11,120 research outputs found

    Simultaneous frequency and capacity setting for rapid transit systems with a competing mode and capacity constraints

    Get PDF
    The railway planning problem consists of several consecutive phases: network design, line planning, timetabling, personnel assignment and rolling stocks planning. In this paper we will focus on the line planning process. Traditionally, the line planning problem consists of determining a set of lines and their frequencies optimizing a certain objective. In this work we will focus on the line planning problem context taking into account aspects related to rolling stock and crew operating costs. We assume that the number of possible vehicles is limited, that is, the problem that we are considering is a capacitated problem and the line network can be a crowding network. The main novelty in this paper is the consideration of the size of vehicles and frequencies as variables as well as the inclusion of a congestion function measuring the level of in-vehicle crowding. Concretely, we present the problem and an algorithm to solve it, which are tested via a computational experience

    Optimal Alignments for Designing Urban Transport Systems: Application to Seville

    Get PDF
    The achievement of some of the Sustainable Development Goals (SDGs) from the recent 2030 Agenda for Sustainable Development has drawn the attention of many countries towards urban transport networks. Mathematical modeling constitutes an analytical tool for the formal description of a transportation system whereby it facilitates the introduction of variables and the definition of objectives to be optimized. One of the stages of the methodology followed in the design of urban transit systems starts with the determination of corridors to optimize the population covered by the system whilst taking into account the mobility patterns of potential users and the time saved when the public network is used instead of private means of transport. Since the capture of users occurs at stations, it seems reasonable to consider an extensive and homogeneous set of candidate sites evaluated according to the parameters considered (such as pedestrian population captured and destination preferences) and to select subsets of stations so that alignments can take place. The application of optimization procedures that decide the sequence of nodes composing the alignment can produce zigzagging corridors, which are less appropriate for the design of a single line. The main aim of this work is to include a new criterion to avoid the zigzag effect when the alignment is about to be determined. For this purpose, a curvature concept for polygonal lines is introduced, and its performance is analyzed when criteria of maximizing coverage and minimizing curvature are combined in the same design algorithm. The results show the application of the mathematical model presented for a real case in the city of Seville in Spain.Ministerio de Economía y Competitividad MTM2015-67706-

    The Railway Line Frequency and Size Setting Problem

    Full text link
    [EN] The problem studied in this paper takes as input data a set of lines forming a railway network, and an origin¿destination (OD) matrix. The OD pairs may use either the railway network or an alternative transportation mode. The objective is to determine the frequency/headway of each line as well as its number of carriages, so that the net profit of the railway network is maximized. We propose a mixed integer non-linear programming formulation for this problem. Because of the computational intractability of this model, we develop four algorithms: a mixed integer linear programming (MIP) model, a MIP-based iterative algorithm, a shortest-path based algorithm, and a local search. These four algorithms are tested and compared over a set of randomly generated instances. An application over a case study shows that only the local search heuristic is capable of dealing with large instances.This research was partly funded by the Canadian Natural Sciences and Engineering Research Council under Grant 2015-06189, by the Ministerio de Economía y Competitividad (Spain)/FEDER under projects MTM2012-37048, MTM2015-67706-P and DPI2012-36243-C02-01, and by Junta de Andalucía (Spain)/FEDER under excellence project P10-FQM-5849. Part of this research was done while Federico Perea was enjoying a research visit to CIRRELT, funded by the Universitat Politècnica de València, under program PAID-00-15. This support is gratefully acknowledged. Thanks are due to the referees for their valuable comments.De-Los-Santos, A.; Laporte, G.; Mesa, JA.; Perea Rojas Marcos, F. (2017). The Railway Line Frequency and Size Setting Problem. Public Transport. 9(1-2):33-53. https://doi.org/10.1007/s12469-017-0154-2S335391-2Albrecht T (2009) Automated timetable design for demand-oriented service on suburban railways. Public Transport 1(1):5–20Caprara A, Kroon L, Monaci M, Peeters M, Toth P (2007) Passenger Railway optimization. In: Barnhart C, Laporte G (eds) Handbooks in operations research and management science, vol 14. Transportation, chapter 3. North-Holland, Amsterdam, pp 129–187De-Los-Santos A, Laporte G, Mesa J, Perea F (2014) Simultaneous frequency and capacity setting in uncapacitated metro lines in presence of a competing mode. Transp Res Proc 3:289–298Desaulniers G, Hickman M (2007) Public transport. In: Barnhart C, Laporte G (eds) Handbook in operations research and management science, vol 14, Transportation, chapter 2. North-Holland, Amsterdam, pp 69–127Gallo M, Montella B, D’Acierno L (2011) The transit network design problem with elastic demand and internalisation of external costs: An application to rail frequency optimisation. Transp Res Part C Emerg Technol 19(6):1276–1305Laporte G, Marín A, Mesa JA, Perea F (2011) Designing robust rapid transit networks with alternative routes. J Adv Transp 45(1):54–65Marín A, García-Ródenas R (2009) Location of infrastructure in urban railway networks. Comput Oper Res 36(5):1461–1477Michaelis M, Schöbel A (2009) Integrating line planning, timetable, and vehicle scheduling: a customer oriented heuristic. Public Transport 1(3):211–232Perea F, Mesa JA, Laporte G (2014) Adding a new station and a road link to a road-rail network in the presence of modal competition. Transp Res Part B Methodol 68:1–16Schmidt M, Schöbel A (2015) The complexity of integrating passenger routing decisions in public transportation models. Networks 65(3):228–243Schmidt ME (2014) Integrating routing decisions in public transportation problems. Springer, New YorkSchöbel A (2012) Line planning in public transportation. OR Spectrum 34:491–510van Oort N, van Nes R (2009) Regularity analysis for optimizing urban transit network design. Public Transport 1(2):155–168Vuchic VR (2005) Urban transit: operations, planning, and economics. Wiley, Hoboken, New Jerse

