4 research outputs found

    Robotic design and modelling of medical lower extremity exoskeletons

    Get PDF
    This study aims to explain the development of the robotic Lower Extremity Exoskeleton (LEE) systems between 1960 and 2019 in chronological order. The scans performed in the exoskeleton system’s design have shown that a modeling program, such as AnyBody, and OpenSim, should be used first to observe the design and software animation, followed by the mechanical development of the system using sensors and motors. Also, the use of OpenSim and AnyBody musculoskeletal system software has been proven to play an essential role in designing the human-exoskeleton by eliminating the high costs and risks of the mechanical designs. Furthermore, these modeling systems can enable rapid optimization of the LEE design by detecting the forces and torques falling on the human muscles

    Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research

    Get PDF
    Effective control of an exoskeleton robot (ER) using a human-robot interface is crucial for assessing the robot's movements and the force they produce to generate efficient control signals. Interestingly, certain surveys were done to show off cutting-edge exoskeleton robots. The review papers that were previously published have not thoroughly examined the control strategy, which is a crucial component of automating exoskeleton systems. As a result, this review focuses on examining the most recent developments and problems associated with exoskeleton control systems, particularly during the last few years (2017–2022). In addition, the trends and challenges of cooperative control, particularly multi-information fusion, are discussed

    Design of a lower-limb exoskeleton

    Full text link
    [EN] In recent years, many mechanisms have been developed to help people with reduced mobility, especially for people who have injuries that do not allow the mobility of the lower body of the human body. In the present work, the properties and mechanical movements of a human being, angles of movement, extension and flexion of the hip, knee, etc. are described. A device has also been designed, using aluminum elements to give lightness and robustness to the exoskeleton. At the same time, an external casing made of PLA plastic has been developed, with all of which it has been tried to make a light exoskeleton with a low volume, with the aim that be of daily use for people with mobility problems. Five young students tested the exoskeleton in laboratory conditions. Different parameters have been evaluated as design, range of movement and the functionality. A series of characteristics has been defined such as the design improvement, functionality and navigation, the operating time, speed and data reading with myoelectric sensors after trials[ES] ayuda a las personas con movilidad reducida, especialmente para personas con lesiones que impiden la movilidad de la parte inferior de su cuerpo. En el presente trabajo se revisan inicialmente los fundamentos de los movimientos mecánicos básicos de un ser humano, profundizando en aspectos tales como ángulos de movimiento, extensión y flexión de la cadera, rodilla, etc. Posteriormente, se diseña un exoesqueleto para uso diario por parte de personas con reducida movilidad. Éste está basado en motores de corriente continua (DC), tecnología arduino y en una aplicación móvil para Android. Se utilizan elementos de aluminio para dotar de ligereza y robustez al exoesqueleto y, al mismo tiempo, se elabora una carcasa externa de plástico PLA, con el fin de proveerlo de ligereza, reducido volumen y flexibilidad. El exoesqueleto ha sido ensayado en el laboratorio en cinco individuos. Se han evaluado distintos parámetros como diseño, rango de movimiento y funcionalidad. En base a los resultados obtenidos, se han definido una serie de características a mejorar en el diseño, tales como funcionalidad de navegación, tiempo de funcionamiento, velocidad y lectura de datos mediante sensores mioelectricos.Dunai, L.; Lengua, I.; Peris Fajarnes, G.; Defez Garcia, B. (2019). Diseño de un exoesqueleto de extremidades inferiores. DYNA Ingeniería e Industria. 94(3):297-303. https://doi.org/10.6036/9010S29730394
    corecore