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Resumen This paper presents a model for designing a public transit network sys­
tem combining the traditional approach of transport demand coverage in bimodal 
scenarios of operation with the recovery of possible disruptions due to limited 
reliability of the rolling stock. The model balances construction and operational 
costs with the benefits to the users for the optimization of their travel times. Two 
transportation modes have been considered, public and private transport and the 
proportion of the users choosing one mode or the other is assumed to obey to 
a bimodal logit choice model. While construction costs are a first stage decision, 
user travel costs and recovery action costs are scenario dependent. Two types of 
scenarios are taken into account: a) the scenarios of normal operation and b) dis­
ruption scenarios which are associated to a link's breakdown of the network. The 
disruptions in the links are assumed to follow a probability disruption model ac­
cordingly to the number of services that operate on them. The model can be used 
to analyze the influence of the rate of failures of the units on the reliability of the 
designed RTN. The proposed model can be considered as a two recourse stochas­
tic programming model with a bi-level structure where the probabilities of failure 
are an implicit function of the number of services and the routing of the transit 
lines of the transport system. A heuristic solution method is examined for small 
to medium networks demonstrating the computational viability of the approach. 

K e y w o r d s : Rapid transit network design, disruption management, recoverability. 

1. Introduction 

Designing a Rapid Transit Network (RTN) or even extending one that 
is already functioning, is a vital subject due to the fact that they reduce 
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traffic congestion, travel time and pollution. Usually a RTN is in operation 
with other transportation systems such as private transportation (car) 
and this makes that the design must take into account this factor. Another 
factor that needs to be considered is the capability of the newly designed 
system to keep operating under more or less suitable conditions under a 
set of predictable disruptions. 

In [Bruno G. et al. (2002)] a RTN design model is presented where 
the user cost is minimized and the coverage of the demand by public net­
work is made as large as possible. [Marm A. (2007)], studies the inclusion 
of a limited number of lines. Also, [Laporte G. et al (2011)] build robust 
networks that provide several routes to passengers, so in case of failure 
part of the demand can be rerouted. Connections between two-stage sto­
chastic programming network design and recovery robustness in railway 
networks planning models have been studied in [Cicerone et al. (2009)], 
[?] and in [Cacchiani et al. (2011)]. Also, in [Cadarso and Marm (2012)] 
a two-stage stochastic programming model for rapid transit network de­
sign is developed in which disruptions probabilities are assumed a known 
a priori, illustrating some of its recoverable robustness properties. 

This paper presents a conceptual scheme that permits to incorporate 
a probability model for the disruptions of a RTN. The network modeling 
framework followed is that of [Marm A. (2007)] and [Cadarso and Marm (2012)]. 
It is assumed that disruptions arise when transportation units present 
some failure during operation leaving a link blocked. Other sources of 
disruption with their associated scenarios could be added, but this is not 
done for ease of exposition. As a consequence of this, the disruption pro­
babilities will depend on the level of traffic on the network links. The 
probabilities of failure follow the following hypothesis: a) disruptions are 
due to a single event and scenarios with several simultaneous disruptions 
are discarded a priori as they are assumed to have a much lower proba­
bility, b) a preselected set of scenarios is considered, c) the number of 
failures that a train unit may experience along a large number of services 
distributes accordingly to a geometrical law and the individual proba­
bility of failure of a service is constant along the planning horizon and 
depends only on the train unit characteristics (e.g., quality of material 
and maintenance). The resulting model has a bilevel structure and it is 
solved by a specific heuristic method. 