    Rapid transit network design and line planning

    Get PDF
    El sector del transporte es un factor clave en una sociedad en evolución continua. El transporte proporciona movilidad de personas y bienes, acceso a empleos, desarrollo y mejora el bienestar de una sociedad. Un transporte eficiente hace accesible regiones aisladas y fácil la vida cotidiana. Inmersos en un mundo de constante evolución es difícil pensar en un futuro sin un transporte eficiente y ecológico. La investigación operativa es una herramienta fundamental en los procesos de planificación del transporte y su gestión. Los problemas que surgen en el contexto del transporte son generalmente descritos y analizados por medio de modelos de programación matemática. Estos problemas son de naturaleza compleja y difíciles de resolver. A través de modelos y métodos matemáticos adecuados, este tipo de problemas puede resolverse en un tiempo razonable. Esta tesis se centra en el desarrollo de modelos matemáticos en el contexto de sistemas de transporte rápido así como en técnicas eficientes para su resolución. Los sistemas de transportes rápidos comprenden sistemas de metro, autobuses con carril especial, metro ligero, monorail, etc. Tradicionalmente, el proceso de planificación de transporte rápido en el contexto de ferrocarriles, se ha descompuesto en una sucesión de etapas: diseño de redes, diseño de líneas, horarios, gestión del material rodante y planificación del personal. Sin embargo, en los últimos años puede observarse una fuerte tendencia a integrar etapas. La integración de varias etapas en los procesos de planificación lleva a sistemas más difíciles de resolver pero de mejores resultados. Así, una de las propuestas de esta tesis es desarrollar un modelo matemático general que integre las etapas de diseño de redes y planificación de líneas. Concretamente, estamos interesados en determinar, simultáneamente la red de infraestructura, la planificación de líneas, la capacidad del tren de cada línea y la inversión de la flota requerida y del personal. Asimismo, incorporamos el procedimiento de asignación de tráfico en el proceso de optimización y un modo de transporte compitiendo con la red que estamos diseñando. También proponemos un algoritmo para resolver este problema a escala real. Otra importante contribución de esta tesis es el tratamiento realista del problema hecho que, en ocasiones, la investigación olvida. Bajo esta perspectiva, presentamos un análisis riguroso para la calibración de todos los aspectos que aparecen como consecuencia de integración de etapas. Por otra parte, en una situación realista, varios datos de entrada como matrices origen-destino, tiempos de viajes y costes, pueden presentar incertidumbre o son desconocidos de antemano, llevando así a sistemas que no se adaptan a la realidad. Por lo tanto, es necesario desarrollar modelos matemáticos robustos y hacer uso de la optimización robusta. En esta tesis hemos estudiado este tipo de problemas teniendo en cuenta la presencia de incertidumbre en los datos de demanda. Otro aspecto innovador a destacar es la aplicación de la teoría de hipergrafos en el campo del transporte. En los últimos años, el estudio de redes complejas ha atraído a muchos investigadores. En particular, el fenómeno "small-world" fue introducido en 1998 por los matemáticos Duncan Watts y Steven Strogatz. Watts y Strogatz mostraron que las redes complejas podían clasificarse por medio de dos medidas conocidas como "coeficiente de agrupación" y "longitud del camino característico". Este tipo de redes son robustas ante ataques intencionados y vulnerables a fallos aleatorios. Sin embargo, más tarde se mostró que estas medidas no son aplicables a ciertas redes. Medidas tales como "eficiencia global y local" fueron introducidas y analizadas para describir este tipo de redes complejas. En esta tesis nos hemos interesado en todas estas medidas así como en medidas de robustez. Como consecuencia de la revisión y adaptación de estas medidas a redes de transportes se han estudiado propiedades de las mismas. Motivados por clasificar las redes de transportes como redes complejas, según la definición propuesta por Watts y Strogatz, hemos ido un paso más, representando, a través de la estructura de hipergrafos, redes de transporte colectivo. Esta estructura permite describir y analizar las redes de transporte desde diferentes niveles de abstracción

