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Abstract 
 
This thesis analyses the pricing and design of urban transport systems; in particular the 

optimal design and efficient operation of bus services and the pricing of urban transport. 

Five main topics are addressed: (i) the influence of considering non-motorised travel 

alternatives (walking and cycling) in the estimation of optimal bus fares, (ii) the choice of a 

fare collection system and bus boarding policy, (iii) the influence of passengers’ crowding on 

bus operations and optimal supply levels, (iv) the optimal investment in road infrastructure 

for buses, which is attached to a target bus running speed and (v) the characterisation of 

bus congestion and its impact on bus operation and service design. Total cost minimisation 

and social welfare maximisation models are developed, which are complemented by the 

empirical estimation of bus travel times. 

 

As bus patronage increases, it is efficient to invest money in speeding up boarding and 

alighting times. Once on-board cash payment has been ruled out, allowing boarding at all 

doors is more important as a tool to reduce both users and operator costs than 

technological improvements on fare collection. The consideration of crowding externalities 

(in respect of both seating and standing) imposes a higher optimal bus fare, and 

consequently, a reduction of the optimal bus subsidy. Optimal bus frequency is quite 

sensitive to the assumptions regarding crowding costs, impact of buses on traffic congestion 

and congestion level in mixed-traffic roads. The existence of a crowding externality implies 

that buses should have as many seats as possible, up to a minimum area that must be left 

free of seats.  

 

Bus congestion in the form of queuing delays behind bus stops is estimated using 

simulation. The delay function depends on the bus frequency, bus size, number of berths 

and dwell time. Therefore, models that use flow measures (including frequency only or 

frequency plus traffic flow) as the only explanatory variables for bus congestion are 

incomplete. Disregarding bus congestion in the design of the service would yield greater 

frequencies than optimal when congestion is noticeable, i.e. for high demand. Finally, the 

optimal investment in road infrastructure for buses grows with the logarithm of demand; 

this result depends on the existence of a positive and linear relationship between 

investment in infrastructure and desired running speed. 



iii 
 

 

Statement of Originality 

 

This is to certify that, to the best of my knowledge, the content of this thesis is my own 

work. This thesis contains no material previously published or written by another person 

unless due reference to that material is made. This thesis contains no material that has 

been submitted for the award of any degree or diploma in any university or other 

institution. 

 

 

Alejandro Andrés Tirachini  

03 July 2012 

  



iv 
 

 

Preface 
 
This thesis is the result of the effort of several people and institutions that have taught and 

supported me in so many ways, throughout my studies in Chile and Australia. Even though 

I started my PhD in 2009, the roots of this thesis can be traced to 2004 when I was an 

undergraduate student at the School of Engineering of Universidad de Chile. Curious of 

what research in transport studies was like, I went to the library in search of master theses 

written by students of the transport engineering division. The one that caught my eye 

straightaway was Antonio Gschwender’s “Microeconomic Characterisation of Urban Public 

Transport Operations: a Critical Analysis”. This work was my first exposure to the theory of 

public transport economics and it captivated me. I would later develop my own master 

thesis on public transport, a process in which I greatly benefited from the mentoring and 

stimulating guidance of Cristián Cortés and Sergio Jara-Díaz. Then in 2006 I met David 

Hensher, who travelled to Santiago invited to a conference in our university. David kindly 

invited me to come to Sydney and visit him at the Institute of Transport and Logistics 

Studies, a trip that eventually prompted me to pursue my doctoral studies in Australia.  

 

I owe a debt of gratitude to David as my thesis supervisor and a mentor. Aside from all the 

knowledge I have acquired from him, David made me feel welcome from my very first day 

at the University of Sydney and has been extremely supportive of the ideas and 

endeavours I have undertaken along the way; his encouragement has been utterly 

important to further develop my work and research skills. I am also indebted to my 

associate supervisor John Rose, whose insightful comments have been influential in the 

final stages of my thesis work. Three years of work at the Institute have been a great 

pleasure, in which I have enjoyed the friendship of several colleagues and fellow doctoral 

candidates, especially Claudine, Patrick, Wu, Chinh, Asif and Lorenzo. Thanks for all the 

moments. 

 

I am very much indebted to Stephen Rowe, Managing Director of the Busways Group, 

Australia, who generously agreed to sponsor my work and granted me access to the 

Busways network in Blacktown, and to the company headquarters in Pymble, Sydney, 

where I could collect my own data to empirically estimate bus dwell and running times. My 



v 
 

experience in Busways was invaluable to complement the theoretical work I was doing at 

the university with the empirical modelling of day-to-day bus operations. A special thanks 

to the staff of the scheduling department who were always happy to answer my many 

questions, especially Clayton Davidson, Andrew Glass, Nat Dechchavalit and Greg Blackley.  

 

I also need to thank Chile’s National Commission for Scientific and Technological Research 

(CONICYT), for providing me with the scholarship Beca de Doctorado por Gestión Propia for 

overseas PhD studies.  

 

Finally, none of this would have been possible without the perennial support and 

encouragement of my family. This thesis is dedicated to my parents Elba and Luis, my 

sister Jasna and my brother Luis Antonio, con todo mi amor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

Contents 

 

1 INTRODUCTION........................................................................................................ 1 

1.1  Research Topics and Questions ................................................................................ 2 

1.1.1 Non-motorised modes ........................................................................................ 4 

1.1.2 Fare collection system and boarding policy ....................................................... 5 

1.1.3 Crowding ............................................................................................................. 6 

1.1.4 Bus congestion .................................................................................................... 7 

1.1.5 The provision of busways ................................................................................... 7 

1.2  Research Approach ................................................................................................... 8 

1.2.1 Fare collection system and boarding policy ....................................................... 9 

1.2.2 Crowding ............................................................................................................. 9 

1.2.3 Bus congestion .................................................................................................... 9 

1.2.4 The provision of busways ................................................................................. 10 

1.2.5 Total cost minimisation model ......................................................................... 10 

1.2.6 Multimodal pricing and bus optimisation ........................................................ 11 

1.3 Thesis Contributions ................................................................................................ 11 

1.3.1 New elements and methodological refinements ............................................. 11 

1.3.2 Theoretical and scientific relevance ................................................................. 14 

1.3.3 Practical relevance ............................................................................................ 14 

1.4  Research Scope ....................................................................................................... 16 

1.5  Thesis Outline .......................................................................................................... 17 

 

2 BACKGROUND: MICROECONOMIC MODELLING OF URBAN PUBLIC TRANSPORT 
OPERATION AND OPTIMAL PRICING .............................................................................. 20 

2.1 Introduction ............................................................................................................. 20 

2.2 Setting Public Transport Fares: First Best and Second Best Models ....................... 21 

2.2.1 First best pricing ............................................................................................... 22 

2.2.2 Second best pricing........................................................................................... 26 

2.2.3 Issues that arise when subsidising public transport ......................................... 29 

2.3 Results that Matter .................................................................................................. 30 

2.3.1 Peak versus off-peak fares................................................................................ 30 

2.3.2 Effect of including other externalities beyond congestion .............................. 32 



vii 
 

2.3.3 Dedicated bus lanes .......................................................................................... 33 

2.3.4 Interactions with other sectors of the economy .............................................. 35 

2.3.5 Other public transport provision structures .................................................... 38 

2.3.6 Other relevant aspects ..................................................................................... 40 

2.4 Optimal Public Transport Supply ............................................................................. 41 

2.4.1 Basic theory and main results .......................................................................... 41 

2.4.2 Public transport supply and road pricing ......................................................... 44 

2.4.3 When the capacity constraint is binding .......................................................... 44 

2.5 Summary .................................................................................................................. 46 

 

3 MULTIMODAL TRANSPORT PRICING: THE INFLUENCE OF NON-MOTORISED MODES47 

3.1 Introduction ............................................................................................................. 47 

3.2 Model Assumptions ................................................................................................. 49 

3.3 First Best Pricing ....................................................................................................... 52 

3.4 Second Best Pricing .................................................................................................. 54 

3.5 Extensions: Other External Costs and Collection Costs ........................................... 58 

3.6 Summary and Conclusions ....................................................................................... 60 

 

4 FARE COLLECTION SYSTEMS AND BUS BOARDING TIME: OPERATIONAL AND 
ECONOMIC EFFECTS ...................................................................................................... 61 

