy, as
opposed to the ‘true’ skeletons implied by the original shapes that have been sampled.
Hence, being able to reason about inaccuracies present in computed skeletons is an
important task.

Skeleton inaccuracies have two main causes. The first one relates to the above-
mentioned discretization (sampling) approximations that inherently exist in the input
shapes. The second cause relates to various simplifying assumptions, approximations,
or heuristics used by the different existing skeletonization methods. Since it is, often,
hard to distinguish inaccuracies in skeletons based on their cause, the typical way to
reason about the quality of skeletons is by defining a number of desirable properties
that the computed skeletons and/or skeletonization methods used to compute them
should have.

Existing work in skeletonization over the last decade has converged to a number
of desirable properties which are well-accepted by most researchers, and considered
to be important to be satisfied by any skeletonization method [58, 191, 203]. These
properties should equally hold for both 2D medial axes and 3D surface skeletons. For
3D curve skeletons, only a subset of the properties is relevant. Several such properties
emerge directly from the skeleton definition (Eqn. 2.2), while other properties cap-
ture desirable features implied by many practical applications that use skeletons. The
aforementioned properties are briefly described below.

Homotopy: Skeletons should have the same homotopy as the shapes they are ex-
tracted from, i.e., they have the same number of connected components, holes (in 2D),
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tunnels and cavities (in 3D). If skeletons computed by practical methods respect this
property, then they can be further easily used to reason about the shape’s topology,
which is in turn useful in many shape matching and shape retrieval applications [219].

Invariance: Skeletons should be invariant to isometric transformations. That is, given
a shape Ω and an isometric transformation T , S(T (Ω)) = T (S(Ω)). This property
directly follows from the skeleton definition (Eqn. 2.2) as this definition says that
the skeleton depends only on the shape Ω and not on the shape’s position, size, or
orientation in the embedding space. In general, mesh-based methods, that represent
both Ω and S(Ω) as a polygonal mesh, comply relatively well with this property. In
contrast, pixel-based and voxel-based methods, that represent both Ω and S(Ω) as a
pixel, respectively voxel, grid, cannot be fully invariant to such transformations, since
the sample positions are constrained to a fixed grid.

Thinness: Skeletons following the definition in Eqn. 2.2 should be infinitesimally
thin, i.e., composed of curve and surface fragments. In practice, this means that skele-
tons computed by the various skeletonization methods out there should be as thin
as the spatial representation used by the respective methods allows it. Mesh-based
methods typically achieve the desired zero thickness by construction. In contrast, the
thickness of voxel-based skeletons is lower bounded by the grid resolution – meaning,
in practice, that pixel-based and voxel-based skeletons cannot be thinner than the size
of one pixel, respectively voxel.

Centeredness: By definition, each skeleton point should be at equal distance from at
least two different points of the shape boundary ∂Ω (Eqn. 2.2). Several issues exist
for practical skeletons with respect to centeredness. First and foremost, centeredness
is con- strained by the spatial sampling used to represent the skeleton. Specifically,
there exist shapes where pixel-based and voxel-based skeletons cannot be perfectly
centered due to the fixed grid resolution. Consider the simple example of the 2D axis-
aligned rectangle Ω whose formal skeleton is shown in Fig. 2.3 (left). In a pixel-based
spatial sampling where the rectangle width is even, the skeleton will either completely
miss the central branch (marked gray in Fig. 2.3 (right)), or, if constraints are used to
ensure homotopy, it will have a two-pixel thick branch covering all gray pixels, or a
one-pixel-thick branch which is not perfectly centered with respect to ∂Ω.

computed skeleton pixels missed skeleton pixels

10
 pi

xe
ls

Figure 2.3: Thickness and centeredness issues. (left) Formal skele- ton and (right) its counter-
part computed on a fixed pixel grid. Image taken from [227].

A separate centeredness issue arises when considering curve skeletons. Since there
is no universally accepted definition of what curve skeletons are, it is also hard to
formally talk about their centeredness. In most applications, the centeredness of
curve skeletons is assessed only qualitatively, by visually examining that the pro-
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duced curves appear to be locally far away from the boundary of the input shape.
In practice, having well-centered skeletons is of crucial importance when further
using such skeletons to reconstruct shapes by the medial axis transform (MAT) (see
Sec. 2.2.1) or to plan paths that need to be close to the center of complex shapes [237].

Smoothness: Surface skeleton manifolds are known to be at least piecewise C2

continuous, regardless of the noisiness of the input shape surface [176, 203]. As
such, skeletonization methods should produce piecewise-smooth skeletons. Several
problems exist related to smoothness for practical skeletons. First, it is hard to quanti-
tatively assess when a skeleton is sufficiently smooth, since computing a ground-truth
skeleton on which smoothness can be assessed is hard or even impossible, as dis-
cussed earlier in this section. Secondly, smoothness can be limited by the sampling
resolution and/or sampling model used for the skeleton (i.e., mesh- or voxel-based).
The smoothness of mesh-based skeletons strongly depends on the local point density
used for sampling. Many such methods have difficulties in densely sampling the so-
called ligature branches [152], i.e., branches which emerge from the main skeleton
rump towards small-scale convex bumps on the input surface ∂Ω [109]. Smoothness
can be increased by low-pass filtering the computed skeletal points [15, 98, 105, 228].
However, unconstrained smoothing can adversely affect centeredness.

Regularization: As discussed earlier in this section, skeletons are sensitive to small-
scale perturbations on the surface ∂Ω of the input shape Ω. Such perturbations
can occur due to multiple causes, such as inaccurate data acquisition or insufficient
sampling resolution. As we have discussed earlier, skeletons can be regularized by
applying various types of local and global importance metrics. Often, regularization
is automatically performed as the last step of a skeletonization method, so that the
method is guaranteed to deliver skeletons free from spurious branches. As such, reg-
ularization is said to enforce the desirable property of robustness (of skeletons to
small-scale perturbations). This property is also known under the name of insensitiv-
ity to noise.

Reconstructibility: As outlined in Sec. 2.2.1, the medial axis transform (MAT)
provides a full (dual) encoding and is also fully invertible. In theory, this allows re-
constructing Ω from its MAT, a process also known under the name of garbing [68]
or shape reconstruction from its skeleton [11, 109]. However, as we have seen, prac-
tical skeletons are affected by various approximations, such as imperfect centered-
ness and the absence of noise-induced branches. As such, exact reconstructibility
of a shape from its skeleton is, in practice, rarely possible. High-resolution and
accurately-centered mesh-based surface skeletons can efficiently reconstruct shapes
up to high detail [109] Voxel-based surface skeletons also offer good reconstruction
accuracy [11], albeit with lower quality as compared to mesh methods, due to the
discussed limitations of fixed grids.

Scalability: To be useful and usable in practical applications, skeletonization methods
should be scalable with respect to the size of the input shape Ω, typically measured
in terms of number of sample elements (pixels, voxels, or mesh points) used to
represent it. As modern data acquisition devices are able to acquire increasingly
large 2D and 3D digital shapes in increasingly lower time-frames, skeletonization
methods need to be increasingly more scalable. To achieve this goal, several ap-
proaches have been proposed. Voronoi-based methods typically achieve a complexity
of O(n logn) for n sample points on ∂Ω [8, 70, 168]. Distance-field-based methods
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using voxel sampling achieve a complexity of O(T log‖∂Ω‖), where T is the aver-
age shape thickness [80, 229], which is comparable with the complexity of Voronoi
methods. Other methods achieve a linear complexity in the number of input voxels
‖Omega‖ [102, 183], which is slightly higher than [80, 168, 229]. Mesh contraction
methods have a complexity of O(ns), where n is the number of surface samples ‖∂Ω‖
and s is the number of contraction iterations, typically a constant [15, 109, 151];
linear- complexity O(n) methods also exist [222]. Overall, all such methods are quite
similar in theoretical computational costs. However, much can be gained in terms of
practical costs, by parallelizing on the graphics processing unit (GPU) the skeleton-
detection operations, e.g., distance transform computation [41] or mesh shrinking
method [109, 151]. Such methods can compute surface skeletons of mesh models
having up to one million vertices in subsecond time on a modern PC computer.

While the above properties are well-known and often mentioned in the skeletonization
literature, comparatively little work has been done in checking them on the vast body
of existing skeletonization methods. This makes it further hard to compare different
methods among themselves and, thus, to select the optimal skeletonization method for
a given application context having specific requirements and constraints.

2.3 C O N C L U S I O N S

In this chapter, we have reviewed the core two topics related to the work in this thesis
– research related to the restoration of 2D and 3D shapes by using inpainting methods,
and research related to the computation of skeletal descriptions of 3D shapes. Three
main conclusions can be drawn from the above review, as follows. First, the area of
volumetric restoration of 3D shapes by inpainting and hole-filling methods is far less
populated than the restoration of 3D surfaces and 2D images. By itself, this indicates
a promising direction for future research. Secondly, we have not identified any sig-
nificant class of methods that uses 3D skeletons for the volumetric restoration of 3D
shapes. In addition to the first point mentioned above, this strengthens our conviction
that exploring the use of skeletons for 3D shape inpainting is a novel research domain.
Thirdly, we have seen that a large number of methods exist for computing both sur-
face and curve skeletons of 3D shapes. However, picking an optimal method from this
large set (for further use in our volumetric inpainting context) is very challenging, due
to the lack of extensive comparisons of existing methods, and also due to the very
different heuristics and models used by different skeletonization methods. The three
points mentioned above set the research agenda for the work further described in this
thesis.
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As outlined in the previous chapters, the main goal of this thesis is to explore the
possibilities of using skeletal descriptors to design efficient and effective image and
shape restoration methods that guarantee a number of global properties of the restored
shape. As outlined in Chapter 2, a key set of techniques helping such restoration tasks
are formed by inpainting techniques. Furthermore, the overall restoration success is
affected by two independent elements: (1) the detection of damaged regions to repair
and (2) the repairing itself.

To get a better understanding of the challenges affecting shape and image restora-
tion, we describe in this chapter an application where restoration plays a key role: The
automatic restoration of low-quality facial images. In this application, both damaged-
region detection and inpainting-based repairing come into play. We present novel
methods for both above tasks, and compare our solution with restoration methods
based on well-known existing inpainting techniques.

3.1 I N T RO D U C T I O N

Facial recognition is the process of obtaining the identity of a person based on in-
formation obtained from facial appearance [16]. Compared to other person identifica-
tion methods such as biometric fingerprints, retina scans, and voice recognition, facial
recognition has the advantage that it can be used in contexts where the collaboration
of the person to be identified is not possible [103, 246]. One such context is the iden-
tification of missing people based on existing photographs thereof.

In the last decades, automatic face recognition has received considerable attention
from the scientific and commercial communities. However, several open issues still
remain in this area. One such issue is that facial recognition tools are in general not
efficient for poor quality facial images, e.g. in the presence of shadows, artifacts, and
blurring [44, 244, 246].

In some contexts, facial photographs are the only key to person identification.
For example, the sites of Australian Federal Police [3], Federal Brazilian Govern-
ment [83], and UK Missing People Centre [162] publish facial photographs of miss-
ing people. Often, such photographs are old, poorly digitized, and have artifacts such
as folds, scratches, irregular luminance, molds, stamps, and written text, all of various
sizes, shapes, texture, and color. Since the effectiveness of facial recognition meth-
ods depends on the quality of input images, it is of high importance that such images
present the discriminant facial features (eyes, mouth, and nose) with minimal artifacts.
Moreover, it is desirable that they all have a standard look, e.g. avoid outlier elements
such as glasses, hair locks, highlights, and smiles.

We present here a computational framework for segmentation and automatic
restoration of poor-quality facial images, based on a statistical model built from
frontal facial images and inpainting techniques. The location of facial features is
obtained by a mean image generated from a sample population of conforming facial
images that provides privileged information about spatial location of the features.
Salient outliers are found by statistically comparing the input image with this mean
image. These outliers are next eliminated by using a modified inpainting technique
which uses information from both the input image itself and the closest high-quality
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image in our image database. This produces images of sufficient quality for typical
face recognition tasks. In contrast to most existing digital restoration methods, we re-
quire no user input to mark regions in the image which has to be restored. Our method
is simple to implement and can be run in real-time on low-cost PCs, which makes it
attractive for utilization by government agencies in least developed countries.

This chapter is structured as follows. Section 3.2 describes related work on image
inpainting. Then, section 3.3 presents our method for facial artifact segmentation and
removal by inpainting. Next, section 3.4 shows and discusses our results on images
from public photograph databases and presents comparisons with existing inpainting
methods. Finally, Section 3.5 concludes the chapter.

3.2 R E L AT E D W O R K

Many image inpainting techniques have been proposed in the last decade. Oliveira
et al. [169] present a simple inpainting method which repeatedly convolves a 3× 3
filter over the regions to inpaint. Although fast, this method yields significant blur-
ring. Bertalmio et al. [23, 24] estimate the local image smoothness, using the image
Laplacian, and propagate this along isophote directions, estimated by the image gra-
dient rotated 90 degrees and by Navier-Stokes equation. The Total Variational (TV)
model [46] uses an Euler-Lagrange equation coupled with anisotropic diffusion to
keep the isophotes directions. Telea [230] inpaints an image by propagating the image
information from the boundary towards the interior of the damaged area following a
fast marching approach and a linear extrapolation of the image field outside the miss-
ing region. These methods give good results when the regions to restore are small.

To inpaint thicker regions, the Curvature-Driven Diffusion (CCD) method [47] en-
hances the TV method to drive diffusion along isophote directions. Diffusion-based
texture synthesis techniques have been proposed to achieve higher quality inpainting
results [37, 38]. Closer to our proposal, Li et al. [144] present semantic inpainting,
where the damaged image is restored based on texture synthesis using a most similar
image from a given database. Perez et al. [173] and Jeschke et al. [112] present seam-
less image cloning that uses a Poisson process to compute the seamless filling as well
as a guidance vector field that incorporates prior knowledge of the damaged domain.

Image cloning gives very good results, but is relatively expensive in CPU and mem-
ory terms. Joshi et al. use example images, taken from a person’s photo collection, to
improve the luminance, blur, contrast, and shadows of that person’s photograph [116].
Chou et al. also use the seamless image cloning of Perez et al. for the editing of facial
features in digital photographs [50]. However, in contrast to our goal of automatic re-
moval of facial outlier artifacts, their goal was to assist users in previewing the results
of explicitly chosen image modifications.

To achieve our goal of facial image preprocessing for supporting automatic missing
persons identification in low-cost contexts, we need a method which is able to

• automatically detect the most salient artifacts in a low-quality facial photo-
graph;

• remove these artifacts in a plausible way;

• work (nearly) automatically;

• require very low computational costs.

Next, we present our proposal in order to address these requirements.
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Figure 3.1: Pipeline of proposed method

Figure 3.1 illustrates our computational pipeline for facial image restoration. We
start by computing an image quality index, which classifies the input image as po-
tentially benefiting from artifact removal or not (Sec. 3.3.1). If the image can be im-
proved, we next identify, or segment, its artifacts using a statistical decision method
where the image is compared to an existing database of facial images of various eth-
nicities (Sec. 3.3.2). The detected artifacts are next slightly enlarged using morpholog-
ical dilation [10] to remove small-scale spatial noise such as artifact boundary jaggies.
Finally, we eliminate the artifacts by using a semantic inpainting, a variation of the
method presented in [144], which combines information from the input image and
the image database (Sec. 3.3.3).

All our images (input and database) are normalized and equalized by the frame-
work proposed in [7]. This is needed since existing facial image databases around the
world contain images with several sizes, resolutions, and contrasts. In our work, we
use grayscale images because many face photographs from missing people, in typi-
cal databases, are quite old, and therefore available only in this format. If color pho-
tographs are available, we can handle these easily by first converting them to grayscale,
by e.g. considering only the luminance of their HSV representation. The steps of our
pipeline are explained next.

3.3.1 Image Quality Index

Objective image quality measures have an important role in image processing applica-
tions, such as compression, analysis, registration, restoration and enhancement. One
such simple measure is the image quality index [239], which compares two images
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x and y based on luminance l(x,y), contrast c(x,y) and structure s(x,y) comparison
measures
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x +µ2

y
, (3.1)
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y
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where x = {xi|1 ≤ i ≤ n} and y = {yi|1 ≤ i ≤ n} are the two n-pixel images to com-
pare. Here, µx, µy, σ2

x , σ2
y and σxy are the mean, variance, and covariance of x and y,

respectively [196], i.e.

µx =
1
n

n

∑
i=1

xi, µy =
1
n

n

∑
i=1

yi

σ
2
x =

1
n−1

n

∑
i=1

(xi−µx)
2, σ

2
y =

1
n−1

n

∑
i=1

(yi−µy)
2

σxy =
1

n−1

n

∑
i=1

(xi−µx)(yi−µy)

The quantities l(x,y) and c(x,y) range between 0 and 1, while s(x,y) is between -1
and 1. For normalized and equalized (NEQ) images, as in our case, l(x,y) and c(x,y)
have a maximum of 1 since NEQ images have very similar standard deviation and
mean values. In contrast, covariance values σxy are distinct in NEQ images. Hence,
s(x,y) (Eqn. 3.3) is a good candidate for assessing the similarity of two NEQ images.
Note that s(x,y) does not give a direct descriptive representation of the image struc-
tures: It reflects the similarity between two image structures, where s(x,y) equals one
if and only if the structures of the two images x and y are exactly the same.

We use the image quality index s for two purposes. First, given an input image x,
we compare it with the average image x of our pre-computed image database (see
Sec. 3.3.2), using s(x,x). If x is too far away from x, then x is either not a face image,
or an image we cannot improve; and so, we stop our pipeline. This is further detailed
in the quality index discussion in Sec. 3.4. Otherwise, we determine the so-called
outlier artifacts which differentiate x from x, and suppress them, as shown next.

3.3.2 Statistical Artifact Segmentation

Once we have chosen to improve the quality of an input image, we aim to segment
those image parts, or artifacts, which deviate significantly from typical average images.
These will be the target of our inpainting (Sec. 3.3.3).

For artifact segmentation, we use statistical decision methods based on inference
theory [39, 214], where samples in a database can generate privileged information.
This makes it possible to discriminate artifacts which we next want to remove from
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regular image pixels. Given a database of N of NEQ-normalized facial frontal images
xi, the mean image is given by:

x =
1
N

N

∑
i=1

xi. (3.4)

We compute mean images xDS, xLS, and xJP separately for images of people of three
ethnicities (dark skin (DS), light skin (LS), and japanese (JP)). This avoids mixing
up too different facial traits. Figure 3.2 shows the mean and standard deviation im-
ages for these three groups. For dark skin people, we use the FERRET database, (65
images) [177] and 14 images taken from the FEI database [233]. For light skin peo-
ple, we consider 100 images from the FEI database. For japanese people, we use the
JAFFE database (100 images) [160]. These databases contain a variety of images for
people of different races, ages, and appearances. Although all images are equalized, fa-
cial structure differences exist, e.g. larger nose and lips (DS images), shadows around
the eyes (LS images), and significant mouth position variations (JP images).

We next determine the ethnicity of the input image x by finding its closest mean
image xmin ∈ {xDS,xLS,xJP}, in terms of Euclidean distance.

Finally, we use statistical segmentation to find the artifact regions to be removed.
To illustrate this, let us suppose that the face samples are represented by a random
field x that follows a normal distribution with mean xmin and standard deviation σ .

Thus the distribution of the standardized variable is given by:

z =
x−xmin

σ
. (3.5)

Here, σ is the standardized normal distribution of x with mean 0 and variance 1,
computed similariy to x, i.e. separately for the white skin, dark skin, and japanese
face databases.

Table 1 shows the values of per-pixel z scores and significance levels α . The set of
z scores outside the range [−2.58,2.58] is called the critical region of the hypothesis
or region of significance. This is the region of rejection of the hypothesis. The set of
z scores inside the range[−2.58,2.58] is called the region of hypothesis acceptance or
the non-significance region.

Table 1: Statistical significance

Level of significance α Values of z

10% - 1.645 .. 1.645
5% -1.96 .. 1.96
1% - 2.58 .. 2.58

0.1% -3.291 .. 3.291

In practice, we observed that a value of α ' 10% gives a good selection of atypical
face features. In other words, for each pixel z of the image z, computed by Eqn. ( 3.5),
we decide if it is an artifact pixel or not, based on the value of z and our threshold α

(Tab. 1). The set of artifact pixels Ω are removed as described next.
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(a) xJP, japanese (c) xDS, dark skin (e) xLS, light skin

(b) σ JP, japanese (d) σDS, dark skin (f) σLS, light skin

Figure 3.2: Mean images x and color-coded standard deviation σ images for japanese, black
skin, and light skin ethnicities.

3.3.3 Semantic Inpainting

Now that we know which pixels of our input image are likely to be artifacts, we
show a way to remove them by using inpainting. As our approach combines the fast
marching based inpainting [230] and Poisson image editing [173] techniques, we first
briefly outline relevant aspects of these techniques.

3.3.3.1 Inpainting using Fast Marching Method

Inpainting technique based on fast marching method (FMM) considers a first order
approximation Iq(p) of the image at a point p situated on the boundary ∂Ω of the
region to inpaint Ω

Iq(p) = I(q)+∇I(q) · (p−q), (3.6)

where q is a neighbor pixel of p located within a ball Bε(p) of small radius ε centered
at p and I(q) is the image value at q. Each point p is inpainted as function of all points
q∈Bε(p), by summing the estimates of all points q, weighted by a weighting function
w(p,q):

I(p) =
∑q∈Bε (p) w(p,q)Iq(p)

∑q∈Bε (p) w(p,q)
(3.7)
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where the application-dependent weights w(p,q) are normalized, i.e. ∑q∈B w(p,q) =
1.

The boundary ∂Ω is advanced towards the interior of Ω using the FMM [198].
While doing this, FMM implicitly computes the so-called distance transform DT :
Ω→ R+

DT (p ∈Ω) = argmin
q∈∂Ω

‖p−q‖. (3.8)

As the FMM algorithm visits all pixels of the damaged region the method gradually
propagates gray-value information from outside Ω inwards by computing expression
(3.7).

This inpainting method is fast and simple. However, for regions thicker than roughly
10..25 pixels, it creates an increased amount of blurring as we go farther from ∂Ω into
Ω, given the smoothing nature of Eqn. 3.7. Since our facial artifacts are not guaranteed
to be thin, this method is not optimal.

3.3.3.2 Poisson image editing

This image restoration method allows to achieve seamless filling of the damaged do-
main by using a source image data. It renders remarkably good results, even for thick
target regions. The method is based on solving the equation:

∆I = div v on Ω (3.9)

with I known over the boundary ∂Ω and constrained to the values of v, the so-called
guidance field, that is derived from a source image. For instance, if we desires to
seamlessly clone a source image Isrc onto Ω, we can set v = ∇Isrc, which effectively
reduces Eqn. 3.9 to ∆I = ∆Isrc on Ω (Eqn. 10 in [173]). Solving the Poisson problem
(Eqn. 3.9), however, is expensive in terms of memory requirements, which is critical
in our low-cost scenario [81].

3.3.3.3 Proposed inpainting method

Both the FMM inpainting method and Poisson image editing basically use only the
non-artifact areas of the input and near image to restore its artifacts.

However, we have additional information coming from our high-quality image
database. Hence, our proposal is to combine the fast-and-simple inpainting method
of [230] with the Poisson image editing [173] augmented with information extracted
from our image database (Fig. 3.3).

We start by applying FMM inpainting (Sec. 3.3.3.1) on the artifact region Ω ⊂ x
of our input image x. We denote the result of this step, i.e. the image x where Ω has
been inpainted, by Iinp. Next, we search in our face image database DB for the closest
facial image Inear, i.e.

Inear = argmin
y∈DB

‖x−y‖. (3.10)

As outlined in Sec. 3.3.3.1, when Ω is thick, FMM inpainting produces a blurred result
Iinp. We correct this by mixing Iinp and Inear to yield:

I2 = (1−DT )Iinp +DT · Inear (3.11)
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Figure 3.3: Diagram of the proposed inpainting method (see Sec. 3.3.3).

where DT is the distance transform of ∂Ω (Eqn. 3.8). This progressively mixes the
inpainting result Iinp with the nearest image Inear in a progressive way. At the border
∂Ω, we see the inpainted image, which smoothly extrapolates the non-artifact area
out of the damaged region in the input image. In the middle of Ω the blurred effects
observed in Iinp are attenuated by the high-quality image Inear.

Next, we calculate Laplacian ∆Inear =
∂ 2Inear

∂x2 + ∂ 2Inear
∂y2 of the closest image Inear,

using central differences, and add this component to our restoration, i.e. compute

I3 = I2 +∆Inear. (3.12)

This is a simplified form of the ‘seamless cloning’ presented in [173] which just
adds high-frequency features to I2 through the Laplacian operation ∆Inear." In con-
trast to [173], our approach is much cheaper, as it does not require solving a Poisson
equation on Ω.

As a final step, we apply a 3-by-3 median filter on I3 to yield the final reconstruction
result. This further removes small-scale noise elements created by using the finite-
difference Laplacian (Eqn. 3.12).

3.4 R E S U LT S

Our method can produce good artifact removal even in large and thick regions, due to
the mix of inpainting (which preserves information specific to the input image) and
prior information (which introduces information from a similar high-quality image
from our image database). A key element is that our image database is composed
by high quality images. Therefore, they are considered to be good for facial recog-
nition purposes. Besides this information is suitable for both to extract the artifacts
(Sec. 3.3.2) and to restore the corresponding damaged areas.

We tested our method on 79 frontal facial images provided by several public organi-
zations: the Federal Brazilian Government [83], the Australian Federal Police [3], and
the UK Missing People Organization [162]. These images contain various levels of
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artifacts, e.g. annotations, scratches, glasses, obscuring facial hair, folds, and exposure
problems. All input images were normalized and equalized as outlined in Sec. 3.3.

Segmentation: Figure 3.4 shows the results when applying our segmentation ap-
proach for the images of collum (a) using the light-skin mean image (Fig. 3.4.(b)),
dark-skin mean image (Fig. 3.4.(c)) and japanese mean image (Fig. 3.4.(d)). We ob-
serve that if significance level α ≤ 1.0% we can extract the artifacts (glasses) when
using the light and dark-skin mean image images. Segmentation of artifacts works
best and has similar perceived quality results for dark-skin and light-skin images (see
Fig. 3.4). For several images, the mean of japanese people presents very good results.
Although segmentation cannot select all details where an input image differs from its
ethnic group’s statistical average, it does a good job in selecting details deemed to be
unsuitable for official person recognition photographs.

Figure 3.4: Segmentation comparison, with α = 0.1% (red), α = 1% (dark blue), and α = 10%
(light blue). (a) original image; (b) light skin mean image xLS; (c) dark skin mean
image xDS; (d) japanese mean image xJP

Significance level: Figure 3.5 shows results when changing the significance level α

(Sec. 3.3.2). If we choose high values for α the method extracts the artifacts as well
as other regions, as we can see on Figure 3.5 . Conversely, the choice of low α values,
like in Figure 3.5, prevent such problem but is not efficient to segment the region of
interest. The optimum value for α is application dependent and it depends on manual
fine-tuning in general. For the test performed, the value α = 10% has given good
results in all cases. This fact can be verified in Figure 3.6 which shows the results
using some values of α .
Artifacts: Smile is considered an artifact, as it does not comply with official standards
for facial images concerning expression, illumination, and background [9, 106, 231].
Figure 3.7 presents an example of smile suppression. The bottom row shows a case
where the smile has been well segmented and suppressed. The top row shows a less
successful case: Part of the large smile (see Fig. 3.7 a, top) has not been captured by
the segmentation, and as such, it leaked in the final reconstruction (Fig. 3.7 d, top).
Also, note that our method can produce changes in facial expressions. For example,
Fig. 3.7 (bottom row, d) shows a face where the eyes are a mix between the input
image and nearest image, whereas the nose, and cheeks follow more closely the input
image.

Figure 3.8 shows further results, and also compares them with three known inpaint-
ing techniques. In the top row, we see an image with a hair lock artifact. Segmenting
this artifact is easy, as it is much darker than the mean light-skin image xLS. Inpainting
this artifact is also relatively easy, as it is not thick. The second row shows a face im-
age which has a highlight, as well as a thin horizontal crease (most probably due to a
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(a) (b) (c)
Figure 3.5: Segmentation results: (a) original image; (b) segmentation; (c) reconstruction.

photograph damage) on the cheeks. This artifact is more complicated to capture since
its grayvalue field is similar with the mean image pixels nearby. However, the result
(column g) shows that this artifact is also largely eliminated from the input image.

The third row of Figure 3.8 shows an image with glasses as an outlier artifact. Exist-
ing inpainting methods (columns d-f) succeed in eliminating this artifact less than our
method (column g), because the eyes are reconstructed. The fifth row of Figure 3.8
shows a similar case. Here, the artifact region is thin, so all four tested inpainting
methods produce eliminate the glasses equally well.

In the fourth row Figure 3.8 it is shown an image where a large shadow artifact
appears under the nose, on the cheeks, and the mouth. As expected, standard inpaint-
ing cannot easily remove this problem, since the shadow slightly extends outside of
the segmented region, on the base of the nose (dark area under the nose, Fig. 3.8 c,
fourth row). By using the nearest image our method can be more efficient to remove
the shadow while generating less spurious details. A similar effect is observed in
Figure 3.8 (bottom row), where our method performs better for both to remove the
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Figure 3.6: Results at each value of α .

(a) (b) (c) (d)

Figure 3.7: Smile elimination: (a) input image; (b) nearest image; (c) segmentation; (d) pro-
posed inpainting.

cheek highlights and to reconstruct the opened eyes better than existing methods.

Quality index: Figure 3.9 shows the average structural image quality index (Equa-
tion 3.3) for the three ethnicities present in our face image database, the original
input images for inpainting, and the results of the studied inpainting methods. Several
observations follow. First, as expected, the face database images have a relatively
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(a) (b) (c) (d) (e) (f) (g)

Figure 3.8: Method results: (a) original image; (b) nearest image (not the same person, just
similar); (c) segmentation, where green color indicates significance level α = 10%,
yellow is 5%, blue is 1% and red is 0.1%; (d) inpainting [169]; (e) inpainting [24];
(f) inpainting [230]; (g) our method.
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high quality index (average s ∈ [0.6,0.8]). Secondly, input images which are faces
have a lower quality (average s ∼ 0.49). This motivates our proposal to adjust such
images to bring them in line with the quality level of the face database. In contrast,
input images which are not faces have a much lower quality index (average s ∼ 0).
This allows us to decide whether an input image should be improved or deemed not
improvable (because it is not a face): We choose a suitable threshold τ , in this case,
τ = 0.1. Input images with s > τ are likely faces, so they are further improved; images
with s < τ are likely non-faces, and thus skipped from the process. Thirdly, we notice
that the nearest image Inear used in our inpainting (Sec. 3.3.3.3) has an average high
quality index, which justifies its explicit usage during inpainting. Finally, we see that
our method yields, on average, results with a higher structural quality than the others
studied inpainting methods.
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Figure 3.9: Structural image quality for the input images, face database, and result images.

Limitations: Despite of its capabilities, our method cannot handle facial images
which deviate too much from the information provided by the predefined image
database. Figure 3.10 shows such an example, which is the worst case we found in
our tests: The input image (a) is too far away from both the average black-skin image
(Fig. 3.2 c) and the nearest image (Fig. 3.10 b) to successfully remove the facial hair,
nose pin, and large opaque glasses. However, we note that this type of outlier can be
easily detectable by our approach: When the input image is too far away from the
mean image, as mentioned above, our method reports that it cannot likely improve
this image and stops.

Database: Selecting images that has good quality for the face database serves two
purposes. First, this allows specifying what one considers to be an acceptable facial
image in a given context (e.g. open eyes, no smiles, shadows, adorns, or imprints).
Statistical characteristics of this collection are used to implicitly determine what are
outliers, thus what has to be suppressed in a given input image. Secondly, features
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of the nearest image in this database are used in the restoration. Hence, if one wants
to allow certain specific feature to persist in the restored images, this can be done by
inserting images containing such features in the database.

(a) (b)

(c) (d)

Figure 3.10: Challenging case for our method: (a) input image; (b) nearest image; (c) segmen-
tation; (d) inpainting.

Computational aspects: The proposed method is simple to implement. For an image
of n pixels, its memory and computational complexities are O(n log

√
n) [198] respec-

tively, in contrast to more sophisticated inpainting algorithms [24, 46, 47, 116, 173].
This makes our method suitable for computers that have low capacity of memory.

Validation: Although we have not validated the added value of our artifact suppresion
method in a full end-to-end face recognition pipeline, which would be used in concrete
cases by e.g. law enforcement officers, we have evidence that such a pipeline (having
the properties of ease-of-use, speed, and simple implementation that our proposal has)
would be very useful. For instance, a huge database of face photographs from missing
people is available in Brazil[83], containing photographs that are strongly affected by
artifacts such as the ones our method aims to remove. The law enforcement organiza-
tion of São Paulo believes that removing such artifacts is a crucial step required prior
to the application of existing face recognition algorithms to their database. However,
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as stated earlier, additional future work is needed to quantify the end-to-end improve-
ment that our artifact removal technique adds to face recognition tasks.

