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HYPERSPECTRAL IMAGING FOR FOOD APPLICATIONS

Stephen Marshall, Timothy Kelman, Tong Qiao, Paul Murray, Jaime Zabalza

Department of Electronic and Electrical Engineering, University of Strathclyde,

Royal College Building, 204 George Street, Glasgow, G1 1XW, Scotland

ABSTRACT

Food quality analysis is a key area where reliable, non-

destructive and accurate measures are required. Hyperspec-

tral imaging is a technology which meets all of these require-

ments but only if appropriate signal processing techniques

are implemented. In this paper, a discussion of some of

these state-of-the-art processing techniques is followed by

an explanation of four different applications of hyperspectral

imaging for food quality analysis: shelf life estimation of

baked sponges; beef quality prediction; classification of Chi-

nese tea leaves; and classification of rice grains. The first two

of these topics investigate the use of hyperspectral imaging

to produce an objective measure about the quality of the food

sample. The final two studies are classification problems,

where an unknown sample is assigned to one of a previously

defined set of classes.

Index Terms— Signal Processing, Image Processing,

Classifiers, Spectral Imaging

1. INTRODUCTION

Where conventional digital imaging devices capture light over

one (greyscale) or three (red, green, blue) distinct portions of

the electromagnetic spectrum, a hyperspectral imaging (HSI)

system acquires light at hundreds or even thousands of differ-

ent spectral bands. Similar to the way in which a spectrometer

produces a spectrum of the light captured at a single point, an

HSI system produces a spectrum for each pixel in the image.

This combination of spatial and spectral detail provides sig-

nificantly more information about a scene. Historically, appli-

cations of HSI have tended to be large and complex, such as

remote sensing, wide area surveillance and aircraft-based sys-

tems [1, 2]. Due to the price and size of HSI systems, it was

only in these areas that the technology was a viable tool. The

recent reduction in both price and size, however, has made hy-

perspectral imaging a more attractive option for lab based ap-

plications such as forensic science [3] and, in particular, food

quality analysis [4]. In this paper, several analysis techniques

are explained before the results of four different implemen-

tations of HSI in food based applications are explained. The
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results show that HSI is a useful tool in food quality analysis.

The rest of this paper is arranged as follows. In Sec-

tion 2, some state-of-the-art data analysis techniques for

feature extraction and data classification/prediction are dis-

cussed. Based on which, 4 case studies for food analysis are

introduced in Sections 3-6, which cover shelf life estimation

of baked sponges, beef quality prediction, classification of

Chinese teas and rice classification using combined features.

Finally, concluding remarks are presented in Section 7.

2. DATA ANALYSIS TECHNIQUES

This section contains overview of several different methods

of data analysis ranging from feature extraction and selection

through to classification.

2.1. Feature Extraction and Dimensionality Reduction

Conventional Principal Component Analysis (PCA) can be

used as a method of both feature extraction and dimension-

ality reduction, making it a common technique used in HSI

analysis [5]. In general, PCA transforms correlated data into

uncorrelated components where only a few need to be re-

tained to capture most of the variance within the data. By

representing a dataset in a lower dimensional space in this

way, faster and more efficient analysis and classification can

be performed [6].

PCA operates by calculating the covariance matrix of

the mean-adjusted dataset. Eigen decomposition of this co-

variance matrix produces its corresponding Eigenvalues and

Eigenvectors. These Eigenvectors can then be used to trans-

form the original dataset into an uncorrelated version. By

sorting the Eigenvalues into descending order and discarding

the smallest values, the corresponding Eigenvectors can be

truncated leading to a much smaller representation of the

original dataset when transformed into the new subspace.

Conventional PCA suffers from two main drawbacks

when used for HSI. Firstly, the complete captured image is

required before mean-adjustment can take place, preventing

real-time analysis. Secondly, the calculation of the covariance

matrix for the the whole dataset is a computationally intensive

task. Structured Covariance PCA (SC-PCA) is one method

of overcoming these problems [7]. In SC-PCA the data is



split into sections and a partial covariance matrix is obtained

for each section and then further processed as in conventional

PCA. These sections can either be pixels, bands, rows or

columns of an HSI dataset which correspond to the com-

mon ways in which HSI data is acquired allowing real-time

processing, or in the case of already captured data, parallel

processing as each section can be processed individually.

