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Abstract 21 

In this study, Ultra-violet (UV) and Short-wave infra-red (SWIR) Hyperspectral Imaging (HSI) 22 

was used to measure the concentration of phenolic flavour compounds on malted barley that are 23 

responsible for smoky aroma of Scotch whisky. UV HSI is a relatively unexplored technique that 24 

has the potential to detect specific absorptions of phenols. SWIR HSI has proven to detect 25 

phenols in previous applications. Support Vector Machine Classification and Regression was 26 

applied to classify malts with ten different concentration levels of the compounds of interest, and 27 

to estimate the concentration respectively. Results reveal that UV HSI is at its current 28 

development stage not suitable for this task whereas SWIR HSI is able to produce robust results 29 

with a classification accuracy of 99.8% and a squared correlation coefficient of 0.98 with a Root 30 

Mean Squared Error (RMSE) of 0.32ppm for regression. The results indicate that with further 31 

testing and development, HSI may potentially be exploited in an industrial production 32 

environment. 33 

Keywords – Barley malt, hyperspectral imaging, Scotch whisky, short-wave infra-red, smokiness, 34 

ultra-violet 35 

1. Introduction 36 

Hyperspectral Imaging (HSI) is a technique that combines spectroscopy with spatial information. 37 

Regular multispectral systems, such as RGB cameras, collect information in a limited number of 38 

distinct wavebands spread out over a certain spectral range. HSI in contrast captures intensities 39 

over a continuous spectral range in very narrow wavebands. Each pixel does not only represent 40 

spatial information but also spectral information in form of a continuous spectrum. Depending on 41 

the system, this can entail hundreds of wavebands.  The HSI data is stored in a three dimensional 42 

data-cube, often referred to as a hypercube where each pixel represents spatial information in form 43 

of x and y coordinates combined with high-resolution spectral information in the λ coordinate.   44 
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In the past, applications of HSI are in the field of remote sensing such as precision agriculture 45 

(Datt, McVicar, Van Niel, Jupp, & Pearlman, 2003), land cover analysis (Tong Qiao, Ren, Sun, 46 

Zheng, & Marshall, 2014) or military target detection  (Manolakis & Shaw, 2002; Young, 47 

Marshall, & Gray, 2016). Due to recent advances in imaging technology in the last decades, HSI 48 

became more popular for lab-based applications such as food quality monitoring (Marshall, 49 

Kelman, Qiao, Murray, & Zabalza, 2015; T. Qiao et al., 2015; Sun, 2010), medical applications (Lu 50 

& Fei, 2014) and even artwork inspection (Polak et al., 2016). The popularity derives from the non-51 

destructive nature of HSI, where samples can be analysed chemometrically without altering their 52 

physical integrity. A second advantage is the rapid data acquisition. Classical analysis techniques 53 

such as High Performance Liquid Chromatography (HPLC) typically require not only the 54 

destruction of the sample but also several days in a lab for analysis. HSI data can be acquired in 55 

real-time and the subsequent data analysis is subject to the efficiency of algorithms and the 56 

computational power of the host system. As a result, HSI poses the potential of a real-time 57 

chemometric analysis tool that can seamlessly be integrated into the processing chain of industrial 58 

production, notably food and drink production. 59 

Scotch Whisky is central to the UK economy, accounting for around a quarter of the country’s food 60 

and drink exports (Scotch Whisky Association, 2015). It is a high-quality spirit drink exclusively 61 

produced in Scotland in a manner strictly regulated by law. Maintaining high quality standards 62 

during production is therefore of major interest for the industry. Flavour character is central to this, 63 

with the flavour compounds present in Scotch coming naturally from the raw materials, and 64 

modified or generated through the production process. Certain Scotch Whiskies are characterised 65 

by smoky flavours, which are introduced through the exposure of the malted barley to peat smoke 66 

during kilning (drying of the malted grain). Volatile phenolic compounds in the peat smoke adhere 67 

to the surface of the barley and are carried through the production process giving the smoky 68 

character of the final product. 69 
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Different distilleries use malted barley that has been peated (smoked) to different degrees, 70 

depending on their flavour requirements. Distillers typically specify a set peating level in terms of 71 

ppm level of phenols, calculated as the total of the major phenolic flavour compounds present on 72 

the malt. The current methods to determine the levels of phenols, HPLC or spectrophotometric 73 

techniques (Bringhurst & Brosnan, 2014), cannot be carried out on the malt itself. They rely on a 74 

pre-distillation step to extract the phenols, with the analysis performed on the resulting distillate. 75 