4.1  Introduction ............................................................................................................ 61 

4.2  Definition of Alternatives ........................................................................................ 63 

4.3  Estimation of Boarding and Alighting Times with Alternative Fare Payment 
Technologies and Boarding Policies ................................................................................... 65 

4.3.1 Background: dwell time models ....................................................................... 65 

4.3.2 Data collection .................................................................................................. 67 

4.3.3 Model 1: Blacktown .......................................................................................... 70 

4.3.4 Model 2: Inner Sydney ...................................................................................... 71 

4.3.5 Model 3: Free CBD shuttle ................................................................................ 72 

4.3.6 Average passenger service times ..................................................................... 74 

4.4  Technology Effect and Door Effect: Non-linearity and Interdependency .............. 78 

 



viii 
 

4.5  Technology Effect and Door Effect: Assessment with an Empirical Bus Travel Time 
Model  ................................................................................................................................. 79 

4.5.1 Background: bus travel time models ................................................................ 79 

4.5.2 Data collection and travel time model estimation ........................................... 81 

4.5.3 Percentage of time spent at each stage ........................................................... 86 

4.5.4 Bus operating speed ......................................................................................... 88 

4.5.5 Going cashless or creating busways? ............................................................... 92 

4.5.6 Estimation of benefits from upgrading the fare collection system: fleet size, 
travel time, operator and environmental cost savings .................................................. 95 

4.6  Conclusions ........................................................................................................... 100 

 

5 DETERMINANTS OF BUS CONGESTION AND ITS INCLUSION IN THE ECONOMIC 
ANALYSIS OF TRANSPORT POLICIES ............................................................................. 103 

5.1  Introduction .......................................................................................................... 103 

5.2  Bus Congestion in the Literature .......................................................................... 104 

5.3  Estimation of Queuing Delays at Bus Stops .......................................................... 107 

5.4  The Relationship between Bus Congestion, Fare Collection Technique and Bus 
Boarding Policy ................................................................................................................. 114 

5.5  Conclusions ........................................................................................................... 117 

 

6 THE EFFECTS OF PASSENGER CROWDING ON PUBLIC TRANSPORT DEMAND AND 
SUPPLY ........................................................................................................................ 118 

6.1  Introduction .......................................................................................................... 118 

6.2  Effects of Crowding ............................................................................................... 120 

6.2.1 Effect on in-vehicle time ................................................................................. 120 

6.2.2 Effect on waiting time .................................................................................... 122 

6.2.3 Effect on travel time reliability ....................................................................... 123 

6.2.4 Effect on the valuation of travel time savings and route choice ................... 124 

6.2.5 Impact of crowding externality on optimal supply and fare .......................... 126 

6.3  Estimation of Crowding and Standing Costs ......................................................... 128 

6.4  Conclusions ........................................................................................................... 134 

 

 



ix 
 

7 BUS CONGESTION, OPTIMAL INFRASTRUCTURE INVESTMENT AND THE CHOICE OF A 
FARE COLLECTION SYSTEM:  AN EXTENDED TOTAL COST MINIMISATION MODEL ......... 136 

7.1 Introduction ........................................................................................................... 136 

7.2 Bus Round-trip Time .............................................................................................. 138 

7.3 User Cost, Operator Cost and Problem Formulation............................................. 144 

7.4 Results and Analysis ............................................................................................... 150 

7.4.1 Assumptions ................................................................................................... 150 

7.4.2 Results............................................................................................................. 150 

7.4.3 Analysis of other scenarios ............................................................................. 159 

7.5 Summary and Conclusions ..................................................................................... 162 

 

8 OPTIMAL DESIGN OF BUS SERVICES ON AN EXTENDED MULTIMODAL  

FRAMEWORK .............................................................................................................. 165 

8.1 Introduction ........................................................................................................... 165 

8.2. Model Set Up ......................................................................................................... 168 

8.2.1 Assumptions and definitions .......................................................................... 168 

8.2.2 Demand modelling and crowding .................................................................. 170 

8.2.3 Travel time, congestion and bus stop delay ................................................... 172 

8.2.4 The choice of bus size and internal layout ..................................................... 174 

8.2.5 Bus operator cost and problem formulation ................................................. 175 

8.3 Application ............................................................................................................. 177 

8.3.1 Physical setting and input parameters ........................................................... 177 

8.3.2 Base results ..................................................................................................... 181 

8.3.3  Optimal bus frequency: The trade-off between congestion and crowding .. 185 

8.3.4 Optimal pricing and modal split .......................................................................... 189 

8.3.5 The case with increased bus-induced congestion .......................................... 192 

8.3.6 The relationship between the number of seats and optimal frequency ....... 193 

8.3.7 The second best scenario ............................................................................... 194 

8.4. Conclusions ............................................................................................................ 196 

 

 

 

 



x 
 

9 CONCLUSIONS ...................................................................................................... 198 

9.1 Summary ................................................................................................................ 198 

9.2 Contributions ......................................................................................................... 199 

9.2.1 Result on research questions ......................................................................... 199 

9.2.2 Methodological contributions ........................................................................ 202 

9.2.3 Further results of practical relevance............................................................. 203 

9.3 Caveats of the Research......................................................................................... 203 

9.4 Areas for Further Research .................................................................................... 205 

9.5 Concluding Remarks .............................................................................................. 207 

 

REFERENCES ................................................................................................................ 208 

 

APPENDICES ................................................................................................................ 225 

Appendix A1: First Order Conditions, First Best and Second Best Pricing Models .......... 225 

Appendix A2: Estimation of the Queuing Delay Function (Chapter 5) ............................. 227 

Appendix A3: Estimation of Delay at Intersections (Chapter 7) ....................................... 228 

Appendix A4: Estimation of Parameters of the Operator Cost Functions  ...................... 229 

Appendix A5: Bus Internal Layout: Passengers Seating and Standing and Constraints for 
the Determination of the Number of Seats (Chapter 8) .................................................. 233 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

List of Figures 

Figure 1.1: Relationship among thesis topics ........................................................................... 4 

Figure 1.2: Thesis contributions ............................................................................................. 13 

Figure 4.1: Examples of on-board fare verification systems .................................................. 64 

Figure 4.2: Load profile routes 440 and 753 .......................................................................... 75 

Figure 4.3: Average passenger service time ........................................................................... 77 

Figure 4.4: Bus network in the study area.............................................................................. 82 

Figure 4.5: Actual number of bus stops as a function of passengers per bus ........................ 89 

Figure 4.6: Bus operating speed as a function of demand and fare payment and boarding 

policy ....................................................................................................................................... 91 

Figure 4.7: Bus operating speed, mixed-traffic versus segregated bus operation ................ 94 

Figure 5.2: Queuing delay as a function of bus frequency and queuing delay, two-berth bus 

stops ..................................................................................................................................... 111 

Figure 5.3: Bus stop queuing delay in different configurations ........................................... 113 

Figure 5.4: Queuing delay for alternative fare payment and boarding policies .................. 116 

Figure 6.1: Crowding can slow down both alighting and boarding of passengers .............. 120 

Figure 6.2: Crowding multiplier for passengers seating and standing ................................. 125 

Figure 6.3: Different levels of occupancy in stated preference study ................................. 129 

Figure 6.4: Crowding multiplier as a function of occupancy rate and density of standees . 133 

Figure 6.5: Value of in-vehicle time savings ......................................................................... 134 

Figure 7.1: Total average cost .............................................................................................. 152 

Figure 7.2: Average queuing delay ....................................................................................... 152 

Figure 7.3: Optimal frequency .............................................................................................. 154 

Figure 7.4: Optimal bus running speed ................................................................................ 156 

Figure 7.5: Infrastructure cost per kilometre ....................................................................... 156 

Figure 7.6: Optimal bus stop spacing ................................................................................... 157 

Figure 7.7: Operating speed (running plus detentions) ....................................................... 158 

Figure 7.8: Fleet size ............................................................................................................. 159 

Figure 7.9: Optimal frequency, contactless card payment TnB1 ......................................... 161 

Figure 7.10: Queuing delay, analysis of scenarios with contactless card payment TnB1 .... 161 