3.5 C O N C L U S I O N S

We have presented a computational framework for automatic inpainting of facial im-
ages. Given a database of facial images which are deemed to be of good quality for
recognition tasks, our method automatically identifies outlier (artifact) regions, and
reconstructs these by using a mix of information present in the input image and infor-
mation from the provided image database. The proposed method is simple to imple-
ment and has low computational requirements, which makes it attractive for low-cost
usage contexts such as government agencies in least developed countries. We have
tested our method using three real-world public image databases of missing people,
and compared our restoration results with three popular methods used in image in-
painting.

Potential improvements lie in the areas of more robust segmentation using artifact-
specific quality metrics and using the k nearest images (k ≥ 1) for inpainting and
actual evaluation of inpainting in a real-world face recognition set-up.

At a higher level, the lessons learned from the facial restoration application pre-
sented in this paper are twofold. First, we observe that the overall restoration quality
depends mainly on the accuracy of detection of the damaged regions in the images un-
der study. The choice of inpainting method used to restore these regions, among the
four studied methods ([24, 169, 230] and our own method), has a far less pronounced
influence on the final quality. As such, we will next focus mainly on researching im-
proved methods for detecting damaged areas in our subsequent applications, and we
will use an out-of-the-box inpainting method rather than focusing on improving the in-
painting itself. A good candidate for such an inpainting method is [230], which is very
fast, simple to implement, predictable, and gives good results for damaged regions of
relatively small thickness. Secondly, as inpainting works best for relatively thin (but
possibly elongated) regions, we will next focus on defect types which have this nature,
rather than considering all possible defect configurations and morphologies.

This chapter is based on:

André Sobiecki, Alexandru C. Telea, Gilson Giraldi, Luiz A.P. Neves, and Carlos E. Thomaz. Low-Cost
Automatic Inpainting for Artifact Suppression in Facial Images. In 8th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications, VISAPP, 2013.
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B I NA RY I M AG E S

The image restoration work presented in Chapter 3 has outlined that defects that are
thin and elongated are relatively easy to restore by standard inpainting methods, pro-
ducing overall good results, as long as such defects can be reliably detected. Addition-
ally, we have seen that detecting such defects can be challenging. As we shall see next,
such thin-and-elongated defects occur in many contexts, so their automatic detection
and removal serves a variety of use-cases. In this chapter, we show how medial axes
can be exploited to both detect and remove such defects from binary images, leading
to applications in image segmentation, digital hair removal, and general-purpose crack
filling in 2D shapes.

4.1 I N T RO D U C T I O N

Reconstruction of shapes missing internal information serves a wide range of appli-
cations, such as repairing scans of deteriorated images by closing holes, improving
shape recognition and shape matching, and connecting shapes that are broken into
pieces [19, 54, 64, 113, 148, 236]. Digital shapes missing internal information can of-
ten be repaired by using morphological operators as well as automatically or manually
with inpainting techniques. However, morphological operations cannot discriminate
between locally identical, but globally different, details, such as gaps close or on the
shape boundary (which should not be filled, if we want to preserve boundary detail),
and gaps deeper in the shape (which may need to be filled). Separately, inpainting
requires extra work to select the areas to be inpainted, which requires manual effort
or more involved, and thus more sensitive, image-analysis algorithms [64, 138, 230].

We propose a technique to detect and reconstruct digital shapes that lack some
internal information, which we generically call ‘gaps’, while guaranteeing that detail
information present on the apparent shape boundary is kept. For this, we first classify
gaps into detail (that should be kept) and errors (that should be filled) using a global
approach, based on the gap position with respect to the skeleton of a blurred version
of the shape. Next, we fill error gaps using the medial axis transform associated to
this skeleton. The method generically works using curve-skeletons, and is fast, simple
to implement, and easy to use. We present applications for robust detail-preserving
image segmentation and hair removal for dermatological images, and compare our
method with several segmentation and restoration methods in the same field.

This chapter is organized as follows. In Sec. 4.2, we review related work. Sec-
tion 4.3 presents our proposal. Section 4.4 presents shape restoration examples. Sec-
tion 4.5 presents an application of our method to the field of dermato-imaging. Sec-
tion 4.6 discusses our method. Section 4.7 concludes the chapter.

4.2 R E L AT E D W O R K

Many algorithms to segment and reconstruct digital shapes have been proposed. While
an exhaustive review of the huge body of work on digital shape restoration is beyond
our scope, we review three well-known approaches on segmentation and restoration
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of digital shapes which relate to our goals.

Filters: Filtering techniques like the median, mean, Laplacian [95], and morpholog-
ical operators like erode, dilate, open, and close [100] can restore digital shapes by
eliminating small-scale gaps, and are fast and simple to implement. However, most
such filters work locally, so they cannot discriminate between gaps deep inside the
shape (which we may want to eliminate) and gaps close or on the apparent shape
boundary (which we want to keep, as they are part of the border structure).

Image segmentation: A key part of medical imaging is the segmentation of shapes
from grayscale or color images. For example, in dermatology, one wants to segment
tumors from surrounding healthy skin. Preserving all details on the segmentation bor-
der, and in the same time removing small-scale gaps and cracks inside the tumor, is
essential for further automated analyses of the segmented image [69, 89, 172]. Several
such segmentation methods exist [57, 80, 172, 247]. However, as we shall see later in
Sec. 4.5, none of these methods can fully comply with the above two requirements.

Inpainting: Digital inpainting helps in restoring damaged parts of an image, such
as reconstructing scans of deteriorated images by removing scratches or stains, or
creating artistic effects [19, 64, 230]. Inpainting works well for reconstructing shapes
that miss inside information, giving better results than the filter techniques mentioned
above, but requires prior segmentation of the damaged region that in turn requires
manual effort or more complex algorithms. For example, the DullRazor technique
uses inpainting to digitally remove hairs from dermatological skin images, to make
these images suitable for automatic analysis for diagnosis [138]. Although this tech-
nique works automatically, it requires a quite complex algorithm to robustly detect
the hairs to be inpainted. Improvements of this technique are presented in [124], in
terms of segmenting hairs of different colors, [242], for hair detection using morpho-
logical operations, and [1], for comparing different inpainting schemes applied to the
segmented hairs.

Salience skeletons: Skeletons, or medial axes, are descriptors that encode both the
geometry and topology of digital shapes [80, 229]. Together with their distance field to
the shape boundary, they yield the so-called medial axis transform (MAT), which can
be used to reconstruct shapes [203]. Simplifying the skeleton prior to reconstruction
by using various importance metrics, such as the salience metric [225, 226], allows
a multiscale reconstruction of shapes which removes small-scale (noise) details but
keeps important details. However, eliminating gaps using such methods is difficult, as
these cause complex topological changes in the skeleton.

4.3 O U R P RO P O S A L

Summarizing, our major goals are to (a) eliminate thin and long gaps that (nearly)
disconnect a shape into several parts. We call these error gaps. In the same time, we
want to (b) keep all details, including concave indentations or gaps, present on the
shape’s apparent boundary.

For this, we propose a three-step process (see Fig. 4.1 top). Given a shape
Ω ⊂ Rn={2,3} with boundary ∂Ω, stored as a binary image (black=foreground,
white=background), we first close all gaps of Ω, using morphological operations
(Sec. 4.3.1). Next, we use the resulting image Ωoc to classify gaps into errors and
details, using a topological analysis of Ωoc (Sec. 4.3.2). Finally, we use related topo-
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logical mechanisms to fill gaps identified as errors in the previous step (Sec. 4.3.3).
These three steps are detailed next.

a) input shape W b) Woc and 

skeleton S(Woc)

c) ) Wco e) reconstructed shape 

and details

d) distance 

transform DT∂Wco

A

A

B
B

C

C

open-close

close-open

skeletonize

compute DT

find error gaps
fill error gapsinput W

Woc

Wco

S(Woc)

DT∂Wco

F

reconstructed Wr

background

foreground

filled pixels
skeleton
fragments

Legend for (e)

Figure 4.1: Overview of proposed method. Top: algorithm pipeline. Bottom (a-e): Example on
a test image. See Sec. 4.3.

4.3.1 Gap Closing

To close all gaps present in our input image Ω, we use classical morphological opera-
tions. In detail, given a so-called structuring element H, we consider the dilation of Ω

by H, i.e., the union of copies of Hx, the element H centered at all pixels x ∈Ω, i.e.

Ω⊕H =
⋃

x∈Ω

Hp. (4.1)

Similarly, we define the erosion of Ω by H, which keeps only pixels x ∈ Ω where Hx
fits inside Ω, i.e.

Ω	H = {x ∈Ω|Hx ⊆Ω}. (4.2)

Next, we define the opening of Ω as erosion followed by dilation, i.e.

Ω◦H = (Ω	H)⊕H, (4.3)

and, analogously, the closing of Ω as dilation followed by erosion, i.e.

Ω•H = (Ω⊕H)	H. (4.4)

If we use a disk structuring element H of radius ρ , the result of applying opening
and closing, denoted Ωoc = (Ω◦H)•H, will close all holes in Ω whose thickness is
smaller than ρ . Additionally, we denote the result of applying closing and opening,
by Ωco = (Ω•H)◦H. Both Ωoc and Ωco will be used next for our error-hole removal,
see Secs. 4.3.2 and 4.3.3.
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4.3.2 Gap Classification

We now use the image Ωoc to classify holes into errors and detail. For this, we first
compute the skeleton S(Ωoc). For this, we define the distance transform DT∂Ω : Ω→
Rn
+ of any shape Ω as

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x− y‖. (4.5)

The skeleton S(Ω), or medial axis, of Ω is next defined as

S(Ω) = {x ∈Ω |∃ f1, f2 ∈ ∂Ω, f1 6= f2,

‖x− f1‖= ‖x− f2‖= DT∂Ω(x)}. (4.6)

Figure 4.1 b shows the shape Ωoc (in black) for our test image in Fig. 4.1 a, and the
skeleton S(Ωoc) (in white) for the same shape.

We now compute the fragments F of the skeleton S(Ωoc) that fall outside our input
shape Ω, i.e.

F = {x ∈ S(Ωoc)|x /∈Ω}. (4.7)

We now observe that points in F are inside the error gaps, but outside the detail gaps,
of Ω. Let us explain this. As noted in Sec. 4.3.1, Ωoc closes both error and detail gaps
of Ω, by construction. Additionally, Ωoc has a boundary that is smoother than Ω (see
Fig. 4.1 b). More precisely, all details on ∂Ω whose curvature is larger than 1/ρ are
replaced by the close operation (Eqn. 4.4) by circle arcs in 2D of radius ρ . We know
that branches in S(Ωoc) correspond to curvature maxima on ∂Ωoc [203]. Since ∂Ωoc
is smoother than Ω, it follows that branches of S(Ωoc), thus also points in F , will
never be located inside boundary gaps, or details, of ∂Ω, since (1) these correspond
to curvature minima along ∂Ω, and (2) Ωoc has an absolute curvature smaller than
∂Ω. On the other hand, since the branches of S(Ωoc) are centered in the middle of the
salient features of Ωoc (by the definition of the skeleton, Eqn. 4.6), they will also be
centered in the middle of the corresponding salient features of Ω (compare Figs. 4.1 b
and a). This is so because the open-close operation that constructs Ωoc from Ω uses
a circular disk H, so it does not modify the local shape symmetry. Overall, it follows
that points in F will be located in gaps of Ω which protrude deep inside this shape.

4.3.3 Error Gap Restoration

To close the error gaps identified by the skeleton subset F , we next proceed as follows.
For each point p ∈ F , we find its closest skeleton point being in the input shape Ω

C(p) = argmin
q∈S(Ωoc)∩Ω

‖p−q‖ (4.8)

and then draw a foreground-disk with radius DT∂Ωco(C(p)) centered at p. This effec-
tively fills the error gap containing p using the local shape thickness, which is equal
to DT∂Ωco(C(p)). Let us explain this. First, we use here the distance transform of the
shape Ωco (see Fig. 4.1 d) obtained by the close-open operation, rather than the dis-
tance transform of Ωoc, since the former first dilates, then erodes, the input shape. As
such, Ωco closes gaps better than Ωoc (compare Fig. 4.1 c vs b). Thus, using DT∂Ωco
gives a better estimate of the apparent (filled) shape boundary within gaps than DT∂Ωoc .
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On the other hand, we use the skeleton of Ωoc to detect error gaps, and initiate recon-
struction from, rather than the skeleton of Ωco, since Ωoc does not close detail gaps (on
the input boundary). If, in contrast, we used the skeleton of Ωco, this skeleton would
have branches that protrude outside Ω in boundary areas, and thus using F defined by
Eqn. 4.7 would fill both error and detail gaps, which is undesired. Figure 4.2 details the
above decision for a simple rectangle shape cut half-way by a vertical gap (Fig. 4.2 a).
Images (b) and (c) show the results of the open-close and close-open operations, re-
spectively. As visible, the close-open operation better fills the gap. Image (d) shows
the reconstruction result if we used DT∂Ωoc . As visible, the gap is not well filled, since
Ωoc does not fill well the gap (image (b)). Image (e) shows our chosen reconstruction,
where we use DT∂Ωco . The skeleton S(Ωoc), drawn in red, is of course identical. How-
ever, the disks drawn atop of the skeleton fragments F are now larger, since Ωco is
larger than Ωoc, and thus, correspondingly, DT∂Ωco(x)≥ DT∂Ωoc(x),∀x ∈ F .

Secondly, we note that DT∂Ωco(p) is typically smaller than DT∂Ωco(C(p)), due to
the effect of the close-open operation sequence. Hence, the gap filling done by this
operation tends to ‘shrink’ the filled shape towards the middle of the gap. Hence,
using DT∂Ωco(C(p)) instead of DT∂Ωco(p), fills the gap by using a value which is
much closer to the real shape thickness, and thus leads to a smoother reconstruction
of the boundary of the filled shape across the error gap.

a) input shape W b) result of open-close Woc c) result of close-open Wco

d) reconstruction using DT(∂Woc) e) reconstruction using DT(∂Wco)

gap badly

filled

gap well

filled

Figure 4.2: Effect of using distance transform of close-open shape Ωco vs distance transform of
open-close shape Ωoc. See Sec. 4.3.3.

By the above procedure, error gaps which intersect the skeleton SΩoc are thus elim-
inated. Figure 4.1 e shows the reconstructed shape Ωr = Ω∪D, where D is the set
of pixels filled by the disk-drawing procedure outlined above. For clarity, we marked
background pixels of Ω as blue, foreground Ω pixels as green, pixels in D as yellow,
and pixels in F as red. Intuitively, our reconstruction procedures implies that gaps
which cut deep inside Ω, to be precise more than half of the local thickness, get filled.
In particular, gaps which completely disconnect (cut) Ω, but which are removed in
Ωoc by the close operation, are guaranteed to be filled. In contrast, small superficial
concavities or indentations of ∂Ω that do not intersect SΩoc , i.e. are less deep than half
the local thickness of Ω, are never eliminated. This way, concave boundary details of
Ω are kept (see insets in Fig. 4.1 e). Separately, note that the removal of convex details
in Ωoc (as compared to Ω, see Fig. 4.1 b vs a), due to the open operation (Eqn. 4.3),
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does not adversely affect our final result. Indeed, our gap filling only adds foreground
pixels to Ω, but never eliminates pixels from it (see again insets in Fig. 4.1 e).

4.3.4 Implementation

For 2D skeleton extracting, we use the AFMM method [229], which computes robust,
centered, pixel-wide, and topologically correct skeletons for 2D shapes of up to 10242

pixels in subsecond time on a modern PC. The AFMM implicitly compute, besides
skeletons, the exact Euclidean distance transform DT∂Ω of the input shape. This al-
lows us to efficiently implement accurate dilation and erosion (Eqns. 4.1 and 4.2) by
simply thresholding DT∂Ω with the desired radius of the disk structuring element H.
Finally, we efficiently implement the disk-drawing filling in Sec. 4.3.3 by comput-
ing the distance transform DTF of the set F and lower-thresholding it by the values
DT∂Ωco(C(p)) for all points p ∈ F . Both AFMM and IMA methods are implemented
in C++, and do not use parallelization. Overall, on a commodity 3.5 GHz PC, our
entire pipeline takes subsecond time for 2D images up to 30002 pixels.

4.4 R E S U LT S

Figure 4.3 shows several 2D restoration examples for a set of synthetic shapes, on
which gaps were created manually (a,d,j) or by luminance thresholding (g,m). As vis-
ible, our gap filling eliminates the complex internal gaps, but keeps the fine boundary
details, including all boundary indentations. In contrast, if we were to use a naive gap-
filling by executing only an open-close operation sequence, the result would indeed
fill most of the internal gaps, but also erase much of the (convex) boundary detail
(images (b,e,h,k,n)). Images (m-r) show the effect of varying the structuring-element
radius ρ (Sec. 4.3.1) for the input shape in image (m). Images (n) and (o) show, for
illustration purposes, the open-closed shape Ωoc and its skeleton S(Ωoc) respectively
for the input image and the rho value for the result shown in image (q). As we increase
ρ , larger internal gaps get progressively filled. However, fine-scale details on the ap-
parent boundary of the input image stay preserved. As such, ρ can be effectively used
to control the thickness of the internal shape gaps to be filled.

Figure 4.4 shows results for a set of binary shapes obtained from natural grayscale
and color images via luminance thresholding. As expected, thresholding creates many
disconnected components and/or holes and cracks within the perceived overall shapes.
As for the synthetic images discussed earlier, open-close can fill most such gaps, but
inherently destroys the boundary detail. In contrast, out method successfully removes
gaps inside the apparent shape, but keeps most boundary detail.

Figure 4.5 shows a variation of our gap-filling technique. We start like in the previ-
ous cases, i.e., we produce a binary segmentation (b) by luminance-thresholding of a
grayscale CT brain image (a), taken from [226]. The segmentation result shows sig-
nificant noise and gaps that disconnect the apparent (black)foreground shape. Images
(c-e) show the result of our gap-filling method. In contrast to the earlier examples
(Figs. 4.3, 4.4), we use now the skeleton S(Ωco) instead of S(Ωoc). The effect is that
more, and larger, gaps get filled, as we increase the structuring-element radius ρ . Addi-
tionally, instead of using the full skeleton S(Ωco), we now threshold it by eliminating
branch end-fragments that correspond to fragments of the boundary ∂Ωco shorter than
τ pixels, using the skeleton-importance metric proposed in [229], to which we refer
for implementation details. This further smooths the boundary of the reconstructed
shape (yellow pixels in Fig. 4.5). Overall, by increasing ρ and τ , we thus obtain a
set of progressively simpler segmentations where larger holes are filled by smoother
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m) n) o)

p q r
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d) e)
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f

background

foreground

filled pixels
skeleton
fragments

Legend for (c,f,i,l,p-r)

Figure 4.3: Gap filling for a set of simple shapes. (a,d,g,j,m) Input shapes Ω. (b,e,h,k,n) Result
of an open-close operation. (c,f,i,l,p-r) Gap-filling results, with blue=background
pixels, green=foreground pixels, yellow=filled pixels, and red=skeleton pixels. See
Sec. 4.4.
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a1) a2) a3)

b1) b2)

c1)

b2)b1)

c1) c2)

d1) d2)

b3

d3

c3

Figure 4.4: Segmentation of natural 2D images: (1) Input shapes; (2) open-close operation; (3)
proposed method. See Sec. 4.4.
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segments. However, as visible in images (c-e), small-scale convex boundary detail are
still well preserved.

a b) c d e

ρ=2
τ=0

ρ=4
τ=2

ρ=6
τ=8

Figure 4.5: Progressively smoother segmentations (c-e) of noisy brain image segmentation (b).
See Sec. 4.4.

4.5 A P P L I C AT I O N S F O R S K I N I M AG I N G

We next present several applications of our gap reconstruction technique in the field
of skin imaging. Input images are dermatoscopic color images, of resolutions rang-
ing from 5002 to over 25002 pixels, showing skin tumors which can be either naevi
(benign) or melanoma (malignant). Several techniques exist for the automatic pre-
diagnosis of such tumors, based e.g. on the ABCD criteria [69, 89, 172]. However,
to automatically evaluate such criteria, an accurate segmentation of the tumor from
the surrounding skin is required. This is hard to do, as shown in Fig. 4.6, where
we show the result of six known image segmentation methods on a typical dermato-
scopic image(mean shift (MS) [57], gradient vector flow (GVF) [172], graph cuts
(GC) [202], image foresting transform (IFT) [80], level sets (LS) [143], and dense
skeletons (DS) [247]). Three types of problems occur. First, fuzzy tumor areas cre-
ate strong irregularities in the segmentation boundary (GC, MS). Methods with an
in-built boundary smoothness remove such problems, but create too smooth bound-
aries missing image details (GVF). Both these issues create problems in evaluating
the ABCD criteria [172]. Secondly, occluding hairs generate boundary artifacts (MS,
LS). Finally, several methods are prone to oversegmentation (MS, GC, DS). All in all,
this proves that segmentation of such images is a challenging task.

Figure 4.6 j shows the result of our method, applied to a luminance-based threshold-
ing of the input skin image (Fig. 4.6 e). As visible, thresholding generates many holes,
due to both inherent color variation in the tumor, and to occluding hairs. As visible,
our method generates smooth (but also detail-rich) boundaries, does not oversegment
the image, and is not sensitive to occluding hairs. The gap-filling effectively removes
the latter two issues, but does not remove the fine-scale detail present on the tumor
boundary. Figure 4.6 b shows, for comparison, a manual segmentation performed by a
dermatologist. While this segmentation is unavoidably not identical to ours, we notice
that our result is, among the set of automatic techniques considered, the closest, both
in shape and extent, to the manual segmentation.

Figure 4.7 shows the result of our method on five other skin-tumor images taken
with different acquisition devices, of various resolutions, and showing widely different
patterns that correspond to different types of skin diseases. As visible, our method
improves the binary thresholding results by closing gaps inside the apparent tumor
shape but keeping the tumor boundary details.
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(a) input image (b) manual 
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flow (GVF) 

(d) graph cuts (GC)

(f) mean shift (MS) (g) image foresting

 transform (IFT)

(i) dense 
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(h) level sets (LS) (j) our method

(e) thresholding
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Figure 4.6: Comparison of skin image segmentation – our method (j) vs seven other methods
(c,d,e,f,g,h,i).
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Figure 4.7: Application to clean segmentation of five dermatoscopy skin images. See Sec. 4.5.
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Finally, Figure 4.8 shows the use of our method for automatic hair removal in der-
matoscopic images. The input image (a) show a very complex tumor shape, which
is also covered by dense hair. Applying our technique on a luminance-thresholded
image (b) yields the segmentation in (c). To remove hairs, we use Ωr \Ω (see image
(d)), i.e., the difference between our result Ωr (c) and the thresholded image Ω (b) as
a mask for inpainting the input image using the method in [230]. The result (f) shows
that all internal hairs have been successfully removed while preserving the tumor tex-
ture. Note that, for diagnostic image analysis, accurately segmenting the tumor and
removing hairs inside the tumor only, is sufficient: Diagnostic analysis will next only
run on the portion of the image inside the tumor, so all hairs (as well as healthy skin)
outside the tumor are irrelevant. In contrast, the DullRazor method [138], with the
software provided by the authors, one of the best-known hair-removal techniques in
dermato-imaging, fails to remove most hairs (e), as it cannot robustly detect these,
and is also considerably slower (16 seconds vs 0.6 seconds for our method on the plat-
form mentioned in Sec. 4.3.2). Upon closer analysis, this is not surprising: DullRazor
detects hairs using a contrast-based edge detector that works well for relatively sepa-
rated constant-color hairs covering a low-contrast tumor of highly different luminance
than the hairs. In our image, however, we have dense, variable-luminance, hairs that
overlap a highly textured tumor, so this method fails.

a) input image b) binary 

thresholding

c) Segmentation

by our method
d) difference

between 

(c) and (b)

e) hair removal

by the DullRazor

method

f) hair removal 

by our method

Figure 4.8: Automatic hair removal in complex skin tumor images. See Sec. 4.5.

For validation, we showed our skin-image segmentation and restoration results to a
dermatology specialist, with over 6 working-experience years in dermato-oncology.
We posed a set of questions pertaining qualitative aspects of our results, such as
perceived correctness, relative quality with respect to other similar automatic meth-
ods, and relative quality with respect to manual segmentation. The test-set included
over 30 images (not all present in this chapter). The specialist responded very posi-
tively, pointing our that our segmentations are, in nearly all cases, superior in terms of
boundary smoothness, detail preservation, and ease-of-use, to any known automatic
method (though she indicated that manual segmentation can sometimes perform bet-
ter in some fuzzy image areas). Additionally, our hair-removal method was found
qualitatively better than manual alternatives and much better than DullRazor, for all
complex images being tested, and equally good to these methods for the simple (low-
hair-occlusion) test images. In particular, it was noted that our method has only two
user-parameters (the luminance threshold level and gap-filling radius ρ), so it is much
simpler to learn and use than other methods which expose more, and more complex,
parameters.
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4.6 D I S C U S S I O N

Below we discuss several aspects of our method.

Strengths: The main strength of our method is the ability to close gaps which appear
inside the input binary shape, and in the same time keep both convex and concave
detail present on the apparent boundary of the same shape. The method can handle
well gaps of variable position, orientation, and thickness, as demonstrated by the ex-
amples shown in this chapter. The single user-parameter to control is ρ , the maximal
thickness of gaps to be closed, which has an intuitive meaning. Experiments done
showed that our method can yield good-quality segmentations and restorations of
dermatoscopic images, which are perceived to be better, and more useful, by domain
specialists.

Limitations: The key heuristic of our method is the classification of error gaps (to
be filled) as being those which intersect the skeleton of a simplified (open-close)
version Ωoc of the input shape Ω. The main rationale behind this heuristic is that (a)
open-close simplifies Ω by removing details but keeping its main structure, and its
parameter ρ allows specifying the maximal thickness of gaps to be filled (e.g., allows
users to specify that large gaps are important details, so should not be filled); (b)
hence, the skeleton of the simplified shape Ωoc captures the main part-whole structure
of the original Ω; (c) gaps in the original Ω that cut this skeleton affect thus more
critically the ‘structure’ of Ω, and thus should be removed, than gaps far from the
skeleton, which can be safely regarded as details of Ω. Clearly, there can exist appli-
cation contexts where step (c) of our heuristic would fail. In such cases, our method
would fill less gaps than desired. However, in the over 120 examples tested so far, we
have noticed that our heuristic works as expected, i.e. discriminates between relevant
gaps (far from the shape skeleton, and thus should be kept) and error gaps (which
locally cut the shape more than half, and thus should be removed) in the desired way.
However, we fully agree that our heuristic needs more testing before being able to
state its value in a strong sense.

Comparison: In our presented examples, we make a number of simplifications. First,
we only use basic luminance thresholding for creating the input binary images for our
gap-filling and restoration process. Clearly, more advanced techniques can be used.
However, we chose a simple technique precisely to be able to demonstrate the added-
value of our method on poor-quality input images. Secondly, the comparison against
the six segmentation methods in Sec. 4.5 is surely limited, as more such methods
exist. However, as stated, it is noteworthy that our (simpler) method performs qual-
itatively better than this range of very different segmentation methods. Thirdly, our
inpainting examples only use a simple technique [229]. We do this to clearly sepa-
rate the inpainting effects from the added-value of our method. End applications can
immediately swap our choice for more complex, and qualitatively better, inpainting,
e.g. [19, 64]. Finally, we note that the choice of the AFMM [229] and IMA [102]
skeletons is important. One can use other 2D skeletonization methods, provided that
these can produce correct multiscale, pixel/voxel-thin, centered, and connected, skele-
tons from any complex, noisy, disconnected shape. Unless skeletons have all above
properties, the error-gap detection (Sec. 4.3.2) and gap filling (Sec. 4.3.3) would not
correctly work.
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4.7 C O N C L U S I O N

We have presented a method for reconstruction of binary 2D shapes that miss internal
information in the form of holes, disconnections, and cracks. In contrast to local fil-
tering methods, which can remove such artifacts, but also smooth our relevant details
on the shape boundary, our method can successfully remove these artifacts but fully
preserve the shape boundary. To achieve this, we propose a heuristic to classify gaps
in terms of their position to the shape skeleton, and next remove deep gaps which
intersect this skeleton. We efficiently implement our method by means of distance
transform and skeletonization algorithms. Finally, we present a concrete application
of our technique for robust image segmentation and hair removal in dermatological
applications, and compare our results with a number of known segmentation and one
restoration technique in this field.

Future work can target a number of directions. Technique-wise, our method could
be extended to the area of hole and crack filling in 3D surface meshes [148, 236].
Application-wise, we can adapt our method for the reconstruction of 3D scalar and/or
vector fields, such as CT and MRI scans, by removal and restoration of low-quality
and low-certainty areas [67]

This chapter is based on:

A. Sobiecki, A. Jalba, D. Boda, A. Diaconeasa, and A. Telea. Gap-Sensitive Segmentation and Restora-
tion of Digital Images. In Proc. Computer Graphics Visual Computing (CGVC). EG UK, pages 1–8, 2014.
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Chapter 4 has presented an efficient and effective method for detecting and repairing
thin-and-elongated gaps present in 2D binary images. As discussed at that point, one
potential application for our method is the automatic removal of hairs from skin im-
ages, a process also known as digital hair removal (DHR), with many applications
in dermatology. However, the DHR method proposed in Chapter 4 is relatively lim-
ited, as it relies on a potentially delicate manual thresholding of the input grayscale
dermatoscopic image to capture the hairs, which are next removed by standard in-
painting. To compete with existing state-of-the-art DHR methods, more sophisticated
approaches are needed. In this chapter, we build atop of the basic gap-removal tech-
nique introduced in Chapter 4 to design a fully fledged automatic DHR method. In the
design of this method, 2D medial axes will play multiple roles for the robust detection
of hairs. Comparing our method with a wide range of existing DHR methods and on
a large collection of real-world dermatoscopic images shows the added-value of our
skeleton-based approach.

5.1 I N T RO D U C T I O N

Automatic analysis of pigmented skin lesions occluded by hair is a challenging
task [51, 108]. Several digital hair removal (DHR) methods aim to address this by
finding hairs and replacing them by plausible colors based on surrounding skin. How-
ever, DHR methods are challenged by thin, entangled, low-contrast, or thick-and-short
(stubble) hairs [2, 84, 104, 124, 138, 242].

To address the above problems, we regard DHR in the context of a threshold-set
representation. For this, we represent the input skin image as a set of binary images
by thresholding its luminance component. Next, we adapt our gap-detection technique
introduced in Chapter 4 to find potential hairs in each threshold layer. Found gaps
are merged into a single hair mask, where we find actual hairs by using 2D medial
axes or skeletons. Separately, to robustly detect and remove stubble hair, we propose
a morphological filter geared to detecting these structures while keeping remaining
image details sharp. Finally, we remove detected hairs by standard image inpainting.
To implement our approach, we propose a CPU-GPU pipeline that makes the usage
of complex image analysis tools such as threshold sets and medial axes practical and
computationally efficient.

Compared to existing DHR methods, our main contributions are as follows:

1. We show how both elongated hairs and stubble hair can be effectively and
efficiently removed, by the combined action of a morphological filter and an
adapted gap-detection algorithm, respectively;

2. We demonstrate the added value of DHR for the task of robust skin-tumor seg-
mentation for images containing occluding hairs;

3. We present a detailed analysis of the scalability of the proposed method, show-
ing how its performance depends linearly on image size and number of thresh-
old values, and not on the hair complexity.
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We propose a method for digital hair removal from dermoscopy images, based on
a threshold-set model. For every threshold, we adapt a recent gap-detection algorithm
to find hairs, and merge results in a single mask image. We find hairs in this mask by
combining morphological filters and medial descriptors. We derive robust parameter
values for our method from over 300 skin images. We detail a GPU implementation
of our method and show how it compares favorably with five existing hair removal
methods, in terms of removing both long and stubble hair of various colors, contrasts,
and curvature. We also discuss qualitative and quantitative validations of the produced
hair-free images, and show how our method effectively addresses the task of automatic
skin-tumor segmentation for hair-occluded images.

Dermatoscopy, also called dermoscopy, is the process of examination of skin le-
sions with a device called a dermatoscope. In usual scenarios, the dermatoscope is
used to acquire a high-resolution image of a limited skin area, typically one to a few
square centimeters, which corresponds to the diameter of most skin tumors. For this,
the dermatoscope uses a high-resolution camera (typically over one megapixel), and
special lighting consisting of polarized and/or non-polarized light sources surround-
ing the camera aperture. To reduce the effect of ambient lighting, a shade screen is
mounted around the camera and lights, and the entire device is applied in direct con-
tact with the skin area to be imaged. Certain models also use a special gel between the
skin and camera lens to ensure better contact. The acquired images are next studied for
diagnostic purposes, either manually by dermatologists, or using various automated
image analysis tools.

The structure of this chapter is as follows. Section 5.2 reviews related work on dig-
ital hair removal. Section 5.3 details our method. Section 5.4 presents its implementa-
tion. Section 5.5 compares our results with five DHR methods. Section 5.6 discusses
our method. Section 5.7 concludes the chapter.