Folded-PCA [6] is a another adaptation of conventional

PCA. If a hypercube has dimensions (x, y, λ) with x rows, y

columns and λ bands, the data must be reshaped into a matrix

of dimensions (x×y, λ). Each row of this matrix is treated as

a vector as PCA is implemented. In Folded-PCA, each vector

in this matrix is converted to a 2D matrix. Similar to SC-PCA,

partial covariance matrices are calculated for each of these 2D

sections. These can then be accumulated for Eigendecompos-

tion and data projection. As a result, the computational cost

and memory requirements are lowered. Furthermore, since

local structures within the dataset can be exploited, Folded-

PCA can out perform conventional PCA methods as a feature

extraction method for classification problems.

Since HSI data is prone to noise, the performance of any

subsequent classification can suffer. In [8] Singular Spectrum

Analysis (SSA) is demonstrated to be an effective means of

improving classification in a remote sensing problem. SSA

operates by extraction of trends and periodic components;

finding structures in short time series and envelopes of os-

cillation signals. In [9] SSA is extended to operate on 2D

features.

2.2. Data Prediction and Classification

To make decisions based on captured HSI data, some form

of classification is often required. Two popular methods of

HSI classification are Artificial Neural Networks (ANNs) and

Support Vector Machines (SVMs).

ANNs are computational models based on the operation

of a biological central nervous system. ANNs consist of

nodes (‘neurons’) linked by weighted connections. These

nodes compute values based on inputs. Training of a ANN

is performed by adjusting these weightings until the error

between the ground truth and network output is minimised.

This makes them ideal for classification problems involving

HSI data [10].

SVMs are a popular classification technique for HSI prob-

lems [11]. SVMs aim to classify two-class data by finding

the optimum hyperplane which separates the data. Almost al-

ways, the data is not immediately linearly separable in this

way, so a technique known as the kernel trick [12] is required

to map the data into a higher dimension before classification.

Although a binary classifier, multiple instances can be com-

bined in one against one or one against all fashion to achieve

multi-class classification.

Fig. 1: VNIR HSI System

3. SHELF LIFE ESTIMATION OF BAKED SPONGES

In the baking industry, organoleptic testing is used to deter-

mine the eating quality of baked sponges. This testing is car-

ried out by skilled human tasters (usually bakery staff) who

eat sponges of varying ages and assign each one a score. By

repeating this process over a period of time with sponges all

from a single batch, the relationship between the eating qual-

ity and the age of a sponge is quantified. Based on this infor-

mation, an age at which a sponge is no longer acceptable to

eat can be determined, i.e. its shelf life.

This organoleptic testing process is used across the baking

industry for quality analysis of a large number of products. It

is, however, a very subjective test, and many external factors

can affect a person’s sense of taste. There are several other

drawbacks such as requiring the same staff to be present for

the tasting each day and a limitation on the number of prod-

ucts that can be tested by a single person in a single tasting

session.

The aim of this study is to produce an objective, accurate

and repeatable measure of the quality of a baked sponge us-

ing a visible/near infrared (VNIR) HSI system. The system

used has a spectral range of 400 nm - 1000 nm and is shown

in Figure 1. By analysing the change in reflectance as a func-

tion of time at 970 nm, a known water absorption band [13],

the reduction water content (i.e. drying out) of a sponge can

be estimated. This is shown in Figures 2(a) and 2(b), where

the reflectance at 970 nm is clearly increasing for both sponge

types as they get older. Although the reflectance at all wave-

lengths is increasing, it is more apparent around 970 nm. By

normalising and inverting these reflectance values, a decreas-

ing score is produced. To test the correlation between this

score and sponge quality, a batch of chocolate and a batch of

vanilla sponges were produced. A different one of each of

these sponges was imaged each day for a period of 30 days.

Simultaneously, a different one of each of these sponges was

organoleptically scored by a tasting panel. When compared,

the scores produced by the tasting panel show a strong rela-

tionship with the scores produced from the HSI data as shown
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Fig. 2: HSI of Baked Sponges (a) Spectral profile ageing vanilla

sponge (b) Spectral profile ageing chocolate sponge (c) HSI scores

produced from reflectance at 970 nm compared with organoleptic

data for vanilla sponge (d) HSI scores produced from reflectance at

970 nm compared with organoleptic data for chocolate sponge.

in Figures 2(c) and 2(d). This shows that HSI data has the

potential provide an objective, non-destructive score for the

quality of a baked sponge which could be used to estimate

shelf life.