2. Rapid transit network design model 

In this RTND model it is assumed that the location of potential sta­
tions is known. There already exists a current mode of transportation (for 
example, private cars or an alternative public transportation is already 
operating in the area) competing with the new RTN to be constructed. 
The aim of the model is to design a network, i.e. to decide at which nodes 
to locate the stations and how to connect them covering as many trips 
by the new network as possible. 
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- A potential network (N, A) is considered from which the optimum rapid 
transit network is selected. The node set is composed by centroids (Nc) 
and stations at RTN (Nr), the node set is then N = Nc U Nr. Links will 
be denoted either by a single subscript (e.g., a) or by a double subscript 
(i.e., (i,j)) when considered convenient. Because both riding directions 
are always considered, the set of potential links is so that (i,j) e i « 
(j, i) € A. E(i) and I(i) are the set outgoing and incoming nodes to node 
i respectively. 
- Each feasible link (i, j) has a generalized travel cost which may depend 
on the scenario of disruption. This is further discussed in section 4. 
- For simplicity, in this model it will be assumed that the planners ha­
ve selected a priori a set of candidate L lines, being \L\ a large num­
ber. Lines will be considered an ordered chain of n links {01,02, ...,an} 
all of them appearing only once in the sequence. Lines with circulation 
in both directions will be treated as two separate lines {ai,a,2, ••-,an} , 
{an,an-i, ...,a\}. To take into account the recovery of the disruptions 

that may arise in a link a € £, for each line £ € L, an additional set of 
lines must be considered that will operate only in the disruption scena­
rios. These lines will be referred to as the recovery lines, whereas lines in 
L will be referred to as the primary lines or also as the candidate lines. 
Thus, if £ = {ai,a,2,as}, for a disruption in link a\, the recovery line must 
be {02,03}. For a disruption in link 02, the recovery lines that must be 
considered are {ai} and {as} and finally, for a disruption in link as, the 
recovery line that must be considered is {01,02}. The set of all recovery 
lines will be denoted by t! and the set of recovery lines for line £ € L 
will be denoted by L'{£). The number of recovery lines in L'{£) for a line 
£ € L is I-£'(•£)I = 2(\£\ — 1), where \£\ is the number of segments in line £. 
If L = LUL', the total number of lines is then \L\ < \L\ + 2 ^ e ^ ( | ^ | — 1), 

from which only v will be finally included in the solution (y < \L\). Furt­
her definitions are: 
- L(a) C L is the subset of candidate or primary lines containing segment 
a £ A. 
- L'(a) is the subset of recovery lines associated to primary lines that 
contain link a. 
- The model considers a set of scenarios associated to regular conditions 
of operation of the transport system (i.e., morning peak period, after­
noon, night, holidays, .... ). Each of these scenarios is assumed to extend 
during a given time period of length Hr (i.e., 3 hours for morning peak 
periods). This set of scenarios will be denoted by So and for any r € So, 
there will be associated a weight or probability qr > 0 associated to its 
relevance, so that J2res0 <?r = 1- A typical way of evaluating the weights 

qr is accordingly to their associated total demands, i.e.: qr = gr/G, whe­
re 9r = J2wew 9w a n d G = J2res09

r- -^or a n y s c e n a r i ° r G So a set of 
possible disruption scenarios D(r) will be considered with probabilities 
ps > 0, s € D(r), so that pr + J2ses(r)Ps = 1- These disruption scena-
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rios will be associated each with a breakdown of a service at a link. ̂ The 
set of that links for a regular scenario r € So will be denoted by A(r). 
For each a € A(r), s(a) will denote the associated disruption scenario 
and for each scenario s € D(r), r € So, a(s) will denote the disrupted 
link. Finally, by S it will be denoted the set of all possible scenarios, i.e., 
S = S0 UreSo D{r). 
- Users may choose between two transportation modes: a private mode 
(typically car) or the public transportation mode comprising a set of 
lines, some of them already in operation and some others that will be the 
outcome of this design model. The model's demand will take into account 
differences between scenarios r G So- The total demand (private+public 
transport) for scenario r € So is given by the trip matrix Gr = (gr

w), where 
gr

w is the total number of trips from origin o(w) to destination d(w). For 
a particular scenario s € S, the trip travel time for o-d pair w through 
the private transportation network is given by the matrix U§ = (uc's) 
and the trip travel time for using public transportation is given by the 
matrix As = (Xw's). The model assumes a modal choice for each o-d pair 
given by a logit model, i.e., the proportion of trips £^ using the private 
transportation mode is given by: 

ts = exp(-/3™ - rjuc'8) m 

^w exp(-p? - rjuc'8) + eM-PpT ~ V*"1'8) 

where (3pT is proportional to the price of fares for public transport in the 
planning period, /3™ is proportional to the parking cost plus the cost of 
gasoline for the trip from o(w) to d(w) and rj is proportional to the user's 
value of time. 
- Let cx and c^ denote the link vector costs and the node vector of location 
costs respectively. 