5.2 R E L AT E D W O R K

In the past decade, many DHR methods have been proposed. The most known ones
are outlined next. DullRazor, the first and arguably most famous, finds dark hairs
on light skin by morphological closing using three structuring elements that model
three line orientations [138]. Different morphological operators were similarly used
in [165, 192]. Prewitt edge detection [124] and top-hat filtering [242] help finding
low-contrast or thin-and-curled hairs. Once detected, hairs can be removed by bilin-
ear [138] or PDE-based inpainting [241]. Huang et al. find hairs by multiscale matched
filtering and hysteresis thresholding and remove these by PDE-based inpainting [104].
However, this method is quite slow (minutes for a typical dermoscopy image). Abbas
et al. find hairs by a derivatives-of-Gaussian (DoG) filter [1, 2]. However, this method
has many parameters whose setting is complex.

While filters such as the above ones succeed in finding locally linear high-contrast
structures, assessing that such structures form together a long-and-thin object requires
global analyses. Unless this is done, many false-positives will be found, e.g. very
short disconnected hair-like fragments of various orientations. Their removal affects
the skin texture, which may next adversely affect the use of such texture for image
analysis and classification. To address this, VirtualShave finds hairs by top-hat filter-
ing, like [242], and uses three density, sphericity, and convex-hull-sphericity metrics
to separate true positives (hairs) from other high-contrast details (false positives) [84].
Finding other elongated objects such as arterial vessels and fibers is also addressed
by path opening methods [56] and grayscale skeletons [63]. The last method also per-
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mits filling thin gaps similar to our hairs. However, such approaches have not been yet
demonstrated for DHR aims.

Table 2 captures several aspects of the above DHR methods. As visible, there is
little comparison across methods. One salient aspect in this overview is that exist-
ing methods are validated on relatively small image sets and/or do not have public
implementations on which other researchers could test them (except [104, 138]). As
such, exhaustive comparison of existing DHR methods is hard. For our proposed DHR
method described next, extensive comparison with other methods and on large image
sets will be a main goal.

5.3 P RO P O S E D M E T H O D

Most DHR methods find hairs by local luminance analysis (see Tab. 2, column 2).
Such methods often cannot to find hairs that have variable color, contrast, thickness,
or crispness across an image. Hence, our main idea is to perform a conservative hair
detection at all possible luminance values. For this, the following pipeline is pro-
posed. First, we convert the input image into a luminance threshold-set representation
(Sec. 5.3.1). For each threshold layer, we find thin hair-like structures using a mor-
phological gap-detection algorithm (Sec. 5.3.2). Potential hairs found in all layers are
merged in a mask image, which we next analyze to remove false-positives (Sec. 5.3.3).
True-positive hairs are next removed by using a classical image inpainting algorithm
(Sec. 5.3.4). Finally, we detect short and relatively thick hairs (stubble) by morpho-
logical analysis and remove these by the same image inpainting method used for long
hairs (Sec. 5.3.5). These steps are discussed next.

5.3.1 Threshold-set Decomposition

We reduce color images first to their luminance component in HSV space. Next, we
compute a threshold-set model of the image [247]: Given a luminance image I : R2→
R+ and a value v ∈ R+, the threshold-set T (v) for v is defined as

T (v) = {x ∈ R2|I(x)≥ v}. (5.1)

For n-bits-per-pixel images, Eqn. 5.1 yields 2n layers Ti = T (i),0≤ i< 2n. We use n=
8 (256 luminances), in line with the color resolution of typical dermoscopic images.
Note that Tj ⊂ Ti,∀ j > i, i.e. brighter layers are ‘nested’ in darker ones. If I(x) 6=
i,∀x ∈R2, we find that Ti = Ti+1. In such cases, we simply skip Ti from our threshold-
set decomposition, as it does not add any information. Our decomposition {Ti} will
thus have at most 2n layers.

5.3.2 Potential Long Hair Detection

To find typical (long) hairs, we detect thin-and-long shapes in each layer Ti by adapt-
ing the gap-detection method introduced in Chapter 4, as follows.

Original gap-detection: Given a binary shape Ω ⊂ R2 with boundary ∂Ω, we com-
pute the open-close image Ωoc = (Ω◦H)•H and close-open image Ωco = (Ω•H)◦H.
In detail, given a so-called structuring element H, which is a disk in our case, we con-
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sider the dilation of Ω by H, i.e., the union of copies of Hx (H centered at all pixels
x ∈Ω), i.e.

Ω⊕H =
⋃

x∈Ω

Hx. (5.2)

Similarly, we define the erosion of Ω by H, which keeps only pixels x ∈ Ω where Hx
fits inside Ω, as

Ω	H = {x ∈Ω|Hx ⊆Ω}. (5.3)

Next, we define the opening of Ω as erosion followed by dilation, i.e.

Ω◦H = (Ω	H)⊕H, (5.4)

and, analogously, the closing of Ω as dilation followed by erosion, i.e.

Ω•H = (Ω⊕H)	H. (5.5)

In both Ωoc and Ωco, small gaps of the input image Ω get filled; yet, Ωco has more
gaps filled than Ωoc, but also fills shallow concavities (dents) along ∂Ω.

Next, we compute the skeleton or medial axis SΩoc of the shape Ωoc. Considering
the distance transform DT∂Ω : R2→ R+ given by

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖, (5.6)

the skeleton SΩ of Ω is next defined as

SΩ = {x ∈Ω|∃f1, f2 ∈ ∂Ω, f1 6= f2,‖x− f1‖= ‖x− f2‖= DT∂Ω(x)} (5.7)

where f1 and f2 are the contact points with ∂Ω of the maximally inscribed disc in Ω

centered at x. From SΩoc , the algorithm removes branch fragments that overlap with
Ω, yielding a set F = SΩoc \Ω that contains skeleton-fragments located in thin gaps
that cut deeply inside Ω. To find all pixels in the gaps, the proposed method convolve
the pixels x ∈ F with disk kernels centered at the respective pixels and of radius
equal to DTco(x). As shown in Chapter 4, this produces an accurate identification
of deep-and-thin indentations, or gaps, in Ω, while ignoring pixels in shallow dents
along ∂Ω.

Hair-detection: We observe that, in a binary image with hairs in foreground, hairs
are gaps of surrounding background. We next aim to find robustly hairs in all layers
Ti. For this, several changes to our gap-detection method from Chapter 4 are needed.
First, we note that the original gap-detection uses DTΩco as disk-radius values for gap-
filling as they argue that Ωco closes more gaps than Ωoc, supported by the observation
that DTΩco(x) ≥ DTΩoc(x),∀x ∈ F . Yet, for our hair-removal context, using DT∂Ωco
on every layer Ti, and next merging gaps into a single hair-mask, results in too many
areas being marked as hair. The resulting mask proves to be too dense – thus, creates
too many false-positive hairs for our next filtering step (Sec. 5.3.3). Using the smaller
DT∂Ωoc as disk radius prevents this problem, but fails to find many hair fragments –
thus, creates too many false-negatives. To overcome these issues, we propose to use
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a linear combination of DT∂Ωoc and DT∂Ωco . For this, we define a set of pairs disk-
centers x and corresponding disk-radii ρ as

Dλ = {
(
x,ρ = (1−λ )DT∂Ωco(x)+λDT∂Ωoc(x)

)
|x ∈ F} (5.8)

where λ ∈ [0,1] gives the influences on the disk radius of DT∂Ωoc and DT∂Ωco respec-
tively. A value of λ = 0.2, found empirically (see Sec. 5.6), avoids finding too many
gaps (false-positives), while also preventing missing too many hairs (false-negatives).

Let D be the union of pixels in all disks described by Dλ . We next find the gaps G
that potentially describe hairs as the difference

G = D\Ω. (5.9)

We apply Eqn. 5.9 to compute a gap Gi from every shape Ωi := Ti. Next, we merge all
resulting gaps Gi together into a single hair-mask image M =

⋃2n

i=0 Gi.
Morphological closing finds only hairs darker than skin. To find hairs lighter than

skin, we replace closing by morphological opening. Having the dark-hair and light-
hair masks Md and Ml , we can next either combine the two or select one mask to use
further. We observed in virtually all our test images that dark and light hairs do not
occur together. So, we use next the mask M ∈ {Md ,Ml} that most likely contains hairs,
i.e., which maximizes the length of the longest skeleton-branch in S∂M . For example,
for the image in Fig. 5.1 a, which has mainly dark hairs, our method will select to use
the mask M := Md (Fig. 5.1 b).

5.3.3 False Positive Elimination

Since we search for gaps on every threshold-level, we find more gaps than traditional
approaches, e.g. [104, 124, 138, 242]. Filtering out ‘false positives’ (gaps unlikely to
be hairs), is thus necessary. We achieve this in four steps, outlined below.
Component detection: First, we extract from M all 8-connected foreground compo-
nents Ci ⊂ M. We skip components less than 1% of the size of image M, as these
cannot possibly be elongated hairs. Remaining components are analyzed next to see
if they are hairs or not.
Hair skeletons: Hair fragments are long and thin. To measure such properties on
our components Ci, we use their skeletons S∂Ci . Yet, components Ci may have jagged
borders, due to input-image noise, shadows, or low resolution (Fig. 5.1 b), so S∂Ci have
many short spurious branches. We discard these and keep each component ‘core’ by
pruning each S∂Ci as in [229]: From S∂Ω, we produce a skeleton Sτ

∂Ω
which keeps only

points in S∂Ω caused by details of ∂Ω longer than τ . By making τ proportional to the
component’s boundary length ‖∂Ci‖, we ensure that longer branches are pruned more
than shorter ones. We also impose a minimum τmin to discard tiny spurious fragments,
and a maximum τmax to preserve large branches. Hence, the pruning parameter τ for
a component Ci is

τ = max(τmin,min(‖∂Ci‖ ·µ,τmax)) (5.10)

where µ ∈ [0,1] is used as a scaling parameter and ‖∂Ci‖ denotes the boundary length
of Ci, in pixels. Figure 5.1 c shows the simplified skeleton Sτ

∂M obtained from the
mask M in Fig. 5.1 b.

Hair detection: In classical DHR, finding if a component is thin-and-long is done by
e.g. (a) fitting lines in a finite number of orientations and checking the length of the
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a) b)

c) d)

e) f)

Figure 5.1: a) Input image. b) Full hair mask M. c) Simplified mask skeleton Sτ
M . d) Filtered

mask M f . e) Mask created by [104]. f) Inpainted hair using M f .
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longest such line [138]; (b) using principal component analysis to find if the major-
to-minor eigenvalue ratio exceeds a threshold [137]; and (c) computing an elongation
metric comparing a component’s skeleton-length with its area [242]. Xie et al. argue
that (a) and (b) are limited, as they favor mainly straight hairs and yield false-negatives
for curled hairs [242]. They alleviate this by an elongation metric equal to the ratio of
the area ‖Ci‖ to the squared length of the ‘central axis’ of Ci. However, they give no
details on how this central-axis (and its length) are computed. In particular, for cross-
ing hairs, i.e., when the skeleton of Ci has multiple similar-length branches, multiple
interpretations of the notion of a ‘central axis’ are possible. We also found that (c) also
yields many false-negatives, i.e., marks as hair shapes which do not visually resemble
a hair structure at all.

To address such issues, we propose a new metric to find if a thin-and-long
shape is likely a hair. Let Ji = {x ∈ Sτ

∂Ci
} be the set of junctions of Sτ

∂Ci
, i.e.,

pixels where at least three Sτ

∂Ci
branches meet. If the maximum distance dmax =

maxx∈Ji,y∈Ji,x6=y ‖x− y‖ between any two junctions is small, then Ci is too irreg-
ular to be a hair. We also consider the average branch-length between junctions
davg = ‖S∂Ci‖/‖Ji‖, i.e., the number of skeleton-pixels divided by the junction count.
If either dmax < δmax or davg < δavg, then Ci has too many branches to be a thin elon-
gated hair (or a few crossing hairs), so we erase Sτ

∂Ci
from the skeleton image. Good

preset values for δmax and δavg are discussed in Sec. 5.6.

Mask construction: We construct the final mask M f that captures hairs by convolving
the filtered skeleton-image (in which false-positives have been removed) with disks
centered at each skeleton-pixel x and of radius equal to DT∂M(x). Figure 5.1 d shows
the mask M f corresponding to the skeleton image in Fig. 5.1 c. Comparing it with the
hair-mask produced by [104] (Fig. 5.1 e), we see that our mask succeeds in capturing
the same amount of elongated hairs, but contains fewer small isolated line-fragments
(thus, has fewer false-positives).

5.3.4 Long Hair Removal

We remove the detected thin-and-long hairs by using classical inpainting [230] on the
hair-mask M f . To overcome penumbras (pixels just outside M f are slightly darker
due to hair shadows), which get smudged by inpainting into M f , we first dilate M f

isotropically by a 3× 3 square structuring element. This tells why hairs in M f in
Fig. 5.1 d are slightly thicker than those in Fig. 5.1 b. Figure 5.1 f shows our final DHR
result.

5.3.5 Stubble Detection and Removal

While the above four steps effectively find and remove thin-and-long hairs, they can
easily miss thick-and-short hairs (stubble). Such hairs appear in dermoscopy images,
e.g. in situations where the lesion area was shaved for a better image acquisition. To
remove stubble, we propose a post-processing filter on the images generated by the
inpainting step (Sec. 5.3.4), as follows.

Let Iinp be the output of the long-and-thin hair inpainting step (note that this is a
color image). We compute IOC and ICO by applying open-close and close-open oper-
ators respectively to the red, green, and blue channels of Iinp. We next compute the
absolute difference (grayscale) images Id

OC,I and Id
CO,I of IOC and ICO respectively with

the input image Iinp. This is related, but not identical to, the top-hat and bottom-hat
transforms, where the difference between an image and its opening, respectively clos-
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Input image DullRazor Our methodHuang et al.

a)

c)

e)

f)

b)

d)

h)

g)

Figure 5.2: Comparison of our method with DullRazor [137] and Huang et al. [104]. Insets
show details.
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ing, is taken. As shown in Chapter 4, using the open-close and close-open images
instead of basic openings and closings yields better results for gap detection scenarios
like our DHR context.

Similarly to the mask construction for long hair detection in the presence of hairs
darker, respectively lighter, than skin, we next choose to use the difference image
Id ∈ {Id

OC,I , I
d
CO,I} which has the largest intensity value summed over its pixels. This

selects Id := Id
OC,I for images having predominantly dark stubble, and Id

CO,I for images
having predominantly light-colored stubble.

We next threshold Id , normalized to [0,255], into a binary stubble mask Ms by using
a threshold value defined as

t =
maxx∈Id Id(x)

γ
, (5.11)

where γ is a scaling factor. Setting γ = 2 reliably selected stubble hair in all out test
images. Note that the normalization applied to Id prior to thresholding has the effect
of a contrast enhancement operation, which makes low-contrast hairs more visible and
thus selects them more reliably in the mask Ms. We finally dilate Ms isotropically by
a 3×3 square structuring element, and remove stubble from Iinp by inpainting it over
Ms, analogously to the long-and-thin hair removal (Sec. 5.3.4).

Figure 5.3 shows the effects of our stubble removal filter. As visible, stubble is still
present in the output of the long-and-thin DHR algorithm pass (Figs. 5.3 a,c), while it
is well detected and removed by our stubble removal filter (Figs. 5.3 b,d). The stubble
filter also removes other small-scale line-like details, such as the ruler annotations
introduced by the dermatoscope (Figs. 5.3 a,c top-row). The two filters (long-and-thin
and stubble removal) assist each other, as follows. If an image contains only thin-and-
long hair, or only stubble, only one of the filters will actively change the image, while
the other one will act as a pass-through. If, however, an image contains both hair types,
applying the thin-and-long hair filter before stubble removal has the desirable effect
of making stubble detection much easier, as complicated structures of entangled hair
are already removed.

a) after long 

hair removal

b) after stubble 

removal

c) after long hair 

removal

d) after stubble 

removal

ruler annotations

isolated hairruler annotations

Figure 5.3: Stubble removal filter (b,d) filters out stubble from the output of the long-hair re-
moval pass (a,b).
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5.4 I M P L E M E N TAT I O N

The most expensive part of our method is computing M, which requires distance trans-
forms and skeletons from up to 256 binary images (Sec. 5.3.2). As these images can
be over 10242 pixels for modern dermoscopes [87], processing a single image must
be done within milliseconds to yield an acceptable speed. For this, we use the Parallel
Banding Algorithm (PBA) for exact Euclidean distance transforms (EDTs) in [41]. A
simple modification of this method allows us to compute dilations and erosions (by
thresholding the distance transform with the radius of the disk structuring element)
and simplified skeletons (by implementing the boundary-collapse in [229]). Comput-
ing the skeleton of a shape Ω by [229] only requires the identity of the closest point
of ∂Ω for any point in Ω, or the so-called feature transform of ∂Ω. This informa-
tion is directly provided by the PBA method, so computing skeletons has virtually no
additional cost atop of the day computation.

Hair masks M (Sec. 5.3.2) are also computed on the GPU. First, the grayscale image
is copied from CPU memory to VRAM, after which each threshold is processed se-
quentially on the GPU. For each threshold i, the open-close and close-open images are
computed from the binary shape Ωi. Erosions and dilations are computed by threshold-
ing the distance transforms DT∂Ωi and DT∂ Ω̄i

with the radius of the desired disk struc-
turing element. Open-close images are computed by optimizing Ω⊕H	H	H⊕H
into Ω⊕H 	H ′⊕H, where H ′ has double the radius of H. Similar optimizations
are done for close-open. The distance transforms DT∂Ωi and DT∂ Ω̄i

are subsequently
used to compute the radii ρ of the disks Dλ (Eqn. 5.8). Next, for each skeleton pixel
x located in a gap (set F in Sec. 5.3.2), we launch a thread to draw a disk of radius ρ

centered at x, which yields the image D. As F does not contain many pixels (hundreds
at most), computing D by disk drawing is efficient. The final step in processing a layer
is to compute the gap mask Gi by finding all disk pixels outside Ωi and marking their
locations directly in the hair mask M.

After all layers have been processed, the hair mask M is copied from VRAM back
to CPU memory. The latter steps of the algorithm – connected component detection,
done with union-find [180]; skeleton-based filtering; stubble filtering; and hair inpaint-
ing [230] – are implemented in C++ on the CPU, as they are only performed once and
thus not performance-critical as the per-layer computations are.

We also ran our method on multi-GPU machines by starting k MPI processes for
k GPUs. Each process p ∈ {0, . . . ,k} does gap-detection on a subset of the threshold-
set by launching CUDA threads to parallelize gap-detection at image block level [41].
The k separate masks Mp,1 ≤ p ≤ k are merged by process 0 into a single mask M,
after which the algorithm continues on the CPU like outlined above.

Memory-wise, our entire implementation requires only 12 floating-point buffers of
the size of the input image I, seven by PBA [41] to compute EDTs and skeletons, and
five for the remaining algorithm steps. This allows processing megapixel-size images
on even the lowest-range CUDA-capable GPUs having 128 MB VRAM. Feature-wise,
we only use CUDA 1.1 capabilities, which makes our implementation run on virtually
all existing Nvidia cards, including low-end ones. C++ source code of our full method
is available openly for download at [126]. Additional details regarding computational
speed are given in Sec. 5.6.

5.5 R E S U LT S A N D C O M PA R I S O N

Material: We have tested our method on over 300 skin images. These cover a wide
range of skin lesions; hair thickness, color, length, and density; image resolution
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(between 4002 and 2448×3264 pixels i.e. full Handyscope resolution [87]); and skin
pigmentation. Images were acquired by several types of dermoscopes, by three unre-
lated research groups. Additionally, we tested our DHR method on the skin images
reported in the papers of [2, 84, 104]. Some of our test images contain no hair (see
e.g. Fig. 5.6c discussed further in this section); they let us see how well can we avoid
false positives. This is important, as removing non-hair details may affect subsequent
analyses [2, 104].
Methods: We compared our results with five DHR methods, as follows: Where an
implementation of the method to compare with was available [105, 138], we ran our
full image-set through it. For the other methods [2, 84, 242], we processed images
from the respective papers by our method and compared our results with the ones in
the respective papers.

Input Our methodDullRazorXie et al Huan et al

Figure 5.4: Comparison between Xie et al. [242], Huang et al. [104], DullRazor, and our
method. Input image from Xie et al.

Results: Compared to DullRazor and Huang et al. [104] (Fig. 5.2), we see that Dull-
Razor cannot remove low-contrast hairs (a,d); and both methods create undesired
‘halos’ around removed hairs (c,f;e,f). Images (g,h) show two complex lesions, with
hair of variable tints, opacity, thickness, and density. For (g), we create less halos
around removed hairs than both DullRazor and Huang et al. For (h), our method re-
moves considerably more hair than both methods. Figure 5.6 shows supplementary
comparisons for four complex images. Image (a) contains several crossing and very
low-contrast hairs. We see that DullRazor can remove several, but no all, such hairs.
Also, both DullRazor and Huang et al. create high-contrast edges from small non-hair
pigmentation details, such as the ones shown in the insets, an effect of their use of
local edge-detection filters. In contrast, our method removes most such hairs and also
correctly preserves pigmentation details. Image (b) contains a few hair-like details
(dermoscope markers in top-left corner), but no hairs. The markers are successfully
removed by all methods, including ours. Image (c) shows a few crossing very low-
contrast hairs. DullRazor cannot remove these. Huang et al. remove them, but also
significantly blurs the skin line-like pattern. Our method removes the hairs and keeps
the skin pattern, since its line-like structures are not sufficiently long to be seen as
hairs by our skeleton-based analysis (Sec. 5.3.3). Finally, image (d) contains no hairs,
but a number of bubbles formed by contact gel placed between the dermoscope lens
and the skin for better contact (see inset). Like hairs, such artifacts are not part of the
tumor texture proper, and can confuse subsequent image analyses, and as such should
be removed, if possible. We see that both DullRazor and Huang et al. cannot remove
these structures. In contrast, our method detects the thin-and-curly bubble structure
and removes most of it.

Figure 5.4 compares our results with Xie et al. [242] and Huang et al. We remove
more hairs than Xie et al., but also remove a small fraction of the skin. Huang et al.
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Input Abbas et al. Huang et al.

a)

b)

c)

DullRazor

d)

Our method

Figure 5.5: Comparison between Abbas et al. [2], Huang et al. [104], DullRazor, and our
method. Input images from Abbas et al.
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Input image Our methodDullRazor Huang et al.

a)

b)

c)

d)

Figure 5.6: Comparison of our method with DullRazor [137] and Huang et al. [104] for several
complex skin images.
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removes all hairs but also massively blurs out the skin. This is undesirable, since such
patterns are key to lesion analysis.

Figure 5.5 compares our method with Abbas et al. [2], Huang et al., and DullRazor,
on a set of images from Abbas et al. These images cover a wide gamut of skin and le-
sion pigmentations and hair thicknesses and contrasts. Our method shows comparable
results to Abbas et al. Huang et al. has issues with thick hairs (a); creates undesired
hair halos (c); and also blurs the fine-grained typical network texture present in im-
age (d). This last effect is highly undesired, since typical network texture is, among
other image features, an important indicator for the malignancy assessment of skin tu-
mors [132]. Separately, we see that DullRazor cannot remove most of the low-contrast
hairs for the dark lesion (d).

Compared to Fiorese et al. [84], we show a similar ability in removing both stubble
and elongated hairs (Fig. 5.7). For images (a,b), Fiorese et al. strikingly changes the
hue of the input image, which is undesired, as this can affect both manual and auto-
matic lesion assessment. Our method correctly preserves the hue of the image. For the
same images, showing both stubble hair (Fig. 5.7 a) and long curly hair (Fig. 5.7 b,c),
our method performs very similarly to DullRazor and Huang et al., and also creates
less halos around removed hairs (see insets).

Input image Fiorese et al. Our method

a)

b)

DullRazor Huang et al.

c)

Figure 5.7: Comparison of Fiorese et al. [84], Huang et al. [104], DullRazor, and our method.
Input images from Fiorese et al.

5.6 D I S C U S S I O N

Parameters: To obtain full automation, we ran our method on several tens of skin
images (at resolution 10242), varying all its parameters, and selected those values
which visually yielded the best results (most true-positive and least false-positive
hairs). Next, we computed final parameters by averaging, and tested that these values
give good results on our full image test-set. Table 3 presents the final parameter values,
used to produce all images in this chapter.
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Table 3: Empirically established parameter values.
Description Definition Value

H Structuring element radius Section 5.3.2 5.0 pixels

λ Gap detection parameter Equation 5.8 0.2

µ Skeleton simplification parameter Equation 5.10 0.05

τmin Minimum skeleton pruning Equation 5.10 3.0 pixels

τmax Maximum skeleton pruning Equation 5.10 40.0 pixels

δmax Hair detection parameter Section 5.3.3 20.0 pixels

δavg Hair detection parameter Section 5.3.3 10.0 pixels

Robustness: We reliably remove hairs regardless of thickness, curvature, length,
color, or underlying skin pattern. Very thin and low-contrast hairs may not get (fully)
removed, as they are either not found in M f or do not meet the elongation criteria
(Sec. 5.3.3). Yet, such details do not influence further manual analysis tasks (since
they are too small to occlude significant skin tumor patterns) or automatic analysis
tasks (since they are too small and low-contrast to influence image descriptors such
as color histograms, gradients, texture descriptors, or edge detectors).

Speed: We compute an open-close, a close-open, a skeletonization, and a skeleton-to-
shape reconstruction step for all threshold layers Ti found in an image. For a 10242

pixel image densely populated by hairs, this takes 28 seconds on a MacBook Pro Core
i7 with a GT 750M GPU, and 18 seconds on a comparable desktop PC with a GTX
690. For the same image and desktop PC, DullRazor needs 4 seconds, Fiorese et al. 7
seconds, Abbas et al. 40 seconds, Xie et al. 150 seconds, and Huang et al. about 10
minutes. As such, our method is the third-fastest from the set of methods we compared
against.

The complexity of our method is O(‖T‖ · ‖I‖), i.e., it is linear in the size of the in-
put image I and the number of threshold layers that we decompose I into (Sec. 5.3.1).
This is due to the fact that all core operations in our pipeline (morphological filters,
inpainting, distance transforms, and skeletonization) are linear in the number of pro-
cessed pixels, and we process ‖T‖ such images, one for each threshold layer. We next
analyze how our implementation scales with respect to the number of threshold lay-
ers ‖T‖, as this is the parameter that dominates the processing time. For this, we fix
the input image resolution at 1024× 768, and run our DHR method on 100 images
which have a wide variation of the remaining parameters (type and density of hairs
and skin color). Figure 5.8 (left) shows the measured execution timings vs the number
of different threshold images ‖T‖ found in each input image. We notice a good linear
correlation of the execution time with number of thresholds. Note that a maximum of
512 threshold images are being processed, as we compute two masks Ml and Md , and
each mask is determined by maximally 28 = 256 thresholds.

Figure 5.8 (bottom) shows the distribution of relative costs of the various stages
of our pipeline, for the same set of images as in Fig. 5.8 (top). Several points can be
made here, as follows. First, we note that the relative costs of all stages are largely
independent on the number of processed thresholds – or, in other words, that the total
cost is indeed dominated by the number ‖T‖ of processed threshold images. Secondly,
we note that total cost is dominated by morphological operations (opening and clos-
ing) and the gap-detection (computation of image D by disk drawing, see Sec. 5.4).
Interestingly, computing exact Euclidean skeletons, which is often perceived as an
expensive operation, accounts for only 10 up to 15% of the total processing time. In-
painting also has a very low cost, which justifies our implementation thereof on the
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Figure 5.8: Top: Total processing time as a function of ‖T‖. Bottom: Relative cost of our meth-
ods’ different computation stages, sorted on total time.
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CPU. Overall, this analysis tells that significant speed-ups can be obtained by opti-
mizing our implementation of the morphological operations and disk-drawing used to
detect the hair gaps.

Per image threshold, we obtained an average processing time τ̄ ∈ [60,90] millisec-
onds, following a Gaussian distribution N (73.8,31.7). Furthermore, we tested for
correlation of τ̄ with various image features such as the amount of hair pixels de-
tected in an image, amount of hair crossings, and average hair length. No significant
correlations were found. This strengthens the earlier observation that our method’s
throughput is dominated by number of processed image thresholds (for a given image
resolution) and not by the type and/or amount of hair to remove. In turn, this indicates
that, if our current morphological operations and gap detection implementations were
further optimized, significant performance can be consistently gained. Separately, this
tells that our method can be trivially accelerated by using newer GPUs that offer more
processing cores.

Tumor segmentation use-case: A practical way to measure the quality (and useful-
ness) of our DHR method is to see how different the results of tumor segmentation are
for images with hair and with hairs removed by our method. Tumor segmentation is
a crucial step in the computation of image descriptors used for skin lesion classifica-
tion, since such descriptors need to be assessed only over the lesion area and not over
surrounding healthy skin [45, 132, 172, 194].

To assess this difference, we considered several skin images having high-contrast
hairs. Such hairs adversely influence most automatic segmentation methods that try
to separate the tumor from surrounding skin (see e.g. [227], Sec. 9.4.2, Fig. 9.9). We
considered next two segmentation methods which are applicable to skin tumors: su-
perpixel graphs based on the image foresting transform [182] and the more specific
normalized-cut method in [85], which claims to be robust for skin lesions occluded
by hairs. We also tried other known segmentation methods, such as the active con-
tour approach used in skin tumor segmentation in [172], the mean shift method [57],
and the level-set approach in [143]. However, these additional methods showed much
larger sensitivity to input image characteristics, including hairs but also lesion details,
as compared to [182] and [85]. As such, we deemed them less suitable candidates for
skin segmentation in general, and eliminated them from further detailed inspection.

Focusing on the two most robust segmentation methods of hair-occluded tu-
mors [85, 182], we see that both methods still have significant problems for images
containing long high-contrast hairs. These problems manifest themselves in terms
of creating segments which either contain large parts of skin outside the lesion or
have boundaries that follow hairs that intersect the lesion (Fig. 5.9 b,c, red markers).
Such suboptimal segmentations create major problems for e.g. the computation of
reliable image descriptors that should characterize the precisely delimited tumor area,
to be used in automatic lesion classification [45, 194]. After removing hairs by our
DHR method (Fig. 5.9 d), both considered segmentation methods achieve a very good
segmentation result that closely follows the apparent skin tumor boundary without
being distracted by crossing hairs (Fig. 5.9 e,f). This shows that our DHR method can
be used as an automatic preprocessing filter for robust skin-tumor segmentation in
tumor classification pipelines.

Qualitative validation: We have shown all our input images, and obtained DHR
results, to two dermatologists having over 11 years of clinical experience, in blind
mode – that is, the two specialists did not know of each other’s assessment results,
nor did they know about the aims of the evaluation or specifics of the DHR method
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a) input images

 with hairs

d) input images 

(after DHR)

b) segmentation 

Rauber et al.

c) segmentation 

Flores et al.

e) segmentation 

Rauber et al.

f) segmentation 

Flores et al.

Figure 5.9: Tumor segmentation: (a) Input images with hairs, and corresponding segmentations
using the methods of (b) Rauber et al. [182] and (c) Flores et al. [85]. Segmentation
artifacts are marked in red. (d-f) Results of segmenting the same images with the
same methods after hair removal.

being used to remove hairs. We asked whether the raw vs DHR-processed images
would lead them to different interpretations, diagnoses, or insights. For all images,
the answer was negative. While a more formal measurement would bring additional
insights, this test already tells that our DHR method does not change the images in
undesirable ways from the perspective of specialist users who assess them. Separately,
hair removal is obviously desirable, e.g. when using images in automated image anal-
ysis and classification procedures [2, 104, 172, 181], such as the tumor segmentation
use-case discussed above.

Quantitative validation: To quantitatively assess the effect of hair removal, we per-
formed the following experiment. We created three image databases, each having
10 different images (within each database and across databases), all images having
the same resolution. Database 1 contains skin-tumor images without occluding hairs.
Database 2 contains images with significant amounts of occluding hairs. Database
3 contains images created by our DHR method by removing hairs from a set of im-
ages with occluding hairs (not present in database 2). For each image in the three
databases, we next computed the gradient magnitude at each pixel and its standard
deviation over each image. Separately, we computed the standard deviation of the
per-image gradients over all images in each database. These metrics give an overall
characterization of image features relevant for a wide range of tasks such as image
classification [6, 60, 129], since most image descriptors such as color histograms,
tumor boundaries, edge histograms, and texture descriptors used by such techniques
strongly depend on local image gradients [132, 194]. Plotting the gradient standard
deviation for images in all three databases, we see that the DHR images are very
similar to the different hair-free images, while the hair-occluded images clearly stand
apart (Fig. 5.10). This supports the hypothesis that our DHR method creates, on av-
erage, images which have the same statistical characteristics as hair-free images, i.e.
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Figure 5.10: Left: Standard deviation of per-image gradients in three considered image-sets.
Right: Minimum, maximum, average, and standard deviation, per-image-set, of
image gradients.

images which could be used with the same success as hair-free images in various
automatic analyses. While more accurate comparisons of the actual image features ex-
tracted from the raw vs DHR-processed images could be performed, this test already
indicates a good statistical match between our results and typical naturally hair-free
images.

