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Abstract—Although singular spectrum analysis (SSA) has been successfully applied for data classification in hyperspectral remote 

sensing, it suffers from extremely high computational cost, especially for 2D-SSA. As a result, a fast implementation of 2D-SSA namely 

F-2D-SSA is presented in this paper, where the computational complexity has been significantly reduced with a rate up to 60%. From 

comprehensive experiments undertaken, the effectiveness of F-2D-SSA is validated producing a similar high-level of accuracy in pixel 

classification using support vector machine (SVM) classifier, yet with a much reduced complexity in comparison to conventional 2D-SSA. 

Therefore, the introduction and evaluation of F-2D-SSA completes a series of studies focused on SSA, where in this particular research, 

the reduction in computational complexity leads to potential applications in mobile and embedded devices such as airborne or satellite 

platforms. 

Index Terms—Data classification, fast 2-D singular spectrum analysis (F-2D-SSA), hyperspectral imaging (HSI), land cover analysis, 

remote sensing. 

 

I. INTRODUCTION 

Data classification and recognition has become essential in many different scientific and engineering disciplines. After data 

acquisition and conditioning, extracting appropriate features from the data is vital for an adequate performance in the classifier 

stage, leading to a discriminative characterization and therefore improved classification accuracy. The introduction of hyperspectral 

imaging (HSI) technology in the last decades has become of great importance for several applications as it contains large amounts of 

data which seem especially suitable for this feature extraction, where hyperspectral images are obtained in a 3-D hyperspectral cube, 
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presenting 2-D scenes in a wide spectral range with contiguous wavelengths. This cube provides 1-D spectral signatures in each 

pixel, so elements in the 2-D scene can be recognized and labeled with promising accuracy in quite diverse applications such as food 

quality analysis [1, 2], health/medical studies [3], arts [4], or remote sensing [5, 6]. 

In some of our previous work, we have evaluated the singular spectrum analysis (SSA) [7] technique for feature extraction in HSI 

remote sensing. Basically, the SSA algorithm is able to decompose original 1-D signals into the main trend, oscillations and noise; 

therefore, initially we applied this technique for feature extraction in the spectral domain (applied to pixels) as 1D-SSA [8], which 

led to improved support vector machine (SVM) classification accuracy. Afterwards, we naturally extended this approach to the 2-D 

spatial domain (applied to spectral bands or images), introducing the 2D-SSA method plus a comprehensive benchmarking with the 

current state of the art in [9], where impressive results are achieved. 

Therefore, 2D-SSA is proven to beat in terms of classification accuracy state-of-the-art techniques in HSI, including from classic 

methods such as the principal component analysis (PCA) [10], median filtering and morphological operators, to more modern 

approaches such as the 2-D empirical mode decomposition (2D-EMD) [11], the main competitor of 2D-SSA [9]. In fact, while 

2D-EMD is based on empirical iterations, becoming computationally expensive, 2D-SSA is faster, being based on the well-known 

singular value decomposition (SVD). Other highly accurate methods such as the adaptive filter with derivative (AFD) [12] and the 

extended morphological profile (EMP) [13], based on median filtering and morphology respectively, are not able to achieve the 

accuracy provided by 2D-SSA. Overall, the potential provided by 2D-SSA is great and explains the interest and attention paid to it. 

However, general SSA in HSI remote sensing requires to be applied either to every pixel (1-D case) or every spectral band (2-D 

case). Indeed, the individual application uses the same configuration values for every item (pixel or band), an initial simplification 

stated in [8, 9] that, additionally, leads to potential benefits. This pixel- or band-based implementation translates into reiteration of 

some complex steps, such as the SVD, which has inevitably resulted in substantially increased overall computational complexity. To 

address this issue, a fast implementation F-1D-SSA was proposed in [14], following a mathematical trick that is possible thanks to 

the use of the same configuration for every item (pixel). Now, it is essential to adapt and create a fast implementation for the 2-D 

case (F-2D-SSA) to finally complete our SSA exploration (Fig. 1). 
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Fig. 1.  F-2D-SSA inside the context of the SSA methods in hyperspectral remote sensing. 

 

Given the potential of 2D-SSA, we find indispensable to introduce and evaluate a fast implementation of it. Actually, the 2D-SSA 

method, yet faster than 2D-EMD, still presents considerable computational complexity that makes crucial the introduction of 

computational relief and optimization. Therefore, with an increasing world-wide interest in mobile and embedded devices, accurate 

classification methods such as 2D-SSA are highly encouraged to optimize its implementation, reducing complexity and running 

time. Consequently, the main contribution presented in this paper is to propose a fast implementation for 2D-SSA, becoming a novel 

method, which is evaluated to show the superiority of its performance. 

The remaining part of this manuscript is organized as follows. Section II starts with the basic mathematical background of the 

conventional 2D-SSA algorithm for feature extraction in HSI remote sensing, followed by our trick for fast implementation and the 

F-2D-SSA algorithm description. The experimental setup to compare both conventional and fast implementations, showing their 

differences under several scenarios in SVM classification, is presented in Section III. Finally, experimental results and further 

analysis are discussed in Section IV, leading to the concluding remarks drawn in Section V. 