The design model has two stages or levels: a) in the first "planning" 
stage, the decision variables x,y are chosen, i.e., the topology of the net­
work is set and b) in a second stage, at a given scenario, the passenger 
flows make use of the network designed in the first stage, taking into 
account the scenario characteristics. 

2.1. Variables and constraints in the Is* stage 

A link-line incidence matrix (5a,e) will be assumed known with ele­
ments 5at£ = 1 if candidate line £ contains link a and 0 otherwise. Let 
hi, £ € L be a binary variable indicating whether candidate line £ is cho­
sen or not. Let also %a be a binary variable so that = 1 if arc a is located 
and = 0, otherwise. The following constraints force that link a must be 
built if some line £ using it is chosen: 

Mxa > Y,i€L
 5a,ehe, ae A (2) 
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The binary variables xe
a state whether link a is required because line 

£ is included in the solution or not. These variables are related to the 
variables he through the following constraints: 

he<xe
a, ae£, £eL (3) 

A limitation on the number of lines can be imposed by J2e^L he < v. 
Let now ipi be a binary variable so that = 1 if station i is located and 
= 0, otherwise. Then, variables % and ip are linked by: 

Xa < i)%, Vi € Nya = (i, j) € A , , 
Xa<*P3,Vj&N,Va = (i,j)&A W 

2.2. Variables and constraints of the 2 stage. 

- Va's, is the passenger flow on link a € A for origin destination pair w 
under scenario s € S. By vw's = (..., Va's, •••; a € A) it will be denoted an 
arc flow vector per o-d pair w and scenario s € S. 
- Vc's, is the flow for o-d pair w using private transport in scenario s. By 
vl = (...,Vc's, ...;w € W) it will be denoted the flow vector of passengers 
using private transportation in scenario s € S. 

The balance constraints for flows at a given scenario s will be: 

{ •Upy if i = p(w) 

-vw
p^lil = q{W)i^N,w^W,s^S (5) 

0 otherwise 

where v^ > 0 are the flows using public transport mode at o-d pair 
w GW, that must verify: 

Vc's + v'pT = gs
w, wew,ses (6) 

Also, link flows Va's for scenario s will be subject to the location-
allocation constraints, which in fact are equivalent to suppress the links 
for which the decision variables %a annul: 

va's < MXa, aeA,seS,weW (7) 

2.3. The conceptual model for modal split 

Formulations in this subsection do not include links a for which de­
cision variables %a = 0. Also flow variables are assumed for a generic 
scenario s € S and this superscript will be omitted. 

Borrowing ideas from combined modal split-assignment models in trans­
portation planning (see, for instance [Evans] (1975)) the following convex 
problem 
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MMv,vc,vPT Yl {dTvW + < ( l 0 § < -1-PZ- VO + 
wew 

+ vw
PT{\ogvw

PT-l-(iw
PT)} ( g ) 

s.t. : V,VC,VPT are non-negative, verify constraints (5), (6) and 

Y.w&w v'a < mp E t e i zl'rx{, aeA 

provides solutions verifying the modal split accordingly to (1). A lineariza­
tion of it is used in [Lopez R. (2014)]. Capacity constraints arise because 
the capacity of the public transport lines operating on the network links 
as a function of the number of services ze of the lines. Variables % are 
considered implicitly and because of that, the solution set of previous 
problem (8) will be denoted by Vs'*(zs,x), when specified for a specific 
scenario s € S. 

Next section describes a simplified model which provides the requi­
red number of services on the lines to attend the passenger's demand, 
accordingly to the scenarios that are considered. 

