418 research outputs found

    6G Vision, Value, Use Cases and Technologies from European 6G Flagship Project Hexa-X

    Get PDF
    While 5G is being deployed and the economy and society begin to reap the associated benefits, the research and development community starts to focus on the next, 6th Generation (6G) of wireless communications. Although there are papers available in the literature on visions, requirements and technical enablers for 6G from various academic perspectives, there is a lack of joint industry and academic work towards 6G. In this paper a consolidated view on vision, values, use cases and key enabling technologies from leading industry stakeholders and academia is presented. The authors represent the mobile communications ecosystem with competences spanning hardware, link layer and networking aspects, as well as standardization and regulation. The second contribution of the paper is revisiting and analyzing the key concurrent initiatives on 6G. A third contribution of the paper is the identification and justification of six key 6G research challenges: (i) “connecting”, in the sense of empowering, exploiting and governing, intelligence; (ii) realizing a network of networks, i.e., leveraging on existing networks and investments, while reinventing roles and protocols where needed; (iii) delivering extreme experiences, when/where needed; (iv) (environmental, economic, social) sustainability to address the major challenges of current societies; (v) trustworthiness as an ingrained fundamental design principle; (vi) supporting cost-effective global service coverage. A fourth contribution is a comprehensive specification of a concrete first-set of industry and academia jointly defined use cases for 6G, e.g., massive twinning, cooperative robots, immersive telepresence, and others. Finally, the anticipated evolutions in the radio, network and management/orchestration domains are discussed

    The 6G Architecture Landscape:European Perspective

    Get PDF

    6G Vision: Towards Future Collaborative Cognitive Communication (3C) Systems

    Get PDF
    6G networks are expected to have a breakthrough by enabling the emergence of collaborative cognitive communication services over heterogeneous environments for industry 5.0 applications. These applications are required to adapt human-centric approach to make the most of human intuition and intelligence in Industry 4.0 automation.It calls for a transdisciplinarity research domain to investigate innovative systems with overlapping realms of Psychology, Sociology, Communication networks, Artificial Intelligence , Natural Language Processing and Collaborative Computing. The author at the Cognitive Systems Research Centre, London South Bank University has coined the expression “3C Systems" to refer to such artifacts which stands for "Collaborative Cognitive Communication Systems”. In this paper, an innovative framework for 3C Systems is proposed that is able to analyze and predict both the human as well as machine behaviors. It proactively diagnoses issues and recommends solutions without requiring any human intervention. The proposed concept of 3C Systems would potentially contribute towards 6G standardization. The automation and orchestration aspects of this research have variety of applications stretched across city infrastructures, retail, business, tourism, health, law, education and travel. A thorough insight to a broad view of 6G vision has been presented towards envisioned 3C Systems, while covering its enabling technologies. The experimental results for the proof of concept implementation has been presented. Results affirm the technical capabilities of the concept, to contribute to several industry 5.0 applications including, but not limited to holographic communication, self-driving vehicles, context-aware infrastructure and personalized interfaces

    Deliverable D2.1 - Ecosystem analysis and 6G-SANDBOX facility design

    Get PDF
    This document provides a comprehensive overview of the core aspects of the 6G-SANDBOX project. It outlines the project's vision, objectives, and the Key Performance Indicators (KPIs) and Key Value Indicators (KVIs) targeted for achievement. The functional and non-functional requirements of the 6G-SANDBOX Facility are extensively presented, based on a proposed reference blueprint. A detailed description of the updated reference architecture of the facility is provided, considering the requirements outlined. The document explores the experimentation framework, including the lifecycle of experiments and the methodology for validating KPIs and KVIs. It presents the key technologies and use case enablers towards 6G that will be offered within the trial networks. Each of the platforms constituting the 6G-SANDBOX Facility is described, along with the necessary enhancements to align them with the project's vision in terms of hardware, software updates, and functional improvements

    Towards continuously programmable networks

    Get PDF
    While programmability has been a feature of network devices for a long time, the past decade has seen significant enhancement of programming capability for network functions and nodes, spearheaded by the ongoing trend towards softwarization and cloudification. In his context, new design principles and technology enablers are introduced (Section 7.2) which reside at: (i) service/application provisioning level, (ii) network and resource management level, as well as (iii) network deployment and connectivity level

    A Vision and An Evolutionary Framework for 6G: Scenarios, Capabilities and Enablers

    Full text link
    With the standardization and commercialization completed at an unforeseen pace for the 5th generation (5G) wireless networks, researchers, engineers and executives from the academia and industry have turned their attention to new candidate technologies that can support the next generation wireless networks enabling more advanced capabilities in sophisticated scenarios. Explicitly, the 6th generation (6G) terrestrial wireless network aims to providing seamless connectivity not only to users but also to machine type devices for the next decade and beyond. This paper describes the progresses moving towards 6G, which is officially termed as ``international mobile telecommunications (IMT) for 2030 and beyond'' in the International Telecommunication Union Radiocommunication Sector (ITU-R). Specifically, the usage scenarios, their representative capabilities and the supporting technologies are discussed, and the future opportunities and challenges are highlighted.Comment: Submitted to an IEEE Magazin
    corecore