This is not only time-consuming, but can result in a degree of inaccuracy if the 76 

distillation/extraction is not carried out efficiently. For the industry, it would be of significant 77 

benefit to be able to determine the phenol levels directly from the malt. Because of the non-78 

destructive nature and the rapid data acquisition, we explore HSI as a potential real-time method. 79 

In the past, phenols have successfully been detected in seeds, skins and stems of grapes (Jara-80 

Palacios, Rodríguez-Pulido, Hernanz, Escudero-Gilete, & Heredia, 2016; Zhang et al., 2017) by 81 

near infra-red (NIR) HSI as well as the detection of phenols in wood that is used for wine barrels 82 

(Baca-Bocanegra, Nogales-Bueno, Hernández-Hierro, & Heredia, 2018). We have also presented 83 

groundwork for the detection of phenols in March 2017 (Tschannerl et al., 2017), where NIR to 84 

shortwave infra-red (SWIR) HSI covering a spectral range from 950 – 1700 nm was found to be 85 

able to differentiate three different levels of phenol concentrations in peated malt with support 86 

vector machine classification. However, due to the limited number of different concentrations 87 

studied, no effective regression model to estimate the exact concentration could be trained. The aim 88 

of this study is to extend the work done through the evaluation of samples with a wider range of 89 

phenol concentrations, scanning them in different spectral regions to further identify the potential 90 

of HSI for the estimation and generating more robust systems. To achieve this, 10 peated malts 91 

with different phenol levels were scanned with a SWIR camera1 that covers a spectral range of 92 

1000 – 2500 nm. Additional information is extracted from wavelengths above 1700 nm that have 93 

not been explored in the previous publication. Since phenols typically expose absorption in the 94 

                                                      

1 Note that in literature, the nomenclature for visible light, NIR and SWIR systems vary. In this article, SWIR 

is used as an abbreviation for the spectral range of 1000 – 2500 nm. 
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ultra-violet (UV) range (Dearden & Forbes, 1959) with peaks between 260 – 300 nm, the UV 95 

spectrum poses another spectral range of interest. UV hyperspectral imaging is yet quite 96 

unexplored with limited applications (Li, Lyu, Liao, & Wu, 2016; Merkel, 2015) due to increased 97 

difficulties in the imaging process. Not only are UV HSI cameras hardly available and still a 98 

subject of research (Hsu et al., 2017; Zucco, Caricato, Egidi, & Pisani, 2015), broadband light 99 

sources in wavelengths under 400 nm with sufficient illuminance are very scarce. In this study, a 100 

UV system covering the range of 220 – 400 nm is evaluated for suitability as a novel technology 101 

for imaging barley malt and estimating the phenol content. This study focuses only on the use of 102 

UV and SWIR HSI, simply because SWIR has proven successful in the past and UV HSI is of 103 

interest as it is a yet quite unexplored technology that might show benefits for this particular 104 

application. VIS HSI is not considered here as phenolic flavour compounds will unlikely expose 105 

any significant absorption bands in this range. The novelty of this paper is to examine spectral 106 

regions of HSI that have previously not been explored to estimate phenolic flavour compound 107 

concentrations by conducting experiments on a larger variety of samples that were utilised in 108 

previous studies. UV and SWIR HSI can be used to clearly distinguish between and estimate 109 

phenol levels in barley malt. 110 

The rest of the paper is structured as follows: Section 2 gives some details about the chemical 111 

background of the phenolic flavour compounds examined in this study. Section 3 gives details of 112 

the samples imaged and the data acquisition process. Section 4 provides information on the 113 

constitution of HSI data and necessary pre-processing steps as well as on the methodology of data 114 

analysis and performance evaluation. Section 5 provides the results along with discussions and 115 

Section 5 gives a conclusion with possible future outlook. 116 

2. Chemical background 117 

When purchasing malted barley, Scotch whisky distillers will specify the level of “total phenols” 118 

that they require. This is the sum of eight individual phenolic flavour compounds; phenol 119 

(PubChem CID: 996), guaiacol (PubChem CID: 460), p-cresol (PubChem CID: 2879), m-cresol 120 

