7 research outputs found

    Facilitating Intention Prediction for Humans by Optimizing Robot Motions

    Get PDF
    International audienceMembers of a team are able to coordinate their actions by anticipating the intentions of others. Achieving such implicit coordination between humans and robots requires humans to be able to quickly and robustly predict the robot's intentions, i.e. the robot should demonstrate a behavior that is legible. Whereas previous work has sought to explicitly optimize the legibility of behavior, we investigate legibility as a property that arises automatically from general requirements on the efficiency and robustness of joint human-robot task completion. We do so by optimizing fast and successful completion of joint human-robot tasks through policy improvement with stochastic optimization. Two experiments with human subjects show that robots are able to adapt their behavior so that humans become better at predicting the robot's intentions early on, which leads to faster and more robust overall task completion

    Facilitating intention prediction for humans by optimizing robot motions

    Full text link

    Modular Active Curiosity-Driven Discovery of Tool Use

    Get PDF
    International audienceThis article studies algorithms used by a learner to explore high-dimensional structured sensorimotor spaces such as in tool use discovery. In particular, we consider goal babbling architectures that were designed to explore and learn solutions to fields of sensorimotor problems, i.e. to acquire inverse models mapping a space of parameterized sensorimotor problems/effects to a corresponding space of parameterized motor primitives. However, so far these architectures have not been used in high-dimensional spaces of effects. Here, we show the limits of existing goal babbling architectures for efficient exploration in such spaces, and introduce a novel exploration architecture called Model Babbling (MB). MB exploits efficiently a modular representation of the space of parameterized problems/effects. We also study an active version of Model Babbling (the MACOB architecture). These architectures are compared in a simulated experimental setup with an arm that can discover and learn how to move objects using two tools with different properties, embedding structured high-dimensional continuous motor and sensory spaces

    Proximodistal Exploration in Motor Learning as an Emergent Property of Optimization

    Get PDF
    International audienceTo harness the complexity of their high-dimensional bodies during sensorimotor development , infants are guided by patterns of freezing and freeing of degrees of freedom. For instance, when learning to reach, infants free the degrees of freedom in their arm proximodis-tally, i.e. from joints that are closer to the body to those that are more distant. Here, we formulate and study computationally the hypothesis that such patterns can emerge spontaneously as the result of a family of stochastic optimization processes (evolution strategies with covariance-matrix adaptation), without an innate encoding of a maturational schedule. In particular, we present simulated experiments with an arm where a computational learner progressively acquires reaching skills through adaptive exploration, and we show that a proximodistal organization appears spontaneously, which we denote PDFF (ProximoDistal Freezing and Freeing of degrees of freedom). We also compare this emergent organization between different arm morphologies – from human-like to quite unnatural ones – to study the effect of different kinematic structures on the emergence of PDFF. Research highlights. • We propose a general, domain-independent hypothesis for the developmental organization of freezing and freeing of degrees of freedom observed both in infant development and adult skill acquisition, such as proximo-distal exploration in learning to reach

    Emergent Jaw Predominance in Vocal Development through Stochastic Optimization

    Get PDF
    International audienceInfant vocal babbling strongly relies on jaw oscillations , especially at the stage of canonical babbling, which underlies the syllabic structure of world languages. In this paper, we propose, model and analyze an hypothesis to explain this predominance of the jaw in early babbling. This hypothesis states that general stochastic optimization principles, when applied to learning sensorimotor control, automatically generate ordered babbling stages with a predominant exploration of jaw movements in early stages. The reason is that those movements impact the auditory effects more than other articulators. In previous computational models, such general principles were shown to selectively freeze and free degrees of freedom in a model reproducing the proximo-distal development observed in infant arm reaching. The contribution of this paper is to show how, using the same methods, we are able to explain such patterns in vocal development. We present three experiments. The two first ones show that the recruitment order of articulators emerging from stochastic optimization depends on the target sound to be achieved but that on average the jaw is largely chosen as the first recruited articulator. The third experiment analyses in more detail how the emerging recruitment order is shaped by the dynamics of the optimization process

    Simultaneous On-line Discovery and Improvement of Robotic Skill Options

    No full text
    International audienc
    corecore