    Joint Pricing, Operational Planning and Routing Design of a Fixed-Route Ride-sharing Service

    Full text link
    Fixed-route ride-sharing services are becoming increasing popular among major metropolitan areas, e.g., Chariot, OurBus, Boxcar. Effective routing design and pricing and operational planning of these services are undeniably crucial in their profitability and survival. However, the effectiveness of existing approaches have been hindered by the accuracy in demand estimation. In this paper, we develop a demand model using the multinomial logit model. We also construct a nonlinear optimization model based on this demand model to jointly optimize price and operational decisions. Moreover, we develop a mixed integer linear optimization model to the routing design decision. And a genetic algorithm based approach is proposed to solve the optimization model. Two case studies based on a real world fixed-route ride-sharing service are presented to demonstrate how the proposed models are used to improve the profitability of the service respectively. We also show how this model can apply in settings where only limited public data are available to obtain effective estimation of demand and profit.Master of Science in EngineeringIndustrial and Systems Engineering, College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/146788/1/49698122_Wanqing's Graduate Thesis (final).pdfDescription of 49698122_Wanqing's Graduate Thesis (final).pdf : Thesi

    A design for rapid transit networks considering rolling stock's reliability and redistribution of services during disruptions

    Get PDF
    This paper presents a model for designing a public transit network system combining the traditional approach of transport demand coverage in bimodal scenarios of operation with the recovery of possible disruptions due to limited reliability of the rolling stock. The model balances construction and operational costs with the benefits to the users for the optimization of their travel times. Two transportation modes have been considered, public and private transport and the proportion of the users choosing one mode or the other is assumed to obey to a bimodal logit choice model. While construction costs are a first stage decision, user travel costs and recovery action costs are scenario dependent. Two types of scenarios are taken into account: a) the scenarios of normal operation and b) disruption scenarios which are associated to a link's breakdown of the network. The disruptions in the links are assumed to follow a probability disruption model accordingly to the number of services that operate on them. The model can be used to analyze the influence of the rate of failures of the units on the reliability of the designed RTN. The proposed model can be considered as a two recourse stochastic programming model with a bi-level structure where the probabilities of failure are an implicit function of the number of services and the routing of the transit lines of the transport system. A heuristic solution method is examined for small to medium networks demonstrating the computational viability of the approach

    Markets, Government And Environmental Policy Issues For Public Transit

    Get PDF
    This paper considers the wider transport policy implications of bus deregulation, especially the links with environmental objectives. The major themes are the role of markets in creating opportunities through incentives to innovate which impact positively on the environment without the intervention of government, but which accord with political agendas, defining an appropriate set of goals and performance criteria for urban passenger transport which give credence to environmental sustainability, distinguishing outcome and outputs and structuring the regulator to deliver. We use the experience with mini-buses in Britain to show how markets create environmentally compatible incentives

    Multimodal pricing and the optimal design of bus services: new elements and extensions

    Get PDF
    This thesis analyses the pricing and design of urban transport systems; in particular the optimal design and efficient operation of bus services and the pricing of urban transport. Five main topics are addressed: (i) the influence of considering non-motorised travel alternatives (walking and cycling) in the estimation of optimal bus fares, (ii) the choice of a fare collection system and bus boarding policy, (iii) the influence of passengers’ crowding on bus operations and optimal supply levels, (iv) the optimal investment in road infrastructure for buses, which is attached to a target bus running speed and (v) the characterisation of bus congestion and its impact on bus operation and service design. Total cost minimisation and social welfare maximisation models are developed, which are complemented by the empirical estimation of bus travel times. As bus patronage increases, it is efficient to invest money in speeding up boarding and alighting times. Once on-board cash payment has been ruled out, allowing boarding at all doors is more important as a tool to reduce both users and operator costs than technological improvements on fare collection. The consideration of crowding externalities (in respect of both seating and standing) imposes a higher optimal bus fare, and consequently, a reduction of the optimal bus subsidy. Optimal bus frequency is quite sensitive to the assumptions regarding crowding costs, impact of buses on traffic congestion and congestion level in mixed-traffic roads. The existence of a crowding externality implies that buses should have as many seats as possible, up to a minimum area that must be left free of seats. Bus congestion in the form of queuing delays behind bus stops is estimated using simulation. The delay function depends on the bus frequency, bus size, number of berths and dwell time. Therefore, models that use flow measures (including frequency only or frequency plus traffic flow) as the only explanatory variables for bus congestion are incomplete. Disregarding bus congestion in the design of the service would yield greater frequencies than optimal when congestion is noticeable, i.e. for high demand. Finally, the optimal investment in road infrastructure for buses grows with the logarithm of demand; this result depends on the existence of a positive and linear relationship between investment in infrastructure and desired running speed
    corecore