132 research outputs found

    Visible hyperspectral imaging for lamb quality prediction

    Get PDF
    Three factors, including tenderness, juiciness and flavour, are found to have an impact on lamb eating quality, which determines the repurchase behaviour of customers. In addition to these factors, the surface colour of lamb can also influence the purchase decision of consumers. From a long time ago, meat industries have been looking for fast and non-invasive objective quality evaluation approaches, where near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI) have shown great promises in assessing beef quality compared with conventional methods. However, rare research has been conducted for lamb samples. Therefore, in this paper the feasibility of the HSI system for evaluating lamb quality was tested. In total 80 lamb samples were imaged using a visible range HSI system and the spectral profiles were used for predicting lamb quality related traits. For some traits, noise was further removed from HSI spectra by singular spectrum analysis (SSA) for better performance. Considering support vector machine (SVM) is sensitive to high dimensional data, principal component analysis (PCA) was applied to reduce the dimensionality of HSI spectra before feeding into SVM for constructing prediction equations. The prediction results suggest that HSI is promising in predicting some lamb eating quality traits, which could be beneficial for lamb industries

    Singular spectrum analysis for hyperspectral imaging based beef eating quality evaluation: a new pre-processing method

    Get PDF
    Hyperspectral imaging (HSI) is an emerging platform technology that integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. In recent years, HSI has rapidly matured into one of the most powerful tools for food quality analysis and control. In the project, HSI has been applied for beef eating quality evaluation. Pre-processing of HSI spectral profiles is needed, in order to eliminate undesired noises. Singular spectrum analysis (SSA) will be demonstrated to be an effective pre-processing step in de-noising HSI spectra

    Hyperspectral imaging for food applications

    Get PDF
    Food quality analysis is a key area where reliable, nondestructive and accurate measures are required. Hyperspectral imaging is a technology which meets all of these requirements but only if appropriate signal processing techniques are implemented. In this paper, a discussion of some of these state-of-the-art processing techniques is followed by an explanation of four different applications of hyperspectral imaging for food quality analysis: shelf life estimation of baked sponges; beef quality prediction; classification of Chinese tea leaves; and classification of rice grains. The first two of these topics investigate the use of hyperspectral imaging to produce an objective measure about the quality of the food sample. The final two studies are classification problems, where an unknown sample is assigned to one of a previously defined set of classes

    Linear vs Nonlinear Extreme Learning Machine for Spectral-Spatial Classification of Hyperspectral Image

    Get PDF
    As a new machine learning approach, extreme learning machine (ELM) has received wide attentions due to its good performances. However, when directly applied to the hyperspectral image (HSI) classification, the recognition rate is too low. This is because ELM does not use the spatial information which is very important for HSI classification. In view of this, this paper proposes a new framework for spectral-spatial classification of HSI by combining ELM with loopy belief propagation (LBP). The original ELM is linear, and the nonlinear ELMs (or Kernel ELMs) are the improvement of linear ELM (LELM). However, based on lots of experiments and analysis, we found out that the LELM is a better choice than nonlinear ELM for spectral-spatial classification of HSI. Furthermore, we exploit the marginal probability distribution that uses the whole information in the HSI and learn such distribution using the LBP. The proposed method not only maintain the fast speed of ELM, but also greatly improves the accuracy of classification. The experimental results in the well-known HSI data sets, Indian Pines and Pavia University, demonstrate the good performances of the proposed method.Comment: 13 pages,8 figures,3 tables,articl

    Employing NIR-SWIR hyperspectral imaging to predict the smokiness of Scotch whisky

    Get PDF
    Scotch Whisky makes a significant contribution to the UK's food and drinks export. The flavour of this high quality spirit is derived naturally from the whisky making process, with smoky aromas being a key character of certain Scotch whiskies. The level of smokiness is determined by the amount of phenolic compounds in the spirit. Phenols are introduced by exposing the barley malt to peat smoke during the kilning process. The current techniques to determine the levels of phenols, such as High Performance Liquid Chromatography (HPLC), are time consuming as they require distillation of the malt prior to analysis. To speed up this process and enable real-time detection before processing, the possibilities of Near-infrared to Short-wave-infrared (NIR-SWIR) Hyperspectral Imaging (HSI) to detect these phenols directly on malted barley are explored. It can be shown that via regression analysis, various levels of phenol concentration used as working levels for whisky production could be estimated to a satisfying degree. To further optimise industrial application, a hyperspectral band selection algorithm is applied that yields good results and reduces computational cost and may open possibilities to employ multispectral rather than hyperspectral cameras in future applications

    Fast implementation of two-dimensional singular spectrum analysis for effective data classification in hyperspectral imaging

    Get PDF
    Although singular spectrum analysis (SSA) has been successfully applied for data classification in hyperspectral remote sensing, it suffers from extremely high computational cost, especially for 2D-SSA. As a result, a fast implementation of 2D-SSA namely F-2D-SSA is presented in this paper, where the computational complexity has been significantly reduced with a rate up to 60%. From comprehensive experiments undertaken, the effectiveness of F-2D-SSA is validated producing a similar high-level of accuracy in pixel classification using support vector machine (SVM) classifier, yet with a much reduced complexity in comparison to conventional 2D-SSA. Therefore, the introduction and evaluation of F-2D-SSA completes a series of studies focused on SSA, where in this particular research, the reduction in computational complexity leads to potential applications in mobile and embedded devices such as airborne or satellite platforms

    Potential of UV and SWIR hyperspectral imaging for determination of levels of phenolic flavour compounds in peated barley malt

    Get PDF
    In this study, ultra-violet (UV) and short-wave infra-red (SWIR) hyperspectral imaging (HSI) was used to measure the concentration of phenolic flavour compounds on malted barley that are responsible for smoky aroma of Scotch whisky. UV-HSI is a relatively unexplored technique that has the potential to detect specific absorptions of phenols. SWIR-HSI has proven to detect phenols in previous applications. Support Vector Machine Classification and Regression was applied to classify malts with ten different concentration levels of the compounds of interest, and to estimate the concentration respectively. Results reveal that UV-HSI is at its current development stage unsuitable for this task whereas SWIR-HSI is able to produce robust results with a classification accuracy of 99.8% and a squared correlation coefficient of 0.98 with a Root Mean Squared Error of 0.32 ppm for regression. The results indicate that with further testing and development, HSI may potentially be exploited in an industrial production environment
    corecore