research

Triangular bases of integral closures

Abstract

In this work, we consider the problem of computing triangular bases of integral closures of one-dimensional local rings. Let (K,v)(K, v) be a discrete valued field with valuation ring O\mathcal{O} and let m\mathfrak{m} be the maximal ideal. We take fO[x]f \in \mathcal{O}[x], a monic irreducible polynomial of degree nn and consider the extension L=K[x]/(f(x))L = K[x]/(f(x)) as well as OL\mathcal{O}_{L} the integral closure of O\mathcal{O} in LL, which we suppose to be finitely generated as an O\mathcal{O}-module. The algorithm MaxMin\operatorname{MaxMin}, presented in this paper, computes triangular bases of fractional ideals of OL\mathcal{O}_{L}. The theoretical complexity is equivalent to current state of the art methods and in practice is almost always faster. It is also considerably faster than the routines found in standard computer algebra systems, excepting some cases involving very small field extensions

    Similar works