(PubChem CID: 342), o-cresol (PubChem CID: 335), 4-methylguaiacol (PubChem CID: 7244), 4-121 
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ethylguaiacol (PubChem CID: 62465) and 4-ethylphenol (PubChem CID: 31242). Although these 122 

may not be the only flavour compounds present in peat smoke, these marker phenols have been 123 

used for decades as a measure of smoky character (Swan & Howie, 1982; Thomson, 1982). In 124 

today’s malt specifications the level of total phenols generally required is in the range of 0 – 50 125 

ppm (Bringhurst & Brosnan, 2014). 126 

Peat can be sourced from various locations across Scotland, including both island and mainland 127 

sites. The composition of the peat varies depending on its origin. This influences the relative levels 128 

of phenolic compounds on the peated malt, which in turn influences flavour (Harrison & Priest, 129 

2009). Each compound imparts a subtly different aroma. Phenol is for example tends to be 130 

described as medicinal, while guaiacol is more smoky. The HPLC method, currently used, is both 131 

applicable to barley malt steam distillates and new make spirits. The levels are measured in mg/kg 132 

or ppm respectively and the total of all compounds combined is used as a marker to the degree of 133 

peatiness of the malted barley. Therefore, in this study our aim was to estimate the total phenol 134 

levels rather than the concentration of the individual compounds. 135 

3. Data acquisition 136 

3.1 Sample preparation 137 

Some preliminary results of data classification from us, based on three categories of peating level 138 

using NIR HSI were reported in (Tschannerl et al., 2017). The objective here was to classify into 139 

finer granulated levels with the goal of estimating the actual concentration utilising different UV 140 

and SWIR HSI technologies. The peated malt samples selected for this study represented the range 141 

of total phenol concentrations typically used in Scotch whisky production, namely 0 ppm 142 

(unpeated) to 50ppm (heavily peated). A 124.5ppm (atypically highly smoked) sample was added 143 

to the set to further test the method. The sample set contained in total ten samples with the 144 

following total phenol concentrations: 0, 3.8, 8.2, 12.5, 15.5, 20.5, 30, 40, 50 and 124.5 ppm. 145 

During kilning, peat smoke is passed through a bed of malted barley. Due to the nature of this 146 

process, each grain has a different amount of phenols adhering to its surface. So, the concentration 147 
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cannot be measured from a single spatial point. HPLC can measure the average concentration of a 148 

distillate extract, but for image data, this needs to be accounted for. Therefore, the grains were 149 

spread out on a flat surface to maximise the surfaces to be imaged using HSI. 150 

3.2  Imaging process 151 

The two hyperspectral systems both operate in the pushbroom mode, i.e. the camera measures a 152 

single line at a time through an entrance slit. The light is then dispersed into its spectral 153 

components by optical elements, most commonly a diffraction grating. Two dimensional images 154 

representing the spatial line in one dimension and the spectrum of each pixel in the other are 155 

recorded subsequently which forms a 2D slice of the 3D hypercube. Since only one line at a time is 156 

measured, either the object or the camera has to move to acquire all necessary spatial information. 157 

For remote sensing data, it is common to mount cameras on airborne devices. In industrial 158 

applications however, it is common to fix the camera and move the objects with linear translational 159 

stages or conveyor belts which are in turn synchronised with the frame rate of the camera to retain 160 

geometry. The functionality of pushbroom scanning is visualised in Figure 1. 161 

UV imaging was done with pco. Sensicam UV that covers a spectral range of 220 – 400 nm with a 162 

spectral resolution of 3.8 nm. It requires a specialised illumination done with a Hamamatsu L6301-163 

50 Deuterium lamp that has a broadband UV coverage, but it is very low in light intensity. This 164 

results in an increased exposure time of 300 ms. Additionally, a 3 x 3 spatial and 4-fold spectral 165 

binning were applied. This means that 3 x 3 spatial pixels and 4 spectral bands are added up to not 166 

only reduce noise but also to increase the camera’s light sensitivity. However, the binning process 167 

also degrades the spatial resolution and spectral resolution. This results in an image with 342 pixels 168 

per scanned line and 248 active bands. As a result of the increased exposure time, the UV scanning 169 

process requires several minutes, whereas the SWIR imaging can be done in under a minute. The 170 

SWIR imaging was done with the Specim SWIR system covering a range from 1000 – 2500 nm 171 

with a spectral resolution of 12 nm. Illumination is done with customary halogen lightbulbs 172 

allowing for an exposure time of only 2.5 ms, Binning was not applied resulting in an image with 173 