3. Service setting for normal operational conditions and for the recovery 
of disruptions 

A model that states the number of services that must operate on each 
link is required for both non-disrupted scenarios r € So and scenarios 
corresponding to a disruption s € S \ SQ. Let vr the passenger vector 
flow on each of the network links for a non-disrupted scenario r € So-
Let vr be the vector of total link flows which can be expressed as vr

a = 
J2wewva'r\ a £ A. Let Y' t n e individual cost of a service on line £ € L 
and let Ce be the time required to perform a complete service on £ by a 
transport unit. A total of nv transport units are assumed to operate on 
the network. Also, assume that the maximum number of services on link 
a for scenario r € So is zr

a. Then, the following simple covering model will 
be used to determine the number of services for each line: 

rS(vr,x) = M\nzZe&Llizi'r 

zra > E ^ L z£'rxi > ^F<> a G A re So (Q) 

Z 3 ze'r > 0 

The solution set of previous problem (9) will be denoted by Z*(vr,x), 
r € So-If zr'* is the vector of the optimal number of services for the lines 
in the regular scenario r given by the previous problem (9), then the total 
number of services 9r

a on link a will be given by: 
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0r
a(v

r) = J2i€L
 zl'r'*xt aeA,reS0 (10) 

For a disruption on link a € A, those lines £ € L containing that 
link, i.e., £ 3 a, can be put partially in operation as a recovery strategy 
using their disruption lines L'(£) and in this case the model will evaluate 
a new set of services for all the lines in the system. Then, for a scenario 
s € S \ So corresponding to a disruption in link a, the set of lines that 
can potentially be operating is L(a) = L'(a) U (L \ L(a)). 

The following problem establishes the services, zf
s, that must be assig­

ned for the lines operating in the scenario s € D(r) for a disruption of 
the regular scenario r: 

r € So, s € D(r) : 

rr
s{vs,x) = Umz E ^z£'S 

l€L(a(s)) 

n > E <zi,s+E E </,s ^ &ib G A> ( n ) 
e&L\L(a(s)) iet(a(s)) eet'(i) 

E Ceze's < nvHr, 
l€L(a(s)) 
Z 3 zl's > 0, £ € L(a(s)) 

where nip is the maximum number of passengers that a unit may allocate. 
The solution set of previous problem (11) will be denoted by Z*(vs,x), 
s € D(r). 

4. A probability failure model 

The probability ps of each scenario cannot be considered constant 
but dependent on the use that is made on the designed network. By 
means of a failure model it will be possible to find an expression for 
the probability that a link presents a disruption during the operational 
horizon of the transit network. It will be assumed that the probability of 
failure of a service is mainly determined by the type of units operating 
in the service and the characteristics of the link. Let T be the set of 
type units operating on the network. Let 7ra)T be the joint individual 
probability that a service carried out by a unit of type T G T presents a 
disruption on link a € A. By examining annual disruption reports from 
transit operators, the fraction of disrupted services with a disruption time 
of 20 minutes or more over the total number of services on a line is 
between 1,5-lCT4 to 5,0-10-4, i.e. 1 disruption each 2000 or 6600 services. 
Assume that by analyzing statistically the previous mentioned annual 
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disruption reports the probabilities 7ra)T have been determined. Let now 
9a,T be the total number of services of type r carried out on link a during 
the operational horizon used for our planning model (for instance, peak 
morning period or one day). Let T{a) be the set of unit types that operate 
on link a € A. Let also 0a,T be the total number of services with a relevant 
disruption out of the Qa^T and 0a = J2TeT(a) ^ , T the aggregated number 
of disrupted services on link a. It is assumed that 0a,T follows a binomial 
distribution with probability 7Ta,T, i-e.: Qa,T ~ Bino(0a}T,7Ta}T). Thus, the 
probability Pa that link a € A has at least one disrupted service from any 
unit type r € T(a), as a function of the number of services 0a,T of type r 
operating on that link is: 

Pa = P(0a > 1) = l-Ur&na)P(kr = 0) = 
(12) 