Limitations: For very dense hairs of varying color on high-contrast skin (e.g.
Fig. 5.2 h), we cannot fully remove all hairs. Yet, this image type is extremely atyp-
ical – it actually is a skin lesion of a Labrador canine subject, which has massively
more hairs than typical humans; whose hairs are significantly thicker than human
hair, half-transparent, and hollow; and whose underlying skin texture shows complex
high-contrast striations. Also, other methods [104, 138] remove significantly less
hairs in such cases. Separately, while our method’s speed is around the average of the
tested competitors, faster (albeit lower-quality) methods exist [84, 138]. Using a more
conservative method to select a subset of layers from the entire threshold set of 256
binary images to further process to detect hairs, in line with similar layer-selection
procedures used for image compression [247], would accelerate our method up to one
order of magnitude. Indeed, as discussed earlier in this section, our speed is chiefly
influenced by the number of processed layers. This would make our approach (com-
pete with) the fastest DHR method published so far.

5.7 C O N C L U S I O N S

We have proposed a new approach for digital hair removal (DHR) by detecting gaps
in all layers of an image threshold-set decomposition. We find false-positives by us-
ing medial descriptors to find thin and elongated shapes. We compared our method
against five known DHR methods on a set of over 300 skin images. To our knowledge,
our work is the broadest DHR method comparison published so far. By observing the
results obtained from this comparison, we notice that our method can better remove
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long curly hair and short stubble hair than its competitors. Separately, we showed how
our method effectively improves skin tumor segmentation in the case of hair-occluded
tumors, an important asset for automatic skin lesion processing. Performance analy-
sis of our method show its linear dependence on the input image size and number of
threshold sets identified in the image. Qualitative and quantitative validations support
the claim that our method produces images which are perceptually and also quantita-
tively very similar to the original hair-occluded images.

Future work can target several directions. Machine learning techniques [6, 60, 129]
could be used to improve false-positive filtering. Further false-negative avoidance can
be improved by extending our method to use additional input dimensions besides
luminance, such as hue and texture. Application-wise, our method can be straightfor-
wardly incorporated into skin tumor classifiers for melanoma detection in order to
make such techniques directly applicable to hair-occluded images too.

This chapter is based on:

J. Koehoorn, A. Sobiecki, D. Boda, A. Diaconeasa, S. Doshi, S. Paisey, A. Jalba, and A. Telea.
Automated Digital Hair Removal by Threshold Decomposition and Morphological Analysis. In Proc.
International Symposium on Mathematical Morphology (ISMM), Springer, 2015.

J. Koehoorn, A. Sobiecki, P. Rauber, A. Jalba, and A. Telea. Efficient and Effective Automated Digital
Hair Removal from Dermoscopy Images. Mathematical Morphology - Theory and Applications, accepted,
2016.
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Chapters 4 and 5 have shown that 2D medial axes are efficient and effective tools
that can support the design of a variety of 2D shape restoration methods, including
segmentation, crack detection and removal, and digital hair removal. As such, it is
natural to ask oneself whether such results can be extrapolated to the usage of 3D
skeletons for the restoration of 3D shapes. In contrast to the 2D case, where the selec-
tion of a good skeletonization method was relatively easy, many different techniques
exist that compute various types of skeletons for 3D shapes. Such techniques differ
widely in terms of their compliance with desirable skeleton properties. To get more
insight into this compliance, we perform a qualitative study focused on curve skele-
tons computed with mesh-based methods. Chapter 7 extends this work to the study of
voxel-based curve and surface skeletons.

6.1 I N T RO D U C T I O N

Curve skeletons are among the most well-known, and widest used, descriptors for 3D
shapes. They have been extensively used in applications such as shape matching and
recognition, computer animation, virtual navigation, and shape processing [59, 203].
Earlier methods for computing curve skeletons used mainly voxel-based 3D shapes.
In recent years, several methods have been proposed to compute curve skeletons from
meshed 3D shapes, using a contraction principle, where the input mesh is iteratively
shrunk towards its local center. Such methods are highly computationally scalable,
and can easily handle mesh shapes with considerable more details than voxel-based
methods. As such, they appear, at first sight, to be strong contenders for optimal
tools to be used in skeleton-based applications. However, their algorithmic complexity
makes it harder to reason analytically about the properties of the produced skeletons.
In particular, it is not fully clear how their results relate to desirable skeleton proper-
ties.

To bring more insight herein, we compare six mesh-contraction-based curve skele-
tonization methods against six accepted quality criteria: centeredness, homotopy to
the input shape, detail preservation, smoothness, and independence from the input
shape’s sampling. Our work extends the earlier survey of Cornea et al. [59] by adding
to the comparison six new mesh-based curve skeletonization algorithms published af-
ter that survey was done. Our results reveal several limitations of the studied methods
which, to our knowledge, have not been highlighted in the literature, and link these to
algorithmic aspects of the studied methods.

The structure of this chapter is as follows. Section 6.2 overviews related work in
curve skeletonization, with a focus on contraction-based methods. Section 6.3 details
the quality criteria used for the comparison. Section 6.4 presents the comparison re-
sults. Section 6.5 discusses our findings. Section 6.6 concludes the chapter with future
work directions.
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6.2 R E L AT E D W O R K

For a shape Ω ⊂ R3 with boundary ∂Ω, we first define its distance transform DT∂Ω :
R3→ R+

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖. (6.1)

The surface skeleton of Ω is next defined as

S(Ω) = {x∈Ω |∃f1, f2 ∈ ∂Ω,f1 6= f2,‖x−f1‖= ‖x−f2‖= DT∂Ω(x)} (6.2)

where f1 and f2 are the contact points with ∂Ω of the maximally-inscribed ball in
Ω centered at x [93, 187], also called feature transform (FT) points [109]. Surface
skeletons consist of several manifolds with boundaries which meet along a set of
Y-intersection curves [48, 66, 141]. They can be computed by voxel-based or mesh-
based methods [18, 36, 102, 171, 218]. A recent comparison of surface-skeleton ex-
traction methods is given in [109].

In contrast to surface skeletons, curve skeletons are loosely defined as 1D structures
“locally centered” within the input shape Ω. The lack of a unanimously accepted for-
mal definition has led to many methods which compute curve skeletons following
not necessarily identical definitions. This makes it hard to analytically compare, and
reason about, the properties of the produced curve skeletons.

Tools from mathematical morphology [197] were among the first used to compute
curve skeletons: The residue of openings, based on Lantuéjoul’s formula [136], usu-
ally leads to disconnected skeleton branches, whereas methods based on homotopic
thinning transformations [29, 136, 158, 171] yield connected skeletons.

Dey and Sun propose one of the first analytic definitions of curve skeletons based on
the medial geodesic function (MGF), where the curve skeleton is defined as the locus
of points having at least two equal-length shortest geodesics on ∂Ω between their
feature points [70, 178]. Reniers et al. extend the MGF to regularize curve skeletons
by assigning each skeleton point an importance equal to the area bounded by such
geodesics [187], inspired by the so-called 2D collapse metric [168, 229]. A GPU
implementation of the above metric is presented in [109]. The most recent work in
the state of the art [11] present a distance-driven method to compute the surface and
curve skeletons of 3D objects in voxel images.

Voxel-based methods typically require significant resources to store and process
the large voxel volumes required to capture the fine details of complex 3D shapes. To
be used on 3D meshes, such methods require a costly voxelization step. Mesh-based
methods address these cost issues by working directly on a mesh representation of ∂Ω.
In recent years, several such methods have been proposed based on a contraction prin-
ciple, which shrinks the input mesh until the 1D curve-skeleton structure is reached,
as follows. Au et al. shrink the mesh via Laplacian smoothing until its volume gets
close to zero, followed by an edge-collapse (to extract the 1D curve skeleton) and a
re-centering step (to correct shrinking errors) [15]. Cao et al. extend this idea to ex-
tract curve skeletons from incomplete point clouds [41]. The ROSA method defines,
and extracts, curve skeletons using rotational, rather than positional, symmetry: ∂Ω

is cut with planes, and curve-skeleton points are found as the centers of planes which
minimize the variance between the plane’s normal and ∂Ω normals along the cut
curve [221]. Sharf et al. reverse the contraction direction: They find the curve skele-
ton as the centers of a set of competing fronts which evolve to approximate the input
surface [201]. A similar method is presented by Hassouna and Farag [98]. Telea and
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Jalba define, and extract, curve-skeletons by contracting the surface skeleton S(Ω)
(computed as in [151]) inwards, along the gradient of the 2D distance transform of
∂S(Ω), i.e. define the curve-skeleton as the result of a two-step skeletonization [228].

Mesh-contraction methods are currently deemed to be the state-of-the-art for ex-
tracting detailed curve skeletons from high-resolution shapes [222]. As 3D models
become more complex, it is arguable that such methods will dominate the more costly
voxel-based methods. Conceptually, such methods work very similarly to voxel-shape
thinning. However, there are few, if any, comparisons of recent contraction-based
methods. Also, the algorithmic complexity of mesh-contraction methods makes a for-
mal analysis thereof more complex than for voxel-based methods. All in all, it is not
clear if mesh-contraction methods are indeed always superior to voxel-based meth-
ods, and if not, which are their specific weak points with respect to desirable skeleton
criteria.

6.3 C O M PA R I S O N C R I T E R I A

The literature knows a well-accepted set of quality criteria that curve skeletons should
conform to. For curve skeletonization methods, such criteria are significantly more
important than for surface skeletonization methods: While the latter can be rigorously
checked against the formal surface skeleton definition (Eqn. 6.2), the former do not
use a single curve-skeleton definition. As such, the only comparison available for
curve skeletons is a qualitative one, from the perspective of desirable quality criteria.
Following [59, 109, 203], we focus on the following generally-accepted quality crite-
ria for a curve skeleton:

Homotopy: The curve skeleton is topologically-equivalent with the input shape, i.e.
has the same number of connected components and tunnels.

Invariant: The curve skeleton should be invariant under isometric transformations of
the input shape. We do not explicitly test against this, because our compared MBS
methods are invariant by contraction.

Thin: The curve skeleton should be as thin as the sampling model used allows it.
Voxel-based curve skeletons should be one voxel thick. Mesh-based curve skeletons
should contain only lines, and not polygons or loose points. Point-cloud based curve
skeletons should ideally have zero local thickness in any direction orthogonal to the
largest eigenvector of the covariance matrix of point neighborhoods.

Centered: This is the hardest criterion to quantify, since it is not uniquely defined
when a curve is centered within a 3D shape. However, several weak forms of curve-
skeleton centeredness exist: The curve skeleton should be a subset of the surface
skeleton (since the latter is by definition centered within the shape); and in no case
should the curve-skeleton exit the input shape.

Smoothness: As centeredness, smoothness is also hard to formally define. Surface
skeleton manifolds are known to be at least C 2 continuous [176, 203]. Curve-
skeletons are centered subsets thereof [222, 228]. Hence, it is arguable that curve
skeletons should be also piecewise, i.e. per branch, C 2. In any case, curve skeletons
should not exhibit curvature discontinuities induced by the sampling of either the
input surface or curve skeleton representation.
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Detail preserving: Curve skeletons should be able to capture fine-scale details, such
as bumps, of the input shape, in a user-controlled manner. In other words, the user
should be able to select the scale of input shape details which the curve skeleton
should capture (being significant) and the scale of details to ignore (being regarded as
noise).

Sampling robustness: Given two different samplings of an input shape (e.g. two
different level-of-detail meshes), the difference between the two corresponding curve
skeletons should be proportional with the difference of the two input meshes. In other
words, small input-sampling differences should not cause large differences in the
curve skeleton.

Reconstruction: Given a skeleton and the distances from its points to the input shape,
i.e., the so-called medial axis transform (MAT) of that shape, it is possible to recon-
struct (approximations of) the shape from the MAT. In theory, given an exact MAT,
the input shape can be perfectly reconstructed. This property does not, however, hold
in practice, due to approximations in the skeleton computation, resolution limitations,
and skeleton simplification. Also, it is well known that reconstruction requires the us-
age of a surface skeleton – the curve skeleton does not capture enough information to
reconstruct anything beyond locally tubular shapes. Given the above, and our focus in
this chapter on curve skeletonization methods, we do not discuss the reconstruction
property further.

Different skeletons have the same number of branches as far as possible, we tried it,
as much as possible. The fact that the results arre not very similar is simply a limitation
of these methods.

6.4 C O M PA R I S O N

Given our core question on how mesh-contraction-based curve skeletonization meth-
ods perform, we compared six such methods (further denoted in the paper by the
abbreviations listed below):

Au et al. (AU) [15]: We included this method as it is arguably the best-known mesh-
based skeletonization technique in existence [98, 109, 222].

Tagliasacchi et al. (ROSA) [221]: We chose this method given its advocated noise-
resistance and since it works on point clouds, which is a different type of input than
the other methods.

Cao et al. (CAO) [41]: We chose this method since it uses a contraction similar to [15],
but works on point clouds, like [221].

Telea and Jalba (TJ) [228]: In contrast to all other curve skeletonization methods,
this technique contracts the surface skeleton, rather than the input mesh, to compute
the curve skeleton. It produces a point cloud rather than a polyline curve-skeleton. For
comparison fairness, we postprocessed the produced point cloud using the polyline
reconstruction proposed in [15].

We also developed and tested two extensions of [15], as follows.

Au et al. improved (AUI): A well-known limitation of Au et al. is its skeleton re-
centering step [222]. As the input mesh is contracted, it can go off-center due to nu-
merical and discretization inaccuracies of the Laplacian smoothing. To address this
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issue, we proceed as follows. During the Laplacian contraction and edge-collapse
steps of the method, we maintain a backwards, skeleton-node-to-mesh-vertex map-
ping Π : S→ ∂Ω, which can be used to identify those mesh vertices v ∈ ∂Ω that
’collapsed’ into a given skeleton node s ∈ S(Ω). The re-centering step uses Π to com-
pute the final position of each node s as a weighted average of the vertices in Π(s),
with weights given by the areas of the input-mesh triangles with vertices in Π(s).

Au et al. using surface skeletons (AUS): The improved re-centering outlined above
cannot fully correct errors accumulated during the iterative contraction. To further
reduce these, we start the Laplacian contraction from the surface skeleton, which is
closer to the final target (curve skeleton) than the input mesh, along the idea proposed
in [228].

Global considerations: In our method choice, we focused on recent contraction-
based techniques, not studied in the survey of Cornea et al. [59], proven by their
authors on complex shapes, and which use different curve-skeleton detection princi-
ples. All methods, also directly satisfy the thinness criterion, since they model the
curve-skeleton as a polyline. We used the original implementations provided by their
authors, all running on a Windows PC with 4 GB RAM. Since not all studied methods
claim computational efficiency, we excluded timings from the comparison.

Comparison material: For comparison, we used a set of 21 3D shapes which are
frequently encountered in the curve-skeleton literature (for details, see [243]). Fig-
ures 6.1, 6.2, 6.3 and 6.4 and show relevant samples from this set, within space lim-
itations. The models have between 20K and 300K vertices. We used MeshLab [235]
to clean mesh models for normal orientation consistency, T-vertices, and duplicate
vertices. To factor our parameter settings, we ran each method for uniformly-sampled
values of all its documented parameters, and retained in our final comparisons the best
results with respect to the quality criteria mentioned in Sec. 6.3.

6.4.1 Overview

Figure 6.1 shows an overview of several curve skeletons extracted by the compared
methods. Even at this level, we quickly notice that not all skeletons are equally well
centered, equally smooth, and have the same number of terminal (detail) branches.
We next zoom-in on each criterion and discuss our findings with respect to the studied
methods.

6.4.2 Homotopy

For relatively simple shapes of genus 0 or higher, all studied methods behaved equally
well, i.e. produced curve skeletons homotopic with the input shape (Fig. 6.1). Still,
detail differences exist. Skeleton junctions are not always identical, so the produced
skeleton graph is different, see e.g. the marked limbs-to-body junctions of the bird
model in Fig. 6.2 (left) and the horse model in Fig. 6.3 (right). Differences get larger
for small-scale details, where curve skeleton terminal branches enter saliencies of the
input shape, see e.g. Fig. 6.3 (neptune, frog). An extreme case happens when the input
mesh has self-intersections, e.g. Fig. 6.2 (frog). Here, CAO and ROSA create curve
skeletons whose topology is far from the input shape (fake loops and branches).

79



C U RV E S K E L E T O N I Z AT I O N C O M PA R I S O N

Au et al.

AU

Cao et al.

(CAO)

Tagliasacchi 

et al.

(ROSA)

Telea and Jalba

(TJ)

Au et al.

(AUI)

(improved)

Au et al.

(AUS)

(surf. skeleton)

bird: 46K points,

93K faces

fertility: 25K points,

50K faces

horse: 193K points,

387K faces

neptune: 28K points,

56K faces

Figure 6.1: Overview comparison of skeletonization methods.

6.4.3 Centeredness

The methods AU, AUI, and AUS produce similar, well centered, results. Among these,
AUS is the best: Since contraction starts from the surface skeleton, nodes go less off-
center, as the surface skeleton is already centered by definition and closer to the curve
skeleton than the input mesh. For mesh-based methods, TJ produced the best centering.
This is due to the fact that TJ contracts the surface skeleton along the gradient field of
its 2D distance transform, which is by definition tangent to the surface skeleton itself,
so the curve skeleton stays inside the surface skeleton by construction. In contrast,
AU, AUI, and AUS contract in the direction of the shrunken surface’s normals. These
are delicate to estimate as the shape shrinks and develops singularities (creases). The
different re-centering steps performed by these methods alleviate, but cannot fully
correct, these problems.
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ROSA’s results are quite poorly centered in several areas. As mentioned in [221],
orientation information is unreliable around junctions, where the input shape has many
points with diverse orientations. To overcome this, ROSA treats junctions specially.
This works well for junctions whose branches correspond to tubular shape parts of
similar size. However, we discovered that junctions where shape parts of very different
sizes and shapes meet create problems, see e.g. Fig. 6.2 for the bird model (wings
joining rump) and neptune (arm-torso junction).

Input models

Au et al.

(AU)

Cao et al.

(CAO)

Tagliasacchi 

et al.

(ROSA)

Telea and Jalba

(TJ)

Au et al.

(AUI)

(improved)

Au et al.

(AUS)

(surf. skeleton)

bird: 46K points, 93K faces frog: 37K points, 74K faces

neptune: 28K 

points, 56K faces

Figure 6.2: Centeredness comparison.

The frog model (Fig. 6.2) reveals two other challenges. First, the model has sev-
eral very sharp bends around the leg joint. Secondly, in the same area, the mesh has
several self-intersections. Meshless methods (CAO, ROSA) generate seriously erro-
neous skeletons here, and even skeleton disconnections. In these areas, TJ still creates
a smooth skeleton, but cannot handle centeredness perfectly. This is due to the fact
that the surface skeleton it starts from has errors in self-intersecting areas, since the
technique used to compute it [109] cannot handle self-intersecting surfaces. In con-
trast, AU, AUI, and AUS generate very similar, relatively well-centered, skeletons in
these challenging areas.

The neptune model (Fig. 6.2) highlights the situation where a relatively thin object
part (arm) joins a thick one (torso). In such areas, curve (and surface) skeletons exhibit
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so-called ligature branches which connect the skeleton branches of the two parts [176].
If the two parts form an angle different from 90◦, like in our case, the ligature branch
has to rapidly turn [203]. This turn is best captured by AU. In contrast, all other meth-
ods emphasize smoothness too much, which results in clearly off-centered skeletons
close to the armpit.

6.4.4 Detail preservation

Detail preservation refers to the generation of separate curve-skeleton terminal
branches for all input shape bumps, or salient convexities, at a user-specified scale.
Detail preservation is important for applications such as shape matching, retrieval,
and reconstruction [59, 187]. Large details, such as the limbs of shapes in Fig. 6.1,
are well captured by skeleton branches by all studied methods. For smaller-scale
details, the situation is different, see Fig. 6.3 left. The problem is that all methods
include explicit actions to smooth the computed skeletons. Although desirable (see
next Sec. 6.4.5), such smoothing will remove some small-scale branches.

AU and AUI preserve small-scale, detail, branches best. In contrast, AUS and TJ
find detail branches of long protrusions (e.g. Fig. 6.3, neptune and frog fingers) quite
well, but fail to find branches for shallower bumps, such as gargoyle’s wing-tips. Upon
closer analysis, we found that this is caused by the fact that the surface skeletons that
both AUS and TJ start from, fail to capture such details, hence these details cannot
appear further in the curve skeleton. CAO and ROSA perform the worst for this cri-
terium. These methods fail finding most detail skeleton branches found by the other
studied methods. Moreover, when found, small-scale terminal skeleton branches seem
to be arbitrary, as Fig. 6.3 shows for all three models on the left.

Small-scale noise is ignored equally well by all methods. For mesh-based methods,
this is an effect to their built-in smoothing.

6.4.5 Smoothness

As outlined earlier, curve-skeleton branches should be at least C 2 continuous curves
(Sec. 6.3). Hence, skeletonization methods should follow this property as well as possi-
ble. Voxel methods are inherently constrained here by the sampling resolution. In con-
trast, mesh-based methods which model the curve skeleton as a polyline should dis-
tribute the computed skeletal points, or sample the skeleton, to optimally approximate
the desired smooth curve. Hence, for these methods, the issue of skeleton smoothness
is implicitly connected to the skeletal curve sampling.

Contraction-based methods, as the ones we studied, have an additional challenge
here. As the input mesh is contracted, the local point density naturally increases in
convex areas and decreases in concave ones. This potentially leaves too few nodes
to approximate well the curve skeleton in concave areas. Ligature branches are an
extreme case hereof. An example are the ligature branches that connect the horse’s
leg-skeletons to its rump-skeleton (Fig. 6.3 right). Here, CAO, ROSA, and up to some
extent AU, clearly show a lower point density – see branches meeting at the marked
junctions. This in turn creates spurious kinks in the rump’s curve skeleton. In contrast,
AUS, AUI, and TJ create smoother skeletons. The skeletons of TJ and AUS follow
the rump’s curvature best. This is explained by the fact that their contraction is con-
strained to stay on the surface skeleton, whose shape already captures the input shape’s
curvature. AU and AUI both fail capturing the rump’s curvature, since they have no
such constraint. The same non-uniform skeletal point distribution is also observed for
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Figure 6.3: Comparison for detail preservation comparison (left) and skeleton smoothness
(right).

the fertility model (Fig. 6.3 right). Here, again, AUS and AUI yield the most uniform
point distribution, and ROSA and AU the least uniform one (which leads to unnatural
kinks).

6.4.6 Sampling robustness

Sampling robustness refers to the relation between the resolution of the input shape
and changes in its curve skeleton. Ideally, we would like that when the former changes
slightly, the curve skeleton also changes only slightly. This property is closely related
to the concept of regularization, which states that small changes in the input shape Ω

should only yield small changes in its skeleton [109, 187, 229].
To study this, we produced three versions of the dragon model (see Fig. 6.4), using

the Yams mesh resampling tool [88]. We also produced three voxel models of the same
shape from the highest-resolution mesh, using binvox with three sampling resolutions.
Next, we ran the studied skeletonization methods on these datasets, and analyzed the
results. In the comparison, we had to exclude CAO and ROSA, as the provided imple-
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mentations of these methods were too slow to complete, even in several hours, for the
largest-resolution meshes.

Au et al.

Telea and Jalba

Au et al. (improved)

Au et al. (surf. skeleton)

small: 14K points, 25K faces medium: 58K points, 115K faces large: 231K points, 463K faces

Figure 6.4: Sampling robustness comparison.

The method AU is quite sensitive to the mesh sampling. Looking at Fig. 6.4, we see
that, in the dragon head area, the small and large resolution models produce relatively
similar skeletons, but the medium-resolution model yields a very different skeleton
topology. Given that higher resolution can only potentially add extra details, but not
remove existing ones, we expect to get an increasingly rich curve skeleton (in terms
of terminal branches), but the core structure of this skeleton should not change signifi-
cantly. This is not the case, which hints to an important instability of the method with
respect to mesh resolution.

In contrast, AUS and AUI show a much stabler curve skeleton with respect to mesh
resolution. Although these methods do not produce identical skeletons for the same
resolution, the changes of their respective skeletons as the resolution changes, are
quite small. Both methods find more terminal skeleton branches as the resolution in-
creases, which is expected since higher-resolution models capture more surface de-
tails.

The TJ method is the most sensitive to sampling. For the low-resolution model, the
method simply fails to extract many significant branches. Although more branches are
found for the high resolution model, many significant surface details, like the upper
spikes on the back and tail, fail to generate branches. This can be directly traced to
the quality of the surface skeleton: The underlying method used to compute it [151]
produces as many skeleton points as surface points. To accurately capture the surface
skeletal structure, very densely-sampled models are required [109]. Less densely sam-
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pled surface skeletons will in turn create a noisy distance-transform gradient, which
will contract the skeleton mesh in the wrong directions.

6.5 D I S C U S S I O N

Contrary to our initial belief, based on the contraction-based skeletonization literature,
all contraction methods appeared to be much more sensitive in terms of all studied
quality criteria than implied by the examples in the literature. The CAO and ROSA
methods performed significantly under expectations. The AU method performed rel-
atively well for smooth shapes, but showed limitations for centeredness and smooth-
ness for more complex shapes. This is the main reason for us having designed the
two improved variants AUI and AUS. The trade-off between these variants is as fol-
lows: While AUS yields smoother skeletons, AUI delivers a better centeredness. The
TJ method dominates all others in terms of smoothness, but has clear centeredness
problems in ligature areas, and requires a very high input mesh sampling to generate
even moderately-detail skeleton branches.

One aspect which needs further study is to compare MBS with VBS methods. This
comparison is far from trivial, since both the surface and the curve-skeleton are sam-
pled in a different way in VBS as compared to MBS, that is, the MBS uses piecewise
linear sampling, while the UBS use piecewise constant sampling. For this reason, we
leave such a comparison for future work.

However, the main challenge for REN, and similar voxel-based methods, is scala-
bility: Voxelizing complex meshes to resolutions over 10003 voxels, and further pro-
cessing such volumes to extract curve skeletons, is much slower, and more memory
demanding, than using mesh-based methods. For instance, our highly optimized par-
allel implementation of REN processes the 7003 dragon model (Fig. 6.4) in around 15
minutes; the equivalent mesh model (463K faces) is processed in under a minute by
mesh-based methods. Moreover, the memory consumption of REN is an order of mag-
nitude larger than for mesh-based methods. If efficient data representation and GPU
parallelization schemes were designed to reduce this overhead, voxel-based methods
may in the end be a very strong competitor to mesh-based methods.

Table 4 summarizes our comparison of the six studied skeletonization methods
from the perspective of the six desirable properties discussed in this chapter. The sum-
mary is based on an ordinal scale (worst,bad,satisfactory,good,best). While this table
cannot present all the (subtle) comparison insights discussed at length in the text, it
provides an easy-to-use overview of the comparison results. In detail, the five-point
quality scale we use implies the following characteristics:

• Worst: The skeleton does not visually match the input shape;

• Bad: The skeleton fails with respect to several of the properties discussed earlier
in this chapter, but does visually match the input shape;

• Satisfactory: The skeleton visually complies with the desired properties for
about 50% of its extent;

• Good: The skeleton visually complies with the desired properties for about 75%
of its extent;

• Best: The skeleton visually complies with the desired properties for all its
points.
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Table 4: Qualitative evaluation of skeletonization methods.

Methods against Criteria

Methods Homotopy Thin Centered Smoothness Detail Preserving Sampling
Robustness

AUI Best Best Satisfactory Good Good Good

AUS Best Best Satisfactory Satisfactory Good Satisfactory

AU Best Best Satisfactory Bad Good Best

TJ Best Best Best Good Best Satisfactory

CAO Best Best Bad Bad Worst -
ROSA Best Best Bad Bad Worst -

6.6 C O N C L U S I O N S

In this chapter, we have presented a qualitative comparison of six contraction-based
curve skeletonization methods and one boundary-collapse voxel-based method. The
methods were compared from the perspective of several accepted quality criteria: ho-
motopy, thinness, centeredness, detail preservation, smoothness, and robustness to
sampling. In contrast to recent insights from the mesh skeletonization literature, the
studied mesh-based methods appeared to perform less optimal than expected. Also,
the studied voxel-based method appeared to outclass all mesh-based methods, with
relatively few limitations, apart from computational scalability.

Although our comparison is far from exhaustive, it raises a number of important
points about the current state of mesh-based curve skeletonization techniques. To put
these insights into perspective, and thereby obtain a more complete picture of the state-
of-the-art of current skeletonization methods, we extend our study in the next chapter
to the analysis of voxel-based skeletonization methods.

This chapter is based on:

A. Sobiecki, H. Yasan, A. Jalba, and A. Telea Qualitative Comparison of Contraction-based Curve
Skeletonization Methods. In Mathematical Morphology and Its Applications to Image and Signal Process-
ing, 2013.
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VOX E L - BA S E D C U RV E A N D S U R FAC E S K E L E T O N S

Driven by our interest to use 3D skeletons for shape restoration, Chapter 6 has pre-
sented a qualitative comparison of several recent mesh-based curve skeletonization
methods. The overall result of this study has pointed out to important limitations of
these methods, which make them less appropriate candidates for our shape restora-
tion use-case. This chapter studies the remaining part of the skeletonization-methods
space, namely voxel-based curve and surface skeletons. Based on the combined in-
sight of Chapters 6 and 7, conclusions are next drawn as to the suitability of existing
skeletonization methods as building-blocks for our shape restoration use-case.

7.1 I N T RO D U C T I O N

Skeletons are shape descriptors with many applications in shape processing, reg-
istration, retrieval, matching, animation, and compression [203]. 3D shapes admit
two types of skeletons: Surface skeletons are 2D manifolds formed by the loci of
maximally-inscribed balls within a shape [176, 203]. Curve skeletons are 1D curves
which are locally centered in the shape and capture the shape’s part-whole structure
[59].

Since the early skeleton definition by Blum [34], many methods have been pro-
posed to compute the two skeleton types. Such methods differ in theoretical aspects,
e.g. the exact definition for curve skeletons, and practical aspects, e.g. space discretiza-
tion (voxels vs meshes); the various approximations being used; and the actual skele-
ton extraction algorithm. These aspects, and the inherent sensitivity of skeletons to
boundary noise, makes different methods produce widely different skeletons for the
same input. This causes challenges for the users of skeletons in both research and
practical contexts.

Recognizing these challenges, Cornea et al. [59] have presented a taxonomy of
curve skeletonization methods and the way these satisfy a set of desirable skeletal
properties, and illustrated these for four such methods. Since this publication, sev-
eral new skeletonization methods have been proposed. A recent study, presented in
Chapter 6 extended the work in [59] by comparing methods of a particular class
(contraction-based methods for meshed shapes) against Cornea’s criteria [207]. These
two studies however cover only a very limited fraction of the current skeletoniza-
tion methods. Also, papers introducing new skeletonization methods typically present
only few additional comparisons. Table 5 illustrates this for a selection of methods,
which is by no means exhaustive. Finally, very few comparisons of surface skeletons
with curve skeletons are presented, so there are still many open questions on the rela-
tionships of the two skeleton types. As computational advances allow implementing
increasingly complex skeletonization methods, the challenge of understanding the rel-
ative pro’s and con’s of such new methods only grows.

In this chapter, we address the above challenges by presenting a comparison of 4
surface and 6 curve skeletonization methods. In contrast to Chapter 6, we focus here
on voxel-based methods. In addition to [59], we cover here methods having emerged
after their study was published. We use in our comparison the same desirable criteria
as in [59]. In addition, we also propose a detailed comparison that aims to provide
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a fine-grained detail view on the subtle differences between skeletons computed by
different methods, including comparisons of curve with surface skeletons. Our results
offer additional insight in limitations and challenges of current methods which, to our
knowledge, have not been highlighted so far. These results represent further support
for the quest of designing better skeletonization methods.

This chapter is organized as follows. Section 7.2 reviews related work. Section 7.3
presents the compared methods and comparison criteria. Section 7.4 presents the com-
parison methodology. Section 7.5 presents our comparison results. Section 7.6 dis-
cusses these results. Section 7.7 concludes the paper.

7.2 R E L AT E D W O R K

7.2.1 Skeletonization methods

For a shape Ω ⊂ R3 with boundary ∂Ω, we first define its distance transform DT∂Ω :
R3→ R+

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖. (7.1)

The surface skeleton, also called the medial surface, SΩ of Ω is next defined as

SΩ = {x ∈Ω |∃f1, f2 ∈ ∂Ω,f1 6= f2,‖x−f1‖= ‖x−f2‖= DT∂Ω(x)} (7.2)

where f1 and f2 are the contact points with ∂Ω of the maximally-inscribed ball in
Ω centered at x [93, 187], also called feature transform (FT) points [109]. When
Ω ⊂ R2, Eqn. 7.2 yields the 2D skeleton, also called the medial axis, of the shape
Ω. Surface skeletons contain several manifolds with boundaries which meet along a
set of Y-intersection curves [48, 66, 141]. Curve skeletons are loosely defined as 1D
structures locally centered within a shape Ω⊂ R3.

