109 research outputs found

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio

    Video Caching, Analytics and Delivery at the Wireless Edge: A Survey and Future Directions

    Get PDF
    Future wireless networks will provide high bandwidth, low-latency, and ultra-reliable Internet connectivity to meet the requirements of different applications, ranging from mobile broadband to the Internet of Things. To this aim, mobile edge caching, computing, and communication (edge-C3) have emerged to bring network resources (i.e., bandwidth, storage, and computing) closer to end users. Edge-C3 allows improving the network resource utilization as well as the quality of experience (QoE) of end users. Recently, several video-oriented mobile applications (e.g., live content sharing, gaming, and augmented reality) have leveraged edge-C3 in diverse scenarios involving video streaming in both the downlink and the uplink. Hence, a large number of recent works have studied the implications of video analysis and streaming through edge-C3. This article presents an in-depth survey on video edge-C3 challenges and state-of-the-art solutions in next-generation wireless and mobile networks. Specifically, it includes: a tutorial on video streaming in mobile networks (e.g., video encoding and adaptive bitrate streaming); an overview of mobile network architectures, enabling technologies, and applications for video edge-C3; video edge computing and analytics in uplink scenarios (e.g., architectures, analytics, and applications); and video edge caching, computing and communication methods in downlink scenarios (e.g., collaborative, popularity-based, and context-aware). A new taxonomy for video edge-C3 is proposed and the major contributions of recent studies are first highlighted and then systematically compared. Finally, several open problems and key challenges for future research are outlined

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    Point-to-Multipoint Services on Fifth-Generation Mobile Networks