384 pixels per line and 288 active spectral bands. 174 
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Figure 2 depicts false colour representations of the same barley sample with the UV camera at 175 

wavelength 295 and the SWIR camera at wavelength 1483 along with a mean spectrum over the 176 

spectral range of each camera of each image region. Additionally, normalised histograms of both 177 

datasets at the same wavelengths are plotted. One can see that the UV measurements are in general 178 

of very low intensity and expose a much lower Signal-to-Noise Ratio (SNR). The SWIR range also 179 

seems to capture more spectral features of the barley itself from visual inspection. 180 

4. Data processing 181 

4.1  Pre-processing 182 

When imaging different samples, lighting conditions may vary between the samples and even 183 

within the samples across the scan line. A common way of accounting for this effect is to convert 184 

the measured raw radiance spectra s to percent reflectance spectra r by the following formula (Yao 185 

& Lewis, 2010): 186 

𝐫 =  
𝐬 − 𝐝

𝐰 − 𝐝
 × 100% 187 

where d and w represents the dark and white reference respectively. The dark reference is acquired 188 

by imaging without any light exposure to the sensor, which is to estimate the sensor’s shot noise. 189 

The white reference is acquired by imaging an optimally reflective white surface, e.g. Spectralon, 190 

which has lambertian scattering. i.e. it reflects incident light equally diffuse in all direction over the 191 

desired spectral range. The white image can estimate the sensor’s light sensitivity to the current 192 

illumination and normalises the signal based on that.  193 

The spectra measured are not only dependent on the chemical absorption but also on physical light 194 

scattering due to the surface structure of the objects. As the barley grains have a very uneven 195 

surface, different portions are differently exposed to light. This results in shadow effects as well as 196 

varying light scattering attributes. These spectral variations typically manifest themselves in 197 

additive or multiplicative components on the base spectra. Various spectral pre-processing 198 

techniques are reviewed in (Rinnan, Berg, & Engelsen, 2009) to address these problems. For 199 
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additive effects, it is common to employ spectral derivatives, either 1st or 2nd order. These are most 200 

commonly realised with Savitzky-Golay smoothing to minimise noise interferences. A widely used 201 

technique to compensate for multiplicative scattering distortions is Multiplicative Scatter 202 

Correction (MSC) (Zhao, Zhang, & Chen, 2005), which estimates scattering coefficients from a 203 

supposedly ideal signal whilst minimising the scatter for each individual signal. One of the most 204 

commonly used techniques in HSI however is the conversion of the spectra to the Standard Normal 205 

Variate (SNV) (Rinnan et al., 2009). For a given set of n measured reflectance spectra 𝑹 =206 

{𝐫𝟏, 𝐫𝟐, … , 𝐫𝐧}, the SNV for one spectrum ri is calculated by: 207 

𝐫𝐢(𝑆𝑁𝑉) =  
𝐫𝐢 −  𝛍

𝛔
,   𝛍 =

𝟏

𝒏
∑ 𝐫𝐢,    𝛔 =  √

𝟏

𝒏
∑(𝐫𝐢 −  𝛍)𝟐 

𝒏

𝒊=𝟏

 

𝒏

𝒊=𝟏

 208 

where µ and σ represents the mean and standard deviation of R respectively. This equals a 209 

statistical standardisation and has proven to be a very effective pre-processing technique for 210 

hyperspectral data (Amodio, Capotorto, Chaudhry, & Colelli, 2017; Yu et al., 2016). All signals 211 

here were pre-processed by converting to SNV and the UV signals were additionally smoothed 212 

using the Savitzky-Golay filter prior to conversion. 213 

4.2  Data analysis 214 

As the distribution of phenols adhering to the surface of the grains is expected to be very uneven, 215 

the pixels will therefore have varying spectral responses. In the final application, the mean 216 

concentration of an entire batch of barley malt is desired. To achieve this, rather than considering 217 

individual pixels as observed we take the average over a subset of pixels instead for analysis. To 218 

avoid detecting dense regions with locally high concentrations, these subsets are not formed by 219 

spatially connected regions but by selecting a subset of pixels randomly distributed over the entire 220 

image.  221 

Two different machine learning approaches were applied for data modelling. As we consider 10 222 

different levels of phenol concentration, a classification problem is implied. Support Vector 223 

Machines (SVM) were in the past successfully used for HSI data classification and regression and 224 
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are still a very popular tool (Crichton et al., 2017; Kang, Xiang, Li, & Benediktsson, 2017; Tong 225 