Figure 7.11: Optimal distance between stops, analysis of scenarios with contactless card 

payment TnB1 ....................................................................................................................... 162 



xii 
 

Figure 8.1: Transport corridor diagram ................................................................................ 169 

Figure 8.2: Test corridor, Military Road ............................................................................... 178 

Figure 8.3: Origin-Destination matrix ................................................................................... 179 

Figure 8.4: Optimal frequency .............................................................................................. 186 

Figure 8.5: Average speed M1 .............................................................................................. 186 

Figure 8.6: Optimal seat supply ............................................................................................ 188 

Figure 8.7: Optimal seating+standing supply ....................................................................... 188 

Figure 8.8: Optimal bus frequency on shared and dedicated right-of-way ......................... 189 

Figure 8.9: Optimal toll and bus fare .................................................................................... 190 

Figure 8.10: Modal split M2.................................................................................................. 191 

Figure 8.11: Modal split per trip length, M2 base case (total demand=19,234) ................. 191 

Figure 8.12: Optimal bus frequency M1, double equivalency factor for buses ................... 192 

Figure 8.13: Optimal bus frequency M2, double equivalency factor for buses ................... 193 

Figure 8.14: Optimal bus frequency for suboptimal numbers of seat ................................. 194 

Figure 8.15: Optimal toll minus bus fare, first best and second best scenarios .................. 195 

Figure 8.16: Optimal bus frequency, first best and second best scenarios ......................... 196 

Figure A4.1: Infrastructure cost per kilometre versus operating (commercial) speed ........ 230 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

List of Tables 

Table 4.1: Summary of fare payment and bus boarding alternatives .................................... 65 

Table 4.2: Characteristics of the services surveyed ............................................................... 68 

Table 4.3: Estimation of parameters for dwell time models .................................................. 71 

Table 4.4: Boarding and alighting times per passenger ......................................................... 74 

Table 4.5: Average passenger service time (s/pax) ................................................................ 77 

Table 4.6: Estimation of travel time model ............................................................................ 85 

Table 4.7: Percentage of time spent at each stage ................................................................ 87 

Table 4.8: Fleet size (FS – buses) and in-service time ratio (STR) .......................................... 97 

Table 4.9: Fuel cost savings with respect to on-board cash payment ................................... 98 

Table 4.10: Potential labour cost savings with respect to on-board cash payment .............. 99 

Table 4.11: Environmental cost savings with respect to on-board cash payment ................ 99 

Table 4.12: Average user cost savings with respect to on-board cash payment ................. 100 

Table 5.1: Queuing delay parameters .................................................................................. 110 

Table 6.1:  Estimation of parameters, MNL models ............................................................. 131 

Table 7.1: Proportion of passengers boarding and alighting at each door, as a function of 

the number of doors per bus, regime TnBn ......................................................................... 142 

Table 7.2: Proportion of passengers alighting at each door, as a function of the number of 

doors per bus, regime TnB1 ................................................................................................. 143 

Table 7.3: proportion of passengers boarding and alighting at the busiest door................ 143 

Table 7.4: Optimal bus size [m] ............................................................................................ 153 

Table 8.1: Parameter values ................................................................................................. 181 

Table 8.2: Base case results .................................................................................................. 183 

Table A4.1: Cost items related to bus size ........................................................................... 231 

Table A4.2: Cost items related to fare collection technology .............................................. 232 

Table A5.1: Area occupied by passengers sitting, standing and other objects .................... 234 

 

 

 

 

 



xiv 
 

Notational Glossary 
Variable/ 

parameter 
Description Units 

0α , 1α  Parameters of BPR travel time function   

maxα  
Fraction of bus passengers that traverse the most loaded 
section of the line 

 

jβ  Parameters of bus queuing time  

 Fare payment technology and boarding policy   
 Ratio of the average waiting time to the average bus headway  

η  Safety factor for  the calculation of the fleet size  
κ  Safety factor to have spare capacity on buses  

,λ λ+ −
 Number of passengers boarding and alighting a bus, 

respectively 
pax 

 Ratio of the value of home waiting time savings to the value of 
station waiting time savings 

 

 
Car toll $/veh 

 
Bus fare $/pax 

 Passenger car equivalency factor of a bus  
, ia a  Average alighting time per passenger s/pax 

, ib b  Average boarding time per passenger s/pax 

B  User benefit $ 

tC  Total cost $/h 

oC  Total operator cost $/h 

aC  Access time cost $/h 

wC  Waiting time cost $/h 

vC  In-vehicle time cost $/h 

1c  Busway infrastructure and land costs $/km-h 

2c  Station infrastructure and operation cost $/station-h 

3c  Personnel costs (crew) and vehicle capital costs $/veh-h 

4c  Bus running costs  $/veh-km 

5c  Implementation cost related with the fare payment technology $/h 

ic  
Average cost, mode i $/trip 

mc   
Money cost, mode m (fare in case of public transport) $ 

occ  Bus door opening and closing time s 

TC   Traffic light cycle time s 

iD  
Inverse demand, mode i $ 

1d   Non-random delay at intersections s/veh 

2d   Overflow delay at intersections s/veh 

EC  External costs other than congestion $ 

∆
ε

µ

aτ

bτ
ϕ



xv 
 

af  Car flow veh/h 

bf  Bus frequency bus/h 

F  Fleet size bus 
,min maxf f  Minimum and maximum frequencies, respectively veh/h 

g Effective green at traffic light s 

ih  Average number of stops per intersection stops/veh 

mh   
Headway between two consecutive vehicles, mode m min 

I  Number of traffic signal intersections along the route  
Iu  Marginal utility of income  

bK  Bus capacity pax/h 

maxK  Maximum bus capacity  pax/h 

rK  
Road capacity veh/h 

IK  Capacity of intersections veh/h 

il  Average trip length in direction i km 

L  Route length (one way) km 

denn   
Density of standees per square metre (bus or train) pax/m2 

biN  Bus demand in direction i pax/h 

bN  Total bus demand ( )1 2b b bN N N= +  pax/h 

kmN  
Number of bus passengers per kilometre pax/bus-km 

fN  
Total number of passengers per bus pax/bus 

ro
 

Average car occupancy rate person/car 

aP  Value of access time savings $/h 

wP  Value of waiting time savings $/h 

vP  Value of in-vehicle time savings $/h 

ap  
Proportion of passengers alighting at the busiest bus door  

bp  
Proportion of passengers boarding at the busiest bus door  

dp  Percentage of passengers that boards buses at high demand 
stops 

 

hp  Percentage of high demand stops  

cp  
Percentage of passengers that alights  buses at high demand 
stops 

 

seatp  
Proportion of seats been used inside bus or train  

iq  
Amount of travel, mode i trips 

ar  Bus acceleration rate m/s2 

dr  Bus deceleration rate m/s2 

R  
Number of roundabouts   

bs  bus length m 

fs  bus saturation flow  veh/h 



xvi 
 

SW  Social welfare $ 
S  Number of bus stops  

kmS  Average number of bus stops per kilometre  

cT  Bus round-trip time  (cycle time) h 

rT  Bus running time h 

iT  Bus delay at intersections h 

sT  Bus delay at bus stops (total) h 

kT  Bus slack time h 

tiT  Bus travel time in direction i h 

1TnB  Bus boarding policy given number of doors: “Total n  doors, 
boarding at front door only” 

 

TnBn  Bus boarding policy given number of doors: “Total n  doors, 
boarding at all doors” 

 

0 1,t t  Parameters of waiting time cost  

it  
Delay due to intersections s 

rt  
Delay due to roundabouts s 

Nt  
Average boarding and alighting time per passenger s/pax 

bt  
Bus running time min 

iwt  Internal waiting delay at bus stops s 

act  Acceleration and deceleration delay   s 

dt  Dwell time s 

st  Bus delay per bus stop s 

Lt  
One-kilometre non-stop bus travel time  s/km 

amt  
Access time, mode m min 

emt  
Egress time, mode m min 

vmt  
In-vehicle time, mode m min 

mU   
Utility of mode m  

u  Ratio of effective green time  

wv  Walking speed km/h 

0v  Bus running speed km/h 

,min maxv v  Minimum and maximum running speed, respectively km/h 

V  Bus operating (commercial) speed km/h 

bx  Degree of saturation at intersections  

2 3,Z Z  
Dummy variables for the number of berths per bus stop  

 



1 
 

 
 
 
 
 
 
 
 
 

Chapter 1 
1 Introduction 

Introduction 
 
 
Chapter 1  
The 20th century has delivered new challenges for the way we live and interact in both 

urban and rural environments. Transport is at the core of the basic need of moving 

passengers and freight from one place to the other; however, attached to the social and 

economic benefits of transport are a number of externalities, including congestion, 

pollution and accidents, with impacts that extend beyond the transport sector to affect 

several related economic fields, the wider community and the environment. In Australia, 

total travel in urban areas has increased ten-fold over the past sixty years, and the social 

cost of congestion in urban roads has been estimated to be $9.4 billion in 2005, a figure 

that is projected to rise to $20 billion by 2020 (BITRE, 2007)1

 

.  