    Full text link
    [ES] Esta disertación cubre el estado del arte en LTE eMBMS Release 14, también conocido como Enhanced Television Services (ENTV). ENTV trajo un conjunto de mejoras, tanto a nivel radio como a nivel de núcleo, que transformó a eMBMS en un estándar de televisión terrestre completo. La última versión de esta tecnología se denomina LTE-based 5G Broadcast; pero no usa New Radio ni el núcleo 5G. Para proveer una solución nativa 5G de servicios punto-a-multipunto, hubo investigación en entornos acad\'emicos y colaboraciones público-privada. La iniciativa más notable en este aspecto fue el proyecto del Horizon 2020 5G-Xcast, que transcurrió de 2017 a 2019. 5G-Xcast produjo varias soluciones a nivel de arquitectura, desde la perspectiva de provisión de contenidos, nuevas funciones de red interoperables con el núcleo 5G, hasta modificaciones a la interfaz aire basada en New Radio. Los hallazgos del proyecto están descritos en esta tesis. La tesis incluye dos ejemplos de eMBMS aplicados a verticales diferentes, una para el uso de eMBMS en entornos industriales, y otra presentando eMBMS como un sistema SAP. Incluir servicios punto-a-multipunto como un modo adicional celular trae algunos desafíos, como ya mostró la estandarización de eMBMS: las redes de radiodifusión terrestre y las redes celulares son muy distintas entre ellas. Encontrar una forma de onda viable para ambas infraestructuras es complejo. Esta tesis ofrece un punto de vista distinto al problema: un escenario de colaboración entre cadenas televisivas y operadores móviles, donde la infraestructura de radiodifusión y móvil son compartidas. Este concepto se ha definido como Convergence of Terrestrial and Mobile Networks. Las tecnologías elegidas para converger son ATSC 3.0 y 5G, usando el Advanced Traffic Steering, Switching and Splitting (ATSSS). ATSSS está compuesto de una serie de procedimientos, interfaces, funciones de red, para permitir el uso compartido de un acceso 3GPP con uno non-3GPP, como Wi-Fi. Sin embargo, el uso de ATSSS para juntar radiodifusión y celular no es trivial, ya que ATSSS no fue dise\~{n}ado para enlaces radio unidireccionales como ATSC 3.0. Estas limitaciones son descritas en detalle, y una propuesta para solventarlas tambi\'en está incluida. La solución se basa en Quick UDP Internet Connections (QUIC), y se usa como ejemplo para la provisión de Convergent Services (File Repair y Video Offloading). La tesis concluye con una descripción de Release 17 5MBS, con los nuevos conceptos introducidos. 5MBS es capaz de cambiar entre unicast, multicast y broadcast; dependiendo del servicio, la ubicación geográfica de los usuarios, y las capacidades de la infraestructura móvil involucradas. Para evaluar 5MBS, se ha realizado un estudio de prestaciones, basado en comunicaciones multicast dentro del núcleo de red 5G. Este prototipo 5MBS forma parte del laboratorio VLC Campus 5G, y utiliza el software comercial Open5GCore como base del desarrollo. El modelo de sistema para la experimentación esta formado por un servidor de vídeo, que se conecta al Open5GCore y a las funciones de red mejoradas con funcionalidades 5MBS. Estas funciones de red envían el contenido mediante punto-a-multipunto a un entorno radio y terminales simulados. Los resultados obtenidos resaltan el objetivo principal de la tesis: las comunicaciones punto-a-multipunto son una solución escalable para el envío de contenido multimedia en directo.[CA] Aquesta dissertació cobreix capdavanter en LTE eMBMS Release 14, també conegut com Enhanced Television Services (ENTV). ENTV va portar un conjunt de millores, tant a nivell de ràdio com a nivell de nucli, que va transformar el eMBMS en un estàndard de televisió terrestre complet. La última versió d'aquesta tecnologia es denomina LTE-based 5G Broadcast; però no fa servir New Ràdio ni el nucli 5G. Per a proveir una solució nativa 5G de serveis punt-a-multipunt, va haver-hi investigació en entorns acadèmics i col·laboracions pública i privada. La iniciativa més notable en aquest aspecte va ser el projecte del Horizon 2020 5G-Xcast, que va transcórrer del 2017 a 2019. 5G-Xcast va produir diverses solucions a nivell d'arquitectura, des de la perspectiva de provisió de continguts, noves funcions de xarxa interoperables amb el nucli 5G, fins a modificacions a la interfície aire basada en New Radio. Les troballes del projecte estan descrits en aquesta tesi. La tesi inclou dos exemples de eMBMS aplicats a verticals diferents, una per a l'ús de eMBMS en entorns industrials, i una altra presentant eMBMS com un sistema SAP. Incloure serveis punt-a-multipunt com una manera addicional cel·lular duu alguns desafiaments, com ja va mostrar l'estandardització de eMBMS: les xarxes de radiodifusió terrestre i les xarxes cel·lulars són molt diferents entre elles. Trobar una forma d'ona viable per a totes dues infraestructures és complex. Aquesta tesi ofereix un punt de vista diferent al problema: un escenari de col·laboració entre cadenes televisives i operadors mòbils, on la infraestructura de radiodifusió i mòbil són compartides. Aquest concepte s'ha definit com Convergence of Terrestrial and Mobile Networks. Les tecnologies triades per a convergir són ATSC 3.0 i 5G, usant el Advanced Traffic Steering, Switching and Splitting (ATSSS). ATSSS està compost d'una sèrie de procediments, interfícies, funcions de xarxa, per a permetre l'ús compartit d'un accés 3GPP amb un non-3GPP, com a Wi-Fi. No obstant això, l'ús de ATSSS per a adjuntar radiodifusió i cel·lular no és trivial, ja que ATSSS no va ser dissenyada per a per a enllaços ràdio unidireccionals com ATSC 3.0. Aquestes limitacions són descrites detalladament, i una proposta per a solucionar-les també està inclosa. La solució es basa en Quick UDP Internet Connections (QUIC), i s'usa com a exemple per a la provisió de Convergent Services (File Repair i Vídeo Offloading). La tesi conclou amb una descripció de Release 17 5MBS, amb els nous conceptes introduïts. 5MBS és capaç de canviar entre unicast, multicast i broadcast; depenent del servei, la ubicació geogràfica dels usuaris, i les capacitats de la infraestructura mòbil involucrades. Per a avaluar 5MBS, s'ha realitzat un estudi de prestacions, basat en comunicacions multicast dins del nucli de xarxa 5G. Aquest prototip 5MBS forma part del laboratori VLC Campus 5G, i utilitza el programari comercial Open5GCore com a base del desenvolupament. El model de sistema per a l'experimentació està format per un servidor de vídeo, que es connecta al Open5GCore i a les funcions de xarxa millorades amb funcionalitats 5MBS. Aquestes funcions de xarxa envien el contingut mitjançant punt-a-multipunt a un entorn ràdio i terminals simulats. Els resultats obtinguts ressalten l'objectiu principal de la tesi: les comunicacions punt-a-multipunt són una solució escalable per a l'enviament de contingut multimèdia en directe.[EN] This dissertation covers the state-of-the-art in LTE eMBMS Release 14, also known as Enhanced Television Services (ENTV). ENTV provided a suite of radio and core enhancements that made eMBMS into a viable terrestrial broadcast standard. The latest iteration of this technology is known as LTE-based 5G Broadcast; even though it is not New Radio or 5G Core based. To bridge this gap, research efforts by academia, public and private enterprises evaluated how to provide a 5G-based solution for point-to-multipoint services. The most notable effort in this regard is the Horizon 2020 project 5G-Xcast, which ran from 2017 to 2019. 5G-Xcast provided several architectural solutions, from the content delivery perspective down to air interface specifics; providing new waveforms based on New Radio and Network Functions interoperable with a Release 15 5G Core. The findings are summarized in this thesis. Two examples of eMBMS applied to different verticals are included in the thesis, one for the use of eMBMS in industrial environments, and the other using eMBMS as a PWS technology. Providing point-to-multipoint services as another cellular service poses some problems, as the standardization process of eMBMS showed: the broadcast infrastructure is different than the cellular one. Having a waveform that is suited for both scenarios is a difficult endeavour. The thesis provides a new perspective into this problem: Having existing Terrestrial Broadcast standards and infrastructure be the point-to-multipoint solution of 5G, where mobile operators and broadcasters collaborate together. This is defined in the dissertation as Convergence of Terrestrial and Mobile Networks. The technologies chosen to be converged together were ATSC 3.0 and 5G; using the existing Release 16 framework known as Advanced Traffic Steering, Switching and Splitting (ATSSS). ATSSS is a series of procedures, interfaces, new Network Functions, to allow the joint use of a 3GPP Access Network alongside a non-3GPP one, like Wi-Fi. However, the use of ATSSS for cellular plus broadcast brings challenges, as the ATSSS technology was not designed to be used with a unidirectional access network like ATSC 3.0. These limitations are described in detail, and an architectural proposal that overcomes the limitations is proposed. This solution is based on Quick UDP Internet Connections (QUIC), and how to provide Convergent Services (i.e File Repair and Video Offloading) is shown. The thesis concludes with a description of Release 17 5MBS, including the new concepts introduced. 5MBS features the capacity of switching between unicast, multicast and broadcast; depending on the service addressed, the geographical location of the users, and the capability of the RAN infrastructure targeted. In order to evaluate 5MBS, a performance study of the use of multicast inside the 5G Core has been carried out. The 5MBS prototype was developed as part of the VLC Campus 5G laboratory, using the commercial software Open5GCore which provides the libraries and Network Functions to deploy your own 5G Private Network in testing environments. The system model of the experiment is formed by a video server, connected to the Open5GCore and the 5MBS enhanced functions; which will deliver the content to an emulated RAN environment hosting virtual gNBs and devices. The results obtained reinforce the objective of the thesis, positioning point-to-multipoint as a scalable way to deliver live content.Research projects: 5G-Xcast: Broadcast and Multicast Communication Enablers for the Fifth-Generation of Wireless Systems (H2020 No 761498); 5G-TOURS: SmarT mObility, media and e-health for toURists and citizenS (H2020 No 856950); FUDGE-5G: FUlly DisinteGrated private nEtworks for 5G verticals (H2020 No 957242).Barjau Estevan, CS. (2022). Point-to-Multipoint Services on Fifth-Generation Mobile Networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19140