Qiao et al., 2015). The general idea is to find a hyperplane that separates two classes by selecting a 226 

small number of observations, the support vectors, of each class that are closest to the hyperplane. 227 

By maximising the margin of each support vector to the plane, the model achieves optimal 228 

generalisation characteristics. Training several SVMs in a one-against-all approach enables the 229 

extension to a multi class case. SVMs have the advantage of easily integrating non-linearity in the 230 

data by employing kernel functions, most commonly a Gaussian kernel. Two parameters C and γ 231 

control the complexity and the width of Gaussian kernel respectively. These parameters are tuned 232 

using a grid search algorithm with five-fold cross-validation. SVMs are very popular because they 233 

pose a very robust mathematical model with a convex optimisation function that can be optimised 234 

with a relatively low amount of training samples (Zhao et al., 2005). Deep learning methods such 235 

as neural networks that have recently gained much attention in research (Lee & Kwon, 2017; Mou, 236 

Ghamisi, & Zhu, 2017) produce very good results but require a large amount of training data and 237 

generally rely on non-convex optimisation, which makes them less robust as a globally optimal 238 

solution is not guaranteed.  239 

A common way of measuring the quality of the classification is by examining the confusion matrix, 240 

which lists the number of correctly classified observations, false positives and false negatives for 241 

each class individually. Based on that, the Overall Accuracy (OA) of all correctly classified 242 

observations in relation to all observations can be obtained. For a dataset with 𝑁 observations and 𝑐 243 

classes, the OA is defined as:  244 

𝑂𝐴 =  
∑ 𝑛𝑖

𝑐
𝑖=1

𝑁
 × 100% 245 

where 𝑛𝑖 represents the number of correctly classified pixels in class 𝑖. The OA therefore relates 246 

the number of correctly classified pixels to all pixels.  247 

Additionally, Cohen’s kappa coefficient is also calculated to assess the classification performance. 248 

It quantifies the agreement between the ground truth and the classification results as follows:  249 
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𝐾𝑎𝑝𝑝𝑎 =  
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒
 × 100 250 

where 𝑝0  is the observed level of agreement, identical to the OA, and 𝑝𝑒  represents the value 251 

expected if the two groups of results, ground truth and classification results, were completely 252 

independent, defined by: 253 

𝑝𝑒 =  
1

𝑁2
 ∑ 𝑛𝑖1𝑛𝑖2

𝑐

𝑖=1

 254 

where 𝑛𝑖1 and 𝑛𝑖2 refer to the ground truth and the classification results respectively.  255 

SVMs have been extended to Support Vector Regression (SVR) in (Drucker, Burges, Kaufman, 256 

Smola, & Vapnik, 1997) maintaining its major characteristics of maximum-margin separation and 257 

low sample number training. SVR was used to train a prediction model for the actual concentration 258 

of phenols. The same algorithm used for SVM was applied for SVR parameter tuning. Two popular 259 

measures are typically applied to evaluate the quality of the regression results. For N observations, 260 

the Root Mean Squared Error (RMSE) is calculated by  261 

RMSE =  (
1

𝑁
∑ (𝑦𝑖 −  𝑦𝑖̂)

2
𝑁

𝑖=1
)

1
2
 262 

where 𝑦𝑖 represents the actual value of the observation and 𝑦𝑖̂ the estimated value. It has the same 263 

unit as the estimated value and can be interpreted as the average error made when estimating. As 264 

this is scaled to the range of values possible, the coefficient of correlation value 𝑟2  is often 265 

employed as an absolute measure for the quality of the model. It is calculated as follows  266 

𝑟2 =  
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̅)
2𝑛

𝑖=1

 267 

where 𝑦𝑖̅ represents the mean of all values. 𝑟2 takes on values between 0 and 1, with 1 indicating 268 

100% prediction accuracy of the model.  269 
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5. Results and Discussion 270 

5.1 Classification results under varying settings 271 

To observe the effect of different sizes of pixel subsets, the average over 50, 200 and 500 pixels 272 

was taken to generate the samples for classification. Due to different spatial resolutions, this results 273 

in a total of 46 702, 11 675 and 4 669 observations for SWIR and 17 174, 4 292 and 1 719 274 

observations for UV in sum for all classes respectively. Out of these, 1%, 5% and 10% have 275 

randomly been selected for training and the rest for testing the predictive models. Results for both 276 