II. FAST IMPLEMENTATION F-2D-SSA 

Derived from the basic SSA algorithm, the 2D-SSA method is an extension employed for 2-D signals or images [15, 16]. We 

already introduced and evaluated the 2D-SSA algorithm for feature extraction in HSI [9], where its conventional implementation is 

well-know and can be easily found in several of the cited works [9, 15, 16]. In the following, a brief summary is provided for clarity 

to the readers. 

Let D2
P be an image sized yx NN  , a window 

DL2
is defined with dimensions yx

D LLL 2
, where ],1[ xx NL   and 

],1[ yy NL  . With this window, a trajectory matrix 
DD KLD 222 X  of the image D2

P  can be constructed (embedding stage), 

where   112  yyxx
D LNLNK . This matrix  

D2
X presents a structure called Hankel-block-Hankel (HbH) [9]. 
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SVD is then applied to the matrix D2
X . This SVD is equivalent to an eigenvalue decomposition (EVD) of the matrix 

TDD 22
XX , which results in eigenvalues  DL221     and corresponding eigenvectors 

  DD

D
LL

L

22

2,,, 21
 uuuU  . Therefore, the trajectory matrix is decomposed in DL

D
221

2
XXXX    where each 

matrix lX  is related to its corresponding eigenvalue, and can be defined by 

l

l

TD

l
T
llll




uX
vvuX

2

,  .                  (1) 

The 2D-SSA algorithm basically consists of decomposing an image D2
P  by SVD for a posterior reconstruction with only 

specific components, which is also known as grouping. In practical terms, the grouping stage consists of a multiplication derived 

from equations in (1), so combining both equations and selecting a single group namely t containing all the desired components, the 

reconstructed trajectory matrix is expressed as 

     DTTTDD 222 )( XUUUXUX ttttt  ,                (2) 

 

with tU  as a matrix where each column is the eigenvector from each selected component. This selection of components is known 

as Eigenvalue grouping (EVG). Please note that the resulting matrix 
D2

tX  from the grouping stage is not necessarily HbH type.  

In order to convert this resulting matrix to the reconstructed final image, it needs to be transformed first to an HbH-type matrix. 

This is done by an average procedure of the different values of D2
tX that contribute to the same element  ji,  in the image D2

P , 

known as a diagonal averaging [9]. Finally, 
D2

Z  is the reconstructed image from the selected eigenvalue components. 

Therefore, given a HSI cube, conventional implementation of the 2D-SSA method is band-based, i.e. the technique is 

implemented individually to every spectral image in the cube, where all spectral bands are treated equally. As shown in Fig. 2, an 

original scene from the cube is decomposed, where the main spatial trend and local structure is usually located in the first 

components. Therefore, decomposing every image in the hyperspectral cube and then selecting only the first components to 

reconstruct each of them individually, leads to a new cube in which the noise (usually located in the small components) is reduced. 

From previous explanations and our work in [9], it is clear that the performance of 2D-SSA is affected by two parameters: the 

window L
2D

 and the EVG grouping. How to select optimal values of configuration parameters has been previously discussed [8, 9], 

establishing noisy, lossy and intermediate regions in the 1-D case [8], where a similar interpretation is derived for the 2-D case [9]. 
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Fig. 2.  Conventional application of 2D-SSA to a hyperspectral cube (band-based). 

 

Despite the 2D-SSA method has been proven extremely effective in pixel classification, its band-based implementation forces to 

compute a complete SVD stage for every spectral band in the cube. This fact leads to remarkable computational complexity, which 

can also be reflected in large computation time. Nevertheless, given the shared configuration for each of the individual images in the 

cube, the D2
X  construction is undertaken in the same parameters, where the eigenvectors from the SVD can be commonly applied 

to all the band images. This fact allows the fast implementation trick, relieving computational complexity by implementing a unique 

SVD stage, as explained in the following. 

The difference introduced by our fast implementation is simply related to the common SVD stage, where the rest of stages, i.e. 

embedding, grouping and diagonal averaging are just the same, being applied individually. Fig. 3 shows a clear comparison between 

conventional and fast implementation. Therefore, in our proposed F-2D-SSA, the band-based (repetitive) sequence of SVD is no 

longer needed. Nevertheless, a single sequence including SVD is still required.  

 

 
Fig. 3.  Comparison of the conventional 2D-SSA (left) and the proposed F- 2D-SSA (right). 



 6 

 

 

Once the SVD stage implementation is reduced to a unique case, questions arise regarding what the appropriate SVD input is. 

From our point of view, the representative band scene to which the SVD is applied must possess the general characteristics of those 

scenes forming the hyperspectral cube. As all the scenes are indeed acquired by the same sensor, at the same time and in the same 

conditions, it is assumed that a scene resulting from the mean, or alternatively the median value from the scenes in the cube will 

contain adequately the properties of the whole data set, analogously to the 1-D case [14]. Therefore, suggesting the use of the mean 

(or median) image as SVD input, the implementation steps of F-2D-SSA in HSI are now listed in Algorithm 1, where experimental 

results are presented in Section IV to fully validate the effectiveness of the proposed F-2D-SSA algorithm. 