Surface and curve skeletons can be computed by geometric, distance field, general
field, and thinning methods. Geometric methods include Voronoi diagrams [72] and
subsets thereof [8], mesh contraction in normal direction [15, 41, 146, 221], mean-
shift-like clustering [105], and union-of-balls approaches [109, 151, 159]. Such meth-
ods use meshed shape representations and thus scale well to handle high-resolution
models [109, 151]. Distance-field methods find SΩ along singularities of DT∂Ω [91,
102, 125, 142, 204, 237] and can be efficiently done on GPUs [41, 218]. General-field
methods use fields smoother (with fewer singularities) than distance transforms [5,
13, 58, 98]. Such methods are more robust for noisy shapes. Various regularization
metrics, e.g. the angle between feature vectors [86, 218], or the geodesic distance be-
tween feature points [70, 187], are used to eliminate spurious skeleton details caused
by noise on ∂Ω. Field methods can also compute 3D curve skeletons by backproject-
ing 2D skeletons of 2D projections [150] or axis-aligned slices [229] of the shape back
into 3D. Field methods are implemented for both voxel and mesh shapes. Thinning
methods remove ∂Ω voxels while preserving connectivity [62, 171]. Tools from math-
ematical morphology [197] were among the first used to compute curve skeletons by
thinning. The residue of openings, based on Lantuéjoul’s formula [136], usually leads
to disconnected skeleton branches, whereas methods based on homotopic thinning
transformations [29, 136, 158, 171] yield connected skeletons. Constraining thinning
by distance-to-boundary order [11, 179, 220] or flux-order [175] further enforces cen-
teredness. Further details on related work and such methods are given in Sections 7.3.2
and 2.2.2.
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Table 5: Recent 3D skeletonization papers. For each method, we show its type (Volume or
Mesh), and the surface- and/or curve-skeletonization methods it is compared with.
Dashes show that a method does not compute the respective (curve or surface) skeleton
type. Last three rows are survey papers.

Method Compared with
Type Name Surface skeleton Curve skeleton

M Jalba et al. [109] [159] [15, 187]
M Giesen et al. [159] [20, 49, 72] –
M Huang et al. [105] – [221]
M Au et al. [15] – [58, 70, 90, 171]
M Dey and Sun [70] – [58]
M Tagliasacchi et al. [222] – [15, 70]
V Arcelli et al. [11] – 0
V Reniers et al. [187] 0 0
V Hesselink et al. [102] 0 –
V Siddiqi et al. [204] 0 –
V Liu et al. [149] – [171, 187]
V Ju et al. [117] [27] [27]
M+V Livesu et al. [150] – [15, 58, 70, 149]
M Sobiecki et al. [207] – [15, 41, 221, 228]
M+V Cornea et al. [59] – [8, 58, 90, 171]
V Our contribution [102, 117, 187, 204] [11, 117, 149, 171, 187, 204]

7.2.2 The challenge of comparison

Unsurprisingly, the wealth of existing skeletonization methods makes an exhaustive
comparison hard. Aspects which contribute to this challenge are (a) different shape
representations (voxels vs meshes vs point clouds), (b) the unavailability of several
implementations, and (c) different skeleton definitions. The last aspect is particularly
important: For surface skeletons, one could argue that Eqn. 7.2 is a unique definition
against which all methods can be checked. However, both spatial discretizations of
Eqn. 7.2 and heuristic regularizations that remove small-scale ‘noise’ details allow
multiple weak forms of Eqn. 7.2 [102, 159, 187]. For curve skeletons, the problem is
even harder, as these have no unique definition, not even in the continuous R3 space.

Such aspects make it hard to analytically compare, and reason about, the proper-
ties of the produced skeletons. As such, qualitative comparisons have been proposed.
In 2007, Cornea et al. compared four curve-skeletonization methods, one from each
class listed in Sec. 7.2.1. To facilitate the comparison, they also propose several qual-
ity criteria that skeletons should obey. Six years later, this comparison was extended
for six other contraction-based curve-skeletonization methods [207] (see also Chap-
ter 6). Schaap et al. proposed a quantitative comparison of 13 centerline extraction
algorithms for coronary artery datasets [193]. As reference, they use a centerline con-
structed by manual annotation by expert users. However, in contrast to the tubular
artery shapes considered in [193], manual construction of curve, and even more so
of surface, skeletons for general 3D shapes not feasible. A cursory scan over many
skeletonization papers shows that such method comparisons are very limited (see
Tab. 5). As such, more comparison studies are strongly needed to better understand
the strengths and limitations of existing methods.
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7.3 M E T H O D S

We next describe a study that adds 4 surface and 6 curve skeletonization methods for
voxel shapes to the existing comparison surveys mentioned in Sec. 7.2. Section 7.3.1
presents the desirable criteria that we compare against. Section 7.3.2 introduces the
methods selected for comparison.

7.3.1 Comparison criteria

Following [59, 109, 203, 207], we focus on the following well-known quality criteria
for curve and surface skeletons:

Homotopy: The skeleton is topologically equivalent to the input shape (same number
of connected components, cavities, and tunnels).

Thin: The skeleton should be as thin as the sampling model used allows it. Voxel-
based skeletons should be one voxel thick, i.e., no 2× 2 foreground-voxel configura-
tions should exist.

Centered: For surface skeletons, this is equivalent to Eqn. 7.2. For curve skeletons,
no unique centeredness definition exists. An useful weak form of curve-skeleton cen-
teredness says that the curve skeleton should be a subset of the surface skeleton, since
the latter is by definition centered in the shape [109, 222, 228].

Smoothness: As centeredness, smoothness is hard to formally define. Surface skele-
ton manifolds are at least C 2 continuous [176, 203]. Curve-skeletons are centered
subsets thereof [222, 228]. Hence, it is arguable that curve skeletons should be also
per-branch C 2. In any case, curve skeletons should not exhibit curvature discontinu-
ities induced by the sampling of either the input surface or curve skeleton representa-
tion.

Regularization: Skeletons should capture fine-scale details, such as bumps or edges,
of the input shape. Users should be able to select the scale of significant details which
the skeleton should capture. All smaller-scale details are regarded as noise, and should
thus be eliminated. This criterion subsumes the so-called noise robustness and de-
tail preservation criteria. Since the definition of noise vs details is an application-
dependent scale issue, we chose to use here instead the criterion of regularization,
defined as the ability of user-controlled skeleton simplification [109, 151, 228].

Sampling robustness: The difference between skeletons computed for two voxel sam-
plings of a shape should be proportional with the input-sampling differences.

Scalability: Skeletonization methods should be able to extract skeletons of large
(10243 or similar) voxel volumes in (tens of) seconds on a modern PC with 16 GB
RAM.

7.3.2 Selected methods for comparison

To select actual methods, we used the following criteria:

• model: We study only voxel-based methods. Mesh-based methods were recently
separately covered in [207] (see also Chapter 6);
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• type: We chose methods in each class (distance-field, general-field, and thin-
ning). Geometric methods are not studied, as these typically use a mesh repre-
sentation;

• coverage: We chose to compare several methods not surveyed by [59];

• quality: We chose methods whose advertised features match the quality criteria
in Sec. 7.3.1, in particular, methods which can handle large voxel volumes;

• generality: We chose methods that handle any shapes, regardless of form,
complexity, or genus. In particular, this eliminates methods that cannot han-
dle shapes with tunnels, methods that only work for tubular shapes and/or
branch-less shapes;

• availability: We chose methods with a public (or easily replicable) implementa-
tion, so our results can be verified.

Using these criteria, we selected 6 curve skeletonization (CS) and 4 surface skele-
tonization (SS) methods, as follows (note that some methods produce both curve and
surface skeletons):

Integer Medial Axis transform (IMA, CS): Roerdink et al. proposed IMA, a
distance-field method that computes one feature point per voxel (also called single-
point feature transform [187]) of ∂Ω. Regularized surface skeletons are found as those
voxels whose 27-neighborhoods contain feature points located on ∂Ω further apart
than a user-given value γ , similar to the distance-and-angle regularization in [218].
IMA has a time complexity that is linear in the number of input voxels, is very simple
to implement, and can be easily parallelized.

Multiscale Skeletons (MS, SS and CS): Reniers et al. proposed MS [187], a general-
field method that computes the surface skeleton following Eqn. 7.2 using the feature
transform of [163]. Surface skeletons are regularized by an importance metric equal
to the length of the shortest path on ∂Ω between feature points. Curve skeletons are
detected as those surface-skeleton points admitting two different such shortest paths,
following [70], and regularized based on the area enclosed by the two shortest paths
mentioned above. Thresholding the importance delivers a hierarchy of nested skele-
tons describing the shape at different scales. Skeleton connectivity is implied by the
conjectured, but not proved, monotonicity of the importance metric.

Hamilton-Jacobi Skeletons (HJ, SS and CS): Siddiqi et al. proposed HJ, one of
the first general-field methods. HJ detects medial points, which coincide with the
shocks of the grassfire flow, as points where the average outward flux of the distance-
transform gradient is non-zero [204]. A flux-ordered homotopy-preserving thinning
is used to simplify the surface skeleton. With sufficient simplification, curve skele-
tons are obtained. The idea has been further enhanced with subpixel flux calculations
andimproved with error correction in areas of large curvature [14]. To our knowledge,
this enhancement has only been tested for 2D shapes. We implemented the curvature-
correction enhancement for 3D shapes for our comparison.

Distance-Driven Skeletonization (DDS, CS): To extract surface skeletons, Arcelli
et al. combine iterative thinning and distance-field methods to remove non-skeletal
voxels while updating the distance transform based on a 〈3,4,5〉 scheme [11]. From
these, curve skeletons can be further extracted by a similar thinning based on several
heuristics that approximate the distance transform DT∂S of the surface skeleton bound-
ary ∂S over the surface skeleton S. Both skeleton types are further regularized by an
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importance metric similar in concept with, but implemented differently from, the col-
lapse metric in [187]. DDS guarantees connected, voxel-thin, and rotation-invariant
skeletons.

Thinvox (TV, CS): TV implements the 3D directional thinning proposed by Pálagyi
and Kuba [171] to compute curve skeletons. Several computational optimizations are
added, including GPU acceleration. TV is part of the binvox package [166]. Given the
wide popularity and usage of binvox, we included TV in our comparison.

Iterative Thinning Process (ITP, SS and CS): Ju et al. compute, with ITP, skele-
tons of volumetric models by alternating thinning and a novel skeleton pruning rou-
tine [117]. ITP creates a family of skeletons parameterized by two user-specified val-
ues that determine respectively the size of curve and surface features on the skeleton.
The method was, however, tested mainly on tubular-and-thin-plate shapes.
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Figure 7.2: Regularization of curve skeletons (top 4 rows) and surface skeletons (bottom 3
rows). See Sec. 7.5.1.

Robust Thinning (RT, CS): In [149], Liu et al. propose RT, a thinning method that
works on cell-complex representations built using voxelization techniques. RT uses a
‘medial persistence’ importance metric that discriminates object parts with different
anisotropic elongations, e.g., tubes or plates, similar to ITP [117]. Based on medial
persistence, RT can produce a continuum between surface-and-curve skeletons and
‘pure’ curve skeletons, and is claimed to be more robust to noise than ITP. In our
comparison, we used only the curve skeletons produced by RT, as the other tested
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methods do not produce mixed skeletons.

7.4 C O M PA R I S O N M E T H O D O L O G Y

We used the selected methods to extract curve and surface skeletons from a set of 38
shapes available in PLY mesh format. Shapes range from simple to very complex in
terms of topology (branches and tunnels), surface detail, number of triangles (30K to
over 1M), and cover both synthetic and natural objects. Figure 7.1 (left column) shows
a selection. First, we used binvox [166] to voxelize the shapes to several resolutions
ranging from 1283 to 10243 voxels. Next, we ran each method on each voxel shape,
tuning the method’s regularization parameters (if any) so as to (a) eliminate spurious
(noise) branches but (b) keep detail branches. In total, several hundreds of skeletoniza-
tion runs were performed. Finally, for each method, and based on the values found in
the previous pass, we chose a fixed set of parameter values that gives overall good re-
sults. These values were next used for all shapes treated by the respective method. Ob-
taining such results was quite easy for all studied methods, except ITP-curve, where
we could not always eliminate spurious branches and keep important ones intact at the
same time for all studied shapes. For testing, we used two 3.5 GHz, PC with 32GB
RAM, running Windows 7 and Linux respectively, depending on the requirements of
each method’s implementation. The datasets and software implementations used are
publicly available at [209].

7.5 R E S U LT S

Our results include two parts: A global comparison (Sec. 7.5.1) and a detailed com-
parison (Sec. 7.5.2). Both are described next.

7.5.1 Global comparison

Homotopy: All studied SS methods captured well the input shape topology, including
protrusions and tunnels, and delivered connected skeletons (Fig. 7.1, 4 right columns).
The only method that had issues here was ITP. The frog model (Fig. 7.1, bottom row)
is an example of such issues: Although the input is of genus 0, the ITP surface skele-
ton exhibits a number of small spurious holes in the leg regions (Fig. 7.1, detail D).
For curve skeletons, we see more variation: For most tubular shapes, all CS methods
produce skeletons which match the input’s topology. For non-tubular shapes, like
rockerarm and casting, the topology of the produced results varies widely. The frog
model is also the most challenging for CS methods: Although the model is relatively
smooth and has, in most areas, a tubular structure, the computed curve skeletons vary
strongly between all methods.

Thin: For our methods, this criterion implies one-voxel-thin skeletal manifolds and
curve skeletons. Visual inspection shows that not all methods satisfy this. For surface
skeletons, MS and HJ exhibit small-size thick clusters of several voxels around the
manifold Y-intersection curves. IMA and ITP-surface perform the best. For curve
skeletons, all methods produce voxel-thin curves, except HJ and MS, which create
spurious thick surface fragments (see Fig. 7.1, details E, F on casting and frog). This
is explained by the fact that, in contrast to the other studied methods, HJ and MS do
not have an explicit thinning step or similar postprocessing to guarantee voxel-thin

94



7.5 R E S U LT S

R
e

n
ie

rs
 e

t 
a

l.
 (

M
S

)

s
u

rf
a

c
e

 s
k
e

le
to

n
s

J
u

 e
t 
a

l.
 (

IT
P

)

c
u

rv
e

 s
k
e

le
to

n
s

J
u

 e
t 
a

l.
 (

IT
P

)

s
u

rf
a

c
e

 s
k
e

le
to

n
s

L
iu

 e
t 
a

l.
 (

R
T

)

c
u

rv
e

 s
k
e

le
to

n
s

256
3
 voxels 512

3
 voxels 

S
id

d
iq

i 
e

t 
a

l.
 (

H
J
)

s
u

rf
a

c
e

 s
k
e

le
to

n
s

H
e

s
s
e

lin
k
 e

t 
a

l.
 

(I
M

A
)

A
rc

e
lli

 e
t 
a

l.

(D
D

S
)

P
a

la
g

y
i 
e

t 
a

l.

(T
V

)

S
id

d
iq

i 
e

t 
a

l.
 (

H
J
)

c
u

rv
e

 s
k
e

le
to

n
s

R
e

n
ie

rs
 e

t 
a

l.
 (

M
S

)

c
u

rv
e

 s
k
e

le
to

n
s

200
3
 voxels 300

3
 voxels 400

3
 voxels 500

3
 voxels 

A

B

C

D

E

In
p

u
t 
s
h

a
p

e

d
e

ta
il

tunnel

F

Figure 7.3: Sampling robustness of all studied methods for different voxel resolutions (see
Sec. 7.5.1).

skeletons.

Centered: Visual comparison of the four SS types computed shows that these appear
well centered within their input shapes. This may appear less evident for ITP (Fig 7.1,
rightmost column). However, closer inspection shows that ITP differs from the other
skeletons mainly around the boundaries of the skeletal manifolds, i.e., in regions
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where different methods use different degrees of simplification. In ‘core’ areas, ITP
skeletons are very similar to the other surface skeletons computed. For CSs, cen-
teredness differences range from small for simple models (horse, fertility) to visibly
large ones (rockerarm, frog). This is partially expected, since all studied methods
use different CS definitions. However, we also found CS fragments which arguably
cannot be centered within any reasonable centeredness definition – see e.g. details A,
B on rockerarm and frog, Fig. 7.1. To better assess centeredness, we propose detailed
skeleton comparison further in Sec. 7.5.2.

Smoothness: The studied four SS methods exhibit negligible differences in terms of
the smoothness of the extracted skeletal manifolds. In contrast, CS methods show a
wide variation here. DDS, TV, and MS produced overall very smooth CS branches
for all studied models. RT creates small-scale staircase effects, slightly larger than
the voxel resolution used. However, these can be easily eliminated by increasing
resolution. HJ creates several unexpected wiggles of various scales in the CS (e.g.
Fig. 7.1, details A, B, G on rockerarm, frog, and dino respectively). We could not
correlate the wiggles’ appearance with shape properties such as curvature, thickness,
smoothness, or voxel resolution. A possible explanation of these effects is that HJ is
mainly designed to compute (simplified) surface skeletons. Highly simplifying these
skeletons can produce curve skeletons, but the simplification order is only constrained
by homotopy preservation. As such, HJ cannot guarantee that a skeletal manifold gets
simplified with equal speed from all its boundaries inwards. When this does not hap-
pen, CS structures will still be contained by the SS, but not centered with respect
to the SS boundaries. Finally, ITP creates coarse-scale staircase artifacts along CS
branches (e.g. Fig. 7.1, rockerarm, detail H). This can explained by the fact that,
unlike e.g. DDS or TV, ITP does not impose any geometry-based voxel removal order
order during the thinning process.

Regularization: All studied SS and CS methods, except TV and DDS, offer one or
more parameters to eliminate skeleton branches corresponding to small-scale noise on
the input shape. TV does not need such a parameter for its curve skeletons, as these
are noise-resistant by construction [171]. The DDS implementation we obtained from
its authors uses the fixed simplification values indicated in [11]. To assess, in a global
manner, the ease of noise elimination, we showed in Fig. 7.1 the results obtained by
using a fixed set of regularization parameters, determined as described in Sec. 7.4.

Further increase of the simplification level should keep the most important skeletal
branches, eliminating less important ones. To study the effect of the regularization
parameters on simplification, we next varied these parameters for each method in
order to progressively simplify the produced skeletons. Figure 7.2 shows this for four
progressively simplified instances of the dragon skeleton for seven of the studied
methods. Here, as we increase simplification, we notice growing differences between
the studied methods. Among CS methods, MS and ITP offered the most intuitive way
to eliminate small-scale details and keep the main skeleton structure. HJ-curve was the
hardest to control: Too little simplification preserves spurious branches, such as the
clearly not-centered branch on the dragon’s back (Fig. 7.2, detail A). Increasing sim-
plification removes this branch, but also looses important skeletal structures such as
the dragon’s legs and tail, which is an undesired effect (Fig. 7.2, details B, C). Among
SS methods, MS and IMA simplify quite similarly, the effect being of removing SS
voxels in increasing distance from the SS boundary. However, higher simplification
values disconnect the IMA SS (Fig. 7.2, detail D). In contrast, MS never discon-
nected the SS, even for high simplification values. Simplifying HJ-surface skeletons
also proved quite challenging: The divergence-based importance used by HJ is good
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for removing small-scale noise, but produces arguably incorrect results, like genus
changes, when higher values are used (Fig. 7.2, bottom row). The explanation resides
in the fact that the divergence metric does not have a monotonic evolution from the
SS boundary inwards, but can exhibit various local maxima [14].

Sampling robustness: Figure 7.3 shows CS and SS results from the studied methods,
each ran on several instances of dragon, sampled at resolutions between 2003 and
5123 voxels. For RT, we only used 2563 and 5123 voxels, since this method admits
only power-of-two resolutions. We chose dragon for testing, as it is the shape having
the highest amount of complex surface detail from our studied model collection. Reg-
ularization is tuned so as to obtain the visually most similar results for all methods.
For both SS and CS methods, we see that, as resolution increases, progressively more
skeletal details get captured, as expected. For SS methods and also for TV, MS-curve,
and RT, as resolution increases, the overall skeleton shape does not change signif-
icantly. However, methods that not enforce homotopy (IMA and MS-curve) show
skeleton disconnections at lower resolutions (Fig. 7.3, details A-C). These disappear
when resolution is increased. The situation is more subtle for the remaining CS meth-
ods: HJ-curve, DDS, and TV show small-scale branch twists, and even topological
events (loops) which appear and next disappear as resolution changes (Fig. 7.3, de-
tails D, E, F). Upon closer inspection, we see that these loops are correct, as they
correspond to a tunnel in the input shape. In contrast, the lack of such a tunnel for
MS is incorrect. For ITP-surface and ITP-curve, a large part of the SS, respectively
CS structure varies with resolution in a hard-to-control manner. We also note that we
could not run all methods for all resolutions – the empty places for MS and ITP in
Fig. 7.3 correspond to resolutions for which the respective implementations crashed
for the dragon model.

Scalability: Table 6 presents computational aspects of the tested methods for the mod-
els in Fig. 7.1. The same information is presented in Figure 7.4 by means of two
graphs, one for speed and other for peak memory, for a better understanding. To make
results independent of the input shape and its sampling, we computed Speed as the
number of processed input foreground voxels per millisecond. This way, background
voxels, which do not request computations in the tested methods, are ignored. In con-
trast, Memory gives the peak memory usage divided by the input volume size (voxels)
for normalization, since the studied methods allocate data arrays of the size of the en-
tire input volume (foreground and background voxels). Intuitively, Speed can be seen
as the throughput of a given method, while Memory can be seen as the space cost
per input voxel. The tested volumes range between 1283 and 10243 voxels. For HJ,
we include a single measurement for both the curve and surface skeletons, since both
are computed using the same algorithm, the difference being only the simplification
level applied as postprocessing. Absolute memory usage ranges from 1.5 GB (IMA,
fertility) to 23.7 GB (HJ, elephant).

Several observations can be made. First, TV and IMA are the fastest methods. Even
if factoring the possible lack of optimizations in the slower methods, this can be ex-
plained by the fact that TV and IMA use quite simple algorithms. More interestingly,
we see that the throughputs of all methods are relatively uniform, less so for HJ and
MS. This indicates that most studied methods scale computationally well. For HJ, this
can be explained by the particular homotopy-preserving thinning used, whose com-
plexity depends on the number of detected skeleton end-points [14]. For MS, this is
explained by the regularization metric used, which requires computation of geodesics
between skeletal feature points. Both above operations are, indeed, strongly depen-
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14.7
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148

38.32
148

62.5
14.2
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127

D
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61.2
24.6

10.6
46.8

14.8
597

10.8
175

25.7
127

7.2
135

27.2
120

45.8
11.9

25.7
127

Fertility
133.0

27.7
13.2

43.3
30.9

507
16.8

204
51.9

144
15.4

165
25.6

171
158.0

14.3
51.9

144

R
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111.4
28.4

14.3
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52.3
270

22.3
203

51.9
114

17.9
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C
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E
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42.3
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203

43.8
120

20.8
153

30.4
174

109.7
14.3

42.2
120
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123.0

31.8
12.9

47.12
54.1

240
16.0

183
48.1

126
10.5

168
63.3

125
148.5

12.8
65.6

122
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dent on the input’s shape, and not only on its size. Memory-wise, we see quite large
differences: Here, again, TV and IMA require less than one order of magnitude less
memory than the most expensive method, HJ. As for speed, this is explained by the
relative simplicity of TV and IMA as compared to general-field methods – the former
need only two such fields (input volume and skeleton), while the latter typically need
to store many 3D floating-point fields over the entire volume.

A different outlier is visible for the dragon dataset, which is markedly slower to
process than the other considered models. As dragon is the model having by far the
most amount of surface detail, it will generate the most complex skeletons in terms of
number of medial sheets or curves. Our observation that speed is related to skeleton
complexity matches the similar separate observations in [58, 187]. However, we also
see that the DDS and RT methods are less affected by the dragon model complexities
in terms of performance. Although these methods are, on average, slower than the
fastest considered methods, their throughput is much more stable, i.e. fluctuates less,
for different models. This stability is an advantage in practice, as it allows one to
estimate upfront the computational time required by for skeletonizing a given model.

7.5.2 Detailed comparison

The global comparison presented in Sec. 7.5.1 outlines differences between the stud-
ied methods in terms of all criteria in Sec. 7.3.1, except centeredness. Assessing cen-
teredness differences from image pairs is harder, since such differences can be small-
scale, local, and subtle. We next propose a visualization method that addresses the
following centeredness questions:

• Given two surface skeletons SS1 and SS2, or two curve skeletons CS1 and CS2,
which are the differences?

• Given a surface skeleton SS1 and a curve skeleton CS2, how well is CS2 con-
tained in SS1?

Given two (curve or surface) skeletons S1 and S2, sampled over the same volume, we
first define the scalar distance field

D12(x ∈ R3) =

{
miny∈S2 ‖x−y‖= DTS2(x) if x ∈ S1
0 if x 6∈ S1

To compare two skeletons of the same kind (CS1 vs CS2, or SS1 vs SS2), we draw the
field D12+D21 over the voxel union S1∪S2, normalized by its maximum value, using
a rainbow (blue-to-red) colormap. Voxels in a skeleton which are close to the other
skeleton are blue. Note that D12(x) = D21(x) = 0,∀x ∈ S1 ∩ S2. Voxels in a skeleton
which are far away from the other skeleton are red (see Fig. 7.5, inset). Comparing a
curve skeleton CS1 with a surface skeleton SS2 is done differently, since we now want
to show how well is CS1 contained within SS2. For this, we color voxels in CS1 with
D12, and voxels in SS2 \CS1 with gray. Voxels in CS1 which are included in SS2 are
blue. Voxels in CS1 far from SS2 become red.

Figure 7.5 shows a subset of the performed comparisons, for several method-pairs,
for the dragon model, at 5003 resolution. Each row i or column j corresponds to a
method; the image (i, j) shows the comparison of the skeleton-pair (Si,S j). Figure 7.6
shows the aggregated maximum and average distances between the considered skele-
ton pairs (Si,S j) for five different sampling resolutions. All distances are given as
functions of the voxel size at resolution 1003, e.g., the size of a voxel at resolution

99



C U RV E A N D S U R F AC E S K E L E T O N C O M PA R I S O N

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160
Speed

Shapes

S
p

e
e

d

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600
Memory

Shapes

p
e

a
k

 m
e

m
o

ry
, (

b
y

te
s/

v
o

xe
ls

)

Figure 7.4: Top: Peak memory usage (bytes per voxel) for different skeletonization methods
for the 8 shapes discussed in Tab. 6. Bottom: Skeletonization speed (number of
foreground voxels processed per second) for the same methods and shapes.

2003 is 1/2, the size of a voxel a resolution 3003 is 1/3, and so on, so that we can
assess how distances change with resolution. From Figures 7.5 and 7.6, the following
observations can be made.

Surface-vs-surface: Surface skeletons are very similar with each other, except at tips
– see e.g. Fig. 7.5 (HJ vs IMA), which has an overall (dark) blue color. We noticed the
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same similarity in the other SS-vs-SS comparisons we did (not shown here for sake
of space). The red tips in Fig. 7.5 (HJ vs IMA) indicate minor differences in terms
of a few skeleton boundary voxels. These are expected given the different pruning
heuristics of the considered methods. The fact that surface skeletons are quite similar
strengthens (but does not prove) our hypothesis that centeredness is well captured –
indeed, it would be surprising that methods using fundamentally different principles
would yield the same errors.

Curve-vs-curve: Curve skeletons exhibit largest differences in terminal and central
regions. In terminal regions, one skeleton can be longer than the other, as shown by
the red tips of several skeleton branches. As for the SS-vs-SS case, this is due to the
different pruning heuristics of the studied methods, and is an expected result which
does not show lack of centeredness. However, along the dragon’s central rump region,
curve skeletons follow parallel, but quite different, paths. This means that at least
one of the studied curve skeletons is poorly centered. This is a less expected insight,
which cannot be inferred easily from the typical curve-skeleton images shown in
typical skeletonization papers.

Curve-vs-surface: A perfect CS-in-SS inclusion is achieved only by the HJ curve and
surface skeletons (CS voxels are all dark blue in Fig. 7.5, HJ-curve-vs-HJ-surface).
This is expected, as both the CS and SS are computed by the same base method (HJ).
For all other studied cases, we see a number of warm-colored curve-skeleton vox-
els (e.g. Fig. 7.5: TV-vs-HJ-surface, TV-vs-IMA, DDS-vs-IMA). Highest differences
occur at skeleton tips, which is expected, as already explained. However, the pair HJ-
surface-vs-TV shows such red voxels also deep inside the curve skeleton. Overall, we
conclude that curve skeletons are generally well centered with respect to the medial
surface, but less well centered within this surface.

Resolution: Figure 7.6 shows the variation of the maximal and average distances be-
tween the compared skeleton pairs for sampling resolutions ranging between 1003 and
5003 voxels. Several observations can be made. On average, the compared skeletons
are quite close to each other (1 to 2 voxels), but the maximal distances can be large
(up to 11 voxels). The minimal distances (not shown in the figure) are zero, for all con-
sidered skeleton-pairs. As resolution increases, most (but not all) compared skeletons
tend to become closer, both in terms of average and maximal distances. This is not
surprising, since higher resolutions should allow a finer-grained placement of skele-
ton voxels, thus a better approximation of the actual skeletal locus. However, as the
measured differences do not monotonically decrease with resolution in all cases, this
suggests that there exist structural differences between the skeletons computed by the
studied methods, which cannot be solved simply by a finer sampling. Interestingly,
HJ-surface is the method which participates in the most similar skeleton-pairs, both in
terms of average and maximal distances, for all resolutions. Conversely, IMA partici-
pates in the least-similar skeleton pairs. If we assume that all methods are, statistically
speaking, equally valid with respect to centeredness, this implies that HJ-surface de-
livers a well-centered ‘consensus’ skeleton, and IMA delivers an outlier, far less well
centered, skeleton.

7.6 D I S C U S S I O N

Several points emerge from our comparison, as follows:
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Figure 7.5: Detailed pair-wise comparison of curve vs curve, curve vs surface, and surface vs
surface skeletons. Inset shows color mapping method.

Best method: First, let us stress that the aim of our comparison was not to designate
the ‘best’ skeletonization method, but to highlight pro’s and con’s of the studied
methods with respect to a set of accepted quality criteria. From this viewpoint, no
CS or SS method can be seen as optimal with respect to all considered criteria. For
surface skeletons, all methods create well-centered, noise-free, skeletons. Noise (or
detail) removal is the most intuitive with MS. The other studied methods can remove
noise or details, but are less intuitive to control (produce disconnections, modify the
topology, or remove skeletal parts which one may regard as ‘core’ to the skeleton).
For curve skeletons, DDS and TV are simple to use (require no parameters), and
produce clean, noise-free, but still detailed, and reasonably smooth, curve-skeletons.
However, they offer less freedom for skeleton simplification. MS-curve arguably pro-
duces the smoothest curve-skeletons, but does not guarantee voxel-thickness. IMA
produces centered, smooth, skeletons, and is very simple to use, but has less intuitive
simplification parameters. HJ can produce high-quality surface skeletons. However,
HJ cannot produce centered curve skeletons for more complex shapes, and also has
a less intuitive simplification control. Performance-wise, TV and IMA are the fastest
methods, and the least demanding in memory terms. However, the differences with
the other studied methods are not that large so as to warrant a clear winner. To aid in
doing this comparison, Table 7 summarizes the observed qualitative behavior of the
studied methods with respect to the skeletal desirable criteria, based on the five-point
ordinal quality scale introduced earlier in Sec. 6.5.

Criteria: The covered comparison criteria are clearly not exhaustive. Additional ones
exist, e.g., skeleton invariance to isometric transformations of the input shape [11, 59]
and input reconstructibility from the skeleton [11, 109]. Given the available space, we
chose to focus in more depth on a smaller number of criteria. Studying how CS and
SS methods perform on additional criteria is subject for separate future work.

Methods: Our selection of compared methods cannot cover all existing CS and SS
techniques in existence, so our findings cannot be directly generalized to any method.
However, our comparison outlined several non-evident challenges of a good repre-
sentative subset of recent methods. Most of the studied methods could extract curve
and surface skeletons from a large variety of complex shapes. However, we also
discovered several problems with respect to all considered quality criteria (except
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Figure 7.6: Average and maximal distances between skeletons computed by different methods
at different resolutions (see Fig. 7.5).

scalability), which are visible only for certain combinations of complex input shapes
and method-specific parameter settings. As such, we argue that more comparative
studies are required for a better understanding of the added value and limitations of
skeletonization methods.

Standard: The various discretization and regularization techniques used in skele-
tonization algorithms, together with the lack of a unique formal CS definition, make
comparisons of a given algorithm with a ‘gold standard’ difficult. Evident problems,
such as thick or disconnected skeletons, are easy to check for. However, checking
criteria such as smoothness, noise robustness, and CS centeredness, is much harder.
As such, the question of what is the ‘correct’ skeleton of a given shape is very hard
to answer in general. Rather than trying to answer this question, we advocate a com-
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Table 7: Qualitative evaluation of skeletonization methods.
Methods against Criteria

Methods Homotopy Thin Centered Smoothness Regularization Sampling
robustness

Scalability

TV Good Best Best Best - Best Bad
DDS Good Best Best Best - Best Good
HJ curv. Satisfactory Good Best Satisfactory Satisfactory Best Satisfactory
RT Good Best Best Good Best Bad Satisfactory
ITP curv. Good Best Best Good Best Bad Satisfactory
MS curv. Satisfactory Good Best Good Best Bad Satisfactory
MS surf. Best - Best Good Best Good Satisfactory
HJ surf. Best - Best Good Satisfactory Best Satisfactory
IMA Best - Best Good Good Good Bad
ITP surf. Satisfactory - Best Satisfactory - Bad Satisfactory

parative approach that highlights differences between several skeletonization methods
with respect to input shape, input resolution, and simplification parameters.