4. HSI FOR BEEF QUALITY PREDICTION

As is well known, Scottish meat has a high international repu-

tation for its eating quality. For meat industries, identification

of the quality of their products before they enter the market

is crucial. The perception of consumers on meat eating qual-

ity is usually influenced by three factors: tenderness, juiciness

and flavour. However, measurement of these factors is usually

costly, time-consuming and destructive, which is infeasible

for meat industries.

As a non-destructive approach, near-infrared spectroscopy

(NIRS) has shown its potential in evaluating meat quality over

the past a few decades [14, 15]. In spite of this, due to its low

spatial resolution, this technique might not be accurate when

evaluating meat with non-homogeneous composition. This

study looks at HSI as an alternative method for determining

meat quality.

A total of 858 cattle from 4 Scottish commercial abattoirs

were randomly selected from the production line. Each car-

cass was allowed to age for 2 days, before a piece of steak was

removed for imaging, using a visible HSI system followed by

an NIRS system with working wavelengths of 490 - 863 nm

and 501 - 2200 nm respectively. Then each steak was halved,

with one half being aged for another 5 days and the other half

System ncal R2cal nval R2val RPDval

NIRS 644 0.42 214 0.36 1.22

HSI 644 0.7 214 0.44 1.38

Table 1: Comparison of prediction performance for pH14

being aged for a further 12 days. Ultimate pH and slice shear

force (SSF) were measured as quality references after ageing

was completed.

The lean reflectance spectra were extracted from each hy-

percube and a median spectrum was acquired for each steak.

For both HSI and NIRS spectra, reflectance was converted to

absorbance to linearise the relationship between the concen-

tration of an absorbing compound and the absorption spec-

trum. The whole data set was split into the training set and

the testing set, where an SVM was applied to the training set

to construct prediction equations. The performance was eval-

uated on the training set. It is proved in [15] that partial least

squares regression (PLSR), which is the most common regres-

sion method researchers tend to use, underperforms SVM for

beef quality evaluation using NIRS. Since SVMs are subject

to the curse of dimensionality, PCA was used for both dimen-

sionality reduction and feature extraction. For the SVM, the

Radial Basis Function (RBF) kernel was selected and the op-

timal parameters were determined using a grid-search with 4-

fold cross-validation. In order to split the data set, each qual-

ity attribute was sorted in ascending order. Then every 4th

sample was selected into the validation set and the rest was

allocated to the calibration set. In this way, the validation set

would be a representative of the calibration set, with similar

average value, standard deviation and range. The prediction

performance was evaluated by the coefficient of determina-

tion (R2) and the ratio of performance to deviation (RPD), i.e.

the ratio of standard error in prediction to the sample standard

deviation.

For most of the quality attributes, HSI offers higher pre-

diction accuracies by comparing R2 and RPD. Ultimate pH

with 14 days ageing (pH14) is given for comparison in Ta-

ble 1. Further results from this study are explained in [16]

and similar research has also been done with lamb, where HSI

again shows great potential for quality analysis [17].

5. CLASSIFICATION OF CHINESE TEA SAMPLES

In this section, a process for classification of five types of Chi-

nese tea is documented. Due to the popularity of tea con-

sumption and the varying prices and qualities between dif-

ferent brands, some form of analysis and classification is re-

quired to verify the product being sold. While conventional

methods rely on subjective input from domain experts, HSI

provides an objective and consistent measure, even when the

examined samples appear (to the human eye) almost identical

to each other.
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Fig. 3: Classification of tea leaves (a) All tea samples at 790 nm split

into training and testing sets (b) Classified result after filtering.

Predicted

Tea 1 Tea 2 Tea 3 Tea 4 Tea 5

A
ct

u
a

l

Tea 1 88.94% 0.12% 9.59% 0.89% 0.46%

Tea 2 0.20% 97.64% 0.17% 0.03% 1.96%

Tea 3 0.20% 0.00% 97.47% 2.26% 0.07%

Tea 4 1.67% 0.00% 14.99% 83.34% 0.00%

Tea 5 4.47% 4.67% 0.57% 0.47% 89.82%

Table 2: Confusion matrix for filtered classification result

Five different tea types were imaged with a visible range

(400-800 nm) HSI system, with four different samples of each

tea measured, resulting in an HSI image containing 20 distinct

samples. See Figure 3(a) for a greyscale representation of this

image at 790 nm.