 

Algorithm 1: F-2D-SSA in HSI 

1) Initialization:  

1.1 Input: hyperspectral cube with dimensions BNN yx  ; 

1.2 Configuration: Choose parameters window size DL2 , EVG and representative scene. These will be used for all the spectral 

scenes. It is suggested to use small/medium windows along with few eigenvalue components (1
st
, 1-2

nd
). For the representative 

scene, we propose to use the mean or median scene from the whole hyperspectral cube. 

2) Find a unique set of eigenvalues for all the spectral bands: 

2.1 Calculate the mean or median spectral scene from the cube. It will be the representative scene; 

2.2 Embed the representative scene on a trajectory matrix D2
X using DL2 ; 

2.3 Perform EVD of the matrix 
TDD 22

XX to obtain eigenvectors   DD

D
LL

L

22

2,,, 21
 uuuU  ; 

3) Apply 2D-SSA with the given eigenvectors to one spectral band or scene D2
P  (e.g. b=1): 

3.1 Embed the current spectral scene on a trajectory matrix D2
X using DL2 ; 

3.2 Apply eq. (2) with the unique set of eigenvectors U and the selected EVG ( t ) to obtain the reconstructed D2
tX ; 

3.3 Perform diagonal averaging as in [9] to invert the embedding step and obtain the final reconstructed image 
D2

Z . 

4) Band-based repetition: Repeat the step above for the rest of spectral bands b=2…B. 
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5) Output: A new cube with dimensions BNN yx   in which all spectral bands have been transformed by F-2D-SSA. 

 

III. EXPERIMENTAL SETUP 

 

In this paper, we propose an experimental setup similar to the one in [9], so we can compare both conventional 2D-SSA and 

F-2D-SSA in fair conditions to prove the advantage of the proposed fast implementation under the hardest situations. Undertaken in 

Matlab environment, comprehensive details about the data description and conditioning are presented below, along with the 

strategies for comparing methodologies and the configuration of the classifier employed (SVM). 

A. Data Description and Conditioning 

A total of three data sets are employed in our experiments. They are subscenes extracted from original and well-known 

hyperspectral images [17, 18] collected by two different sensors. These data sets are available to the public for remote sensing 

applications, and they include available ground truth allowing thus comprehensive analysis. 

First, the 92AV3C data set [17] in Fig. 4 was collected by the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) [19] in 

Northwest Indiana, USA. This widely-used data set contains 220 spectral bands in the range from 400 to 2500 nm, with spatial 

dimensions of 145×145 pixels. However, the number of spectral bands is commonly reduced from 220 to 200 to avoid some noisy 

bands [9, 11, 20]. It contains 16 labeled classes related to agriculture, forest and vegetation, although it is usual to discard 7 classes 

with reduced number of samples available, as we do for consistency with previous studies [8, 9, 11, 20]. 

 

 
 

Fig. 4.  One band image at the wavelength of 667 nm (left) and the ground truth map (right) for the 92AV3C data set. 
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Second, the subscene Pavia University A (Pavia UA) taken in Pavia (North Italy) is used, where the data set was captured by the 

Reflective Optics System Imaging Spectrometer (ROSIS) [18, 21] and sized to 150×150 with a spatial resolution of 1.3 m. This 

urban image shown in Fig. 5 presents 115 bands in the spectral range from 430 to 860 nm, although only 103 bands are available, 

including 8 classes such as bitumen and asphalt among others. 

Third, Salinas C image shown in Fig. 6 was acquired by AVIRIS [18, 19] over the Salinas Valley in California, USA. Salinas C 

image is sized 150×150 with 224 spectral bands and a resolution of 3.7 m in the spatial domain. The initial 224 spectral bands are 

reduced to 204, due to water absorption and noise artifact. Its ground truth provides 9 labeled classes related to agriculture such as 

grapes, vineyards, broccoli and fallow. 

 

 
 

Fig. 5.  One band image at the wavelength of 521 nm (left) and the ground truth map (right) for the Pavia UA data set. 

 

 

 
 

Fig.6.  One band image at the wavelength of 667 nm (left) and the ground truth map (right) for the Salinas C data set. 

 

B. Strategies for the 2D-SSA vs F-2D-SSA Comparison 

A basic point in the experiments is to evaluate and compare the conventional 2D-SSA method with the proposed F-2D-SSA. This 

comparison presents two essential points; (i) to prove a similar level of classification accuracy from both methods and (ii) to show 
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a decrease in computational complexity by F-2D-SSA, with reduced number of multiply-accumulates (MACs) and limited running 

time. In order to accomplish these two points, it is also important to evaluate the similarity of the features extracted by both methods 

and what an appropriate representative scene is for F-2D-SSA. Therefore, the comparison strategies developed in the experiments 

include similarity of extracted features, classification accuracy, analysis on the representative scene and computational complexity 

as detailed in Section IV. 