= 1 -Ur&Tiai1 ~ Ka,rra'T = 1 " e x p ( - £ r e T ( a ) aO ) T0O ) T) 

where aa>T = — log(l— 7ra)T). For small probabilities 7ra)T, then aa>T pa 7ra)T. 
Also, the probability of having no disruption on link a of any of the type 

units T € T(a) is Qa = 1 — Pa-
Because the probability of more than one link with disruptions is small, 

the set S of scenarios associated to a disruption that will be considered is 
made up of scenarios s associated with the failure of a single link a within 
the set of links A considered candidates for a disruption. All the links with 
positive flow may be considered, each one of them defining a disruption 
scenario, or a subset of the links may be selected because they are critical 
or because their high traffic volume. Let a(s) denote the link associated 
with scenario s € D(r), r € So- For ease of notation let Aa = A \ {a}. 
The probability of each scenario s corresponding to a disruption in link 
a(s) will be evaluated now by a given function Fr : K^l ->• sftlDMI+1

 Qf 
the number of services 6r

a, a € A on the links candidates for a disruption. 
If there is a single type of units operating in the network then, the 

function Fr(-) for the probabilities pr
s and pr

0 that will be adopted is: 

r e S"o : 

1 + E 6 e i (exp(a f c ^) - 1) 

Pro = FS(e) = (1 + £ 6 e i ( e x p ( a ^ ) - l ) ) " 1 (14) 

In case that probabilities 7Ta,T are very small, then probabilities pr
r of 

no disruption are much higher than the probabilities pr
s associated with 

the disruption on a link. 
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5. A s t o c h a s t i c 2 - s t a g e m o d e l a n d a h e u r i s t i c s o l u t i o n 

Conceptually, the model could be formulated as the following bilevel 
programming problem: 

Mirw,, cJx + 4&+ ^2{yror5(vr,x) + J2 yr
sr

r
s(v

s,x)}+ 
r&S0 s£D(r) 

+^E^o J2{drTvW,r+uc'rvc'r} + 
res0 w&v 

+ E vr
8 E {dsTvw's+< 

s£D(r) w&V 

s.t. : constraints (2), (3), (4), (7) 

yr
0 = qrFS(...,er

a(vn,...;aeA), r € S0 

y: = qrF^...,er
a(vn,-;aeA), s € D{r) 

where 9r
a{vr) is defined in (10) 

resulting from lower level problems (9) and (11) 
Also, from (9) and (11) : 
zr € Z*{vr,x), vr € Vr'*(zr,X), re So 
zs € Z*(vs,x), Vs € Vs'*(zs,x), s € D(r) 

,w,s w,s 

(15) 

In order to solve heuristically the previous problem (15) the following 
mixed linear integer programming problem (16) needs to be considered. 
In this problem it is assumed probabilities yl,yo are fixed and also that 
the total amount of transport trips v^ in public transport are known. 

jsT w,s 

Min^ c jx+ c^+ E ^ E ^ v , r + E ^ E ^v'*]+ 

+*T,w J2{drTvW,r}+ E yrs/Z{d 

r&S0 w&V s€D(r) w&V 

s.t. : constraints (2), (3), (4), (5), (7) 

+constraints in problems (9) and (11) 

(16) 

The previous model (15) will be solved using the following heuristic 
algorithm, which uses the construction costs as stopping criterion: 

0. Calculate initial vector of probabilities 2/0; set yl^-1 = 0; k = 0; take 
initial 0 < v^ < gw, w e l f , s € S. 

1. For the probability vector y^k and the number of trips for public 
transport VpT solve problem (16). Let Xa , wl , xd • Also let A^k = 
cxX^k + c l ^ f c the building costs. 
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2. If {A^-A^l ^eA^-1 and W 
(k 

y 
(fc-i 

1 < e' then STOP 
3. With the solutions vw's'(-k and zi,(-k, £ € L of previous problem (16), 

evaluate the mean travel times for public transport for scenario s € S, 
as \w

pf
k = (dTvw^k)/ 

new modal split: vl 

w,s,(k and use logit formula (1) to evaluate a 

PT = 9w — Vc's, w eW, s € S. 
PT 

and vPT = g: 
t z a € 4. Taking into account the number of services 9r

a(v
r) = ^2e&i 

A, r € S*o, reevaluate the failure probabilities PQ = F^{9r
a{vr^k)), s € 

S and compute a probability vector y^k. 
5. Perform an MSA step (using, for instance, a^k = l/(k + 1)). Then, 

increase the iteration counter k = k + 1. 

