567 research outputs found

    High Resolution Multi-parametric Diagnostics and Therapy of Atrial Fibrillation: Chasing Arrhythmia Vulnerabilities in the Spatial Domain

    Get PDF
    After a century of research, atrial fibrillation (AF) remains a challenging disease to study and exceptionally resilient to treatment. Unfortunately, AF is becoming a massive burden on the health care system with an increasing population of susceptible elderly patients and expensive unreliable treatment options. Pharmacological therapies continue to be disappointingly ineffective or are hampered by side effects due to the ubiquitous nature of ion channel targets throughout the body. Ablative therapy for atrial tachyarrhythmias is growing in acceptance. However, ablation procedures can be complex, leading to varying levels of recurrence, and have a number of serious risks. The high recurrence rate could be due to the difficulty of accurately predicting where to draw the ablation lines in order to target the pathophysiology that initiates and maintains the arrhythmia or an inability to distinguish sub-populations of patients who would respond well to such treatments. There are electrical cardioversion options but there is not a practical implanted deployment of this strategy. Under the current bioelectric therapy paradigm there is a trade-off between efficacy and the pain and risk of myocardial damage, all of which are positively correlated with shock strength. Contrary to ventricular fibrillation, pain becomes a significant concern for electrical defibrillation of AF due to the fact that a patient is conscious when experiencing the arrhythmia. Limiting the risk of myocardial injury is key for both forms of fibrillation. In this project we aim to address the limitations of current electrotherapy by diverging from traditional single shock protocols. We seek to further clarify the dynamics of arrhythmia drivers in space and to target therapy in both the temporal and spatial domain; ultimately culminating in the design of physiologically guided applied energy protocols. In an effort to provide further characterization of the organization of AF, we used transillumination optical mapping to evaluate the presence of three-dimensional electrical substrate variations within the transmural wall during acutely induced episodes of AF. The results of this study suggest that transmural propagation may play a role in AF maintenance mechanisms, with a demonstrated range of discordance between the epicardial and endocardial dynamic propagation patterns. After confirming the presence of epi-endo dyssynchrony in multiple animal models, we further investigated the anatomical structure to look for regional trends in transmural fiber orientation that could help explain the spectrum of observed patterns. Simultaneously, we designed and optimized a multi-stage, multi-path defibrillation paradigm that can be tailored to individual AF frequency content in the spatial and temporal domain. These studies continue to drive down the defibrillation threshold of electrotherapies in an attempt to achieve a pain-free AF defibrillation solution. Finally, we designed and characterized a novel platform of stretchable electronics that provide instrumented membranes across the epicardial surface or implanted within the transmural wall to provide physiological feedback during electrotherapy beyond just the electrical state of the tissue. By combining a spatial analysis of the arrhythmia drivers, the energy delivered and the resulting damage, we hope to enhance the biophysical understanding of AF electrical cardioversion and xiii design an ideal targeted energy delivery protocol to improve upon all limitations of current electrotherapy

    Current Status and Future of Cardiac Mapping in Atrial Fibrillation

    Get PDF

    Ventricular divergence correlates with epicardial wavebreaks and predicts ventricular arrhythmia in isolated rabbit hearts during therapeutic hypothermia