C. Data Classification 

Effectiveness in feature extraction is commonly measured by the accuracy achieved from the classifier in the experiments. To this 

end, the classification setup needs to be appropriate with relation to the current state of the art. Bearing that in mind, SVM has been 

proven to be very robust and adequate in multi-class classification [6, 20, 22]. Additionally, the wide use of SVM in recent years has 

led to many and easy-to-use libraries even for embedded implementations [23, 24]. Hence, SVM is employed as classifier for 

supervised learning in our experiments, using the LIBSVM library available in [25] that offers a user-friendly interface with Matlab 

environment. For the implementation of SVM, a Gaussian RBF kernel is adopted with several works supporting this selection [9, 11, 

20], and a grid search is used every time in order to adequately tune the two key parameters from the RBF-SVM; the penalty c and 

the gamma γ. 

Every experiment using each of the feature extraction methods along with the SVM classifier is repeated ten times with different 

training and testing subsets (no sample overlap allowed) so that the overall experiment holds notable statistical significance. The 

training and testing subsets are randomly obtained through stratified sampling with an equal sample rate of 5% in each class for 

training, using remainder samples for testing. Then, classification results from the testing samples in terms of the overall accuracy 

(OA) are averaged over the ten repetitions, providing the mean values.  Further evaluations also provide the mean value of the 

average accuracy (AA) and the class-by-class accuracy (CBC). Moreover, the McNemar’s test of significance is also used as a 

performance measurement, where the Baseline case (use of original features) is introduced as a reference. Therefore, in our 

experiments McNemar’s test provides a parameter Z that, when Z > 1.96, indicates the evaluated method beats the Baseline case 

with proper statistical significance (confidence level of 95%). More information about McNemar’s test can be found in [26]. 

IV. RESULTS AND EVALUATIONS 

The main purpose of the experiments is to compare our proposal F-2D-SSA with conventional 2D-SSA under the same 

conditions [9]. Initially, we evaluate the similarity of extracted features between both implementations to check the difference 

derived from the fast trick. Then, the classification accuracy achieved using different features is shown for both implementations at 

different configurations with parameters L
2D

 and EVG. Moreover, the accuracy of both F-2D-SSA and 2D-SSA is compared with 
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some state-of-the-art techniques. Afterwards, we perform a brief analysis on the representative scene to be used as a SVD input. 

Finally, once proven the similarity between both implementations and their superiority over the rest of techniques, their 

computational complexity is evaluated in terms of MACs and running time to show the clear advantage of our F-2D-SSA over the 

conventional case. 

A. Features Similarity 

The possible effects derived from the implementation of a unique SVD and the use of a single set of eigenvectors in F-2D-SSA 

needs to be addressed in some way. Initially, we compare an original HSI scene (a band from 92AV3C at 667nm) with the resulting 

scenes from conventional 2D-SSA and F-2D-SSA (for both mean and median cases). This is shown in Fig. 7, where the three 

resulting scenes seem unnoticeable different. 

Now, the cosine distance is employed to objectively measure the difference between the proposed implementations. If the scenes 

being compared have similar trend, the cosine distance will detect it while other metrics such as the Euclidean distance would fail. 

Moreover, the cosine distance is not affected by scale and in practical terms lies in the range [0-1], making it appropriate in this 

context.  In Table I, the mean cosine distance (comprising all spectral scenes in the cube) between the original scenes and the three 

2D-SSA implementations, i.e. the conventional and the two fast implementations, is expressed for a wide range of configuration 

parameters. From this table, the similarity of the resulting features is clearly demonstrated. 

 
 

Fig. 7.  Application of 2D-SSA to a scene in HSI. (a) Original scene at 667 nm (b) conventional 2D-SSA implementation (c) F-2D-SSA mean-based implementation 

(d) F-2D-SSA median-based implementation, where L2D=10×10 and EVG=1st. 

 

TABLE I 

MEAN COSINE SIMILARITY SCORES TO QUANTIFY THE DIFFERENCE BETWEEN THE ORIGINAL AND RECONSTRUCTED SCENES BY 2D-SSA AND F-2D-SSA FROM THE 

92AV3C DATA SET  

Conventional SSA 

L2D\EVG 1st  1-2nd 1-5th  1-10th  

5×5 99.8996 99.9345 99.9746 99.9917 

10×10 99.7999 99.8553 99.9216 99.9536 

20×20 99.6737 99.7383 99.8333 99.8857 
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40×40 99.5288 99.6150 99.7105 99.7793 

60×60 99.4519 99.5417 99.6456 99.7249 

F-2D-SSA (mean) 

L2D \EVG 1st  1-2nd 1-5th  1-10th  

5×5 99.8995 99.9343 99.9745 99.9917 

10×10 99.7996 99.8547 99.9212 99.9533 

20×20 99.6728 99.7374 99.8326 99.8851 

40×40 99.5313 99.5874 99.7075 99.7744 

60×60 99.4586 99.5045 99.6226 99.6991 

F-2D-SSA (median) 

L2D \EVG 1st  1-2nd 1-5th  1-10th  

5×5 99.8995 99.9341 99.9742 99.9916 

10×10 99.7998 99.8546 99.9208 99.9531 

20×20 99.6731 99.7368 99.8324 99.8835 

40×40 99.5279 99.6054 99.7062 99.7769 

60×60 99.4391 99.5307 99.6359 99.7131 

B. Classification Accuracy Comparison 

In order to evaluate the F-2D-SSA performance, we include classification results under the same conditions for the conventional 

2D-SSA and the fast implementation using both mean and median values from the whole cube as representative scenes. The results 

are obtained for all previous configurations of window size L
2D

 and EVG (5×5, 10×10, 20×20, 40×40 and 60×60, with an EVG 

comprising the 1
st
, the 1-2

nd
, the 1-5

th
 and the 1-10

th
 components) showing the best case and the average value from all settings. 