(fc+i = 

w,s,(k-\-l 
PT 

y(k +a(.
k(y(k - y(fc) 

= V 
w,s,(k 
PT + a(fc( *.w,s,(k w,s,(k 

PT PT ), w eW, s e S 
(17) 

6. C o m p u t a t i o n a l t e s t s 

The computational proofs have been carried out on the same network 
reported in [Cadarso and Marin (2012)] and in [Marin A. (2007)] with 9 
nodes, 15 edges, 72 origin-destination pairs and a total demand of 1044 
passengers. The network parameters (construction costs for nodes and 
links, i.e. Cj and ca, respectively), the o-d demand matrix and the o-d costs 
for the alternative mode of transportation, (u™), have also been taken 
from that reference. In all computational tests a maximum of \L\ = 5 
lines has been allowed in the solution and no limitation in the budget has 
been included. The heuristic method has been tested using several starting 
points and in all cases the final probabilities ps, s € S obtained have been 
the same. Table 1 shows in column #i t the number of iterations necessary 

(k _y(k-l in the last to converge and column difpr displays the error \\y 
iteration. By means Of the tests it is possible to analyze the influence of 
the service probability failure ir in the reliability of the designed RTN. 
For higher values of ir the algorithm seems to oscillate, converging very 
slowly. The more reliable the system is, the smaller the total costs, being 
these represented in the objfun column. Also, the probability po of no 
disruption increases as TT is smaller and the attractiveness of the public 
transportation system increases as the system becomes more reliable. This 
is illustrated in columns PTUserTime and CUserTime, showing that the 
total expected time spent by all public transport users increases whereas 
the expected time spent in the competing mode decreases. 

7T objfun A PTt Ct Vo difpr #i t . 

l,0e - 02 355,26 77,5 974,97 600,12 2,0957e - 01 l , 4 3 1 1 e - 0 2 (*)21 
5,0e - 03 349,97 62,7 101,61 698,08 3,5839e - 01 l,4104e - 02 (*)21 
5,0e - 04 344,85 77,5 123,77 221,74 8,7240e - 01 0,0 6 
5,0e - 05 344,48 77,5 126,30 170,11 9,8569e - 01 4,3368e - 18 6 
5,0e - 06 344,21 77,5 126,59 164,26 9,9855e - 01 l,7889e - 18 6 

(*) Maximum number of iterations 
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If the probability of failure is high (ir = 0,01) then, the scenario with no 
disruptions has smaller probability than the other scenarios corresponding 
to disruptions. If the probability TT is below a given threshold, the no 
disruption scenario becomes the most likely situation. In our test example 
this seems to happen for TT pa 5 • 10~4. The tests also show that the 
topology of the designed network does not change, i.e. it is as if the 
failure scenarios would not need to be taken into account in the design 
of the transportation system. This is achieved when TT = 5 • 10~6, where 
disruption scenarios have almost no relevance in the model. 

7. Conclusions 

A two-stage stochastic model has been developed for the design of 
rapid transit systems taking into account the rate of failures of the trans­
portation units. Also taken into account in the design is the number of the 
services during a disruption, assuming that the affected lines can operate 
at both sides of the link out of service. The probabilities assigned to the 
disruption scenarios are consistent with a probability distribution model 
that arises as a consequence of failures in the transportation unit services. 
By means of the tests it is possible to analyze the influence of the service 
probability failure ir in the reliability of the designed RTN and determine 
its admissible levels for which the disruptions are at an acceptable level. 
A heuristic solution method is examined for small to medium networks 
demonstrating the computational viability of the approach. 
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