UV and SWIR with varying sizes of subsets and varying ratios of training and testing pixels are 277 

shown in Table 1Error! Reference source not found.. For both datasets, a lower size of pixel 278 

subsets also results in a lower classification accuracy. The peat smoking process results in a 279 

variable distribution of phenols across the grains. By taking the mean over a certain region, it is 280 

attempted to introduce a sufficient statistic that can represent the mean concentration of the whole 281 

barley batch. The smaller these subsets are, the less likely it is that these subsets represent a 282 

sufficient statistic. Larger subsets are therefore more likely to represent a more precise spectrum for 283 

the overall concentration and lead to better classification results.   284 

As stated in Section 4, for a subset size of 50 pixels, we gain c.a. 46 000 samples for SWIR and 17 285 

000 for UV. With a higher amount of testing samples, misclassifications are more likely, which 286 

results in lower OA. This becomes evident particularly for the UV dataset, where a subset size of 287 

50 pixels with 5% training ratio can only achieve a 65.4% OA. Increasing the size can however 288 

achieve an OA of 96.9%. The SWIR dataset consistently outperforms the UV dataset with a 289 

minimum OA of 98.9% for a subset size of 50 and reaches an OA of 99.8% with increased training 290 

ratio or number of pixels. Varying the ratio of training and testing data has a similar effect where 291 

only 1% of all samples for the UV dataset can achieve an OA of 76.2% and it reaches 97.5% for 292 

the SWIR dataset.  293 

To gain a more detailed insight, confusion matrices for the best and the worst combinations of 294 

Table 1 are visualised in Figure 3. On the diagonal, the correct numbers of classified pixels are 295 
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listed and all other elements indicate misclassified samples. In the UV dataset, one can see that 296 

with both fixed subset size and training ratio Class 1 and 10 seem to be the easiest to discriminate 297 

as almost no samples are misclassified. This is likely due to the fact that they represent the extreme 298 

cases of 0 and 124.5 ppm phenol concentration. Classes 2 and 5 – 9 seem to have the most 299 

misclassified samples as can be observed in both Figure 3 (a – b) and (e – f). For the SWIR dataset, 300 

classes 1 – 5 seem to have the most misclassifications, whereas classes 6 and 7 are consistently 301 

well classified.  302 

5.2 Results from mean spectra of spatially coherent regions 303 

In addition to the classification results obtained under various training ratios and randomly 304 

generated subsets, the classification was also tested on mean spectra of spatially coherent regions. 305 

For this, classifiers were trained for both datasets utilising 20% of the samples generated by taking 306 

the average over 50 random pixels. 50 pixels were chosen as this generates a larger number of 307 

training samples and will likely capture more statistical variations. Validation sets were produced 308 

by calculating the average of 50 × 50 windows for all samples of both datasets. This results in 300 309 

samples for the UV dataset and 840 samples for the SWIR dataset respectively over all classes. 310 

Greyscale representations of wavelength 1483nm and 284nm for the SWIR and UV datasets 311 

respectively are illustrated alongside a ground truth and the classification results in Figure 4. For 312 

the UV data, classes 1 and 10 are the best qualified classes, which is consistent with the results 313 

from Figure 3. Likewise, classes 6 and 7 are visually classified the best in the SWIR dataset, which 314 

again confirms the previous results. The OAs achieved are in both cases however much lower than 315 

in Table 1, particularly for the UV dataset which is only 47.7%.  316 

As previously stated, the phenol concentrations are very likely to vary drastically for each barley 317 

grain. This also results in spatial agglomerations of very high phenol concentration or a total 318 

absence of phenols. By taking the mean of spatially coherent regions, we are likely generating 319 

samples that represent exactly these variations. The ground truth is not necessarily valid anymore 320 

as a result. The low classification accuracy is therefore not a reliable statistic. In fact, misclassified 321 

pixels can even be interpreted positively as our classifier is able to pick up spatial variations of 322 
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concentrations. Generating a ground truth to evaluate the correctness is impossible which is why 323 

different methods of validation are needed here. The high accuracies on the randomly generated 324 

samples lead us to believe that this classification is quite accurate. With this, it might be able to 325 

estimate the spatial distribution of phenol concentration within a barley batch, providing useful 326 

additional information for the industry.  327 

5.3 Results of regression 328 

Even though the differentiation between ten concentration levels implies a classification problem, 329 