As derived from Tables II-IV, F-2D-SSA is able to provide a very similar accuracy, where mean OA values fluctuate close to the 

conventional ones. For instance, in the 92AV3C data set, 95.66% and 95.82% are the accuracies from F-2D-SSA, compared to the 

conventional result of 95.71%. Similar outcome is obtained from Pavia UA (98.15% and 98.51% for 98.21%) and Salinas C 

(99.27% and 99.58% for 99.81%). This consistency is also reflected by the McNemar’s test parameter in brackets, having the 

Baseline case (original features) as reference.  

TABLE II 

MEAN OVERALL ACCURACY (%) AND MEAN MCNEMAR’S TEST [Z] FOR THE 92AV3C DATA SET USING 2D-SSA AND F-2D-SSA 

Method 
Best case Average from all 

configurations L2D=10×10 EVG=1st 

2D-SSA 95.71 [+31.4] 93.19 [+25.9] 

F-2D-SSA (mean) 95.66 [+31.3] 93.50 [+26.5] 

F-2D-SSA (median) 95.82 [+31.5] 93.44 [+26.4] 

 

TABLE III 

MEAN OVERALL ACCURACY (%) AND MEAN MCNEMAR’S TEST [Z] FOR THE PAVIA UA DATA SET USING 2D-SSA AND F-2D-SSA 

Method 
Best case Average from all 

configurations L2D=5×5 EVG=1-2nd 

2D-SSA 98.21 [+8.55] 96.99 [+3.91] 

F-2D-SSA (mean) 98.15 [+8.20] 96.61 [+2.88] 

F-2D-SSA (median) 98.51 [+9.69] 96.79 [+3.41] 

 

TABLE IV 

MEAN OVERALL ACCURACY (%) AND MEAN MCNEMAR’S TEST [Z] FOR THE SALINAS C DATA SET USING 2D-SSA AND F-2D-SSA 
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Method 
Best case Average from all 

configurations L2D=40×40 EVG=1-2nd 

2D-SSA 99.81 [+13.6] 99.44 [+10.1] 

F-2D-SSA (mean) 99.27 [+8.12] 99.40 [+9.72] 

F-2D-SSA (median) 99.58 [+11.3] 99.38 [+9.47] 

 

 

 

Additionally, CBC and AA values (from the best case) are provided in Tables V-VII to further compare the methods accuracy, 

where it can be checked in detail through the different land-cover classes. 

 

 

 

 

 

TABLE V 

MEAN CLASS-BY-CLASS ACCURACIES (%) FOR THE 92AV3C DATA SET OBTAINED FROM THE BASELINE, 2D-SSA AND F-2D-SSA (L2D=10×10, EVG=1ST) 

APPROACHES AS WELL AS THE NUMBER OF SAMPLES (NOS) IN EACH CLASS 

Class NoS Baseline 2D-SSA 
F-2D-SSA 

(mean) 

F-2D-SSA 

(median) 

 1434 75.38 95.38 94.88 95.65 

 834 63.32 96.00 96.00 96.00 

 497 89.30 94.79 94.77 94.60 

 747 96.81 96.59 96.47 96.50 

 489 99.07 97.09 97.16 97.11 

 968 65.97 90.45 89.76 91.23 

 2468 81.10 96.54 96.92 96.60 

 614 69.97 93.86 93.84 93.67 

 1294 97.62 98.47 98.45 98.46 

Average accuracy 82.06 95.46 95.36 95.54 

Overall accuracy 81.26 95.71 95.66 95.82 

 

TABLE VI 

MEAN CLASS-BY-CLASS ACCURACIES (%) FOR THE PAVIA UA DATA SET OBTAINED FROM THE BASELINE, 2D-SSA AND F-2D-SSA (L2D=5×5, EVG=1-2ND) 

APPROACHES AS WELL AS THE NUMBER OF SAMPLES (NOS) IN EACH CLASS 

Class NoS Baseline 2D-SSA 
F-2D-SSA 

(mean) 

F-2D-SSA 

(median) 

 310 80.71 94.15 92.04 94.29 

 957 97.03 99.90 99.89 99.78 

 154 93.97 93.56 90.41 90.68 

 698 99.40 99.20 99.61 99.61 

 2559 96.76 98.98 99.53 99.55 

 860 93.15 95.21 94.98 96.56 

 854 95.86 98.19 97.37 97.78 

 293 100 99.21 99.03 99.21 

Average accuracy 94.61 97.30 96.61 97.18 

Overall accuracy 95.83 98.21 98.15 98.51 

 
 