7.7 C O N C L U S I O N

In this chapter, we presented a comparison of six curve-skeletonization and four
surface-skeletonization methods using voxel models. Compared to existing surveys
in the area [59, 207], we extend insights by discussing ten methods (not covered
by previous surveys) with respect to established quality criteria for curve and sur-
face skeletons. We compare methods on a range of 3D shapes ranging from simple
to complex, covering both natural and synthetic forms, and consider the effects of
several parameters such as simplification level and input resolution on the obtained
skeletons. We include also a quantitative performance in terms of speed and memory
requirements. Finally, we propose a detail visualization able to highlight small-scale
centeredness differences between curve and surface skeletons. Our work highlights
challenges of, and differences between, existing 3D skeletonization methods which to
our knowledge have not been highlighted in the literature. On a higher level, our re-
sults expose several limitations of current skeletonization methods and underline the
need for future work towards extending such comparisons and also towards creating
better methods.

Future work in skeletonization comparison involves including additional methods
and quality criteria in this comparison. On a more theoretical level, a promising di-
rection is to devise new metrics for the quantitative comparison of the desired quality
criteria in ways that help algorithm designers pinpoint and next solve causes for cur-
rent limitations of such methods.

The joint comparisons performed in this chapter and Chapter 6 cover, fundamen-
tally, all types of skeletons (curve and surface) and spatial samplings (mesh-based and
voxel-based), except mesh-based surface skeletons. For this latter category, a separate
comparison is not required, as very few such methods exist [109, 151, 159]. These
methods are further compared in [109], and the results of this comparison indicate
that all these methods are far from trivial to implement. As such, we rule them out as
potential candidates for our shape restoration use-case.

This chapter is based on:

A. Sobiecki, A. Jalba, and A. Telea Comparison of curve and surface skeletonization methods for voxel
shapes. Pattern Recognition Letters, 47:147–156, 2014.
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The joint comparisons performed in Chapters 6 and 7 assessed sixteen skeletoniza-
tion methods from the perspective of well-known quality criteria for skeletons and
skeletonization methods. The general conclusion of this extended comparison work
is that no single skeletonization method complies with all our desirable features. In
addition, existing mesh-based surface skeletonization methods [109, 151, 159] are
challenged by too complex implementations to be practical for our context where
we require a simple to use and deploy tool. In addition to the above, we note that
the multiscale regularization requirement is satisfied by a small minority of meth-
ods [80, 109, 168, 187, 229]. Interestingly, all these methods use the same conceptual
idea of collapsed boundary importance (see Sec. 2.2.2), but each method proposes a
different formulation of how to define and compute this importance. This makes com-
paring such methods additionally difficult. In this chapter, we aim to jointly solve the
problems of (a) lack of an optimal 3D skeletonization method for our shape restora-
tion use-case, and (b) lack of unified multiscale regularization of all existing skeleton
types (2D planar, 3D curve, and 3D surface).

8.1 I N T RO D U C T I O N

Skeletons, or medial axes, are shape descriptors used in virtual navigation, shape
matching, shape reconstruction, and shape processing [203]. 3D shapes admit two
types of skeletons. Surface skeletons are 2D manifolds which contain the loci of
maximally-inscribed balls in a shape [176, 203]. Curve skeletons are 1D curves which
are locally centered in the shape [58]. Surface-skeleton points, with their distance to
the shape and closest-shape points, define the medial surface transform (MST), used
for animation, smoothing, and matching [13, 17, 79].

Many methods exist for computing 2D skeletons [79, 168, 229], 3D surface skele-
tons [102, 187, 204, 216], and 3D curve skeletons [15, 70, 98, 221]. Although recent
methods demonstrate high accuracy, insensitivity to noise, and computational effi-
ciency, several challenges remain open. We focus here on two modeling challenges,
as follows. First, 2D skeletons, 3D surface skeletons, and 3D curve skeletons are typi-
cally extracted, and next simplified, using different methods and metrics. This makes
the comparison and the formal reasoning about the properties of the extracted skele-
tons difficult. Secondly, few (if any) methods offer a continuous multiscale representa-
tion that addresses all skeleton types, i.e., a model which encodes both the geometric
importance of any skeleton point (useful for simplifying, or regularizing, noisy skele-
tons) and the type of skeleton point (non-skeleton, surface skeleton, or curve skeleton).

In this chapter, we present a framework for 2D and 3D curve-and-surface skele-
tonization that addresses the above two goals. We model both the skeleton detection
and its importance using an advection principle that collapses mass from a shape
boundary to its skeleton and next to the skeleton center (in 2D); and from the bound-
ary to the surface skeleton, next to the curve skeleton, and finally to the latter’s center
(in 3D). This allows us to detect all types of mentioned skeletons, and also to regular-
ize them, e.g., to remove detail branches, via a single model and a simple thresholding
operation. We propose a single algorithm that unifies skeleton detection and regular-
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ization in 2D and 3D, and also establishes a formal connection between surface and
curve skeletons. Our method is simple to implement, computationally efficient, and
easy to use. We show that our results are very similar to the ones produced by several
existing 2D and 3D skeletonization methods on a set of complex shapes.

The structure of this chapter is as follows. Section 8.2 reviews related work. Sec-
tion 8.3 presents our skeletonization method. Section 8.4 details our method’s imple-
mentation. Section 8.5 compares our results with one 2D, six 3D surface, and 11 curve
skeletonization methods. Section 8.6 discusses our results. Section 8.7 concludes the
chapter.

8.2 R E L AT E D W O R K

Given a shape Ω ⊂ Rn, n ∈ {2,3} with boundary ∂Ω, we first define its Euclidean
distance transform DT∂Ω : Rn→ R+

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖. (8.1)

The skeleton, or medial axis, of Ω is next defined as

SΩ = {x ∈Ω|∃f1,f2 ∈ ∂Ω,f1 6= f2,‖x−f1‖= ‖x−f2‖= DT∂Ω(x)} (8.2)

where f1 and f2 are the contact points with ∂Ω of the maximally inscribed balls in
Ω centered at x [93, 187]. The points f1 and f2 are called feature transform (FT)
points [217]. The vectors f− x are called spoke vectors [215]. For n = 2, SΩ is a set
of curves which meet at the so-called skeleton junction points [79]. For n = 3, SΩ is
a set of manifolds with boundaries which meet along a set of so called Y-intersection
curves [48, 66, 141].

In contrast to 2D and surface skeletons (Eqn. 8.2), 3D curve skeletons CSΩ admit
many definitions [58], implemented by a wide variety of methods (discussed further
below). As such, a formal relationship between SΩ and CSΩ is still not unanimously
accepted. For instance, although it is commonly accepted that CSΩ should be centered
within SΩ, only few skeletonization methods use and/or enforce this property [187,
228].

Skeletons can be computed by various methods, as follows.

Thinning: Thinning removes ∂Ω voxels (or pixels in 2D) while preserving connec-
tivity [18, 171, 179]. Although simple and fast, thinning can be sensitive to Euclidean
transformations.

Field methods: These methods find SΩ along singularities of DT∂Ω or related
fields [91, 102, 125, 142, 189, 229, 237] and can be efficiently done on GPUs [41,
217, 218]. General-field methods use fields smoother (with fewer singularities) than
distance transforms [5, 13, 58, 98], and thus are more robust for noisy shapes. Siddiqi
et al. find the skeleton as the non-zero divergence locus of ∇DT∂Ω [204]. However,
∇ · (∇DT∂Ω), with ∇· the divergence operator, can be non-zero also at non-skeletal
points. Torsello and Hancock correct this for a more accurate 2D skeleton detection by
a momentum conservation principle ∇ · (ρ∇DT∂Ω) = 0, where ρ is the mass density
on the evolving boundary ∂Ω [14]. Rossi and Torsello extend this idea to compute 3D
surface skeletons [188]. However, this method does not compute curve skeletons and
does not model the curve-surface skeleton relationship.

Mesh-based methods: Field methods volumetrically sample Ω, which can be ex-
pensive memory-wise. Mesh-based methods use a surface sampling of ∂Ω, which
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allows processing higher-resolution shapes. Mesh methods include Voronoi diagrams
to compute polygonal skeletons [71]. Amenta et al. compute the Power Crust, an
approximation of a surface and its medial axis by a subset of Voronoi points [8].
Other methods use edge collapses [146], starting from a mesh segmentation [120].
Surface skeletons can be extracted from oriented point clouds [109, 151] or poly-
gon meshes [141, 161] by searching for maximally inscribed balls tangent at at least
two shape points. Curve skeletons can be extracted from point clouds as centers
of cloud projections on a cut plane which optimizes for circularity [221]. Contrac-
tion techniques are a separate subclass of mesh methods. Like field techniques, they
evolve ∂Ω under various types of normal flows, effectively collapsing it onto the
surface-or-curve skeleton. Methods using a (constrained) Laplacian contraction by
mean curvature flow deliver high-quality curve skeletons [15, 40, 52], or even ‘meso
skeletons’ mixes of surface and curve skeletons [222]. A different approach is taken
by Jalba and Telea who contract the surface skeleton to compute its curve skeleton
counterpart [228]. A recent review of contraction methods is given in [207].

Multiscale skeletons: Clean skeletons are extracted from noisy shapes by threshold-
ing importance measures ρ : Ω→R+. This prunes skeletal branches caused by small
details [66, 199]. We distinguish between local and global measures [159, 187]. Lo-
cal measures cannot separate locally-identical, yet globally-different, contexts (see
e.g. [187], Fig. 1). Thresholding local measures can disconnect skeletons. Reconnec-
tion needs extra work [155, 176, 204, 218], and makes pruning less intuitive [199]. Lo-
cal measures include the angle between the feature points and distance-to-boundary [8,
86, 218], divergence-based [36, 204], first-order moments [189], and points where
∇DT∂Ω is multi-valued [215, 216]. Leymarie and Kimia topologically simplify point-
cloud skeletons to capture Y-intersection curves and skeleton sheet boundaries in me-
dial scaffolds [141]. A good survey of such methods is given in [203].

Global measures monotonically increase from the skeleton boundary ∂SΩ inwards.
Thresholding them yields connected skeletons which capture skeleton details at a user-
given scale. Miklos et al. approximate shapes by unions of balls (UoB) and use UoB
medial properties [94] to simplify skeletons [159]. Dey and Sun introduce the me-
dial geodesic function (MGF), equal to the shortest-geodesic length between feature
points [70, 178]. Reniers et al. [187] extend the MGF for surface and curve skeletons
using geodesic lengths and surface areas between geodesics, respectively, inspired by
the so-called collapse metric used to extract multiscale 2D skeletons [79, 168, 229]. A
fast GPU implementation of this extended MGF is given in [109].

The MGF and its 2D collapse metric counterpart have an intuitive geometric mean-
ing: They assign to a skeleton point p the amount of shape boundary that corresponds,
or ‘collapses’ to, p by some kind of boundary-to-skeleton mass transport. Skeleton
points p with low metric values correspond to small-scale shape details or noise;
points p with large metric values correspond to large-scale shape details. This allows
an easy simplification of the skeleton: Thresholding by a value τ eliminates all skele-
ton points which encode less than τ boundary length or area units. If the collapse
metric monotonically increases from the skeleton boundary to its center, thresholding
delivers a set of connected and nested skeleton approximations, also called a multi-
scale skeleton [70, 79, 187, 229].

8.3 P RO P O S E D F R A M E W O R K

8.3.1 Preliminaries

Following the above, we aim to create a single model that
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1. unifies the representation and detection of 2D skeletons, 3D surface skeletons,
and 3D curve skeletons;

2. computes a monotonic, global importance metric for 2D and 3D skeleton regu-
larization and simplification;

Conceptually, we aim to capture the desirable properties of the 2D and 3D boundary
collapse metric [79, 168, 187, 229] in a single model, and also connect contraction-
based and distance-field based methods in a single framework. Practically, we aim at
a single, easy to implement and use, and computationally efficient method that extracts
and regularizes all skeleton types.

To achieve this, we first introduce our unified skeleton definition: Given a shape
Ω ∈ Rn∈{2,3}, we aim to compute an importance function λ : Ω→ R+ so that the
threshold sets λτ = {x ∈ Ω|λ (x) ≥ τ} capture all existing skeleton types and all
their simplifications. Specifically, we want λ0 to be the full input shape Ω; λε (for
a small ε > 0) to be the full (unsimplified) surface skeleton SΩ, which implies that
λ (x) = 0,∀x /∈ SΩ. As τ increases, we want λτ to be progressively simplified surface
skeletons, and as τ increases even further, progressively simplified curve skeletons.
In the limit, when τ = maxx∈Ω λ (x), we want λτ to be a single point (for genus 0 ob-
jects), which we next call the shape center CΩ. This process can be seen as a ‘recursive’
skeletonization which computes the surface skeleton from the input shape, the curve
skeleton from the surface skeleton, and the shape center from the curve skeleton. All
skeletons λτ should satisfy the well-known desirable properties – centeredness, ro-
tational invariance, homotopy to the input shape Ω, noise robustness, one-pixel (in
2D) and one-voxel (in 3D) thickness, inclusion of the curve skeleton in the surface
skeleton, and computational efficiency [58, 207, 210].

8.3.2 Physically-based skeletonization model

For a shape Ω ∈ Rn∈{2,3}, we model our unified skeletonization as a contraction of
Ω on whose boundary mass is distributed with unit density. Contraction is described
by three fields: φ(x, t), ρ(x, t), and u(x, t), with x ∈ Ω, and with t ∈ R+ being the
time parameter, as follows. Similar to phase-field models [30], the field φ → [−1,1] is
1 inside Ω and -1 outside, so that the boundary of the contracting shape is implicitly
given by Γt = {x ∈ Ω |φ(x, t) = 0}. For now, we assume that φ varies abruptly and
monotonically over [−1,1] in a small vicinity around Γt . The field ρ → R+ gives the
mass density of Γt . Finally, u→ Rn gives the contraction direction of Γt .

Our contraction is described by a system of three PDEs:

∂ρ

∂ t
+∇ · (ρu) = 0, (8.3)

∂φ

∂ t
+u ·∇φ = 0, with Γt ∼= Γ0, (8.4)

u =
∇φ

‖∇φ‖ . (8.5)

Equation 8.3 imposes mass conservation on the shrinking boundary. Equation 8.4
models boundary contraction with the topological homeomorphic constraint Γt ∼= Γ0.
This ensures that the computed skeletons are homotopic to the input shape ∂Ω = Γ0.
Equation 8.5 imposes inwards contraction of our shape, with unit speed in normal
direction to Γt .
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Eliminating u from Eqns. 8.3-8.5, we obtain

∂ρ

∂ t
=−∇ρ · ∇φ

‖∇φ‖ −ρ∇ · ∇φ

‖∇φ‖ =−∇ρ · ∇φ

‖∇φ‖ −ρκ (8.6)

∂φ

∂ t
+‖∇φ‖= 0, with Γt ∼= Γ0 (8.7)

where κ is the (mean) curvature of Γt .
Equations 8.6-8.7 are supplemented by the initial conditions

φ(x, t = 0) =

1, if x ∈Ω

−1, if x /∈Ω

(8.8)

ρ(x, t = 0) =

1, if x ∈ ∂Ω

0, if x /∈ ∂Ω.
(8.9)

Let us define the time-of-arrival function T : Ω→ R+ so that

φ(x, t) = T (x)− t. (8.10)

Hence, Γt = {x ∈ Ω |T (x) = t}, i.e., T (x) is the time after which Γt passes through
x. Using Eqns. 8.7 and 8.10, we obtain ‖∇T‖=−φ(·, t) = 1, the well-known Eikonal
equation for arrival time T . The Euclidean distance transform DT∂Ω is the weak so-
lution of this equation under Euclidean norm [198]. Hence, Eqn. 8.7 without the con-
straint Γt ∼= Γ0 is the PDE generating continuous multi-scale (flat) morphological ero-
sions. Other norms are also possible [156], leading to various distance transforms.

We finally define the skeleton importance λ as the maximum density that has
reached a certain location x ∈Ω, i.e.,

λ (x) = max
t>0

ρ(x, t). (8.11)

Intuitively, our model describes a conservative advection process where mass, uni-
formly spread on ∂Ω, flows on shortest paths from ∂Ω to its surface skeleton SΩ;
then, along SΩ on shortest paths to the curve skeleton CSΩ; and finally along CSΩ on
shortest paths to the shape center CΩ (Fig. 8.1). Once all mass has reached CΩ, we
compute the (simplified) surface and curve skeletons by thresholding λ at increasing
values.

8.4 S O LV I N G T H E S Y S T E M

To compute the importance λ , we solve the contraction model in Sec. 8.3.2 by dis-
cretizing Ω on a uniform cubic-cell (pixel or voxel) grid embedded in R2 and R3

respectively, as follows.

8.4.1 Topologically-constrained boundary evolution by density-ordered thinning

As stated in Sec. 8.3.2, Eqn. 8.7 must be solved with the constraint that Γt and Γ0
are homeomorphic, for all t. Even without this constraint, it is well-known that the
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curve skeleton CSΩ

surface skeleton SΩ

input surface ∂Ω

object center CΩ

low λ high λ

boundary

point p

Figure 8.1: Density advection model from the surface ∂Ω of a genus-0 input shape to its sur-
face skeleton SΩ, curve skeleton CSΩ, and object center CΩ. Colors depict the im-
portance λ of different spatial regions.

evolution of φ from Eqn. (8.7) develops discontinuities of the φ derivatives (shocks)
within finite time [156, 198]. The skeleton SΩ precisely coincides with the locations
of these shocks [204].

Since Eqn. 8.7 can be written as an Eikonal evolution, or boundary-value prob-
lem (Sec. 8.3.2), one way to interpret the contraction is as thresholding DT∂Ω in-
side Ω at increasingly higher values, producing multi-scale morphological erosions
of Ω. Additionally, the topological constraint Γt ∼= Γ0 should also be satisfied by each
level set of DT∂Ω corresponding to Γt . For achieving this, we could consider using
topologically-constrained level sets [97]. The problem with this approach is that it
first performs an un-constrained step to update level-set values, following the motion
equation (Eqn. 8.7). Then, at points x where the topological constrained is violated,
the so-called level-set function ψ is next ‘fixed’ so that the points x lie on the corre-
sponding side of the boundary dictated by the constraint. This fix artificially alters the
ψ values, which creates spurious and unwanted discontinuities in ψ , ultimately lead-
ing to a not sharply-defined (in terms of our desired sharp transition of the level-set
function in [−1,1]) and/or non-smooth evolution of Γt . In turn, this will drastically
affect the quality of the extracted skeletons, as we verified in practice. As such, we
chose not to use topologically-constrained level-sets for our context.

To handle all above issues, we use topology-preserving morphological thinning to
define and steer the evolution (contraction) of Γt . Our thinning process is ordered
both by DT∂Ω and by the density field ρ: As long as Γt is far from the skeleton SΩ,
ordering by DT∂Ω ensures a smooth Γt while solving Eqn. 8.7. Additionally, since
thinning relies on a binary field, Γt is maintained sharp during its evolution.

We next explain why the thinning order is also given by the density field ρ , which
is crucial when the evolving Γt reaches the (yet unknown) skeleton locations. Recall
that such locations correspond to shocks of Eqn. 8.7. Hence, ordering by DT∂Ω (which
is just a viscosity solution of Eqn. 8.7) becomes meaningless. As sketched in Fig. 8.1,
we want the importance λ , and thus also the density ρ which determines this impor-
tance, to monotonically increase from ∂Ω to SΩ, next from ∂SΩ to CSΩ, and finally

110



8.4 S O LV I N G T H E S Y S T E M

from ∂CSΩ (curve-skeleton endpoints) to CΩ. Since Γt shrinks in normal direction
(Eqn. 8.7), this is equivalent to transporting density on shortest paths from ∂Ω to SΩ

to CSΩ and next to CΩ. Fig. 8.1 shows such a path (in white) on which the mass of a
point p ∈ ∂Ω should flow during its advection to CΩ. Consider now the set of all such
paths from all points on ∂Ω to CΩ. For a shape Ω of genus 0, following a reasoning
similar to [187], these paths will form a tree having as leaves all (discrete) points of
∂Ω and CΩ as root. The computation of ρ by means of our contracting Γt is analogous
to traversing this tree from its leaves to the root. To ensure a correct density update,
we thus need that, at any junction-point where several subtrees meet, all these trees to
have been fully traversed and their roots’ densities to be thus correctly updated. This
is why our thinning visits points in Γt in increasing ρ order.

Figure 8.2 illustrates our thinning for a 3D shape. When using density-ordered thin-
ning, Γt (drawn red) is kept smooth during collapsing. In contrast, if not using density
ordering, the collapsing Γt will quickly develop irregularities (Fig. 8.2 e-h, insets). In
turn, these will create irregularities in the signal ρ which will ultimately lead to jagged
skeletons λτ after simplification.
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Figure 8.2: Boundary Γt at four moments, with (a-d) and without (e-h) density-ordered thin-
ning. Surface/curve skeletons, four simplification levels – our method with (i-l) and
without (m-p) density-ordered thinning; Reniers et al. [187] (q-t). All skeletons are
color-coded by importance λ using a rainbow colormap.
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8.4.2 Algorithm

Summarizing the observations from Sec. 8.4.1, our contraction algorithm should:

R1: provide a sharp definition of the evolving boundary Γt ;

R2: allow interleaved iterative solves of Eqns. 8.6 and 8.7;

R3: ensure a smooth evolution of Γt , steered by DT∂Ω and ρ;

R4: allow efficient computation.

Most existing thinning algorithms do not provide a representation of Γt which sat-
isfies all requirements R1..R3 above. For example, the divergence-driven thinning al-
gorithm in [204] uses a sorted heap to ensure the correct processing order, thus fails to
provide an explicit Γt representation. In contrast, we use an explicit representation of
Γt , modeled as a narrow-band of points (that is, pixels in 2D and voxels in 3D, respec-
tively). Density is transported, according to Eqn. 8.6, only within this narrow-band,
which is computationally efficient (R4).

Let us note that some thinning algorithms combine the detection and removal of
a so-called topologically-simple point in a single pass. The thinning result may then
depend on the point processing order, as discussed in [107]. In contrast, we use an
approach similar to [107], where we first find all simple points (detection phase), and
eliminate these next (removal phase).

Our full skeletonization algorithm is now as follows (Alg. 1). During initialization,
we compute the Euclidean distance transform DT∂Ω on Ω (line 2). Next, we initialize
the full-grid fields ρ (density), λ (importance) and M (binary description of the con-
tracting shape) to their default values (line 3). We use DT∂Ω to label interior points
x ∈Ω with M(x) = 2 and initial boundary points x ∈ ∂Ω with M(x) = 1 respectively
(lines 4-8). Finally, we set the density of boundary points to one and gather them in
the set Q1. This set will keep, during the algorithm execution, all points processed by
the current algorithm iteration.

The main loop (lines 10-29) iteratively solves the system of Eqns. 8.6 and 8.7. Here,
the field M has two roles. First, M labels points outside (M = 0), on the boundary
(M = 1), and respectively inside (M = 2) the shrinking shape, thus efficiently keeps
track of this shape. Secondly, we use M to check if a shape point is topologically
simple or not: the function simple(x,M) returns true if removing x from the shape
given by M(·)> 0 does not change the shape’s topology and false otherwise.

The first inner loop (lines 12-14) fills a set Q2 with unprocessed, 26-connected (8-
connected in 2D) neighbors y ∈ N (x) of the point x being processed. The set Q2
captures points going to be processed in the next algorithm iteration (detailed further
below). Next, we sort the current set Q1 on increasing ρ (line 15), allowing the sec-
ond inner loop (lines 17-19) to process these in increasing order of their density values.
This second loop performs the detection phase of the thinning algorithm. Additionally,
only points which are topologically-simple and within close distance (∆d) to the cur-
rent Γt are added to set C for further processing. The other non-simple points are
added to Q2 for processing in the next iterations. The third inner loop (lines 21 to 25)
performs the removal phase of the thinning algorithm. Topologically-simple points
x ∈ C are removed (by labeling them with M(x) = 0) and collected in the narrow-
band set B. At this stage, their importance λ is also computed (line 24). Non-simple
points are added to Q2.

Set B models the current boundary Γt , thus meeting R1. As shown in Alg. 1, B is
built from current topologically-simple points (from Q1) in increasing ρ order and by

112



8.4 S O LV I N G T H E S Y S T E M

1 Skeletonize(Shape Ω, Field λ )
Data: Ω: discretized input shape
Result: λ : importance field

2 DT∂Ω(·)← 3D Euclidean distance transform of ∂Ω;
3 ρ(·)← 0; λ (·)← 0; M(·)← 0; Q1←∅;
4 foreach x ∈Ω do
5 if DT∂Ω(x)> 0 then M(x)← 2; // interior points;
6 foreach x ∈Ω do
7 if DT∂Ω(x)> 0∧DT∂Ω(x)< 2∧ simple(x,M) then
8 ρ(x)←1; M(x)←1; Q1←Q1∪{x}; // boundary points
9 d← 0;

10 repeat
11 d← d +∆d; Q2←∅;
12 foreach x ∈ Q1 do
13 foreach y ∈N (x)∧M(y) = 2 do
14 Q2← Q2∪{y}; M(y)← 1; // new boundary point
15 Sort Q1 in increasing ρ order;
16 C←∅;
17 foreach x ∈ Q1 do // process Q1 in increasing ρ order
18 if DT∂Ω(x)< d∧ simple(x,M) then C←C∪{x};;
19 else Q2← Q2∪{x}; M(x)← 1;;
20 B←∅;
21 foreach x ∈C do
22 if simple(x,M) then
23 M(x)← 0; B← B∪{x};
24 λ (x)← max(λ (x),ρ(x));
25 else Q2← Q2∪{x}; M(x)← 1;;
26 Transport ρ from x ∈ B to interior points, using Eqn. 8.6;
27 foreach x ∈ B do ρ(x)← 0; ;
28 swap(Q1,Q2);
29 until B =∅;;

Algorithm 1: Skeletonization algorithm.
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a) density advection b) density diffusive advection

Figure 8.3: Density transport via advection vs diffusive advection (see Sec. 8.4.3).

filtering them via the distance-threshold criterion (line 18). Hence, the boundary Γt
is kept relatively smooth (discussed further in Sec. 8.4.3), thus R3 is met. Once B is
available, we can transport density (line 26) from points in B to interior points, thus
meeting R2. After density has been conservatively transported away from the current
B, we set the density to zero at points x ∈ B (line 27).

At the end of the algorithm’s main loop, the sets Q1 and Q2 are swapped (line 28).
This is an essential aspect of our algorithm, as it facilitates an explicit and computationally-
efficient representation of the boundary Γt (set B above). Having these sets, we can
limit our computations only to a surface-like band of points around the current Γt ,
thus meeting R4.

The algorithm stops when B becomes empty. For objects of genus 0, this happens
when the shrunk shape and Q1 contain only a single point, which is precisely the
shape center CΩ. This point clearly cannot be added to B since the topological con-
straint would be violated. For objects of higher genus, termination happens when the
shrunk shape contains only curve-skeleton loops connected by non-terminal branches,
a structure which cannot be shrunk any longer without disconnecting the skeleton (see
example further in Sec. 8.4.4).

Let us now discuss the smoothness of the boundary Γt captured by the set B. Away
from singular points of Eqn. 8.7, Γt is captured (by the set B) as a level-set of DT∂Ω,
which is a Lipschitz-continuous function under the L2 metric. At singular points of
Eqn. 8.7, our thinning still endorses Lipschitz continuity, but under the L∞ metric. In-
tuitively, at such points, the order in which new inner points are processed in lines 12-
14 reinforces the L∞ metric when solving Eqn. 8.6. Note that, although at non-singular
points, topologically-constrained level sets [97] provide better smoothness properties
of the evolving boundary (due to sub-pixel or sub-voxel precision), such methods
have problems regarding the evolution of Γt along shocks of Eqn. 8.7, as discussed
in Sec. 8.4.1. In contrast, our approach produces a smooth shrinking Γt , as shown by
Fig. 8.2 a-d.

8.4.3 Density transport

We now focus on solving the mass conservation equation (Eqn. 8.6; Alg. 1, line 26).
For 2D and 3D curve skeletons, discretizing Eqn. 8.6 with the unconditionally-stable,
semi-Lagrangian scheme in [139] suffices. However, generating progressively-simpler
surface skeletons by simply thresholding the importance field λ requires additional
work.
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Figure 8.4: Conservative advection vs. diffusive advection. Density is transported on the surface
skeleton from Γt to Γt+1 by left: conservative advection and right: diffusive advec-
tion. Arrows show the directions in which density is transported. The new density
values at grid cells a, b and c are also shown.

Since our algorithm solves Eqn. 8.7 under the L∞ norm along its singular points (see
Sec. 8.4.2), and since noise, small errors and inacuracies due to the thinning process
propagate into the density field evolution (Eqn. 8.6), simply thresholding λ would
yield jaggies (indentations) in surface skeletons, for all but trivial shapes (see example
in Fig. 8.3 a). To tackle this, we propose a smoothing of the density field ρ , which leads
to the desired importance field λ , as follows.

The key idea of [139] for solving conservative-advection PDEs similar to Eqn. 8.3
is to follow so-called characteristic curves (along which the PDE becomes an ODE)
both forwards and backwards in time, while ensuring that interpolation weights are
equal to one for all grid cells, i.e., the advected density is conserved. We constrain the
density ρ to be zero outside the shrinking shape, so we only need the forward step.
Figure 8.4 left shows a schematic example, assuming that density is transported along
surface-skeleton points. For illustration simplicity, and without loss of generality, we
next assume that ρ is one at all points in Γt . The density propagation directions, given
by ∇φ/‖∇φ‖ (Eqn. 8.5), are shown by arrows. Hence, as shown in Fig. 8.4, the (linear)
interpolation weights equal one, and the new density values at grid cells a, b and c have
the indicated values. Since all weights equal one, mass is conserved, as desired.

One way to tackle the above inaccuracies is by endorsing density advection with
a (conservative) diffusive component, yielding a smoother evolution of ρ . For this,
we propose an anisotropic diffusion process, which we dub diffusive advection (as
opposed to the well-known diffusion-advection PDE). That is, instead of transporting
density solely in the (potentially-noisy) gradient directions, we also allow density to
diffuse to other surrounding nearby cells (Fig. 8.4 right). As can be seen by following
the arrows, each ’donor cell’ now contributes to multiple nearby cells. The weights
along each arrow per donor cell, as well as the new density values of cells a, b and c,
are also shown. More formally, let χ t be the characteristic function of the shrinking
shape, obtained, e.g., by upper-thresholding the field M(·) of Alg. 1 with value 1. Then,
the new density value at a grid cell i of Γt+1 for time-step t +1 can be expressed as

ρ
t+1
i = ρ

t
i + ∑

j∈Ni

ρ
t
j

1−χ t
j

∑k∈N j χ t
k
, (8.12)
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with being Ni the 26-connected neighborhood centered at i for the 3D case. Let wt
j =

1−χt
j

∑k∈N j χt
k

and assume that cell i receives density contributions from three surrounding

cells j ∈ {1,2,3} in Γt (see Fig. 8.4), i.e.,

ρ
t+1
i = ρ

t
i +ρ

t
1wt

1 +ρ
t
2wt

2 +ρ
t
3wt

3. (8.13)

This can be rewritten as

ρ
t+1
i −ρ

t
i =

3

∑
k=1

wt
k(ρ

t
k−ρ

t
i )+ρ

t
i

3

∑
k=1

wt
k

which is a discretization of anisotropic diffusion [174] with an additional reaction term

∂ρ

∂ t
= ∇ · (w∇ρ)+ρC . (8.14)

Note that C above could be seen as a simple curvature estimate. Comparing Eqn. 8.6
with Eqn. 8.14, we see that our simple discrete rule (Eqn. 8.12) replaces conservative
advective transport by conservative diffusive transport, while taking into account the
geometry of the evolving Γt . Finally, to force the density to flow more along gradient
directions (u, see Eqn. 8.5), we replace the weights wt

j in Eqn. 8.13 by

W t
j = wt

j/(1+ l2
i j/σ

2
a ), (8.15)

with li j =
∥∥∥ xi−x j
‖xi−x j‖ −u

∥∥∥ and σa a sensitivity parameter. Thus, for small σa values,
density transport happens mostly along gradient directions, as required by Eqn. 8.6,
whereas larger σa values result in density diffusion into cells nearby Γt+1.

Figure 8.5 shows the density transport directions, generated by diffusive advection,
for a simple test shape. Directions are shown only for the surface skeleton (a) and
the curve skeleton (b), to reduce occlusion and increase visual readability, and are
directionally color-coded (red=vectors aligned with the x shape axis, green=vectors
aligned with y, blue=vectors aligned with z). As visible from both overview and detail
images, the transport directions move density from the input surface along shortest
paths to the surface skeleton, next to the curve skeleton, and next to the object center
CΩ, where all mass from ∂Ω ultimately collapses. The practical result thus matches
well the model proposed in Sec. 8.3.2 (see also Fig. 8.1).