Increasing levels of congestion and environmental externalities are persuasive indicators 

of the need for re-designing our transport systems, in order to decrease the amount of 

car traffic and encourage travellers to use more sustainable forms of mobility, such as 

public transport –including rail and bus alternatives- walking and cycling. In this context, 

it has been long recognised that implementing and delivering public transport services 

                                            
1 The Bureau of Transport and Regional Economics (BITRE) of Australia calculates the cost of “avoidable” 
congestion, which accounts for trips where the benefit for road users of travelling in congested conditions 
are outweighed by the cost imposed on other road users and the community. The BITRE estimations 
comprise private and business time costs, extra vehicle operating cost and air pollution. 
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that are attractive, efficient and affordable is a key element for the present and future 

sustainability of our cities and the quality of life of their residents. 

 

This thesis is concerned with the pricing and design of urban transport systems; in 

particular we study the optimal design and efficient operation of bus services, the pricing 

of both public and private transport, and the role of non-motorised transport alternatives 

in the development of transport pricing policies. In doing so we explore both policy 

problems (e.g., what should be the bus fare in different scenarios?) and operational 

issues (e.g., what is the operating speed gain for buses from upgrading the fare collection 

system?), whilst in addition analysing the effects of selected transport externalities on 

both demand (e.g., what is the impact of passengers’ crowding in the public transport 

patronage?) and supply (e.g., what is the effects of bus stop congestion on optimal 

frequency?). The methodological approach and specific research questions addressed are 

explained next. 

 

1.1  Research Topics and Questions 

 
Providing an efficient and effective public transport service involves a large number of 

decisions that require close scrutiny, such as the design of a network, the choice of 

mode(s) (e.g., bus, tram, light rail, metro), the fare regime, the nature and level of 

investment in infrastructure, the number of services per day or hour, the fare collection 

method and the location of stations or bus stops, among several others. The resulting 

choices have a significant impact on the cost of the system (and potential subsidy 

required) and the level of service provided. Accessibility, travel time, crowding, comfort 

and other factors of importance to users, depend on the design of the service, and hence 

understanding the economic nature of urban public transport operations continues to 

attract the attention of researchers, practitioners and policy makers. From a transport 

planner’s perspective, the challenge behind the design of public transport services lays in 

the myriad number of trade-offs that need to be considered at once, in order to 

determine an optimal service design from an economic perspective, for example: 
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i. Increasing bus frequency reduces waiting time for users, but increases the cost of 

operation. 

ii. Increasing the number of bus stops reduces users’ access time, but increases bus 

riding time. 

iii. Investing in a quicker fare collection technology and dedicated road infrastructure 

for buses reduces bus travel time (and consequently may reduce operating cost), 

but increases capital cost. 

iv. Increasing the number of seats on buses improves the quality of service by 

allowing seat access to more people, but reduces the capacity of vehicles. 

 

The objective of this thesis is improving our understanding of five significant elements of 

urban bus service provision:  

• The influence of considering non-motorised travel alternatives (walking and 

cycling) in the estimation of optimal public transport fares. 

• The choice of a fare collection system and bus boarding policy. 

• The influence of passengers’ crowding on bus operations and optimal supply 

levels. 

• The optimal investment in road infrastructure for buses, which is attached to a 

target running speed for buses. 

• The characterisation of bus congestion at bus stops and its impact on bus travel 

time, frequency and capacity.  

 

We provide a new look to classical problems that have driven a large amount of research 

in the public transport economics literature (such as problems i and ii above), and 

develop a framework to analyse a number of problems that have been neglected in the 

literature (such as iii and iv above). A graphical representation of the issues addressed in 

this thesis is presented in Figure 1.1 (with a bold text to highlight decision variables that 

are new to the literature). 
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Figure 1.1: Relationship among thesis topics 

 

The key elements of interest and specific research questions of this research are 

discussed next. 

 

1.1.1 Non-motorised modes 
Pricing models that take into consideration only two modes, car and public transport (bus 

or rail), have found that subsidies for public transport are desirable, with fares below 

marginal cost due to the underpricing of car use (e.g., Sherman, 1971; Bertrand, 1977; 

Glaister and Lewis, 1978; Else, 1985; Ahn, 2009; Parry and Small, 2009, among several 

others). However, as put forward by Kerin (1992), this approach neglects the existence of 

other modes, notably walking and cycling, that play a significant and growing role in 

urban mobility, especially for short trips. Recognising the role of non-motorised transport 
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is relevant because low public transport fares not only deter some drivers from using 

their cars, but also divert walkers and cyclists into public transport, which is not 

necessarily a desirable outcome. As such, a pricing and public transport optimisation 

model that also includes non-motorised transport seems desirable in order to estimate 

the impact of walking and cycling on (possibly decreasing) optimal subsidies for public 

transport.  

 

Based on the above, the following research question is formulated: 

 

Question 1: What is the effect of including non-motorised transport alternatives in the 

optimal pricing of motorised modes (public transport and car)? 

 

1.1.2 Fare collection system and boarding policy 
The existing economic literature on bus transport considers that bus travel or in-vehicle 

time is either fixed or increases with the dwell time, i.e., time spent transferring 

passengers at bus stops (e.g., Mohring, 1972, Jansson, 1980), which in its simplest 

formulation is presented as the passengers’ boarding and alighting time plus the time 

necessary to open and close doors. When the dwell time is considered as a variable, and 

consequently the total travel time is influenced by the level of demand, analysts have to 

date assumed that the average boarding and alighting time per passenger is exogenously 

given, ignoring that currently there are several alternative boarding and alighting policies 

and technological options for fare collection that have an impact on travel times, 

operator costs, as well as the complexity and image of the public transport service.  

 

In this thesis we analyse the following research questions: 

 

Question 2: What is the impact of alternative fare collection systems and bus 

boarding policies (boarding allowed at one or all doors) on bus travel times and 

associated costs (e.g., fleet size, operating cost, environmental cost)? 

 

Question 3: What is the optimal fare collection system and bus boarding rule, 

given demand and operator cost parameters? 
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1.1.3 Crowding  
The experience of riding on a bus or train may differ both in terms of comfort and 

perception of the trip given the number of people on board vehicles and at stations. For 

example, the more users who take a bus, the more stops it has to make to get people on 

and off (if buses are allowed to skip designated stops when there is neither boarding nor 

alighting passengers), and the longer dwell times would be if there are more passengers 

to board and alight buses per stop, incrementing the travel time for everyone. If demand 

is high enough to produce on-vehicle crowding, the trip is likely to be less comfortable for 

everyone, a number of users have to stand in aisles, people may experience delays 

moving inside and getting off and on, or even have to wait for another vehicle if the one 

they attempt to get on is full. 

 

The analysis of the economic effects of crowding and standing costs inside public 

transport vehicles has focused, on the one hand, on estimating how the perception of 

travel time changes with levels of crowding, i.e., the influence of crowding and standing 

on the value of travel time savings (Maunsell and Macdonald, 2007; Whelan and 

Crockett, 2009; Hensher et al., 2011; Wardman and Whelan, 2011), and on the other 

hand, in determining the effect of this discomfort on the optimal bus fare (Kraus, 1991) 

and the optimal values of bus frequency and size (Jara-Díaz and Gschwender, 2003).  

 

This thesis analyses the impact of crowding on a broader set of policies that includes the 

optimal design of vehicles in terms of number of seats per bus, and the influence of 

crowding in the optimal distance between bus stops under congested operations. The 

following research questions are to be addressed: 

 

Question 4: What is the impact of disregarding the effects of crowding on people’s 

preferences on the design of the optimal road pricing and public transport service 

and fare levels? 