 

TABLE VII 

MEAN CLASS-BY-CLASS ACCURACIES (%) FOR THE SALINAS C DATA SET OBTAINED FROM THE BASELINE, 2D-SSA AND F-2D-SSA (L2D=40×40, EVG=1-2ND) 

APPROACHES AS WELL AS THE NUMBER OF SAMPLES (NOS) IN EACH CLASS 

Class NoS Baseline 2D-SSA 
F-2D-SSA 

(mean) 

F-2D-SSA 

(median) 

 240 90.53 99.96 92.15 95.44 

 3400 99.81 99.99 99.66 99.83 
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 1957 99.28 99.99 99.92 99.86 

 599 99.16 98.42 96.73 98.15 

 1155 96.92 99.29 97.96 99.04 

 1414 99.96 99.93 98.70 99.82 

 848 99.60 99.76 99.70 99.70 

 5890 99.47 99.90 99.89 99.87 

 159 07.28 98.61 92.98 92.52 

Average accuracy 88.00 99.54 97.52 98.25 

Overall accuracy 98.30 99.81 99.27 99.58 

 

 

 

Given the classification accuracy achieved by the F-2D-SSA, now we place this performance in context with other state-of-the-art 

techniques. These techniques include not only using the original features (Baseline case), but also the 1D-SSA [8], the AFD [12], 

and the 2D-EMD [11] approaches, where in all of them the original dimensionality of features is preserved, so no data reduction is 

achieved. On the other hand, the EMP method [13] along with the combination of either 2D-SSA or F-2D-SSA with PCA [10] is 

evaluated for both feature extraction and data reduction. All the methods are implemented with the optimized parameters used in [9] 

showing the best result. 

Our proposal presents similar results as the conventional 2D-SSA; hence, it is proven to beat most of the techniques as shown in 

Table VIII, where only few cases provide higher accuracy (AFD, 2D-EMD and EMP for Pavia UA). Results from Table VIII are the 

best cases obtained in every method [9]. Therefore, 2D-SSA and F-2D-SSA are configured with L
2D

=10×10, EVG=1
st
, L

2D
=5×5, 

EVG=1-2
nd

 and L
2D

=40×40, EVG=1-2
nd

 for 92AV3C, Pavia UA and Salinas C, respectively.  Moreover, our fast implementation 

can also be combined with the PCA technique for data reduction. This combination was already evaluated in [9], so both the 

2D-SSA-PCA previously, and now F-2D-SSA-PCA are able to exploit not only the spatial but also the spectral domain of HSI 

cubes. This combination achieves the best results from all the techniques evaluated, even though the number of features is reduced. 

 
TABLE VIII 

MEAN OVERALL ACCURACY (%) AND MEAN MCNEMAR’S TEST [Z] FROM THE DIFFERENT METHODS EVALUATED (BEST CASES) 

Method 92AV3C Pavia UA Salinas C 

ORIGINAL DIMENSION OF FEATURES 

Baseline 81.26 [-0.00] 95.83 [-0.00] 98.30 [-0.00] 

1D-SSA [8] 85.50 [+11.4] 95.53 [-1.88] 98.52 [+3.41] 

AFD [12] 95.11 [+30.9] 99.32 [+13.0] 99.70 [+12.8] 

2D-EMD [11] 95.28 [+31.7] 99.53 [+14.6] 99.71 [+13.8] 

2D-SSA [9] 95.71 [+31.4] 98.21 [+8.55] 99.81 [+13.6] 

F-2D-SSA 95.82 [+31.5] 98.51 [+9.69] 99.58 [+11.3] 

DATA REDUCTION (dimension of features) 

EMP [13] 
94.83 [+29.3] 

(34) 

99.56 [+14.1] 

(34) 

99.49 [+10.5] 

(19) 

2D-SSA-PCA 

[9] 

97.61 [+35.5] 

(15) 

99.58 [+14.1] 

(20) 

99.83 [+14.0] 

(20) 

F-2D-SSA-PCA 
97.59 [+35.5] 

(15) 

99.59 [+14.2] 

(20) 

99.88 [+14.5] 

(15) 
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C. Analysis on the Representative Scene  

Although the mean and median scenes from the whole HSI cube seem an appropriate input for F-2D-SSA, it is important to 

remark that other different options are possible. In order to bring some light to this issue, we briefly evaluate the performance of 

different inputs, in terms of OA. In fact, now we use every single spectral band in the cube as a representative scene to see how the 

classification accuracy does with relation to the new input. 

 

Fig.8.  Comparison of the OA for F-2D-SSA (L2D=10×10, EVG=1st) with each spectral band used as a representative scene for the 92AV3C data set. 

 

In Fig. 8, the OA values obtained with the best configuration for the 92AV3C data set fluctuate for the different spectral bands 

used as inputs. As can be seen, most of the values are found between the F-2D-SSA (mean) and the F-2D-SSA (median) cases, which 

actually validates the use of the mean and median operators for obtaining a representative scene. On the other hand, it is also 

observed that the use of some specific bands can slightly increase (b=160-170) or degrade (b=40-50) the performance, yet all OA 

values are close to the conventional 2D-SSA case. A similar behavior is found for the other data sets (Fig. 9-10). 