    Get PDF
    INTRODUCTION: High beat-to-beat morphological variation (divergence) on the ventricular electrogram during programmed ventricular stimulation (PVS) is associated with increased risk of ventricular fibrillation (VF), with unclear mechanisms. We hypothesized that ventricular divergence is associated with epicardial wavebreaks during PVS, and that it predicts VF occurrence. METHOD AND RESULTS: Langendorff-perfused rabbit hearts (n = 10) underwent 30-min therapeutic hypothermia (TH, 30°C), followed by a 20-min treatment with rotigaptide (300 nM), a gap junction modifier. VF inducibility was tested using burst ventricular pacing at the shortest pacing cycle length achieving 1:1 ventricular capture. Pseudo-ECG (p-ECG) and epicardial activation maps were simultaneously recorded for divergence and wavebreaks analysis, respectively. A total of 112 optical and p-ECG recordings (62 at TH, 50 at TH treated with rotigaptide) were analyzed. Adding rotigaptide reduced ventricular divergence, from 0.13±0.10 at TH to 0.09±0.07 (p = 0.018). Similarly, rotigaptide reduced the number of epicardial wavebreaks, from 0.59±0.73 at TH to 0.30±0.49 (p = 0.036). VF inducibility decreased, from 48±31% at TH to 22±32% after rotigaptide infusion (p = 0.032). Linear regression models showed that ventricular divergence correlated with epicardial wavebreaks during TH (p<0.001). CONCLUSION: Ventricular divergence correlated with, and might be predictive of epicardial wavebreaks during PVS at TH. Rotigaptide decreased both the ventricular divergence and epicardial wavebreaks, and reduced the probability of pacing-induced VF during TH

    Simultaneous Endo-Epicardial Mapping of the Human Right Atrium: Unraveling Atrial Excitation

    Get PDF
    Background The significance of endo-epicardial asynchrony (EEA) and atrial conduction block (CB), which play an important role in the pathophysiology of atrial fibrillation (AF) during sinus rhythm is poorly understood. The aim of our study was therefore to examine 3-dimensional activation of the human right atrium (RA). Methods and Results Eighty patients (79% men

    Pathophysiology of atrial fibrillation: From initiation to maintenance

    Full text link
    Atrial fibrillation (AF) is the most common arrhythmia in adults; it affects approximately 0.8 million patients in Japan alone. Yet despite many years of basic and clinical research, the exact mechanisms underlying the initiation and maintenance of AF remain poorly understood. In this review article, we summarize recent high‐resolution optical mapping studies in isolated sheep hearts, which have provided new insights into the dynamics and mechanisms of AF. We focus on 3 models of AF. First, we discuss results from experiments on AF induced by atrial stretch that revealed the presence of spatio‐temporally organized waves emerging from the posterior wall of the left atrium. In the presence of adreno‐cholinergic stimulation and stretch, AF was governed by evolving interactions between reentry and spontaneous focal discharges. Next, we outline the results obtained from a persistent AF model (average AF duration: 21.3 day) induced by intermittent rapid atrial pacing. By using simultaneous optical mapping of epicardial and endocardial activation patterns, we demonstrated that AF in this model was maintained by 3‐dimensional scroll waves with I‐shaped filaments anchored to junctions between thin and thick myocardium. Numerical simulation results predicted that wall thickness‐dependent activation of stretch‐activated channels and the filament tension dynamics were sufficient to explain the specific localization of the I‐shaped filament. In a final set of studies discussed herein, we investigated AF in sheep with tachypacing‐induced heart failure and found that micro‐reentry in the left atria was a major mechanism of AF maintenance, although focal discharges at the pulmonary vein area also played a role. Large fibrotic patches in failing hearts may serve as potential anchoring sites for micro‐reentry in this model. Thus, the 3 different experimental results in isolated sheep hearts presented here clearly suggest that self‐sustained rotors do exist in the atria and that such rotors are in fact the high frequency sources that determine the complex patterns of activation that characterize AF.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142071/1/joa3129.pd

    Critical appraisal of technologies to assess electrical activity during atrial fibrillation: a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology

    Get PDF
    We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter–electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future

    The relationship between repolarisation alternans and the production of ventricular arrhythmia in heart failure