 

Question 5: Considering both crowding and standing disutilities, how many seats 

should buses provide? 
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1.1.4 Bus congestion 
Bus congestion is an issue when services are provided with a frequency high enough to 

produce interactions between buses (including bunching effects). The few authors that 

have assessed bus congestion in the economic analysis of transport policies have used 

bus flow-delay functions ‘borrowed’ from car traffic models, such as the linear function 

implemented by Ahn (2009) in his analysis of bus services and road pricing, and the 

Bureau of Public Roads (BPR) function used by Fernández et al. (2005) in their analysis of 

bus cost structure. These functions do not fully take into account differences between 

the sources of congestion in car traffic and in bus systems. A recent theoretical 

improvement was made by Basso and Silva (2010), who assume that part of the dwell 

time at bus stops is transferred to cars as extra delays. In this thesis we model the 

formation of bus queues at bus stops when all the stop berths are being used as the main 

source of congestion in bus systems, and analyse how optimal values of frequency, 

capacity and infrastructure investment change when bus congestion is properly 

accounted for. In this respect, the following research question is addressed: 

 

Question 6: What is the effect on the design of bus systems of misrepresenting bus 

congestion (or not considering it at all) for scenarios with high bus demand (and 

which are consequently, subject to bus congestion). 

 

1.1.5 The provision of busways   

Bus running speed (the cruising speed that buses attempt to maintain in between two 

consecutive stops) is commonly treated as an exogenous parameter in the 

microeconomic literature of bus transport, with the assumption that bus speed is given 

by the physical conditions and regulations (speed limits) of the bus routes under study 

and by car traffic in the case of mixed-traffic circulation. Nevertheless, bus running speed 

can be a decision variable, if an investment in infrastructure, like upgrading or building 

new busways, is designed to have a positive impact on the running speed of buses. The 

provision of busways goes beyond the simple analysis of whether or not bus lanes should 

be provided (Mohring, 1983; Berglas et al., 1984; Basso and Silva, 2010), because in 

reality several degrees of bus segregation (at different capital costs) may yield different 

speed gains. In this work, we analyse the relationship between investment in dedicated 
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infrastructure for buses and running speed, which leads to the following research 

question: 

 

 Question 7: If bus speed can be increased by investment in infrastructure in 

dedicated bus corridors, what is the optimal level of investment in busways (which 

in turn determines the running speed of buses)? 

 

1.2  Research Approach 

 
The ultimate goal of this research is the optimisation of urban bus routes and pricing 

regimes for both cars and public transport (Figure 1.1). As explained in the previous 

section, the focus is on elements that have received partial treatment in the literature, 

including the effect of crowding and bus congestion on optimal bus supply, the choice of 

a fare collection system and infrastructure investment in bus corridors, and the influence 

of non-motorised transport modes on the optimal level of public transport fares. The 

research approach is summarised in a sequential way as follows: 

 

• First, it is necessary to develop microeconomic models for the optimisation of 

urban public transport that account for bus congestion, crowding, fare collection 

systems and bus infrastructure investment. 

• In the microeconomic literature on public transport operations, the most common 

modelling approach is the minimisation of total cost, which comprises operator 

cost and the users (time) cost (Mohring, 1972; Jansson, 1980; Chang and 

Schonfeld, 1991; Jara-Díaz and Gschwender, 2003). An extended total cost 

minimisation model is developed in this thesis, in order to determine an optimal 

value of bus frequency, size and distance between stops, plus the decision on 

infrastructure investment (an associated running speed), fare collection 

technology and boarding policy (one-door versus all-door boarding).  

• A multi-modal framework that integrates car, public transport and non-motorised 

modes (bicycle and walking) is formulated, to account for the relationship 

between road pricing, non-motorised modes, pricing and service levels for public 
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transport. The objective function is one of maximising social welfare, comprising 

consumer surplus and the profit of public transport operator and the road pricing 

regime.  

 

1.2.1 Fare collection system and boarding policy 

Alternative fare payment systems and bus boarding rules differ in requirements of 

infrastructure support, the ability to integrate fares across routes and modes, security, 

operating cost including transaction costs, evasion control, and capacity to handle 

different fare structures. All these features should be weighed up against each other 

when deciding on a fare payment system for a specific bus service or network. This study 

focuses on differences in travel time and operator costs. To this end, average boarding 

times of several alternative fare payment systems and boarding policies are estimated, 

including on-board payment with cash, magnetic strip, contactless card, and off-board 

payment. For the estimation of boarding times with cash, magnetic strip and off-board 

payment, dwell times survey are performed in Sydney, whereas the average boarding 

time with contactless card for fare validation inside buses is taken from a study in 

Santiago, Chile (Fernández et al., 2009). For the estimation of the capital cost associated 

with each fare payment technology, we take into account the cost of software, vending 

machines, card validation devices and tickets readers, with cost indicated in the Bus Rapid 

Transit Planning Guide published by Wright and Hook (2007). 

 

1.2.2 Crowding  
We consider that crowding increases the valuation of travel time savings. Using data from 

a mode choice experiment conducted in Sydney, that includes attributes on the number 

of seats available and the number of passenger standing inside vehicles for the public 

transport alternatives (bus, train and metro, the experiment is described in Hensher et 

al., 2011), we estimate the impact of crowding and standing disutilities in the value of 

travel time savings using a multinomial logit model (MNL). 

 

1.2.3 Bus congestion 
Bus congestion is a phenomenon that has received little attention in the literature, 

possibly because most of the research on urban transport modelling and pricing is 
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associated with developed countries where it is relatively unusual to find situations with 

bus frequencies high enough to cause congestion.  We estimate the formation of bus 

queues behind a station when all the stop berths are being used to transfer passengers 

by preceding vehicles. After analysing bus stop operations with the simulation model 

IRENE2

 

, Fernández et al. (2000) found that the queuing delay grows exponentially with 

the frequency of buses that enter the bus stop.  

As argued by Fernández and Planzer (2002), a simulation approach is well suited to 

analyse key performance measures of bus stops (like the queuing delay), because the 

processes involved in the arrival of buses, passengers and the interaction between them 

are very complex and usually random, which suggests that analytical steady-state 

approaches such as the Highway Capacity Manual (HCM) formula to calculate bus stop 

capacity (TRB, 2000) have a limited application. Consequently, we use IRENE to estimate 

queuing delays as a function of frequency, bus length, number of berths and average 

dwell time. 

 

1.2.4 The provision of busways 
A linear relationship between infrastructure cost per kilometre and running speed is 

proposed and embedded into a total cost minimisation model for bus operation, based 

on a positive correlation between infrastructure investment and commercial speed (total 

speed including stops), empirically identified by comparing data from a number of Bus 

Rapid Transit (BRT) systems (Wright and Hook, 2007). We show that a target speed 

increases the investment in infrastructure but also reduces the travel time between 

stops, and hence a compromise running speed is selected as the optimal solution.  

 

1.2.5 Total cost minimisation model  

The economics of urban bus transport is first analysed by modelling a single bus corridor, 

segregated from other modes (e.g., cars and trucks). The total cost minimisation model 

                                            
2 IRENE is a bus stop simulator that calculates the capacity, queuing delay, dwell time, berth usage and 
other indicators of the performance of a bus stop, as a function of a number of inputs such as the boarding 
and alighting demand, number of berths, stochasticity of both user and bus arrivals. Parameters 
exogenously given are frequency and the mean number of passengers boarding and alighting per bus. For a 
detailed description of the program see Gibson et al. (1989) and Fernández and Planzer (2002). 
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includes operator and user costs, the former comprising the cost of buses, dedicated 

infrastructure, bus stations, crew and operating cost, whereas the latter comprises 

access, waiting and in-vehicle time costs. To the traditional framework of optimising 

frequency, bus size and/or distance between stops we add the aforementioned decisions 

on boarding rules and fare collection technique and investment in road infrastructure for 

buses, in a framework that considers bus congestion in the form of queuing delay at bus 

stops. Total cost is minimised subject to constraints on capacity, minimum and maximum 

frequency and running speed.  