 

Fig.9.  Comparison of OA of classification for F-2D-SSA (L2D=5×5, EVG=1-2nd) using each spectral band as a representative scene for Pavia UA. 
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Fig.10.  Comparison of the OA of classification for F-2D-SSA (L2D=40×40, EVG=1-2nd) using each spectral band as a representative scene for Salinas C. 

From the behavior detected in Figs. 8-10, the median scene from the cubes seems to perform better than the mean scene. The 

explanation to this fact is simple; the median operator, unlike others such as the mean (average), is not mainly influenced by outliers, 

becoming more robust. In other words, given that HSI cubes usually contain noisy bands, the representative scene must avoid as 

much as possible noisy content, and the median operator smartly disregards noisy outliers. Actually, the median performs better than 

the majority of individual bands. Overall, we can suggest as a general recommendation the use of the median scene as input to the 

unique SVD in the fast implementations.  

D. Computational Complexity  

The proposed fast implementation reduces the SVD computation from hundreds of times to a single case that is applied to a 

representative scene. This fact directly translates into a saving factor in MACs related to the SVD step, as shown in this subsection, 

where we briefly analyze the computational complexity derived from each stage as follows: 

 In the embedding procedure, an original image is relocated into a trajectory matrix by means of a window with size L
2D

, 

however, no MACs are involved in this operation.  

 Then, the SVD stage takes places. This SVD can actually be computed by several algorithms described in the literature, 

where equivalent implementations based on EVD are also possible. As stated in [14], an equivalent EVD applied to 

TDD )( 22 XXS  is simpler ( (L
2D

)
2
 K

2D
 + (L

2D
)

3 
)

 
than the SVD complexity ( (L

2D
)

2
 K

2D
 + L

2D
 (K

2D
)

2 
+ (K

2D
)

3 
) 

suggested in [27, 28], therefore, we work with this EVD complexity. 

 Afterwards, selection of components is made. The grouping stage is represented by the equation in (2), and even though  

in [14] we computed the multiplication T
ttUU , actually computing the two multiplications from )( 2DT

XUU tt  keeping 

the order from brackets is less complex, so the complexity is stated as (2 L
2D

 K
2D

 p) instead of  ((L
2D

)
2 
p + (L

2D
)

2
 K

2D
) . 
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 Finally, the last stage corresponding to the diagonal averaging procedure can be approximated as NxNy in a similar way as 

we did in [14]. 

In Table IX, the computational complexity comparison between both implementations can be seen for all stages, where following 

Tables X-XII provide the actual number of MACs and the saving factor achieved for the three data sets, given four varied 

configurations. The complexity reduction in the SVD stage makes the fast implementation clearly easier than the conventional one, 

with minimum saving factors of 2 (halving the number of MACs) and even achieving a dramatically high reduction superior to 100 

depending on the configuration case. 

 

 

TABLE IX 

COMPUTATIONAL COMPLEXITY IN THE DIFFERENT STAGES 

Stage 2D-SSA F-2D-SSA 
Saving 

factor 

Embed. N/A N/A 1 

SVD [(L2D)2K2D+(L2D)3]×B [(L2D)2K2D+(L2D)3]×1 B 

Grouping [2L2DK2Dp]×B [2L2DK2Dp]×B 1 

D. Av. [NxNy]×B [NxNy]×B 1 

 

TABLE X 

COMPUTATIONAL COMPLEXITY (MACS) AND SAVING FACTOR FOR THE 92AV3C DATA SET IN DIFFERENT CONFIGURATIONS  

L2D= 5×5 5×5  60×60 60×60 

EVG= 1st  1-10th  1st  1-10th  

2D-SSA 2691e6 4481e6 28512e9 28608e9 

F-2D-SSA 215e6 2005e6 153e9 249e9 

Saving factor 12.5 2.23 186 115 

 

TABLE XI 

COMPUTATIONAL COMPLEXITY (MACS) AND SAVING FACTOR FOR THE PAVIA UA DATA SET IN DIFFERENT CONFIGURATIONS  

L2D= 5×5 5×5  60×60 60×60 

EVG= 1st  1-10th  1st  1-10th  

2D-SSA 1486e6 2474e6 15866e9 15921e9 

F-2D-SSA 125e6 1113e6 160e9 215e9 

Saving factor 11.8 2.22 99.1 73.9 

 

TABLE XII 

COMPUTATIONAL COMPLEXITY (MACS) AND SAVING FACTOR FOR THE SALINAS C DATA SET IN DIFFERENT CONFIGURATIONS  

L2D= 5×5 5×5  60×60 60×60 

EVG= 1st  1-10th  1st  1-10th  

2D-SSA 2943e6 4900e6 31424e9 31533e9 

F-2D-SSA 235e6 2192e6 166e9 276e9 

Saving factor 12.5 2.24 189 114 

 

 

 

This reduced complexity translates into faster running times of the algorithms, as derived from Tables XIII-XV. Configuration 

with larger windows L
2D

 (here the EVG parameter has little influence) take clear advantage of the fast implementations, where the 
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total timing can be reduced up to 60%, going from 496 to 194 s for the 92AV3C data set, where the timing reduction in percentage 

is similar for the other data sets. 

