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ABSTRACT In this paper we show how a complex object oriented image analysis algorithm 
can be implemented on a CNNUM chip for video-coding. Besides the applied linear opera- 
tions, several gray-scale non-linear template operations are also emulated using algorithmic 
solutions. 

I. Introduction+ 
Cellular Neural Networks (CNNs)  [ 11 exhibits outstanding image processing capabilities. With the extension of 

this processing core first to the CNN Universal Machine [2], and, then towards a complex image processing system 
-the CNN Chipset Architecture [3] -these capabilities can be utilized in real-life applications. However, feasibility 
of the technology is strongly dependent on the availability of high-performance customized mixed-signal chips like 
the one described in [SI and [6]. 

In this paper we demonstrate the use of CNN-UM chips for implementing object segmetation in real-time. 
Object-based image and video processing represents the latest revolution in the field of computer vision. Scenes are 
no more simply addressed as a set of pixels or block of pixels, but as a set of objects. This approach provides new 
solutions for a wide range of applications from automatic surveillance to video stream coding. The implemented 
algorithm is based on the work of [4] with several improvements. 

The experimental results have been processed by the s + x k d  CNNUC3 (or 64 x 64FPAPAP) CNN-UM chip 
[6]. The chip comprises a 64 x 64 pixel array with gray-scale input and output CNN core, extensions to direct opti- 
cal input, fixed-state mask, arithmetic unit, etc. It has been manufactured in 0.5pm standard CMOS technology with 
almost lmillion transistors 80% of which operate in analog mode; the remaining 20%. used for programming, 
memory and control operate in digital mode. 

2. Implementation 

2.1 Introduction 
In this section we review the goals and the main features of the segmentation algorithm. The method employs 

luminance contrast (low-spatial freqencies), luminance gradient (high-spatial freqencies). and consequtive frame 
difference (or motion) information. Besides the realization on the CNNUC3 chip, the algorithm reported in [4] has 
been improved as follows: 

usage of robust operations and misusage of not-teminated transients (only dc outputs), 
segment any of the possible objects regardless to their motion by improved inrraframe segmentation, 
mark the moving objects, 
restoring of the moving object contours without degradation, 
avoid the need of intermediate frames between the coded ones. 

After gray-scale preprocessing, three types of information are gathered (i) contour estimation by thresholded 
gradient and by (ii) edges of similar luminance level areas, and (iii) thresholded frame difference. Next, this infor- 
mation is merged and filtered by morphological operators. Then the smaller and larger objects are separated. The 
final segmentation contains the external contours of the larger objects, and the skeleton of the thinner ones. We tried 
to use as many contour information as possible and not to destruct them by the unaviodable binary filtering. The 
flow-chart of the whole process can be seen in Fig.1. 

In the following sections, details of each step are described with special care to the algorithmic solutions of 
gray-scale nonlinear operations. 

2.2 Edge-Enhancing Low-Pass Filtering, Thesholded Gradient 

First. the high-frequency noise component is reduced by a linear low-pass filtering, which contained an 
image-smoothing B and a Laplacian-like A template. This operation besides the noise suppression, also blurs the 
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object edges. In order to enforce the noise reduction while maintaining the edge structure, a gradient controlled 
low-pass filtering is used (anisotropic diffusion). Since this operation is generally highly non-linear, a simple algo- 
rithmic replacement is applied (and can be renamed as nonlinear diffusion). The algorithm comprises blurring, gra- 
dient calculation utilizing the piecewise linear output tramsfer function, and extensive usage of the fixed-state map 
to handle separately the edge-like areas. The block diagram of the algorithm can be seen in Fig.2. and the processed 
two sample frames in Fig.3. 

Previous frame 

Fig. I :  The block diagram showing the implemented segmentation algorithm. 
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Fig. 2: The block diagram of the edge-preserving low-passfilter implementation can be seen in thefigure. It supwsses 
the separated edges and low intensity noise, whilepwserve the real edges. In the gradient calculation the sobel operator 
was wed mtated in four diwctions.The mle of the last three steps of dz@ision and contrast enhance is to remove the 
noise f m m  the edge areas and eliminate the unconsistancy between the edge and the remaining areas. 

2.3 Motion Detection 
In order to invoke the motion information the pixelwise image different between two frames is calculated. In 

contrast to the published method, we used double thresholding on the difference instead of absolute value calcula- 
tion and thresholding. In this way, the appearing and dissapearing light and dark areas can be distinguished and 
merged the proper one with other object information regarding to the current frame. This separation is useful 
because the raw difference contains information about two frames. 

We found that the contours extracted by thresholded gradient can be correlated well with the appearing and dis- 
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Fig. 3: In the images the results of the implemented nonlinear dflusion. Image (a)  is the 6Jthframe of the “miss america” 
video sequence. Image (b)  is the samefmme afrerprocessing, and image (c)  is the processed 8Sth frame ofthis sequnce. 
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Fig. 4: The block diagram of the motion detection. The contour informarion of rhe threshhlded gradient operation is correlated 
with the appearing and dissappearing areas. Which area contains the more common information is merged with the contours. 
The images on the right side show partial results denoted by letters, which can be found also in thepow-chart. 

sapearing regions. After binary correlation the evaluation is done externally by counting the black-and-white pixel 
ratio of the results. See Fig.4. for the flow-chart of this process. 