 

1.2.6 Multimodal pricing and bus optimisation 
Finally, the optimisation of bus services is analysed in a multimodal setting that includes 

cars and walking as travel alternatives. We present a deterministic social welfare 

maximisation model in order to analytically explore the impact of non-motorised 

transport in first best and second best pricing of motorised private and public transport. 

Then, a numerical analysis is performed by assuming that modal choice follows a 

multinomial logit model, which is applied to a transport corridor in Sydney, divided in 

zones in order to analyse spatial differences in mode choice (e.g., number of walking trips 

as a function of trip length), i.e., modal choice is different per origin and destination. The 

location of bus stops is fixed in this model, which allows us to know the number of 

passengers inside buses in each segment of the route (between two consecutive stops), 

information that is used to determine the number of seat that buses should have, 

considering crowding and standing disutilities. 

 

1.3 Thesis Contributions 

 
1.3.1 New elements and methodological refinements 

The main contributions of this thesis are classified into two groups: 

 

New elements: These are factors and variables that have not been previously analysed in 

the literature. For example, the influence of different fare collection systems in the 

optimal design of a bus route (frequency, bus size and distance between stops). 
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Methodological refinements: These encompass the analysis of effects that have been 

previously addressed in the literature; however the contribution of this work lies in a 

more comprehensive treatment of the phenomenon. For example, the influence of bus 

congestion on optimal frequency, capacity and distance between stops.  

 

A graphical summary of the contributions of this thesis is shown in Figure 1.2. The 

scientific and practical relevance of this work is discussed next. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 1.2: Thesis contributions
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1.3.2 Theoretical and scientific relevance 

The main scientific contributions of this thesis are the following. 

 

• Derivation of second-best bus fare with explicit account of underpriced cars and 

an uncongestible non-motorised mode as travel alternatives. We obtain 

analytically the conditions that lead to the underestimation or overestimation of 

the optimal bus fare when non-motorised transport is ignored (Chapter 3). 

• The decision of a fare collection system and bus boarding policy is embedded into 

microeconomic models for the optimisation of bus systems. Faster bus boarding 

techniques (e.g., upgrading from of-board cash payment to off-board contactless 

card payment validation) present the trade-off of reducing riding time and 

increasing capital cost (Chapters 4 and 7). 

• Bus congestion in the form of queuing delays behind bus stops is estimated using 

simulation. The delay function depends on the bus frequency, bus size, number of 

berths and dwell time (which is given by the number of passengers boarding and 

alighting, the number of doors per bus and the fare collection technology). 

Therefore, models that use flow measures (including frequency only or frequency 

plus traffic flow) as the only explanatory variables for bus congestion are 

incomplete (Chapters 5 and 7). 

• The crowding externality and standing disutility for passengers inside buses is 

used to determine the optimal number of seats that buses should have. Explicit 

constraints are considered for the determination of seating and standing areas on 

buses (Chapters 6 and 8). 

• Calculation of optimal bus road infrastructure investment (and bus running speed) 

in dedicated bus corridors (Chapter 7). 

 

1.3.3 Practical relevance 

This thesis presents a number of contributions for practice, as summarised next.  

 

• The potential substitution between motorised and non-motorised modes (walking 

and cycling) should be considered when estimating the second-best public 
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transport fare. If the modal substitution between public transport and non-

motorised modes is strong relative to the substitution between car and public 

transport, and between car and non-motorised modes, it is more likely that the 

optimal public transport fare is underestimated if non-motorised alternatives are 

ignored (Chapter 3).  

• Boarding times with different fare collection systems and boarding policies 

(boarding allowed at one or all doors) estimated can be used to empirically assess 

benefits for users and operators of upgrading the fare collection system in terms 

of running time, fleet size, operating and environmental cost. With an empirical 

model on bus running times with and without the influence of traffic congestion, a 

comparison of providing bus lanes versus upgrading the fare collection system is 

also possible (Chapter 4).  

• Empirical estimation of the actual number of bus stops as a function of scheduled 

bus stops and demand, based on data from an on-call bus service in Sydney. This 

function can be used to estimate the number of stops per bus ride given the 

number of passengers boarding and alighting, and consequently total riding time 

(Chapter 4). 

• The bus congestion function estimated with the simulator IRENE is useful to 

analyse the influence of several factors on the occurrence of queuing delays at 

bus stops, such as the number of passengers boarding and alighting, the fare 

collection technology, the number of doors to board and alight, the bus frequency 

and size and the number of berths (Chapter 5). 

• The investment on quicker fare collection systems is justified as demand grows. 

Using a total cost minimisation framework, demand thresholds for the 

introduction of a more sophisticated fare payment technology can be identified 

(Chapter 7). 

• Decreasing total average cost is observed when boarding is allowed at all doors, 

whereas increasing average costs occur for high demand if boarding is restricted 

to the front door only. The highest total cost is associated with on-board cash 

payment, followed by payment with magnetic strip and contactless card. This is 

because buses spend more time in bus stops boarding passengers when payment 
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is on-board at the front door only, which triggers bus queues that in turn increase 

travel time and operator costs. This highlights the importance of having an 

efficient fare payment system and bus boarding policy, as a way to avoid bus 

congestion as much as possible (Chapter 7). 

• Disregarding bus congestion in the design of the service would yield greater 

frequencies and smaller buses when congestion is noticeable, i.e. for high demand 

(Chapter 7). 

• Optimal bus frequency results from a trade-off between the level of congestion 

inside buses, i.e., passengers’ crowding, and the level of congestion outside buses, 

i.e., the effect of frequency on slowing down both buses and cars in mixed-traffic. 

In particular, optimal bus frequency is quite sensitive to the assumptions 

regarding crowding costs, the impact of buses on traffic congestion and the 

overall congestion level. We show that if crowding matters, bus frequency 

increases (for a given bus size) with demand even under heavy congestion. 

However, that might not be the case if the crowding externality is not accounted 

for, in which case an increase of total demand might be met by a decrease of both 

frequency and number of seats per bus, at the expense of crowding passengers 

inside buses and making more passengers stand while travelling (Chapter 8). 

• Regarding the relationship between crowding, standing and the number of seats, 

it is shown that in an scenario with no capacity constraints, buses should have as 

many seats as possible (given constraints on minimum areas for aisles and around 

doors that must not be allocated to seating), and that if the number of seats is 

reduced, frequency should be increased (Chapter 8). 

 

1.4  Research Scope 

 
Given the large number of problems that this thesis addresses, we have limited the scope 

of the theoretical approach in several respects.  

 

In terms of geographical or spatial scope, the analysis is reduced to a single corridor, 

either for the optimisation of bus services only (i.e., a single route in Chapter 7) or for the 
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multimodal social welfare maximisation model that includes cars and non-motorised 

modes (Chapter 8). Transport networks are not considered.  

 

The empirical estimation of bus travel times in Chapter 4 considers several time periods; 

however, the total cost minimisation and social welfare maximisation models are 

developed in a single period framework, which is assumed to be the morning peak in the 

numerical applications.  

 

General equilibrium issues and tax distortions are discussed as part of the literature 

review on car and public transport pricing (and subsidies) in Chapter 2; however the 

economic model and pricing rules developed consider the transport market only, 

abstracting from distortions in the rest of the economy.  

 

Regarding bus operations, the models assume that buses maintain a regular headway, 

i.e., the issue of bus bunching is ignored. The optimisation of bus timetables is not 

addressed either, which might be important when translating the potential time benefits 

of, for example, upgrading the fare collection system from a slow to a quicker technique. 

The physical and fare integration between buses and other public transport modes like 

rail are also ignored.   

 

1.5  Thesis Outline 

 

Chapter 2 provides a literature review on the microeconomic models of public transport 

operation and optimal pricing rules. The concepts of first best and second best pricing are 

revisited, together with the theoretical foundations for subsidising public transport. The 

setting of bus frequency and capacity, the choice of providing bus lanes and the influence 

of other sectors of the economy on transport pricing, among other topics, are discussed 

in light of the relevant literature in this field. 

 

In Chapter 3 a social welfare maximisation model is set up with the objective of revealing 

the influence of walking and cycling alternatives in the optimal pricing of motorised 

public and private transport. The impact of an active capacity constraint in the public 
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transport mode, and of considering externalities other than congestion, is also revisited in 

the proposed three-mode framework. 

