2,174 research outputs found

    New complexity results for parallel identical machine scheduling problems with preemption, release dates and regular criteria

    Get PDF
    In this paper, we are interested in parallel identical machine scheduling problems with preemption and release dates in case of a regular criterion to be minimized. We show that solutions having a permutation flow shop structure are dominant if there exists an optimal solution with completion times scheduled in the same order as the release dates, or if there is no release date. We also prove that, for a subclass of these problems, the completion times of all jobs can be ordered in an optimal solution. Using these two results, we provide new results on polynomially solvable problems and hence refine the boundary between P and NP for these problems

    How the structure of precedence constraints may change the complexity class of scheduling problems

    Full text link
    This survey aims at demonstrating that the structure of precedence constraints plays a tremendous role on the complexity of scheduling problems. Indeed many problems can be NP-hard when considering general precedence constraints, while they become polynomially solvable for particular precedence constraints. We also show that there still are many very exciting challenges in this research area

    Single-machine bicriteria scheduling

    Get PDF

    Random Keys Genetic Algorithms Scheduling and Rescheduling Systems for Common Production Systems

    Get PDF
    The majority of scheduling research deals with problems in specific production environments with specific objective functions. However, in many cases, more than one problem type and/or objective function exists, resulting in the need for a more generic and flexible system to generate schedules. Furthermore, most of the published scheduling research focuses on creating an optimal or near optimal initial schedule during the planning phase. However, after production processes start, circumstances like machine breakdowns, urgent jobs, and other unplanned events may render the schedule suboptimal, obsolete or even infeasible resulting in a rescheduling problem, which is typically also addressed for a specific production environment, constraints, and objective functions. This dissertation introduces a generic framework consisting of models and algorithms based on Random Keys Genetic Algorithms (RKGA) to handle both the scheduling and rescheduling problems in the most common production environments and for various types of objective functions. The Scheduling system produces predictive (initial) schedules for environments including single machines, flow shops, job shops and parallel machine production systems to optimize regular objective functions such as the Makespan and the Total Tardiness as well as non-regular objective functions such as the Total Earliness and Tardiness. To deal with the rescheduling problem, and using as a basis the same RKGA, a reactive Rescheduling system capable of repairing initial schedules after the occurrence of unexpected events is introduced. The reactive Rescheduling system was designed not only to optimize regular and non-regular objective functions but also to minimize the instability, a very important aspect in rescheduling to avoid shop chaos due to disruptions. Minimizing both schedule inefficiency and instability, however, turns the problem into a multi-objective optimization problem, which is even more difficult to solve. The computational experiments for the predictive model show that it is able to produce optimal or near optimal schedules to benchmark problems for different production environments and objective functions. Additional computational experiments conducted to test the reactive Rescheduling system under two types of unexpected events, machine breakdowns and the arrival of a rush job, show that the proposed framework and algorithms are robust in handling various problem types and computationally reasonable

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Sequencing and scheduling : algorithms and complexity

    Get PDF

    Dominance-Based Heuristics for One-Machine Total Cost Scheduling Problems

    No full text
    International audienceWe study the one-machine scheduling problem with release dates and we look at several objective functions including total (weighted) tardiness and total (weighted) completion time. We describe dominance rules for these criteria, as well as techniques for using these dominance rules to build heuristic solutions. We use them to improve certain well-known greedy heuristic algorithms from the literature. Finally, we introduce a Tabu Search method with a neighborhood based on our dominance rules. Experiments show the effectiveness of our techniques in obtaining very good solutions for all studied criteria

    Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows

    Full text link
    [EN] In practice due dates usually behave more like intervals rather than specific points in time. This paper studies hybrid flowshops where jobs, if completed inside a due window, are considered on time. The objective is therefore the minimization of the weighted earliness and tardiness from the due window. This objective has seldom been studied and there are almost no previous works for hybrid flowshops. We present methods based on the simple concepts of iterated greedy and iterated local search. We introduce some novel operators and characteristics, like an optimal idle time insertion procedure and a two stage local search where, in the second stage, a limited local search on a exact representation is carried out. We also present a comprehensive computational campaign, including the reimplementation and comparison of 9 competing procedures. A thorough evaluation of all methods with more than 3000 instances shows that our presented approaches yield superior results which are also demonstrated to be statistically significant. Experiments also show the contribution of the new operators in the presented methods. (C) 2016 Elsevier Ltd. All rights reserved.The authors would like to thank Professors Lofti Hidri and Mohamed Haouari for sharing with us the source codes and explanations of the lower bounds. Quan-Ke Pan is supported by the National Natural Science Foundation of China (Grant No. 51575212), Program for New Century Excellent Talents in University (Grant No. NCET-13-0106), Science Foundation of Hubei Province in China (Grant No. 2015CFB560), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130042110035), Key Laboratory Basic Research Foundation of Education Department of Liaoning Province (LZ2014014), Open Research Fund Program of the State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, China. Ruben Ruiz and Pedro Alfaro-Fernandez are supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD Optimization of Scheduling Problems in Container Yards" (No. DPI2015-65895-R) financed by FEDER funds.Pan, Q.; Ruiz García, R.; Alfaro-Fernandez, P. (2017). Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows. Computers & Operations Research. 80:50-60. https://doi.org/10.1016/j.cor.2016.11.022S50608
    corecore