2.4 Intensity Contour Detection 
The contour estimation by the thresholded gradient is working only in cases where edge regions are sharp 

enough. It is not always true in natural environment, and the contours can be broken and not closed. On the other 
hand the luminance information diffused in regions can give this lack of information. 

First, an extenal processor calculates the histogram of the incoming images dividing the luminance swing into 
8-32 levels (this process is not need extensive calculations by the digital counterpart of the CNN chip). With this 
information some levels are choosen at the local minimums of the histogram where the preprocessed image i s  thres- 
holed. With this threshold level choise, the similar large areas are not segmented. 

After smoothing and edge detection on the binary results, closed and mostly not oversegmenting borders can be 
extracted. The corresponding results can be seen in Fig.5. 
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Fig. 5: In image ( a )  the result of the intesity based edge detection, in image (b)  the result of the thresholded gradient, and in 
image (c) merged images can be seen. 

2.5 Moving Areas, Filtering 
The total area of movement is extracted as follows. The three main type of information is merged in this step 

and whole filling the outer parts of the frame is cleared. Using the binary contours of these image, the existing con- 
tour estimation can be enhanced. 

The next step is the small object removal and the intemal whole filling. In these steps morphological operators 
or hole filling with the commonly applied “hollow” function [7] cannot be used without some additional restriction 
because it may merge separable objects or destruct edge structures. To overcome this problem we use the fixed state 
map. This contains the combination of the enhanced contour estimation and the inverted moving area map (the still 
background). By freezing the existing contours and background the above mentioned operations can work safely. 

Object size classification is used for small object removal, because the available one-template operations also 
could destruct the contour structure. In this step and in the laters, it is done by multiple morphological erosion and 
reconstruction. 

The results of the moving area detection and this filtering can be seen in Fig.6. 

I I I  

Fig. 6: The moving regions, the enhanced contour estimation, and this image after wholefilling andsmall object removal can 
be seen in the images. 

2.6 Final Contour Extraction 
In this part of the algorithm, the goal is to maintain the external borders of the moving segments, create exact 

contours of the larger objects, and limit the processing time of the applied skeletonization cycles. 
In order to distinguish the objects, size classification is used as was mentioned above. The smaller objects (see 

Fig.7a,b) are removed and stored for later edge extraction, while the remaining larger ones are processed next. Dur- 
ing the object classification, after the morphological erosions, a so called “core” remains (see Fig.7~) before the 
reconstruction step. This core is increased (see Fig.7d) in the same amount then the erosion was applied, results in 
large, not connected objects. This result is also stored for later edge extraction. 
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If this core is removed from the original image, an edge-like image is the result with several pixel width (see 
Fig.7e). This image is the input of the following skeletonization process, granting the finite process time. In order 
to maintain the external borders of the moving region, the fixed state map is used. The input of the skeletonization 
is the logic combination of the thick edge map and the still background map. During the skeletonization, this back- 
ground stops the peeling at the required borders. The skeleton in this way represent the internal edges, but follows 
the previously found external borders. 

When the skeleton is ready (see Fig.70, the background is removed, the previous small and large regions are 
added (see Fig.7g). and the last edge detection of this combination provide the final result (see Fig.7h). 

Fig. 7: Examples of thejinnl confour detecfion can seen in the images. See text for  detailed description. 

2.7 Comments 
As a result, the image containing the segment borders can be processed externally by later high-level labelling 

and tracking. The final segmented images can be seenin Fig.8. These example frames were choosen quite far from 
each other (representing a 3 frameshec rate) in order to show the consistance of the segmentation. 

The total number of template executions and logic operations in the algorithm is maximum 90 and 15, respec- 
tively. When the processed frames are the size of the chip (64 x 64 pixels), the required time of the processing with- 
out the YO time is approximately 2msec. The memory management of the implementation was optimized, and since 
the chip contains 4 LAMS, 4 LLMs, and additional capacitances for memory interchange, all of the image process- 
ing steps of the algorithm can be executed within the chip without external storage. 

In case of QCIF (176x144) sized images the 30 frames/seconds rate can be achived. It should be mentioned that 
the segmentation of large images into chip sized parts also includes additional image transfers in order to maintain 
the consistancy of the frame. But this process occures in our case only for binary images, and the overhead is slight. 

2.8 Future Work 
In the future exhastive test is intended to be done. The algorithm is known to fail when the background has sim- 

ilar contrast and intesity information that the moving objects, and itself is also changing. The solution for a more 
general process requires motion estimation and the preliminary knowledge of the higher level algorithms, which 
use the information of the segmentation. See [8] for an other survey based on global optimization technics. 
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Fig. 8: Final segmentation of the moving objects in the 65“ and M I h  frame of the “miss america ” sequence. 

3. Conclusion 
We implemented a object segmentation algorithm on the CNNUC3 chip. We used robust operations, image inde- 

pendent processing time, and solved several drawbacks of a known method. The estimated frame rate is 30 
framedsec on QCIF images. 

It also became clear that the image processing capability of the CNN architecture can be optimized in the system 
level when conventional digital coprocessors are also present with the proper division of the tasks. 
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