 

Chapters 4 to 6 are concerned with the operation of bus routes. Chapter 4 provides a 

review of issues regarding the choice of a fare collection system in urban bus services. We 

estimate boarding and alighting times with alternative fare payment methods and 

boarding and alighting rules (regarding number of doors to board and alight). Dwell time 

models are presented and estimated using data collected in Sydney for payment with on-

board cash, magnetic strip (pre-paid ticket) and a free bus service which is used as a 

proxy for off-board fare payment and validation. A bus running time model (including all 

stages of a trip) is also estimated using empirical data from Sydney in order to calculate 

potential benefits from upgrading the fare collection system (for example, from on-board 

cash payment to on-board magnetic strip validation or off-board fare validation), in 

particular, savings on bus running and crew cost, environmental cost, fleet size and travel 

time for passengers. 

 

Chapter 5 reviews models for the inclusion of bus congestion in the economic analysis of 

urban transport. Using the bus stop simulator IRENE (Gibson et al., 1989; Fernández and 

Planzer, 2002), queuing delays at bus stops are estimated as a function of the bus 

frequency and size, number of berths and the dwell time at the stop. The influence of 

alternative fare collection systems and boarding policies on bus queuing delays is 

analysed. 

 

Chapter 6 provides a review of the influence of passengers’ crowding in public transport 

demand and supply, including the effect on riding time, waiting time, the valuation of 

travel time savings, travel time variability and optimal fare. New crowding cost functions 

are estimated for Sydney. 

 

Next, we set up microeconomic models for the optimisation of bus supply and 

multimodal pricing, including the elements discussed in Chapters 4 to 6. Chapter 7 sets 

out an extended total cost minimisation model (including both users and operator costs) 

for the design of a bus route. The emphasis is on the optimal choice of a fare collection 
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system, the optimal investment in bus infrastructure (which has associated a target 

running speed for buses running in a dedicated corridor), and the effects on the optimal 

design of the queuing delays that arise at bus stops in high-frequency high-demand 

scenarios. 

 

In Chapter 8 we develop an extended social welfare maximisation model for the 

optimisation of a bus route including bus fare and road price, assuming that mode choice 

is governed by a multinomial logit model. This model integrates the design issues 

discussed in Chapters 4 to 7 in a multimodal framework that includes walking, car and 

bus as travel alternatives.  

 

Finally, Chapter 9 summarises the main findings, methodological contributions and policy 

implications of this thesis, and provides directions of further research. 
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Chapter 2  
2 Background: Microeconomic Modelling of Urban Public Transport Operation and Optimal Pricing 

Background: Microeconomic Modelling of Public 

Transport Operation and Optimal Pricing3

 

 

 
 

2.1 Introduction 

 

Travellers usually have several modal alternatives available in specific trip purpose 

contexts and geographical jurisdictions, including private and public transport options, 

motorised and non-motorised. Aside from availability, monetary cost and trip time 

outlays are usually the most important attributes when choosing a mode, and hence 

when the price or fare can be changed, it becomes a tool to influence modal demand, and 

consequently the level of transport-related externalities, as well as the social welfare and 

distributional impacts of the transport system. The economics of transport pricing has 

attracted the interest of economists for over a century, since Dupuit (1844), Pigou (1920) 

and Knight (1924) analysed tolls as a way to recover costs or increase the economic 

efficiency of roads4

                                                        
3 The literature review in this chapter is partially published in Tirachini and Hensher (2011; 2012). 

. Researchers have devoted considerable effort to analyse the merits 

of road pricing as a tool to manage congestion and other externalities derived from 

transport activity.  Economic models of transport pricing focus on either a single mode or 

4 The history of the idea of road pricing and the evolution of the research on this topic is extensively 

reviewed by Lindsey (2006). 
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multimodal approach; however the analysis of road pricing for private transport has 

received a disproportionate amount of attention relative to public transport and 

multimodal analysis, including free personal travel alternatives. This chapter reviews a 

large set of issues associated with the pricing of urban transport modes and the 

economics behind the operation of public transport systems. 

 

2.2 Setting Public Transport Fares: First Best and Second Best Models 

 

The analysis of transport pricing schemes usually distinguishes between first best and 

second best policies. A situation in which all prices match marginal costs is known as first 

best. As reviewed by Quinet (2005), in the first best world there are no external effects, 

no public goods, firms are price-takers, there is no tax or taxes are optimal, there is no 

uncertainty or asymmetry in information, there are no transaction costs and no 

redistribution problems. However, transport systems in the real world do not match all 

these conditions and several departures can be found, such as the influence of external 

factors, non-competitive markets, non-optimal taxes and so on, associated with a 

condition known as second best5

 

. Technological or acceptability constraints are common 

factors that impose second best situations within the transport sector, given the 

impossibility of taxing at marginal cost all modes or all locations in a network. 

A second best situation is the most likely to exist when designing a transport pricing 

reform initiative. Transport economists know that the derivation of optimal charge levels 

is more difficult for second best policies than in a theoretical first best environment, as 

the former should take into account all the inefficiencies and distortions in the market, 

whereas in the latter situation only the marginal costs need to be determined (Rouwendal 

and Verhoef, 2006). Even though the first best is practically unachievable, it is useful as a 

benchmark to compare any second best policy that is proposed. Next we review the 

                                                        
5 See Rouwendal and Verhoef (2006) or Small and Verhoef (2007) for a more detailed discussion on second 

best issues. 
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concepts of first best and second best pricing for public transport, in light of the relevant 

literature in this topic. 

 

2.2.1 First best pricing 

The principles of marginal cost pricing of private transport have a long history. In the 

context of automobiles, it had been recognised from very early days that establishing a 

cost function for the study of demand and welfare must include travel time as a key 

influence. In the study of public transport pricing, such a realisation appears to have 

occurred only in the 1970’s, with the works of Mohring (1972), Turvey and Mohring 

(1975) and Jansson (1979). The recognition that user costs should be included in the 

determination of optimal fares for public transport is illustrated in the following quotes: 

 

“The right approach is to escape the implicit notion that the only costs which are relevant to 
optimisation are those of the bus operator. The time-costs of the passengers must be included too, 

and fares must be equated with marginal social costs.”  
(Turvey and Mohring, 1975, p. 280) 

 
“(…) in the wide field of scheduled transport it has only recently been realised that the principle of 

marginal cost pricing is practically impossible to apply correctly unless all users sacrifices and 
efforts are, at least conceptually, treated as costs on a par with producers costs.” 

(Jansson, 1979, pp. 270-271) 

 

The addition of user time costs as an input in the social cost function of public transport 

proved to have remarkable consequences for the application of a marginal cost pricing 

rule. When an increase in demand is met by an increase in the frequency of service, i.e., 

an increase in scale, the travel cost of all users decrease due to savings in waiting time 

(assuming that waiting time is inversely related to frequency), a phenomenon that is not 

observed when the operator or producer cost is the only item considered in the cost 

function of public transport6

                                                        
6 Note that the operator cost may also exhibit scale economies as shown by Allport (1981) for trains and 

buses. In the particular case of railways, the existence of scale economies due to the high fixed costs of 

infrastructure has been extensively used as an argument to justify rail subsidies (Preston, 2008). 

. Consequently, marginal cost lies below average cost, which 
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is the first best argument for subsidising public transport operation, as introduced by 

Mohring (1972) and Turvey and Mohring (1975). Intuitively, a lower fare will encourage 

more travellers to use public transport, which would be accompanied by an increase in 

the optimal frequency, which lowers waiting times, therefore benefiting all passengers 

(Jansson, 1993).  

 

The first best fare is the one that maximises social welfare, defined as the summation of 

users’ and operators’ benefit. The unrestricted solution of this problem is a well-known 

result, namely that the optimal public transport fare equals total marginal cost (i.e., the 

summation of users and operator marginal cost) minus the average users cost (e.g., Else, 

1985; Tisato, 1998). Then, the general principle of marginal cost pricing as a means to 

reach economic efficiency applies to public transport services, but with the subtraction of 

what users already “pay” when using the service, i.e., their own time (Jara-Díaz, 2007).  

