2,348 research outputs found

    Single-factor lifting and factorization of polynomials over local fields

    Get PDF
    Let f (x) be a separable polynomial over a local field. The Montes algorithm computes certain approximations to the different irreducible factors of f (x), with strong arithmetic properties. In this paper, we develop an algorithm to improve any one of these approximations, till a prescribed precision is attained. The most natural application of this ‘‘single-factor lifting’’ routine is to combine it with the Montes algorithm to provide a fast polynomial factorization algorithm. Moreover, the single-factor lifting algorithm may be applied as well to accelerate the computational resolution of several global arithmetic problems in which the improvement of an approximation to a single local irreducible factor of a polynomial is requiredPostprint (published version

    Genetics of polynomials over local fields

    Full text link
    Let (K,v)(K,v) be a discrete valued field with valuation ring \oo, and let \oo_v be the completion of \oo with respect to the vv-adic topology. In this paper we discuss the advantages of manipulating polynomials in \oo_v[x] in a computer by means of OM representations of prime (monic and irreducible) polynomials. An OM representation supports discrete data characterizing the Okutsu equivalence class of the prime polynomial. These discrete parameters are a kind of DNA sequence common to all individuals in the same Okutsu class, and they contain relevant arithmetic information about the polynomial and the extension of KvK_v that it determines.Comment: revised according to suggestions by a refere

    Computation of Integral Bases

    Full text link
    Let AA be a Dedekind domain, KK the fraction field of AA, and fA[x]f\in A[x] a monic irreducible separable polynomial. For a given non-zero prime ideal p\mathfrak{p} of AA we present in this paper a new method to compute a p\mathfrak{p}-integral basis of the extension of KK determined by ff. Our method is based on the use of simple multipliers that can be constructed with the data that occurs along the flow of the Montes Algorithm. Our construction of a p\mathfrak{p}-integral basis is significantly faster than the similar approach from [7][7] and provides in many cases a priori a triangular basis.Comment: 22 pages, 4 figure

    FORM version 4.0

    Full text link
    We present version 4.0 of the symbolic manipulation system FORM. The most important new features are manipulation of rational polynomials and the factorization of expressions. Many other new functions and commands are also added; some of them are very general, while others are designed for building specific high level packages, such as one for Groebner bases. New is also the checkpoint facility, that allows for periodic backups during long calculations. Lastly, FORM 4.0 has become available as open source under the GNU General Public License version 3.Comment: 26 pages. Uses axodra

    Discovering the roots: Uniform closure results for algebraic classes under factoring

    Full text link
    Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots rr is small but the multiplicities are exponentially large. Our method sets up a linear system in rr unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,,xn)f(x_1,\ldots,x_n) of size ss we prove that each factor has size at most a polynomial in: ss and the degree of the squarefree part of ff. Consequently, if f1f_1 is a 2Ω(n)2^{\Omega(n)}-hard polynomial then any nonzero multiple ifiei\prod_{i} f_i^{e_i} is equally hard for arbitrary positive eie_i's, assuming that ideg(fi)\sum_i \text{deg}(f_i) is at most 2O(n)2^{O(n)}. It is an old open question whether the class of poly(nn)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial ff of degree nO(1)n^{O(1)} and formula (resp. ABP) size nO(logn)n^{O(\log n)} we can find a similar size formula (resp. ABP) factor in randomized poly(nlognn^{\log n})-time. Consequently, if determinant requires nΩ(logn)n^{\Omega(\log n)} size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ\tau, f(τx)f(\tau\overline{x}) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems, supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \& Burgisser, FOCS 2001).Comment: 33 Pages, No figure
    corecore