    Reliable and Secure Drone-assisted MillimeterWave Communications

    Get PDF
    The next generation of mobile networks and wireless communication, including the fifth-generation (5G) and beyond, will provide a high data rate as one of its fundamental requirements. Providing high data rates can be accomplished through communication over high-frequency bands such as the Millimeter-Wave(mmWave) one. However, mmWave communication experiences short-range communication, which impacts the overall network connectivity. Improving network connectivity can be accomplished through deploying Unmanned Ariel Vehicles(UAVs), commonly known as drones, which serve as aerial small-cell base stations. Moreover, drone deployment is of special interest in recovering network connectivity in the aftermath of disasters. Despite the potential advantages, drone-assisted networks can be more vulnerable to security attacks, given their limited capabilities. This security vulnerability is especially true in the aftermath of a disaster where security measures could be at their lowest. This thesis focuses on drone-assisted mmWave communication networks with their potential to provide reliable communication in terms of higher network connectivity measures, higher total network data rate, and lower end-to-end delay. Equally important, this thesis focuses on proposing and developing security measures needed for drone-assisted networks’ secure operation. More specifically, we aim to employ a swarm of drones to have more connection, reliability, and secure communication over the mmWave band. Finally, we target both the cellular 5Gnetwork and Ad hoc IEEE802.11ad/ay in typical network deployments as well as in post-disaster circumstances
    • …
    corecore