from a scientific point of view it would also be interesting to estimate the actual concentration 330 

level. For this purpose, we applied regression on the same datasets. Likewise, 3 regression runs 331 

with 3 selections of random subsets were performed for comparison. Results for varying number of 332 

pixel subsets and varying ratio of training and testing samples are summarised in Table 2. Similar 333 

to the classification, it can be seen that the UV data produces significantly worse results especially 334 

for small sizes of pixel subsets and resulting higher number of samples and for a low training 335 

sample ratio. On the other hand, the SWIR dataset is able to achieve an 𝑟2 value of 0.92 in the 336 

worst case, or 0.99 in the best case in comparison to 0.91 from the UV dataset. With an RMSE 337 

between 0.75 and 0.32 ppm, the SWIR dataset is able to estimate the phenol concentration in an 338 

acceptable precision. For more accurate levels of the individual compounds, HPLC and other 339 

chemometric analysis tools are still a better choice. But, it is important to bear in mind that these 340 

compounds are only markers of flavour. So, the SWIR HSI may in fact be giving a better measure 341 

of all compounds that are of sensory importance. 342 

6. Conclusion 343 

In this paper, we examined the potential of HSI for the estimation of the concentration of phenolic 344 

flavour compounds on malted barley. For this purpose, barley samples with ten different 345 

concentrations were generated and imaged with a UV HSI system covering a spectral range from 346 

220 – 400 nm and a SWIR system covering a range of 1000 – 2500 nm. The samples were then 347 

classified using a SVM with RBF kernel. Results show that especially the SWIR dataset is able to 348 
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discriminate very precisely between ten concentration levels with an OA of up to 99.8%. The UV 349 

dataset in comparison performs worse in all cases. Similar results were observed for the SVR, 350 

where the UV dataset can only achieve an 𝑟2 value of 0.91 whereas the SWIR dataset can achieve 351 

a value up to 0.99 with an RMSE 0.32 ppm. It was also established that UV HSI is a still 352 

underdeveloped technology, where the availability of appropriate light sources is scarce which 353 

results in aggravated imaging conditions and very low SNR images. In conclusion, it could be 354 

shown that SWIR HSI has in its current stage of development very much the potential to be used in 355 

industrial applications to quantify and classify the mean phenol concentration levels of an entire 356 

barley batch. As this study focuses on UV and SWIR, future work might include looking at VIS to 357 

NIR HSI to estimate phenol levels as the latter is more cost effective than UV and SWIR. 358 

Additionally, we will concentrate on training classifiers or regression models that can be evaluated 359 

in real life production conditions of peated malt as well as estimating the spatial distribution of the 360 

phenolic flavour compounds across the batch. Furthermore, applying different feature extraction 361 

techniques such as folded-PCA (Zabalza et al., 2014), singular spectrum analysis (Zabalza et al., 362 

2015), curvelet transform (Tong Qiao et al., 2017), sparse representation (Tong Qiao et al., 2018) 363 

and multi-kernel classification (Fang, Li, Duan, Ren, & Benediktsson, 2015) might help in creating 364 

datasets with an even higher predictive power. 365 
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 481 

Table 1 SVM Classification OA in % for varying number of pixel subset sizes and a training ratio of 5% and varying 482 

training ratio with subset size 200. 483 

# Pixels UV SWIR Ratio(%) UV SWIR 

 OA Kappa OA Kappa  OA Kappa OA Kappa 

50 65.4 61.6 98.9 98.8 1 76.2 73.6 97.5 97.3 

200 90.3 89.2 99.7 99.7 5 90.3 89.3 99.5 99.5 

500 96.9 96.7 99.8 99.9 10 93.7 93.0 99.8 99.8 

 484 

Table 2 Correlation coefficient and Root Mean Squared Error of SVR with varying numbers of subset sizes and a training 485 

ratio of 5% and varying training ratios with subset size 200 486 

# Pixels UV SWIR Ratio(%) UV SWIR 

 𝒓𝟐 RMSE 𝒓𝟐 RMSE  𝒓𝟐 RMSE 𝒓𝟐 RMSE 

50 0.56 1.55 0.92 0.75 1 0.74 1.23 0.95 0.63 

200 0.82 1.04 0.98 0.42 5 0.83 1.05 0.98 0.43 

500 0.91 0.77 0.99 0.32 10 0.85 1.00 0.98 0.36 

 487 