Figure 8.3 compares the importance fields λ generated by the two density-transport
methods above. Compared to conservative advection (Fig. 8.3 a), diffusive advection
creates a smooth density flow along the surface skeleton, leading to the desired smooth
and monotonically-increasing importance field (Fig. 8.3 b).

8.4.4 Detecting different skeleton types

The importance field λ allows us to easily detect both skeleton types and the shape’s
center. Specifically, we have that SΩ = {x ∈ Ω |λ (x) ≥ 2.0}, since surface-skeleton
points are, by definition, situated at equal distance from at least two different points
on the boundary ∂Ω (Eqn. 8.2), and thus have an importance equal to at least that
of two (collapsed) points of ∂Ω, i.e. at least two. For genus 0 objects which admit
a center in the sense denoted in Sec. 8.3.2, we have CΩ = argmaxx∈Ω λ (x). Curve-

116



8.4 S O LV I N G T H E S Y S T E M

a)

b)

object 
center CΩ

transport paths

color
legend

color
legend

Figure 8.5: Mass transport directions for the hand model over the surface skeleton (a) and curve
skeleton (b), as computed by our model. See Sec. 8.4.3.

skeleton points could be readily detected by upper thresholding the importance field
λ with a large threshold τ . However, there are two shortcomings with this approach:
First, the resulting curve skeleton may not be always one-voxel thick. Secondly, its
extremities may be removed due to the large threshold value used. In other words,
for high τ values, we would obtain a simplified, rather than a full, curve skeleton.
To alleviate these issues we detect salient curve-skeleton points, during the shrinking
process, using

CSΩ = {x ∈ B |ρ(x)> c T̂ (x)∧ endPoint(x,M)}, (8.16)

where c > 0 is a constant (explained next); T̂ is a simple estimate for the time-of-
arrival (approximating T from Eqn. 8.10), given by d in Alg. 1; and endPoint(x,M)
returns true if x is a curve-skeleton end point. We justify Eqn. 8.16 as follows.

First, Eqn. 8.16 only selects points from the surface skeleton, since only these have
a density larger than two. Consider now a point b on the skeleton boundary ∂SΩ, such
that b∈ SΩ\CSΩ (Fig. 8.6). The density ρ(b) equals the length of the circular segment
C(b) ⊂ ∂Ω (drawn green in Fig. 8.6), which is αDT∂Ω(b) = αT (b) with α its sub-
tended angle. Let x be a neighbour of b such that T (x)= T (b)+1. Using the boundary
evolution equation (Eqn. 8.7) and the arrival-time definition (Eqn. 8.10), it can be eas-
ily shown that x must be in the ‘upstream’ direction from b, since x−b and ∇φ are
parallel vectors. When the evolving boundary passes through b (i.e., b is removed
by density-ordered thinning, see Alg. 1), ρ(b) is ‘pushed’ in the upstream direction
through (diffusive) advection transport. Thus, x will directly receive most density of b,
under advective density transport. Moreover, due to the boundary-propagation order,
when the interface is about to pass through x, point x must also be found to be part
of the surface skeleton, and furthermore, ρ(x) > ρ(b). Indeed, since regular points
x ∈ SΩ \CSΩ also receive density contributions from its two (or more) feature-points
on ∂Ω (boundary normals are preserved by the Eikonal equation), a rough estimate
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curve skeleton CSΩ

surface skeleton SΩ

input surface ∂Ω
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Figure 8.6: Selecting curve-skeleton points for importance boosting (Sec. 8.4.4). The red arrow
shows the upstream density-advection from b through x up to the curve-skeleton
point c. The yellow arrow shows the second direction from which c receives density
from the surface-skeleton.

for the minimum density at x is ρ(x)> 2+αT (b). By a similar reasoning, for points
y ∈ SΩ \CSΩ situated in upstream direction from b, with T (y) > T (b)+ 1, we find
ρ(y) > 2T (y) +αT (b) as a lower bound on their density. Finally, points c ∈ CSΩ

collect density from at least two neighbor-points y ∈ SΩ \CSΩ; this is so since the
curve CSΩ locally divides the 2D-manifold surface SΩ in two parts. For instance, in
Fig. 8.6, c will receive density from at least two surface-skeleton neighbor points situ-
ated at the tips of the red, respective yellow, arrows. Additionally, c receives a (larger)
density contribution from (at least) another downstream curve-skeleton neighbor, so
ρ(c) > 4∑i T (yi) ≥ 4T (c). Hence, setting c = 4 in Eqn. 8.16 performs conservative
curve-skeleton detection. We verified empirically that setting c = 4 cleanly and ro-
bustly separates important curve-skeleton points from surface-skeleton points. Addi-
tionally, the end-point test in Eqn. 8.16 ensures that only points which are at the sharp
‘tips’ of the shrinking surface Γt are considered as salient curve-skeleton candidates.

Once the points x ∈ CSΩ are found using Eqn. 8.16, we ‘boost’ their importance
during the iterative process by adding a constant fraction δ of the input shape’s mass
|∂Ω|. As a result, curve-skeleton points will have a significantly higher importance
than surface-skeleton points. Also, as δ is constant for all x ∈ CSΩ, the monotonic
increase of importance along the curve skeleton branches is preserved. All in all, this
allows us to threshold the final importance λ at precisely δ to cleanly and easily detect
a full (unsimplified) CSΩ, and to threshold λ at higher values to obtain progressively
simplified curve skeletons.

a) b) c) d) e) f)

Figure 8.7: Progressively simplified skeletons: surface skeletons (a-c) and curve skeletons (d-f)
for six increasing τ values. See Sec. 8.4.4.
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Figure 8.7 shows the effect of increasing the importance threshold τ for a shape of
genus 3. Skeleton voxels are colored by importance λ via a rainbow colormap. The
first three τ values (Figs. 8.7 a-c) yield three increasingly simple surface skeletons.
The last of these (Fig. 8.7 c) is a mix of surface and curve skeleton parts, i.e., is an
example of the meso skeletons described in [222]. As τ increases to δ , we find the
full curve skeleton (Fig. 8.7 d). Increasing τ further removes the end branches of the
curve skeleton, without disconnecting its loops (Fig. 8.7 e). For visual clarity, we used
in Fig. 8.7 e a local normalization of the colormap, based on the range of voxels in the
respective simplified skeleton, rather than on the full importance range [0,λmax] used
for all other figures. This shows better how the importance increases from the curve
skeleton endpoints to its center, and is high over its loops. Finally, for the highest
considered τ value, we get the fully simplified curve-skeleton without disconnections
containing only loops connected by internal branches (Fig. 8.7 f).

8.4.5 Implementation details and parameter settings

Implementation: Our algorithm is implemented in C++ using OpenGL for skeleton
rendering. We compute DT∂Ω on the CPU by the method of Meijster et al. [102], or
on the GPU (if available) by the method of Cao et al. [41]. Both methods compute the
exact Euclidean distance transform and are linear in |Ω|, the number of foreground
pixels or voxels in the input shape. We implement simple() using the Euler num-
ber for Ω ⊂ R2 and Malandain’s criterion [28] for Ω ⊂ R3 respectively. We detect
curve-skeleton endpoints (function endPoint(), Eqn. 8.16) as those voxels x ∈ B with
one (26-connected) neighbor y for which M(y) > 0. We use the integral method
of Neumann et al. [164] to estimate the gradient directions along which density is
transported (Eqn. 8.5). Sorting Q1 is implemented by the Standard Template Library
(STL) sort function. Algorithm 1 requires K iterations of the loop in line 10, where
K is roughly equal to 1

2 maxx∈Ω DT∂Ω(x), the maximal thickness of Ω. Since at each
iteration we sort the set Q1, which is worst-case equal to the input boundary ∂Ω, the
total complexity of our method is O(K |∂Ω| log(|∂Ω|)).
Parameters: Throughout the chapter we use the following parameter settings. To
obtain a good approximation of the motion equation (Eqn. 8.7), we set the distance
step ∆d in Alg. 1 to ∆d = 1. The parameter σa, controlling the density spread along
gradient directions (Eqn. 8.15), is set to σa = 0.2. The parameter c in Eqn. 8.16, i.e.,
the saliency of the detected curve-skeleton points, is set to c = 4.0. The parameter
δ , representing the importance difference between curve and surface skeleton points
(Sec. 8.4.4), is set to δ = 0.1 of the total input surface mass |∂Ω|. The above values
have been tested on a set of over 60 shapes, voxelized at various resolutions, and
have consistently delivered good results like the ones shown in our figures here. As
such, the only free parameter is the skeleton simplification threshold τ , whose use is
explained in Sec. 8.4.4.

8.5 C O M PA R AT I V E R E S U LT S

8.5.1 Two-dimensional skeletons

For 2D shapes, we compared our method with the Augmented Fast Marching Method
(AFMM) [229]. AFMM is a good example of 2D skeletonization methods that com-
putes centered, accurate, connected, and pixel-thin skeletons regularized by the col-
lapsed boundary-length importance metric (like [79, 168]).
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Figure 8.8 shows skeletons of several shapes from the database in [195] extracted
with AFMM and with our method, for several simplification thresholds τ . Our method
and the AFMM produce visually identical skeletons, both in terms of position, but
also branches kept at a given τ . This is a non-trivial result, given that our method and
the AFMM have completely different models behind. Moreover, since λAFMM at a
skeleton point x equals the length of boundary that collapses to x when advected in
∇DT∂Ω, and since λ ≈ λAFMM (Fig. 8.8), this supports the claim that our λ is indeed
equal to the collapsed boundary length.
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Figure 8.8: Comparison of importance-colored 2D skeletons computed with our method and
the AFMM [229], for increasing skeleton-simplification levels.

8.5.2 Surface skeletons

Figure 8.9 (bottom 6 rows) compares our method with four voxel-based methods:
multiscale skeletons (MS) [187], Hamilton-Jacobi (HJ) [204], integer medial axis
(IMA) [102], and iterative thinning process (ITP) [117]; and with the multiscale mesh-
based skeletonization (MBS) in [109]. Test shapes cover a wide range, including
natural and synthetic, smooth and detailed, and objects of various genii (all voxelized
at 5123 resolution by binvox [171]). Our surface skeletons look very similar to those
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created by other methods, and show similar power in capturing the input shape genus
and boundary details.
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Figure 8.9: Comparison of our 3D surface and curve skeletons with 10 related methods. Top 6
rows: curve skeletons. Bottom 6 rows: surface skeletons.
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The comparison with MS is particularly interesting. To our knowledge, MS is the
only existing voxel-based technique that computes multiscale surface skeletons whose
importance uses a boundary-collapse metric. For MS, this metric is

λSS(x ∈ S) = min
γ=(fx

1 fx
2 )⊂∂Ω

‖γ‖ (8.17)

i.e. the length ‖γ‖ of the shortest geodesic path γ on ∂Ω between the two feature
points f x

1 and f x
2 of a skeleton point x.

As for the 2D case (Sec. 8.5.1), we see that our surface skeletons and importance
values (color-coded in Fig. 8.9, row 12, by a rainbow colormap) are very similar to
the MS ones (Fig. 8.9, row 7). Figure 8.2, two bottom rows, details this insight by
showing four surface skeletons obtained by thresholding our importance λ , and λSS, at
four increasing values. The monotonic increase of both λ and λSS, from low values on
the surface-skeleton boundary to high values on the curve skeleton, and the resulting
skeletons, are similar. This is an even more interesting result than the similarity of our
results with the AFMM. Our importance λ (x) equals the amount of boundary mass
which reaches x subject to Eqs. 8.6,8.7. The fact that λ ≈ λSS supports the conjectures
in [70, 187] that all boundary points on such a geodesic γ , if advected in ∇DT∂Ω,
would reach the skeleton point x. However, a formal proof of these conjectures still
lacks. Separately, Fig. 8.2 (bottom row) shows that our λ monotonically increases as
we advance inwards on the skeletal structures (Sec. 8.4), hence that thresholding λ

yields connected skeletons.

1) 2) 3) 4)

1) 2) 3) 4)

1) 2) 3) 4) 1) 2) 3) 4)

1) 5)2) 3) 4)

3)

)

4)

Figure 8.10: Comparison of surface skeletons: (1) Jalba et al. (MBS) [109]; (2) our method;
Original shapes (3) vs our skeleton-based reconstruction (4). All voxel models
have a 5123 resolution. Last row: detailed comparison, including also (5) the
surface-skeleton of Miklos et al. [159].

To better qualitatively assess our surface skeletons, Fig. 8.10 compares these
with skeletons computed by the high-resolution MBS method [109], which uses the
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multiscale-importance in [187], but has a different skeleton detector, and uses a mesh
rather than a voxel representation. For more insight, we colored our surface-skeleton
border voxels red. Our skeletons are very similar to the MBS ones. Our method cap-
tures roughly the same amount of skeleton detail as MBS, even though the latter uses
mesh, rather than voxel, skeleton-and-shape representations. Figures 8.10 (4) shows
our reconstruction of the input shape by drawing balls centered at the surface-skeleton
voxels x and whose radii equal DT∂Ω(x), using the rendering technique in [109]. As
visible, our reconstructions are very close to the input shapes (Figs. 8.10 (3)). The
small bubble-like differences are explained by the fixed resolution of the voxel grid.
This verifies the reconstructibility criterion for our method and, implicitly, shows that
our skeletons are correctly centered. The last row in Fig. 8.10 compares our method
for the elephant shape from Fig. 8.7, which has three tunnels, large thin-and-flat areas
(ears), near-cylindrical parts (legs), high positive-curvature areas (ear borders), and
high negative-curvature areas (ear-head junctions). Our surface skeleton is very close
to the one produced by MBS, and also to the skeleton produced by the discrete-scale
axis (DSA) mesh-based method of Miklos et al. [159], one of the highest-accuracy
existing surface-skeletonization methods.

8.5.3 Curve skeletons

Figure 8.9 (top 6 rows) compares our method with five curve-skeleton methods:
Thinvox (TV) [171], distance-driven skeletonization (DDS) [11], robust thinning
(RT) [149], iterative thinning process (ITP) [117], and multiscale skeletons (MS) [187].
In contrast to surface skeletons, we see now more variation between the compared
methods. Our method delivers consistently thin (unlike MS), smooth (unlike ITP),
noise-free (unlike ITP), and genus-preserving (unlike RT and MS) curve skeletons.
Figure 8.11 shows extra insight, by comparing our method with six additional mesh-
based curve-skeletonization methods (Kustra et al. [133]; Livesu et al. [150]; Telea
and Jalba [228]; Au et al. [15]; Dey and Sun [70]; and Jalba et al. [109]). As visible,
our method yields well-centered curve skeletons which compare favorably, in terms
of smoothness and lack of spurious branches, with the highest-quality mesh-based
skeletons.

As for surface skeletons (Sec. 8.5.2), let us detail the parallel with MS curve-
skeletons. MS detects curve skeletons as those points having at least two equal-length
geodesics on ∂Ω between their feature points (MGF criterion in [70]). MS extends
MGF by assigning a curve-skeleton importance λCS equal to the area bounded on ∂Ω

by the above two geodesics. Figures 8.9 and 8.11 show that our curve-skeletons and
MS are very similar. The importances λ and λCS are also quite similar (see Fig. 8.2 l
vs Fig. 8.2 t and Fig. 8.9, row 5 vs 6), except for the rockerarm, casting, and frog
models, where λCS is smaller. Upon closer inspection, this shows a defect of MS:
Low λCS points appear on curve-skeleton loops, whose geodesics do not cut ∂Ω in
two separate parts according to the Jordan theorem [232], so following [187] these
points should get a high importance, to prevent loop disconnection when simplifying
skeletons. Our method correctly finds such loops and assigns them a high importance.

8.6 D I S C U S S I O N

8.6.1 Method properties

Unification: Our method extracts 2D skeletons, 3D surface and 3D curve multiscale
skeletons. To our knowledge, this is the first time that all these three skeleton types,
including multiscale regularization, are computed by a single method which uses a
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a) Kustra et al. b) Livesu et al. c) Telea and Jalba d) Au et al.

f) Dey and Sun h) Reniers et al. j) our methodi) Arcelli et al.

) ))

g) Palagyi et al.

e) Jalba et al.

Figure 8.11: Comparison of curve-skeletonization methods. Mesh-based methods (a-e). Voxel-
based methods (f-i). Our method (j).

single simplification metric. From both a theoretical and a practical perspective, we
believe this to be an important result.
Robustness and accuracy: Our method computes thin, centered, homotopy-preserving,
and connected skeletons from potentially noisy 2D and 3D shapes of arbitrary genus.
Figure 8.12 quantitatively compares our skeletons with four other methods, using the
technique in [210]. In detail, given two (curve or surface) skeletons S1 and S2, we first
define the distance field

D12(x ∈Ω) =

{
miny∈S2 ‖x−y‖= DTS2(x) if x ∈ S1,

0 if x 6∈ S1.

To compare two same-kind (curve or surface) skeletons, we draw the field D12 +D21
over the voxels S1∪S2, normalized by its maximum value, using a rainbow colormap.
Close skeleton fragments are blue, while outlier ones are red. Comparing a curve
skeleton CS1 with a surface skeleton SS2 shows how well is CS1 contained within SS2.
For this, we color voxels in CS1 by D12, and voxels in SS2 \CS1 with gray. Hence, vox-
els in CS1∩SS2 are blue, and voxels in CS1 far from SS2 become red (Fig. 8.12 inset).
Looking at Fig. 8.12, we see that our surface skeletons are very similar to those pro-
duced by IMA and HJ (Fig. 8.12 b,d). Warm colors, showing differences, occur mainly
on the surface-skeleton boundary, and are due to the different simplification methods
(and simplification levels) used by the compared methods. Our curve skeletons are
fully contained in our surface skeletons, as expected (Fig. 8.12 e), but also nearly fully
contained in the IMA and HJ skeletons (Fig. 8.12 g,i). Conversely, the DDS and HJ
curve skeletons are well contained in our surface skeletons (Fig. 8.12 a,c). The largest
differences, found between curve skeletons themselves (Fig. 8.12 f,h), are still quite
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curve skeleton CS1

curve skeleton CS2

Identical Different

curve skeleton CS1

surface
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Legend

Figure 8.12: Quantitative comparison of surface and curve skeletons. Color mapping indicates
skeleton differences (see Sec. 8.6.1).

small in absolute value.
Scalability: Table 8 (column 4) shows the speed of our method, implemented in C++
on a Linux 3.5 GHz PC with 32 GB RAM and an NVidia 690 GTX for the shapes
in Fig. 8.9. Columns 2 and 3 give the shapes’ surface areas |∂Ω| and volumes |Ω|, in
voxels. We note a high and relatively shape-independent throughput (foreground vox-
els/second), in line with the complexity stated in Sec. 8.4.5. Compared to the tested
voxel-based methods (columns 5-13), our method is one order of magnitude faster
on average. The next-fastest method is TV [171]. However, TV does not compute
surface skeletons nor an importance metric. Compared to MS, the only other voxel-
based method which computes a multiscale importance metric, we are on average
10 times faster. The last column in Tab. 8 shows the speed of the MBS mesh-based
skeletonization in [109], the second other method we are aware of (apart from MS)
which computes multiscale skeletons. Compared to our absolute timings (Tab. 8, col-
umn 4, figures in brackets), MBS is 2.6 times faster on average. However, MBS is
parallelized on the GPU, while our method is sequential and on the CPU. Our cost is
essentially dominated by the number of foreground voxels (Sec. 8.4.5), while MBS is
dominated by the cost of its geodesic tracing, which is O(n3/2) for a meshed surface
of n vertices. As such, our method is of comparable speed or even faster than MBS
for shapes like dragon or rockerarm, which have a low volume (thus, generate few
voxels for our method) but are represented by highly-refined meshes (thus, are costly
for MBS). Conversely, our method is about ten times slower than MBS for shapes
having a high volume, and whose mesh-representation uses few vertices, e.g. dino
and frog.
Simplicity: Our framework has a single, simple, 2D and 3D implementation (under
2000 lines of C++), with no complex computational geometry operations or degener-
ate cases, unlike some mesh-based methods [159, 187, 216]. Its only user parameter,
the importance threshold τ , is simple to use: given the initial uniform density on ∂Ω,
τ selects skeletal structures which encode input-shape details whose length (in 2D) or
area (in 3D) is larger than τ , similarly to [79, 168, 187, 229].
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Classical properties: We next summarize the behavior of our method vs several
recognized desirable skeleton properties.
1. Centeredness: Centeredness is ensured by the unit-speed evolution of Γt (Eqn. 8.5).
We verify centeredness, both for curve and surface skeletons, against several methods
known to formally respect this property [11, 102, 187, 229] (see Fig. 8.10).
2. Thinness: Our 2D and 3D skeletons are one-cell (pixel or voxel) thin, by construc-
tion. To argue this, suppose that this would not be so. Then, a skeleton λτ would (a) be
thicker than one cell, and (b) would have, over a cross-section, the same importance
λ . If such a thick cross-section existed, our shrinking algorithm would continue, since
the shape can be further shrunk without disconnecting it (see Fig. 8.2).
3. Homotopy: Homotopy of the skeleton with the input shape is guaranteed by con-
struction, by the constraint in Eqn. 8.4 and its corresponding implementation (Alg. 1).
4. Reconstructibility: The ability to reconstruct (smoothed versions of) the input
shape from (simplified versions of) its skeleton is shown in Fig. 8.10. As visible, our
reconstruction is quite accurate (compare e.g. Fig. 8.10 with Fig. 4 in [109]), modulo
the natural limitation imposed by the fixed voxel grid.
5. Rotational invariance: The discretization of our proposed PDE system (Eqns. 8.3-
8.5) described in Sec. 8.4.3 is rotationally invariant by construction. We have verified
that we indeed obtain nearly voxel-identical multiscale skeletons for the same input
shape rotated at random angles with respect to the cell grid (not shown here for sake
of brevity).
6. Curve vs surface skeletons: Our curve skeletons are by construction included in the
surface skeletons of the same shape, since they are both obtained by thresholding the
same single-and-global importance field λ (see Sec. 8.4.4).
7. Multiscale and noise resistance: The field λ describes the whole space between
the input surface ∂Ω, surface skeleton SΩ, curve skeleton CSΩ, and shape center
CΩ. Thresholding λ with increasing values yields the SΩ from Ω; simplified surface
skeletons (without branches due to small-scale shape details); the (simplified) CSΩ;
and the shape center, or zero-dimensional skeleton, of Ω. Reniers et al. get similar
results, but they need two separate surface and curve skeleton importances and cor-
responding algorithms [187]. We compute λ making no distinction between the two
skeleton types. Telea and Jalba compute multiscale curve skeletons by collapsing sur-
face skeletons inwards, following the idea that the former can be seen as the medial
loci of the latter [228]. Yet, as in [187], their surface and curve skeleton algorithms are
fundamentally different, and they also do not propose a curve-skeleton importance
metric. Thresholding λ at values τ between the average importance of SΩ and CSΩ

yields a meso-skeleton structure [222] that continuously shrinks from SΩ towards CSΩ

as τ increases (see Sec. 8.4.4).
Limitations: Our method stores four voxel scalar volumes (ρ , λ , M, and DT∂Ω in
Alg. 1), i.e. can handle shapes up to roughly 10003 voxels on a 16 GB PC. Mesh-
based skeletonization methods [109, 151] need far less memory. For instance, the
mesh models for all shapes in this chapter, which are up to 1M triangles, need only
24MB with the method in [109]. Separately, we acknowledge that our comparisons
highlight differences between our skeletons and those produced by other methods,
but do not explicitly show which skeletons are more suitable for a specific application,
e.g. shape retrieval, classification, or segmentation. A thorough qualitative comparison
with this goal is an important topic for future work.
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8.6.2 Comparison with Hamiltonian methods

Equation 8.3 is similar with Torsello and Hancock’s (TH) mass conservation model
∇ · (ρu) = 0 used for 2D skeletonization [14]. Yet, several key differences exist. Nu-
merically, TH transforms the mass conservation ∇ · (ρu) = 0 into a system of two
ODEs (Eqns. 7 in [14]) by the substitution σ = log(ρ). These ODEs are solved with a
second-order Crank-Nicholson divergence-discretization scheme coupled with semi-
Lagrangian advection. In contrast, we use the conservative semi-Lagrangian scheme
of Fedkiw [139], which only needs linear interpolation and clamping. This has several
advantages. First, our scheme is numerically very stable, and conserves density well.
Secondly, we do not need the second-order divergence discretization of TH. Thirdly,
by computing the density logarithm σ , TH also needs exponentiation to find the fi-
nal density ρ = exp(σ). We noticed, in practice, that this creates important numerical
problems, such as an infinite value of ρ at several points in Ω.

Torsello and Rossi extend the TH density advection to extract 3D medial sur-
faces [188]. In their model, density advection stops when reaching the surface skele-
ton. In contrast, we continue advection by collapsing the surface skeleton to the curve
skeleton and the latter to the shape center, yielding all desired skeletal representations
within a single process.

8.7 C O N C L U S I O N S

We have presented a unified framework for computing 2D skeletons and 3D surface
and curve skeletons. We detect all skeleton types by a single algorithm, and also com-
pute a single importance metric which assigns to each skeletal point the amount of
(2D or 3D) input boundary described by that point. Comparing our skeletons and their
computed importance with results computed by related methods shows a very good
match. We present a simple implementation of our method which achieves good per-
formance results on a range of complex 2D and 3D shapes, i.e., over 3 times faster
than the fastest voxel-based skeletonization method we are aware of, and over 10 times
faster than comparable multiscale methods.

Future work can target several directions. Porting our method to massively-parallel
platforms (e.g., CUDA) using sparse voxel grids will increase scalability. Separately,
modulating the input-surface density by e.g. curvature or application-specific metrics
would allow different feature-sensitive skeleton simplifications.

The unified multiscale skeletonization framework proposed here is, obviously, of
added value in any application context where one requires a 2D planar, 3D surface,
or 3D curve skeletonization method that complies with the quality criteria outlined in
Sec. 8.6.1 and is also simple to implement. In our specific context of shape restoration,
this framework provides us with the ideal tool to be able to, finally, extend our 2D
gap-removal techniques introduced in Chapter 4 to 3D. This extension is the subject
of the next chapter.

This chapter is based on:

A. C. Jalba, A. Sobiecki, and A.C. Telea. An Unified Multiscale Framework for Planar, Surface, and
Curve Skeletonization. IEEE TPAMI, 38(1):30–45, JAN, 2016.
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9G A P D E T E C T I O N A N D R E M OVA L F O R 3 D S H A P E S

Chapters 4 and 5 have described a set of methods for the detection and elimination
of gaps present in two-dimensional images, such as 2D binary shapes and grayscale
and color images. As discussed there, such methods are efficient and effective for a
number of image processing operations such as the digital removal of hairs from der-
moscopy images prior to further image analysis. An important technical component
of these methods are the corresponding 2D skeletons, or medial axes, extracted from
shapes present in the images. In this chapter, we show how the equivalent problem
of detection and removal of gaps can be formulated and solved in the context of 3D
shapes.

9.1 I N T RO D U C T I O N

Our method is an extension of our 2D gap-filling on binary shapes proposed in chap-
ter 4 at 2D gray level images and 3D shapes. For 2D gray level images there is a
combination of morphological operators filters, statistical threshold and an classical
inpainting filter [230]. For 3D shapes we use two kinds of skeletons, curve and surface
skeletons, curve skeletons are used to identify such gap and surface skeleton is used
to fill such gap, then in the gap region, we match curve and surface skeletons. In the
follow subsections, we are going to explain each application separately.

To start with, let us define the approached problem. In the 2D gap detection-and-
removal context, we made the following assumptions:

1. Shapes are represented as densely and uniformly sampled 2D datasets, i.e., pixel
images;

2. The above images can be either binary or grayscale. Color images are reduced
to grayscale image by considering their luminance component;

3. Gaps to be treated are described by thin-and-elongated structures that penetrate
deeply into the shape from its boundary. Given the dimensionality of our shapes
(2D), such gaps are, thus, one-dimensional structures, such as cracks in binary
images (Chapter 4) or hairs in grayscale images (Chapter 5);

4. During the gap detection-and-removal, shape details which are not part of such
gaps, should be altered as little as possible.

By analogy with the above, we make the following assumptions for our 3D gap
detection-and-removal work presented in this chapter:

1. Shapes are represented as densely and uniformly sampled 3D datasets, i.e.,
voxel volumes;

2. The above volumes can be either binary or grayscale. We do not treat here the
case of color volumes, since we do not avail of such data in the context of our
applications to be discussed next. However, if such volumes were available, we
could reduce them to grayscale volume by following a similar procedure to the
one used for color images;
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3. Gaps to be treated are described by thin-and-elongated structures that penetrate
deeply into the shape from its boundary (like in the 2D case). Given the dimen-
sionality of our shapes (3D), such gaps can be either one-dimensional structures,
such as wires present in a 3D scan (Section 9.2) or a mix of one-dimensional
and two-dimensional structures, such as the cuts and cracks present in 3D binary
volumes (Section 9.3);

4. During the gap detection-and-removal, shape details which are not part of such
gaps, should be altered as little as possible.

As discussed in Section 2.1.4, there are far fewer methods for detection and removal
of gaps in 3D volumes as compared to the range of methods existing for 2D images.
Arguably the best known such class of methods use morphological filters such as
closing to both find and remove (close) gaps whose size is under a user-prescribed
threshold [197]. While very simple to implement and fast, such methods have to be
set up with great care so that they do not remove details from the image which should
be kept (false positives), or, conversely, leave defects in the image which should be
removed (false negatives). More advanced 3D shape restoration methods exist, such
as [21, 22, 122, 245]. However, most such methods treat the detection-and-removal
of surface defects, rather than volumetric defects; or have several limitations, such as
removing both erroneous and important shape details, or requiring non-trivial effort
from the end user in the form of manual delineation or parameter setting.

The structure of this chapter is as follows. In Section 9.2 we discuss the case of
removing one-dimensional (curve-like) defects from 3D grayscale volumes. To this
end, we adapt and extend our 2D gap filling method originally designed for 2D bi-
nary shapes (Chapter 4). In Section 9.3, we discuss the case of removing both one-
dimensional and two-dimensional (curve-like and surface-like) defects from 3D bi-
nary volumes. To this end, we use our 3D skeletonization method presented in Chap-
ter 8. Section 9.4 concludes the chapter.

9.2 R E M OVA L O F O N E - D I M E N S I O N A L G A P S F RO M G R AY S C A L E VO L -
U M E S

As outlined in the introduction above, our first use-case for 3D inpainting is the detec-
tion and removal of one-dimensional (curve-like) gaps present in grayscale volumes.
The utilization context for this method is described next.

9.2.1 Application context

Positron emission tomography (PET) is a functional imaging modality, whereby we
can deduce the spatial distribution of a radio-labelled pharmaceutical which has been
injected into the subject (in our case, a small animal used for experimental research).
However, the spatial resolution of PET imaging is poor, and the radioactivity is of-
ten confined to a few small regions (e.g., tumors) with no information on the spatial
context of those regions. In a PET/CT scanner, a computed tomography (CT) or cone-
beam computed tomography (CBCT) system is incorporated into the PET scanner,
allowing the acquisition of high resolution anatomical images which can be spatially
co-registered with the PET functional data. For this process to work, the quality (high
resolution, low noise levels) of the acquired CBCT data should be as high as possible.

In the above-mentioned applications, it is often necessary to carry out physiological
monitoring of the subject (e.g., measure its temperature). To do this, various types of
sensors are inserted into the subject. In our current data, sensors consist of two basic
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materials: soft plastic tubes and sheaths (S) and hard metal wires (H). Figure 9.1 show
a 2D X-ray image with the (H) and (S) component types. As visible, S components
appear as ‘soft’ artifacts on the acquired X-ray images, and do not overall interfere
badly with the 3D reconstruction process which creates the 3D grayscale volume from
the available 2D X-ray images. In contrast, H bits cause streak artifacts, making the
CBCT reconstruction (onto which the PET data is next overlaid) unusable. Moreover,
H bits are also distracting when visualizing the data as transaxial slices.

Figure 9.1: 2D X-ray images with hard metal wires (H) and soft plastic tubes (S).

Given the above, our goal is to remove the H artifacts from the final 3D reconstruc-
tion. Doing this by postprocessing a CBCT reconstructed volume is possible, but quite
hard, as the metallic (H) artifacts cause streaks of high frequency and large spatial ex-
tent. Also, this process is arguably computationally intensive. An alternative route is
to detect and remove the H artifacts from the entire set of 2D X-ray images which are
next used in the 3D volumetric reconstruction – in our case, there are 511 such im-
ages, each being acquired from a different viewpoint, or angle, around the subject, all
having 1184 by 1120 pixels. This has several advantages. First, detecting and remov-
ing one-dimensional (wire-like) high-contrast artifacts, like our H structures, from
2D images is arguably much easier, and faster, than removing the three-dimensional
streak artifacts those H structures cause in the 3D reconstruction. Secondly, by pre-
processing the 2D X-ray images to remove such artifacts, we can use the existing
method and software already provided by the PET/CT system in place to create a
wire- and artifact-free reconstruction and 3D rendering.