Due to the large volume of data in an HSI image, dimen-

sionality reduction was required to reduce the computational

requirements of any subsequent processing. Using conven-

tional PCA, the tea image was reduced from 170 bands to 10

principal components.

For classification, an ANN was used. To evaluate the per-

formance of the classifier, training and testing data needed to

be selected. Each tea type was assigned a colour for visu-

alisation of results. To improve classification accuracy, the

classification image was processed with a modal filter of size

5 pixels by 5 pixels. The final classified and filtered result is

shown in Figure 3(b). Table 2 shows the confusion matrix for

the filtered classification result.

From these results, it is clear that different types of tea

can be classified using an HSI system even when the samples

are visually similar, reducing the need for subjective testing.

Furthermore, these results also show how spatial information

is retained, something not possible with conventional meth-

ods of analysis. This spatial information could then be used

to further improve classification.

6. CLASSIFICATION OF DIFFERENT RICE TYPES

In many implementations of HSI in food quality analysis,

short-wave infrared (SWIR, 1000 nm - 2500 nm) systems tend

to be used as this spectral region is rich with useful informa-

Data Accuracy

Spatial 69.91%

Colour 67.17%

Spectral 74.27%

Colour + Spatial 81.67%

Spectral + Spatial 90.20%

Table 3: SVM Classification accuracies

tion [4]. These systems, however, are more expensive than

the visible/near infrared (VNIR, 400 - 1000 nm) systems that

are available. In the SWIR region, the benefits of HSI over

conventional imaging techniques are obvious. In the VNIR

region, however, the advantages are less obvious. This study

aims to quantify the improvements offered by a VNIR HSI

system over conventional imaging systems.

The classification of four different types of rice was cho-

sen as the subject for this study. Rice was chosen as there

were several different kinds readily available and each variety

showed some differences in terms of shape, size, colour and,

one would expect, spectral response. A classification problem

was chosen as it provides easy to understand quantifiable and

therefore comparable results.

The four kinds of rice were imaged with a VNIR HSI sys-

tem separately in a well-plate with 72 grains in each image. A

final image of 18 grains of each rice was also captured. The

true colour image was created using the spectral sensitivity

function of the Nikon D70. Using the spectral difference be-

tween the rice pixels and the background pixels, masks were

created for each image. Figure 4 shows a true colour rep-

resentation of the rice mixture and its corresponding mask.

Each grain in each mask image was then processed individu-

ally to extract three spatial features: the length of each grain,

the width of each grain and its eccentricity [18].

After extraction of spatial and colour features, 5 different

datasets were produced: spatial information only; colour in-

formation only; spectral information only; spatial and colour

information; and spatial and spectral information.

An SVM classification was preformed using each set of

72 grains as training data and the image with 18 grains of each

rice type was used as testing data. This was repeated for each

of the 5 subsets explained earlier. As in Section 5, each class

was assigned a colour. Figure 5 shows the classified result

for the three highest scoring subsets; spectral, colour+spatial

and spectral+spatial. Table 3 shows the average classification

accuracies for each subset.

From the results, as expected, the highest accuracy comes

from using both the spatial and spectral information. It is in-

teresting, however, that the combination of spatial and colour

information outperforms spectral information on its own.

This demonstrates that a VNIR HSI system is a useful tool

that when applied appropriately can improve classification

results. It does not, however, negate the need for standard

image processing techniques.
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Fig. 4: Mixture of different kinds of rice (a) True colour representa-

tion (b) Corresponding extracted mask image

(a) (b) (c)

Fig. 5: SVM Classification results (a) Spectral information (b)

Colour and spatial information (c) Spectral and spatial information

7. CONCLUSION

This paper has provided an overview of some of the popular

data analysis techniques used in HSI and some of the associ-

ated recent developments. Four different studies of applica-

tions using HSI for food analysis were then presented, demon-

strating the benefits offered by HSI when compared alterna-

tive methods such as organoleptic testing as well other other

technologies such as spectroscopy and conventional digital

imaging. Often, any measure of food quality is either sub-

jective, e.g.based on the opinions of a skilled tasting panel, or

destructive, e.g. the destructive test used to determine meat

tenderness. The studies on sponges and beef have demon-

strated that HSI has to the potential to either replace or aug-

ment these techniques which would result in significant bene-

fits for the industry. The classifications of Chinese tea leaves

and rice grains show how HSI can be used to differentiate be-

tween visually similar samples. This has potential to assist in

a process where counterfeit products are a threat to a manu-

facturing business.
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