 

TABLE XIII 

APPROXIMATED RUNNING TIME REQUIRED FOR 2D-SSA AND F-2D-SSA FEATURE EXTRACTION IN 92AV3C DATA SET 

Parameters 
2D-SSA F-2D-SSA  

Reduction 

L2D (s) (%) 

5×5 19 18 1 5.26 

10×10 31 28 3 9.68 

20×20 69 58 11 15.9 

40×40 244 137 107 43.9 

60×60 496 194 302 60.9 

 

 

 

TABLE XIV 

APPROXIMATED RUNNING TIME REQUIRED FOR 2D-SSA AND F-2D-SSA FEATURE EXTRACTION IN PAVIA UA DATA SET 

Parameters 
2D-SSA F-2D-SSA  

Reduction 

L2D (s) (%) 

5×5 10 10 0 0.00 

10×10 17 15 2 11.8 

20×20 38 32 6 15.8 

40×40 137 77 60 43.8 

60×60 282 113 169 59.9 

 

TABLE XV 

APPROXIMATED RUNNING TIME REQUIRED FOR 2D-SSA AND F-2D-SSA FEATURE EXTRACTION IN SALINAS C DATA SET 

Parameters 
2D-SSA F-2D-SSA  

Reduction 

L2D (s) (%) 

5×5 20 19 1 5.00 

10×10 34 30 4 11.8 

20×20 75 64 11 14.7 

40×40 270 150 120 44.4 

60×60 557 222 335 60.1 

 

 

In Fig. 11, we represent the running time in the different stages of conventional 2D-SSA for a better understanding. The growth of 

the SVD step when increasing the window size L
2D

 results noticeable in every data set. Therefore, while the increment in the rest of 

stages is modest, the SVD stage dramatically rise, achieving 60% of the total timing for L
2D

=60×60. Again, that demonstrates the 

advantage of our fast implementation and its potential for portable and limited-resources applications. 
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Fig.11.  Running time (s) per stage and different L2D in conventional 2D-SSA for 92AV3C (left), Pavia UA (middle) and Salinas C (right).  

 

Finally, a global comparison of the SSA methodologies, with classification accuracy and running time, is provided in Table XVI. 

The better performance of the 2-D methodologies in classification accuracy is clear, however, the pixel-based implementation from 

the 1-D cases involves a faster running time, basically because trajectory matrices in 1-D are smaller. Discussions can be derived 

from this fact, regarding what a good trade-off between accuracy and complexity can be when working with HSI. From our point of 

view, the classification accuracy comes first; looking for accuracies close to 100%, and that is probably the reason why most efforts 

in HSI are focused on the highest-accuracy problem. Nevertheless, complexity is a factor to bear in mind, making some 

implementations unfeasible. A good example is 2D-EMD in Salinas C, where it requires 1056 s, something incompatible with fast 

tasks. This issue points out our fast implementation importance and contribution. 

TABLE XVI 

GLOBAL COMPARISON ON MEAN OVERALL ACCURACY (%) AND RUNNING TIME FOR THE SSA METHODOLOGIES (BEST CASES) 

Method 

92AV3C Pavia UA Salinas C 

OA 

(%) 

time 

(s) 

OA 

(%) 

time 

(s) 

OA 

(%) 

time 

(s) 

Baseline 81.26 0 95.83 0 98.30 0 

1D-SSA 85.50 13 95.53 7 98.52 13 

F-1D-SSA  85.78 12 95.55 7 98.50 12 

2D-SSA 95.71 31 98.21 10 99.81 270 

F-2D-SSA 95.82 28 98.51 10 99.58 150 

2D-SSA-PCA 97.61 31 99.58 10 99.83 270 

F-2D-SSA-PCA 97.59 28 99.59 10 99.88 150 

2D-EMD 95.28 936 99.53 688 99.71 1506 

 

 

V. CONCLUSIONS 

In HSI remote sensing, the 2D-SSA method has been proven really effective with relation to the current state of the art in 

extracting features from the hyperspectral cube. Nevertheless, its implementation requires band-based repetitions, since 2D-SSA 

has to be individually applied to every spectral scene in the cube. As this band-based implementation requires hundreds of 

individual SVDs, the computational complexity of the method can be remarkable under certain circumstances. In order to solve this 

drawback, a fast implementation F-2D-SSA is proposed in the present manuscript, where now a unique SVD analysis is required, 

leading to a single set of eigenvectors by which all spectral images in the cube are transformed. This particular SVD is applied to a 

representative scene from the cube, selected as the mean or the median scene out of the whole data set. Our experimental results 

show that F-2D-SSA is able to produce similar features with the same classification accuracy level in comparison to the 

conventional 2D-SSA (95.66% and 95.82% instead of 95.71%), but with reduced computational complexity (saving factors of 10 

and 100) and faster running time (reduced up to 60%). 
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