Several related works for detection and removal of wire-like and tube-like artifacts
from 3D volumetric data exist. Closest to our use-case, Lessard et al. have presented
an approach to segment wires in fluoroscopic images during cerebral aneurysm en-
dovascular interventions [140]. Bismuth et al. presented a locally shortest-path tech-
nique for the detection and removal of of curvilinear structures from X-ray fluoro-
scopic images acquired live during video monitoring of the intervention [31]. The
technique aims at segmenting so-called ‘guide wires’ inserted into the vascular sys-
tem of patients during various surgical interventions. Both above methods work on
2D grayscale images which are similar to our X-ray CBCT images.
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9.2.2 Proposed method

Our approach to wire detection and removal also works on 2D grayscale images, but
uses a different set of techniques. The flowchart of our proposed method is shown in
Fig. 9.2.

2D X-ray 

images

Closing
Di!erences

Inpainting

Erode

3D reconstructionrestored images

Statistical segmentation

PET scanner

Figure 9.2: Flowchart of the proposed method.

The first step of our pipeline is to apply a morphological closing of each of the input
images Ω. In detail, given a 2D disk structuring element H, we consider the dilation
of Ω by H, i.e., the union of copies of Hx, the element H centered at all pixels x ∈Ω,
i.e.

Ω⊕H =
⋃

x∈Ω

Hx. (9.1)

Similarly, we define the erosion of Ω by H, which keeps only pixels x ∈ Ω where Hx
fits inside Ω, i.e.

Ω	H = {x ∈Ω|Hx ⊆Ω}. (9.2)

Since our images are grayscale rather than binary, the overall effect of dilation is to
replace each pixel x by its highest-value neighbor in Hx [101]. Similarly, erosion on
grayscale images replaces each pixel x by the lowest-value neighbor in Hx. Having the
above operations, we next define the opening of Ω as erosion followed by dilation, i.e.

Ω◦H = (Ω	H)⊕H, (9.3)

and, analogously, the closing of Ω as dilation followed by erosion, i.e.

Ω•H = (Ω⊕H)	H. (9.4)

In the second step, we apply a so-called black top-hat transform, i.e., compute the
absolute difference D between the input grayscale image Ω and its closing Ω•H. The
image D captures the H-like artifacts which are thinner than the size of the structuring
element H. In the third step, we upper threshold the grayscale difference image D to
obtain a binary mask M that precisely delineates the H artifacts. Setting the threshold
value τ is, however, not a trivial process. Indeed, the difference images D computed
for various input images Ω of our set of 511 X-ray images can significantly differ in
terms of overall contrast and range. To arrive at a robust setting of τ , we first normalize
the luminance of all images D to the same range, so as to better highlight differences.
Next, for each set of input images, we manually select N = 5 images and segment
these manually, by marking the pixels which correspond to the H artifacts. The final

132



9.2 R E M OVA L O F O N E - D I M E N S I O N A L G A P S F RO M G R AY S C A L E VO L U M E S

threshold τ to use corresponds then to the average of the grayscale values of these
marked pixels over all the manually selected N images.

Using the threshold τ computed as above produces a conservative binary mask M
which covers the H artifacts but also additional nearby pixels of similar luminances –
in other words, M generates few false negatives but may contain several false positives.
To remove these, we slightly erode the binary mask M by a few (2..4) pixels to gener-
ate the final mask M f inal . In the fifth step, we use this final mask M f inal to inpaint the
captured H artifacts using the classical inpainting technique in [230], which was also
used in Chapter 5. The sixth and last step of our process reconstructs the 3D grayscale
volume from the set of inpainted images, using any of the standard 3D volumetric
reconstruction techniques provided by the VIVID software [92] that comes with the
CT scanner platform of our application.

9.2.3 Results

Figure 9.3 shows two images containing H artifacts (left) and the images generated
by our method that detects and removes such artifacts (b). As visible, both the hard
wires inserted in the animal and their surrounding sheaths are detected and removed
in ways that do not create implausible image structures. Separately, S artifacts, such
as the soft plastic tube visible in the bottom two images, are left in place.

(a) (b)

Figure 9.3: Removal of hard artifacts (wires and sheath bits) from 2D X-ray images. (a) Original
2D X-ray images and (b) images generated by our method.

Figure 9.4 shows the 3D reconstruction obtained from the set of raw unprocessed
images in which artifacts have not been removed (left) compared to the reconstruction
from images where artifacts have been removed using our method (right). For both
cases, the shown images are computed by volumetric raytracing of the 3D volume
with an isosurface-like ray function that emphasizes the subject’s skeletal structure.
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For the top dataset, we see that there are only very few differences between the two
reconstructions and also that both reconstructions are quasi noise-free. This indicates
that, for input data where the adverse effect of H artifacts is minimal, our processing
does not significantly change the obtained reconstruction (which is desirable). For the
bottom dataset, we see, however, that the reconstruction from the raw images creates
a significant amount of streak noise (Fig. 9.3, bottom-left). In contrast, reconstruct-
ing from our processed images largely eliminates all such noise and keeps the main
skeletal structure visible in the noisy image.

original reconstruction our method

original reconstruction our method

Figure 9.4: Comparison of 3D reconstructions when using the original unprocessed images
(left) and the ones preprocessed by our method (right).

Turning back to the main problem discussed in this section – the detection and
removal of one-dimensional curve-like structures from X-ray images – a natural ques-
tion to pose is whether we can use the digital hair removal (DHR) method described
in Chapter 5 for this task. Indeed, both hairs and wire-like artifacts share a number of
common aspects, such as the one-dimensional structure, variable position and length
in the image, and variable contrast vs surrounding structures. Figure 9.5 shows the
application of the DHR method presented in Chapter 5 to our X-ray images. To cre-
ate these results, we simply replaced all steps in the pipeline in Fig. 9.2 (except the
final 3D reconstruction step) by the execution of our DHR method on the 2D X-ray
images. As visible, the quality of the H-artifact detection and removal, and also the
overall elimination of noise in the final reconstructions, is similar with the results of
the morphology-based method described in Sec. 9.2.2. However, finding suitable pa-
rameters for applying our DHR method on our tested X-ray images is much harder
than finding similar parameters for the digital hair removal use-case. The main issue
here is the quite variable artifact thickness (both between different wires but also along
a single wire partially wrapped in a sheath) that can be present in an image. Careful
trial-and-error parameter setting does work, but the overall robustness of the DHR
method for this use-case is lower than for the use-case of detecting and removing
hairs. Separately, a large part of the complexity of the DHR method was dedicated to
the (delicate) detection of low-contrast entangled hairs. Such low contrast and entan-
glement are not issues in the CBCT datasets we have seen so far. As such, the simpler
morphology-based method presented in Sec. 9.2.2 appears to be a simpler and more
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robust solution for the H artifact removal problem than the reuse of the DHR method
presented earlier.

a) b) c)

e) f) g)
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Figure 9.5: Removal of H artifacts from X-ray images using the DHR method described in
Chapter 5.

9.3 R E M OVA L O F O N E - A N D T W O - D I M E N S I O N A L G A P S F RO M B I N A RY
VO L U M E S

As outlined in Sec. 9.1, our aim is to detect and remove both one-dimensional and two-
dimensional gap-like artifacts from both grayscale and binary 3D volumes. Section 9.2
has presented a method that treats the relatively simpler case of detection and removal
of one-dimensional artifacts. In this section, we present a separate method that focuses
on the detection and removal of the joint set of one-dimensional and two-dimensional
gap-like artifacts from 3D binary volumes.

9.3.1 Proposed method

The proposed method is an adaptation to 3D of the 2D gap-filling method presented
in Chapter 4. To understand the rationale of the performed changes, we briefly outline
the 2D method next: Given a binary pixel shape Ω⊂Z2, we first compute the skeleton
S(Ωoc) of the shape Ωoc obtained by opening, next closing, Ω by the corresponding
morphological operations. Note that Ωoc with a disk structuring element of radius ρ

fills all gaps in Ω whose thickness is smaller than ρ . Next, we compute the set of
skeletal fragments F = S(Ωoc) \Ω, i.e., points of the skeleton of the hole-free shape
which are outside of the original shape. As discussed in Sec. 4.3.2, such fragments
correspond one-to-one to gaps that cut deeply in the input shape Ω. The final step of
the 2D method is to fill the gaps by essentially convolving the skeleton-fragment set
F with 2D disks whose radii equal the distance transform values of the shape Ωco
obtained by first closing, then opening, Ω. For full details, we refer to Sec. 4.3.3.

Technically speaking, we can immediately generalize the above method to 3D by
replacing the two-dimensional medial axis of a shape by its so-called surface skeleton,
which is its exact equivalent in 3D following the skeleton definition (Eqn. 2.2). Fig-
ure 9.6 (bottom path) shows the effects of this process for a test case – a frog model

135



G A P D E T E C T I O N A N D R E M OVA L F O R 3 D S H A P E S

cut in the middle by a single simple thick planar cut. In the figure, voxels x ∈Ω in the
original shape are marked red; and voxels added by the gap-filling process are marked
green, respectively. As visible, using the surface skeleton has the desired effect of fill-
ing in the gap present in the model quite well. However, as by-product, many shallow
gaps present on the model’s surface are also filled – see e.g. green details between the
frog’s fingers and in the creases behind the ankles of the hind legs. These artifacts are
not surprising: indeed, the shape Ωoc whose surface-skeleton Ssur f (Ωoc) we use, is an
‘inflated’ version of Ωoc. Recall, this inflation is needed to close the present gaps be-
fore the skeleton computation. However, this inflation also closes detail gaps, like the
ones mentioned above. As such, these gaps may generate surface-skeleton fragments
which are outside Ω, thus, are part of F . In turn, reconstructing the shape from such
fragments produces the undesired fill-ins of detail gaps.

Noise shape

Gap-�lling by curve-skel

Gap-�lling by surf-skel

Gap-�lling by mixed-skelClosing

Curve-skel

Surf-skel

Mixed-skel

Figure 9.6: Three-dimensional gap detection and filling using surface and curve skeletons.

At a closer analysis of the above phenomenon, we observed that the main cause for
it is the higher sensitivity of the 3D surface skeleton to inflation-induced changes on
a shape, as compared to 2D medial axes. One way to alleviate this problem would be
to simplify the surface skeleton Ssur f (Ωoc) prior to its use in computing the gap-set F .
However, this creates the undesired effect that the gaps are next not filled in a way that
reconstructs the local shape surface smoothly. Indeed, a gap in a 3D objecty can be
seen as a cross-section whose shape is, in most cases, far from circular. As such, to fill
the gap in a plausible way, one needs to use the (almost) full surface skeleton. Note
that, in contrast, this is not an issue in the 2D case: The skeletal fragments present
in 2D gaps are simple one-dimensional curve segments (internal skeleton branches),
which capture perfectly well the simpler configuration of a 2D gap, and which actually
are not affected by skeleton simplification. In 3D, as outlined above, a gap will contain
a mix of both surface-skeleton terminal manifolds (which capture shape details) and
internal surface-skeleton manifolds (which capture the coarse shape topology).

A second refinement of the above idea is to use the curve skeleton Scurve(Ωoc) in
the 3D detection-and-reconstruction process, instead of the surface skeleton. The main
advantage of this idea is that the curve skeleton has the same simple one-dimensional
topology as the classical 2D medial axis, so robustly detecting its fragments which are
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present in the gap-set F is very easy. However, as well known, a curve skeleton does
not capture the local shape geometry well. More precisely, if we use such a skeleton
in the reconstruction step of the algorithm, we will reconstruct our shape by filling
in the detected gaps with locally-tubular structures whose thickness equals the local
shape thickness. This situation is shown in the top path in Fig. 9.6. As visible, we now
do not spuriously fill in small-scale surface gaps, but on the other hand we also do not
succeed to fully fill the large central cut (which has a non-circular cross-section).

Summarizing the above, we conclude that, in the 3D context

• curve skeletons are good for gap detection, but not for gap removal;

• surface skeletons are good for gap removal, but not for gap detection.

This observation leads us naturally to the use of a combination of the two skeleton
types to handle our problem. Specifically, we proceed as follows:

1. Compute the curve skeleton Scurve(Ωoc) and use it to create the gap-set Fcurve

of all points in the curve skeleton which are outside the input shape Ω;

2. Compute the set Fsur f of points in the surface skeleton which are outside the
input shape Ω;

3. From Fsur f , we eliminate all voxels which are not connected (within Fsur f it-
self) to at least a voxel in Fcurve, by executing a simple flood-fill operation from
Fcurve onto Fsur f . This, in other words, removes from Fsur f all spurious frag-
ments which led to the filling of small surface details, and yields the final set of
fragments F f inal ;

4. Use F f inal to reconstruct the shape by convolving the voxels x ∈ F f inal by balls
of radii DT∂Ωco(x), where DT∂Ωco is the distance transform of the surface of the
input shape after morphological closing and opening.

The middle path in Fig. 9.6 shows the result of applying this mixed curve-and-
surface skeleton method to our test shape. As visible, the large central cut is restored
as well as when using the surface-skeleton only (bottom path in the figure), and no
spurious detail is filled in, just as when using the curve-skeleton only (top part in the
figure).

9.3.2 Results

We implemented the above gap-detection-and-removal method for voxel shapes as fol-
lows. Morphological operations (opening, closing) are implemented by using simple
convolution with a 3D structuring element. In our experiments, we used three well-
known such structuring elements: cubic, ball, and cross (see details at top of Fig. 9.8).
Reconstruction done by using surface-skeletons only is achieved by using surface
skeletons computed by the integer medial axis method (IMA) [102]. The reason for
this choice is that IMA is fast, simple to implement, and delivers overall high-quality
(unsimplified) surface skeletons, as we have seen from our evaluation preented earlier
in Chapter 7. As such, IMA is an ideal method if we only need surface skeletons. Re-
construction done by using combined curve-and-surface skeletons is achieve by using
both skeleton types as computed by our advection method described in Chapter 8. The
choice for this method is motivated by its high speed, centeredness of the delivered
skeletons, ability to compute both skeleton types, and the fact that it guarantees that
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(a) (b) (c)

Figure 9.7: Reconstruction of tubular shapes. (a) Damaged shape; (b) Curve skeleton (in red)
with selected portions of surface skeleton (in green); (c) Reconstruction result.

curve skeletons are contained in their corresponding surface skeletons. This contain-
ment property is crucial for the success of our reconstruction: Indeed, in step 3 of
the method (described above), we need to execute a flood-fill from the curve skeleton
onto the surface skeleton. For this to work, the curve skeleton should be embedded in
the surface skeleton.

To assess both the qualitative results of our method and its scalability, we ran it
on about 20 different shapes, voxelized from polygonal models at resolutions up to
51003 voxels, using binvox [166]. Our method was implemented in C++ on the CPU
and executed on a desktop PC Intel Core i7-2600 3.40 GHz with 16 GB of RAM.

Figure 9.7 shows a first example of skeleton-based reconstruction for a relatively
simple tubular shape. As visible, the combined curve-and-skeleton based reconstruc-
tion method can successfully detect and fill in even the relatively large gap having
jagged edges shown in the figure. Figure 9.8 shows several additional reconstruction
examples, for shapes having a more complex geometry and topology than the ones
shown earlier in Figure 9.7. Figure 9.8 shows a subset of 10 shapes from our test
set. Gaps were created in the input shapes procedurally, by cutting them at various
places with implicit functions modeling planes of various orientation and spheres of
various radii, respectively. Furthermore, noise was added on the internal cut surfaces
by randomly removing a small set of voxels from these surfaces. This creates more
jagged cuts, which are arguably more challenging to reconstruct. Finally, we com-
pared our proposed method (usage of both surface and curve skeletons) to four other
alternative methods: simple top-hat morphological gap closing by using three types of
structuring elements (ball, axis-aligned cube, and axis-aligned cross); and the usage
of the surface-skeleton only in the method presented in Sec. 9.3.1. In Figure 9.8, red
shows original points in Ω which are also present in the reconstruction; green shows
points added to Ω by the reconstruction; and blue shows points removed from Ω by
the reconstruction.
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Damaged shape Closing using cross Closing using cubic Closing using ball Surface skeleton

 only

Combined curve-

and-surface skeletons

Figure 9.8: Comparison of our gap-filling method (right column) with four other methods.
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9.3.3 Discussion

We next discuss several relevant aspects for our 3D gap detection-and-removal
method, organized with respect to a number of desirable properties of the recon-
struction.

Closing Cross Closing Cubic Closing Ball IMA (Surface) Our

Shape damage

Figure 9.9: Reconstruction smoothness.

Smoothness: As mentioned at several points during this thesis, inpainting-like op-
erations should produce a ‘plausible’ reconstruction of the damaged areas. While a
formal definition of plausibility is hard to give in general, the vast majority of 2D
inpainting literature mentions smoothness of the reconstructed signal over, and along
the boundaries of, the reconstructed area to be a key requirement. As such, we nat-
urally adopt this requirement for our 3D case too. As visible from Figure 9.8 and
the detailed Figure 9.9, variations in the reconstruction smoothness exist between
the different tested methods. Overall, the simpler morphological closing methods
produce noisier results, while the skeleton-based reconstruction produces smoother
results. Within the last category, we also see that the combined curve-and-surface
reconstruction produces the smoothest results, in the sense of a reconstructed surface
(green) which closely follows the curvature of the surrounding original surface (red).

Locality: As outlined in Chapter 4 (for the equivalent 2D case) and earlier in this
chapter, our gap-filling reconstruction should detect and remove only deep gaps that
significantly cut the shape, but leave shallow gaps (detail indentations) of the input
surface untouched. Similarly to the test example in Fig. 9.6, Figure 9.8 shows that
the morphological closing methods cannot, in general, make this difference – as such,
they fill all gaps whose size is smaller than the structuring element size. This is easiest
visible by considering the amount of green present in the reconstructed images which
does not correspond to the locations of the cuts visible in the shapes in the leftmost
column. Examples of this situation are filling the small gaps between the details of the
dragon surface (top row), spikes of the trident (neptune model, fourth row from top),
or frog’s fingers (third row from bottom). The combined curve-and-surface method
suffers far less from such issues.

Simplicity and scalability: Implementing the proposed 3D inpainting method is sim-
ple: The entire method consists of a number of trivial morphological opening and
closing passes, the computation of a 3D curve and surface skeleton, a flood fill oper-
ation on voxel volumes, and the reconstruction of a 3D voxel shape from a selected
number of skeleton points, by using the shape’s medial axis transform (MAT). All
these operations can be computed in linear time in the size ‖Ω‖ of the input shape
(see Chapter 8). As such, the overall 3D inpainting times are comparable with the
skeletonization times reported in Sec. 8.4.5.
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9.4 C O N C L U S I O N S

In this chapter, we have addressed the problem of detection and removal of thin and
elongated gaps that damage the volumetric structure of 3D shapes. To this end, we
explored two separate use-cases, as follows.

First, we consider the detection and removal of one-dimensional (curve-like) gap-
like defects from 3D grayscale volumes. Since these defects maintain their one-
dimensional structure in 2D projections of the data, it is possible to cast the 3D
detection-and-removal problem as a two-dimensional image processing problem fol-
lowed by a 3D reconstruction problem. For the processing of the 2D images, we have
compared our digital hair removal (DHR) approach with a simpler approach based on
morphological operations. For our application at hand – the detection and removal of
metallic wire artifacts from CBCT scans – we have shown that the simpler morpho-
logical approach yields results which are visually as good as the more complex DHR
approach, leading to the possibility to remove artifact-induced noise from the final
3D reconstructions.

Our second use-case considers the detection and removal of one-dimensional and
two-dimensional gap-like defects, such as deep and thin volumetric cuts in binary 3D
shapes. Since these defects have a significantly more complex geometry than the one-
dimensional curve-like defects discussed above, we advocate a volumetric method for
their detection and removal. To this end, we extend the gap detection and removal
method described in Chapter 4 to 3D, by using a combined curve-and-surface skele-
ton. Such skeletons can be readily and efficiently provided by the 3D skeletonization
method described in Chapter 8. The proposed 3D inpainting method was shown to
produce better results, in terms of detail preservation and gap removal, as compared
to classical morphological closing methods.

This chapter is based on:

A. Sobiecki, A.C. Jalba and A.C. Telea. Robust Gap Removal from Binary Volumes. Eurographics,
FEV., 2016.
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10.1 S U M M A RY

As stated in Chapter 1, the main goal of this thesis has been to explore whether skeletal
descriptors can be effectively and efficiently used to support the construction of novel
shape restoration methods. As outlined in Chapter 2, the above-mentioned restoration
process can be decomposed into two parts – detecting the damaged regions to restore,
and the restoration proper. As such, the success of using skeletons for shape restora-
tion can be mapped to how skeletons support the two operations mentioned above.

At a high level, our conclusion is that skeletons can, indeed, provide added value
for designing various types of restoration methods for both 2D and 3D shapes. For the
2D context, our preliminary work on facial inpainting shows that the major difficulty
in this area is not the restoration proper (which can be done effectively using standard
inpainting methods), but the automatic and robust detection of regions to restore. Us-
ing typical detection methods which either analyze the image locally or only consider
global statistical image properties are of limited effectiveness, as they cannot guaran-
tee structural invariants of the detected regions. As such, inpainting is not guaranteed
to act on precisely those areas where it is required to.

Following this observation, and given the well-known power of skeletons to capture
both local geometrical and global topological aspects of a shape, our hypothesis that
skeletons are useful for shape restoration gains additional weight. In Chapter 4, we
showed the first example of skeletal-based restoration for 2D binary images, in the
context of removing thin-and-deep cracks from such images. The same method was
next adapted to perform crack-free segmentations of noisy skin lesions from dermato-
scopic images. Here, skeletons proved essential to model the joint aspects of thinness
and depth of cracks occuring in a binary image. We next extended this method in
Chapter 5 to automaticaly detect and remove hairs from color dermatoscopic images.
As for the crack detection-and-removal use-case, skeletons proved here essential in-
struments to model the geometry and topology of thin hairs.

While the first part of this thesis (Chapters 3-5) focuses on using 2D medial axes to
restore 2D images, the second part of this thesis (Chapters 6-9) focuses on using the
more complex 3D surface-and-curve skeletons for the restoration of 3D volumetric
shapes. A first critical step in exploring this avenue is determining which are efficient
and effective 3D skeletonization methods that can be optimal candidates to be subse-
quently used in our 3D restoration work. At the time we did this work, however, no re-
cent detailed survey of 3D skeletonization methods was available, while increasingly
many skeletonization methods were appearing in the scientific arena. As such, our
first step has been to execute two surveys on the state-of-the-art of 3D skeletonization.
The first survey, described in Chapter 6, covers the computation of 3D mesh-based
curve skeletons with collapse methods, which were deemed at the time of writing to
be among the most successful skeletonization methods from the perspective of accu-
racy, computational speed, and scalability. Our second survey, presented in Chapter 7,
extends the scope of the first survey by covering both surface and curve skeletons,
with a focus on voxel-based methods.

The joint conclusion of both surveys was that no skeletonization method, from the
examined ones, is optimal from the perspective of all considered quality criteria. In
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particular, finding a skeletonization method able to deliver both surface and curve
skeletons with high accuracy, high computational scalability, multiscale regulariza-
tion, and having a reasonably simple implementation, was hard. While this may not
appear as a surprise, this fact posed an obstacle to our subsequent aim to use such
skeletons for our 3D shape restoration research. As such, we embarked on the task of
constructing such a method. Our work, described in Chapter 8, presents a 3D skele-
tonization method that complies with all above desired requirements. Additionally,
the proposed method unifies the so-far different concepts of multiscale importance
used for 2D medial axes, 3D surface skeletons, and 3D curve skeletons, in a single
mathematical framework based on the advection of mass from a shape’s boundary to
its surface skeleton, next to its curve skeleton, and next to the shape’s center.

Having the above 3D skeletonization tool, we next turned to our aim of creating
skeleton-based restoration methods for 3D shapes. Chapter 9 presents two such meth-
ods. The first method adapts our 2D gap-removal algorithm presented in Chapter 4
to find and remove gaps from 2D views of a 3D shape, and next synthesizes the gap-
free 3D shape from the restored views. To validate our method, we applied it to the
task of removing wire artifacts from cone beam computer tomography (CBCT) im-
ages. The second method removes gaps from 3D binary shapes, using the surface and
curve skeletons computed by our advection skeletonization presented in Chapter 8.
Compared to classical morphological gap repairing, our method was shown to deliver
better results in terms of restoration smoothness and detail preservation.

Summarizing the above, we believe that the research presented in this thesis has
shown substantial evidence that supports our initial hypothesis – the fact that skele-
tons are useful and usable tools for the creation of methods for shape restoration using
inpainting and inpainting-like techinques, for a diverse range of use-cases and appli-
cations. In the following sections, we further reflect on our conclusions, considering
each research topic separately.

10.2 PA RT 1 : R E PA I R I N G T W O - D I M E N S I O N A L I M AG E S

10.2.1 Facial Image Restoration (Chapter 3)

The first step of our research focused on the specific task of repairing a set of dam-
aged facial images by using inpainting techniques. For the detection of damaged re-
gions, we proposed to use a statistical approach based on comparing the damaged
image with a predefined collection of high-quality images of the same type. For the
repairing of the detected damages, we combined several standard inpainting methods
with an exemplar-based approach that reuses information from our high-quality image
database.

The global outcome of this work was to find out that, for the context of 2D image
restoration, a good detector for the damaged regions is far more critical than the qual-
ity of the subsequently used inpainting method. Moreover, when comparing a num-
ber of existing inpainting methods for our type of damages (which include relatively
small-scale areas of the input image), we found little variation in terms of quality.
As such, we decided to next focus the core of our work on the effective detection of
damaged areas and less on the creation of novel inpainting techniques.

10.2.2 Gap-Sensitive Segmentation and Restoration of Images (Chapter 4)

Our first step into using medial descriptors to detect and restore defects considers the
case of 2D binary shapes affected by cracks that are both thin and penetrate deeply
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from the boundary of the shape into its interior. Such cracks occur in a variety of
contexts, such as poor threshold-based segmentation of noisy grayscale images, inten-
tional damages done to a binary image, or occluding objects appearing in front of the
image. One major difficulty of standard restoration methods for this type of defects
is that they remove both the defects and important small-scale details present on the
shape’s boundary [21, 22, 122, 245]. Also, several such methods require non-trivial
effort from the end user in the form of manual delineation of the defects or parameter
setting.

To address this problem, we proposed an automatic method that both detects and
removes cracks from 2D and 3D binary shapes. Key to our method is the analysis of
the defect’s size and position with respect to the shape’s skeleton. This simple heuristic
allows an effective and efficient way to discriminate boundary details (which should
be preserved) from deep cracks (which should be removed). In the same time, the
skeleton offers a simple and efficient way to remove (fill in) the cracks by using its
associated medial axis transform information. One salient application of this method
is the segmentation of tumors occluded by hairs from dermatoscopic images, so that
the hairs are automatically removed, but small-scale details on the lesion boundary
are preserved.

10.2.3 Digital hair removal in skin tumor images (Chapter 5)

Following the promising results of our gap-removal method described in Chapter 4,
and the positive feedback on the associated tumor segmentation method from derma-
tology specialists, we decided to refine our results in this direction. In Chapter 5, we
proposed a new approach to digital hair removal (DHR) from dermoscopic images,
based on a threshold-set image representation. For every threshold, we modify our
gap-detection algorithm to find hairs, and merge results in a single mask image. Next,
we detect hairs in this mask by a combination of morphological filters and medial-axis
descriptors. We tested our method on over 300 dermatoscopy images, and compared
it with six other state-of-the-art DHR methods. The obtained results show, both quali-
tatively and quantitatively, that our method produces superior results to the compared
methods.

10.3 PA RT 2 : R E PA I R I N G T H R E E - D I M E N S I O N A L S H A P E S

10.3.1 3D Curve Skeletonization Comparison (Chapter 6)

As outlined above, a precondition to using skeletons to repair 3D shapes is the avail-
ability of a good 3D skeletonization method. To find such a method, we performed
a survey focused on several recent curve skeletonization methods. In particular, we
consider the family of mesh-collapse skeletonization methods wich, at the time of our
research, were deemed as extremely promising in the skeletonization community. As
quality factors, we consider the well-accepted feature set described in the classical
survey of Cornea et al. [59].

The performed comparison led to a number of surprising results. First and foremost,
we observed that mesh-collapse skeletonization methods did not always perform as
well as one would expect from the current literature, except for computational scala-
bility. In particular, issues like detail preservation, centeredness, and smoothness were
seen to be challenging for these methods. As such, we concluded that the more tradi-
tional voxel-based skeletonization methods may still be the more suitable method-
class for our application.
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10.3.2 3D Voxel-based Skeletonization Comparison (Chapter 7)

As outlined above, our comparison study did not find mesh-based skeletonization
methods to be optimal for our application context from the perspective of the studied
quality criteria. As such, a natural next step was to study and compare voxel-based
skeletonization methods. In Chapter 7, we present such a study, which, in addition to
the work in Chapter 6, also considers surface skeletons.

We compared six mesh-based curve-skeletonization methods and ten voxel-based
curve- and surface-skeletonization methods along quality criteria proposed in [59]:
homotopy, invariance, thinness, centeredness, smoothness, detail preservation, and
resolution robustness. The comparison was done both qualitatively (by visually as-
sessing how well skeletons fulfill the desirable properties), but also quantitatively, by
the usage of two novel skeleton-distance metrics based on the Hausdorff distance.

The results of this work are twofold. First, our comparison showed that, simi-
lar to the mesh-based curve skeleton case, there is no clear winner method for the
voxel-based curve (and especially surface) skeletonization field. In particular, having
a method that supports multiscale regularization, ensures centered skeletons, and is
computationally scalable was hard to find. The second result of our comparison was
the construction of a public, open-access, benchmark database for skeleton-methods
comparison. The database contains an extensive collection of 3D shapes, voxelization
software, and skeletonization software. It can be used by any researchers interested to
test side-by-side their new skeletonization methods vs existing established ones. To
our knowledge, our initiative is the first public benchmark for 3D skeletonization.

Jointly, the work presented in Chapters 6 and 7 represent the largest qualitative
and quantitative comparison of 3D skeletonization methods performed since the
well-known similar survey of Cornea et al. [59] in 2006. Together with the above-
mentioned open skeletonization database, we believe that our work lays the founda-
tions for an easier, and more open, way for researchers in skeletonization to evaluate
their work.

10.3.3 Unified Curve-and-Surface Skeletonization Framework (Chapter 8)

As pointed out above, a ‘winner method’ that computes 2D and 3D curve and 3D
surface skeletons with all desirable properties (thinness, homotopy preservation, cen-
teredness, multiscale regularization, speed, and ease of use) was found to be lacking.
In particular, we found that there are only a few multiscale skeletonization methods
([80, 168, 229] for 2D shapes, and [70, 109, 187] for 3D shapes). Interestingly, all
these methods use the same general collapse-based principle to compute a skeletal
multiscale.

As such, we decided to embark on the construction of a unified 2D and 3D skele-
tonization framework that would (a) produce skeletons compatible with all our require-
ments, and (b) use a single multiscale importance metric that generalizes and unifies
the earlier work outlined above in this area. Our approach, described in Chapter 8,
models the skeleton detection and regularization by a conservative mass transport pro-
cess from the shape’s boundary to its surface skeleton, next to its curve skeleton, and
finally to the shape center. The resulting mass-density field can be thresholded to ob-
tain a multiscale representation of progressively simplified surface, or curve, skeletons.
We also proposed a numerical implementation of our framework which is demon-
strably stable and has high computational efficiency. We tested our new method on
the skeletonization benchmark created during our earlier comparisons, and confirmed
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that it produces both curve and surface skeletons that compare favorably with existing
methods.

10.3.4 3D Artifact Detection and Removal (Chapter 9)

The last chapter of our work puts all of our earlier results together in the context of
showing how skeletal-based descriptors can be used to perform repairing of 3D shapes.
In this context, Chapter 9 describes two such applications.

In the first application, we aim to remove thin-and-elongated artifacts caused by
metallic wire-like insertions present in anatomic volumes that are scanned with cone-
beam computer tomography (CBCT). As well known, such metallic artifacts can
cause severe reconstruction problems, ultimately leading to reconstructed 3D volumes
which are unusable. To alleviate such problems, we adapt our 2D gap-removal algo-
rithm presented in Chapter 4 to detect and remove the wire projections present in
several 2D views (X-ray images) of the 3D data. After the wire projections are re-
moved, standard CT reconstruction can take place, yielding artifact-free volumes that
can be further easily explored by the interested medical researchers.

In our second application, we show how 3D curve-and-surface skeletons can be
used to detect and remove crack-like gaps present in 3D binary volumetric shapes.
For this, we adapt again our 2D gap-removal algorithm presented in Chapter 4 to
detect gaps into details (to be preserved) and defects (to be removed) based on their
position with respect to the simplified surface skeletons of the respective shapes. We
show next how, in this context, our novel advection-based skeletonization method
(Chapter 8) produces better results than other skeletonization methods. Hereby, thus,
we show the added-value of three-dimensional skeletons in the context of damage
detection and repairing for three-dimensional shapes.
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