    Get PDF
    Microvolt T-wave alternans is thought to predict the risk of ventricular arrhythmias in patients with heart disease, although recent clinical studies have conflicting results. Understanding the cellular basis for alternans may not only inform more effective utilisation of the clinical test, but also provide new insights into the causes of lethal arrhythmias in man. Cellular repolarisation alternans is thought to underlie T-wave alternans and in recent years, the concept of discordant repolarisation alternans has emerged as a new paradigm for the induction of re-entrant ventricular arrhythmia. This experimental observation has not been examined in clinically relevant models of pathology and so the aim of this study was to investigate whether increased transmural heterogeneity of repolarisation as a result of heart failure following myocardial infarction in the rabbit would predispose to the development of arrhythmogenic discordant alternans. A rabbit ventricular wedge preparation was developed and the transmural electrophysiology of intact rabbit ventricle was characterised using optical imaging techniques. This revealed transmural gradients of repolarisation in intact rabbit myocardium, which appeared to be influenced by electrotonic load, rather than purely being a reflection of intrinsic cellular differences. Interestingly, repolarisation alternans also appeared in transmural patterns, which were also modified by activation sequence, underlining the role of conduction and electrotonic influences in dictating the spatial patterns of alternans, which may be crucial in determining spatially discordant alternans. In this study, similar baseline electrophysiological characteristics were apparent in the remodelled myocardium of failing hearts compared with normal hearts, underlining the possible importance of dynamic factors in producing the increased vulnerability to re-entrant arrhythmias observed in failing hearts. Repolarisation alternans, elicited by low temperature and rapid pacing, occurred at lower heart rates in failing hearts. At physiological temperature, repolarisation alternans was also more common in failing hearts. Spatially discordant alternans was not consistently observed on the transmural surface and did not appear to be directly related to the development of arrhythmia. Failing hearts displayed an increased vulnerability to ventricular arrhythmia. Although heart failure was associated with both alternans and ventricular arrhythmia, there was no demonstrable mechanistic link between alternans and ventricular arrhythmias in failing hearts. These data establish the occurrence of repolarisation alternans in a clinically relevant pathology, and so constitute an important step forward in our understanding of the experimental paradigm. However, a definitive mechanistic link between alternans and arrhythmia in heart failure is yet to be shown

    Intrapericardial cardiosphere-derived cells hinder epicardial dense scar expansion and promote electrical homogeneity in a porcine post-infarction model

    Get PDF
    The arrhythmic substrate of ventricular tachycardias in many structural heart diseases is located in the epicardium, often resulting in poor outcomes with currently available therapies. Cardiosphere-derived cells (CDCs) have been shown to modify myocardial scarring. A total of 19 Large White pigs were infarcted by occlusion of the mid-left anterior descending coronary artery for 150 min. Baseline cardiac magnetic resonance (CMR) imaging with late gadolinium enhancement sequences was obtained 4 weeks post-infarction and pigs were randomized to a treatment group (intrapericardial administration of 300,000 allogeneic CDCs/kg), (n = 10) and to a control group (n = 9). A second CMR and high-density endocardial electroanatomical mapping were performed at 16 weeks post-infarction. After the electrophysiological study, pigs were sacrificed and epicardial optical mapping and histological studies of the heterogeneous tissue of the endocardial and epicardial scars were performed. In comparison with control conditions, intrapericardial CDCs reduced the growth of epicardial dense scar and epicardial electrical heterogeneity. The relative differences in conduction velocity and action potential duration between healthy myocardium and heterogeneous tissue were significantly smaller in the CDC-treated group than in the control group. The lower electrical heterogeneity coincides with heterogeneous tissue with less fibrosis, better cardiomyocyte viability, and a greater quantity and better polarity of connexin 43. At the endocardial level, no differences were detected between groups. Intrapericardial CDCs produce anatomical and functional changes in the epicardial arrhythmic substrate, which could have an anti-arrhythmic effect.This study was supported by the Instituto de Salud Carlos III, Madrid, Spain (PI18/01895 and DTS21/00064); Red de Terapia Celular from the Instituto de Salud Carlos III, Madrid, Spain (RD16/0011/0029); Ricors-Red de Investigación Cooperativa Orientada a Resultados en Salud-RICORS TERAV (RD21.0017.0002), European Union's H2020 Program under grant agreement No. 874827 (BRAVE), and the Sociedad Española de Cardiología, Madrid, Spain
    • 

    corecore