 

The scale economies approach of Mohring predicts that the optimal subsidy per 

passenger decreases with demand, a result that depends on the assumption of a strictly 

inverse relation between waiting time and frequency, which exists when passengers arrive 

randomly at stations or bus stops, i.e., when the service frequency is high (average 

headways shorter than 10 or 15 minutes). However, on low frequency services, 

passengers usually follow a published timetable and plan their trips accordingly, thus 

arriving at bus stops or train stations just before the scheduled departure of the service 

(assuming adherence to schedule). The consideration of this binary passenger behaviour 

has consequences on the shape of the first best fare and subsidy, as shown by Jansson 

(1993) and Tisato (1998). In both low and high frequency regimes, there is a schedule 

delay cost (waiting time cost for the high frequency case), because departures are not at 

the desired time. However, in the low frequency scenario, most of the schedule delay is 

spent at home or work, where passengers can allocate their time in a more useful way 

than when waiting at bus stops, and hence the valuation of schedule delay savings is 

higher when passengers do not follow a timetable (high demand-high frequency) than 
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when a timetable is followed (low demand-low frequency). Given that the savings in 

waiting time due to the optimal adjustment of frequency is the main argument for 

marginal pricing below average operator cost (first best subsidy), Jansson (1993) and 

Tisato (1998) show that, in each regime (low frequency and high frequency), the optimal 

average subsidy is decreasing in demand, but with demand levels in the transition 

between the two regimes, the optimal subsidy per passenger may actually be increasing 

with patronage.  

 

The work of Tabuchi (1993) marks the beginning of a renewed interest in the properties of 

the bi-modal equilibrium between private and public transport under different pricing 

regimes. Instead of assuming static congestion for the automobile, Tabuchi assumes a 

dynamic bottleneck that arises when the flow of cars exceeds the capacity of the road 

(Vickrey, 1969; Arnott et al., 1993). A competing rail service is provided, which exhibits 

economies of scale due to fixed capital costs. In a highly stylised model that ignores travel 

time as a cost for rail users and capacity constraints, different first best and second best 

pricing policies are analysed in terms of social costs, showing the advantages of fine (i.e., 

dynamic) over coarse (i.e., uniform) optimal tolls, and that as demand grows it is more 

attractive to have a rail based alternative competing with cars, due to economies of scale 

in the former and congestion externality in the latter mode. 

 

Tabuchi’s two-mode model has been subsequently extended by a number of researchers. 

Danielis and Marcucci (2002) analyse how the optimal road price should be modified 

given that rail is priced at average cost instead of marginal cost, i.e., there is a budget 

constraint imposed that prevents public transport subsidy (also referred to as Ramsey 

pricing, see Section 2.3.5). At the same time, Huang (2002) applied a multinomial logit 

model to empirically represent mode choice instead of the deterministic approach of the 

original Tabuchi’s model. The results support the same general principles for first best and 

second best pricing, regardless of the deterministic or stochastic nature of the equilibrium 

demands.  
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Interestingly, it is common that theoretical models that compare automobile and bus 

assume that the economies of scale for public transport are in the user cost component 

(Mohring, 1972), whereas models that compare automobile with rail tend to assume that 

the economies of scale are given by the fixed capital cost of rail (e.g., Tabuchi, 1993; 

Danielis and Marcucci, 2002; Huang, 2002). Both assumptions are simplifications, since 

bus service provision also has non-negligible fixed costs; furthermore the schedule delay 

cost should not be ignored for rail, even when the service provider publishes a timetable. 

 

A different approach was presented by Kraus and Yoshida (2002) who adopted the 

highway bottleneck model of Vickrey (1969) for the modelling of rail commuting, 

assuming that users arrive at stations at the same time as trains do. The authors show 

that the average users cost increases with demand, i.e., the opposite result to the 

decreasing average users cost of all of the Mohring’s type of models, a result explained in 

part because the length of the peak period is not fixed, such that as demand grows, the 

peak period enlarges (i.e., some passengers take earlier trains), which increases the 

schedule delay cost at the destination, given that the desired arrival time is fixed. Kraus 

and Yoshida (2002) provide an important insight into how the scheduling considerations 

of users affect average costs of travelling; however their approach is less appropriate for 

modelling high frequency services, in which it has been empirically observed that 

passengers arrive at stations or bus stops randomly at a more or less constant rate (e.g., 

RAND, 2006). Therefore, waiting time at stops exists even if the capacity constraint is not 

binding, and consequently, the economies of scale induced by increasing frequency 

should be accounted for.   

 

At this point we need to mention that not only are additional benefits for users attached 

to a more frequent public transport service, costs could also be incurred if providing 

additional bus kilometres has a negative effect on speeds for both buses and cars, 

especially when frequency is high enough for buses to actually slow each other down, as 

well as other vehicles that share the road with them (more details in Chapter 4 on bus 
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congestion). In this case, an increase in frequency can augment total average cost, and 

Mohring (1972)’s scale economies argument for bus subsidies could no longer apply. In 

this case, buses may operate with an operational surplus if marginal cost pricing is in 

place, as found in a later study by Mohring (1983). Nonetheless, there are a number of 

strategies that can be used to make bus transport more efficient in order to minimise or 

avoid bus congestion. For example, in Chapter 7 it is shown that increasing total costs are 

observed for a demand over 3,000 pax/h-direction, if passengers are allowed to pay fares 

on board buses and boarding is at the front door only, in which case frequency is over 60 

bus/h (cash payment); however, decreasing total costs are still obtained even for higher 

frequencies when the fare payment is performed with pre-paid collection technologies 

and boarding is allowed at multiple bus doors simultaneously.  

 

2.2.2 Second best pricing 

As widely recognised in the literature, several departures from ideal first best conditions 

exist in reality. In the case of public transport pricing, the most evident and analysed case 

is that buses or trains compete with underpriced cars, as cultural, technical, political or 

social constraints impede the setting of marginal cost road pricing. When this inefficiency 

is present, the optimal pricing analysis in public transport is referred to as second best 

pricing (although as previously mentioned, the second best concept may encompass 

several other distortions both within and outside the transport sector). The classical 

argument is that if cars are underpriced, there is an excess of car travel, therefore it would 

be welfare improving to reduce the public transport fare in order to attract some drivers 

to use trains or buses, in turn reducing the level of congestion and other traffic 

externalities on the road network. This is a second economic-based rationale to subsidise 

public transport, after the economies of scale (first best) argument7

                                                        
7 Other arguments in favour of subsidising public transport include pursuing distributional or social 

objectives and option values, which are not treated in this thesis (see Kerin, 1992; Preston, 2008). 

 (Preston, 2008; Parry 

and Small, 2009).  Therefore, as argued by Small (2008), a conclusion from first best and 

second best fare analyses is that congestion charging could be seen as a way to reduce 
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the financial needs of public transport, since an optimal road charge should decrease the 

subsidy required for public transport, even if the revenue from road pricing is not 

hypothecated to public transport. 

 

Formal proofs that an alternative mode should be priced below marginal cost when cars 

are priced at average instead of marginal cost can be traced to Lévy-Lambert (1968), 

Marchand (1968) and Sherman (1971). The idea, linked to competitive neutrality,  was 

extended by Glaister (1974), who finds a second best bus fare below marginal cost, not 

only in the peak but also in the (congestion free) off-peak period, the latter due to two 

effects - a low off-peak bus fare can attract peak car users, and peak bus users are  

attracted to travelling by bus during the off-peak, which relieves pressure in the peak, and 

therefore decreases the peak bus fare, which in turn attracts more car travellers into 

public transport.  

 

A slightly different approach is introduced by Jackson (1975), who instead of calculating 

the optimal second best fare, estimates the optimal second best subsidy directly, 

assuming the underpricing of highway travel, and that average cost per bus user is 

constant. The optimal fare subsidy depends on the level of congestion on the road, the 

own cost elasticity of transit demand, and the cross cost elasticity of demand between 

private and public transport. Interestingly, Jackson (1975) proposes a method to 

determine the optimal subsidy for bus speed improvements, instead of covering fare 

reductions, with the result depending on how large the increase in operator cost is to 

achieve improvements in speed. Illustrative examples show that the welfare 

improvements largely rely on, and increase with, the degree of congestion associated 

with highway travel, and the cross elasticity of demand with respect to the generalised 

cost of public transport. Jackson’s case for second best welfare maximisation through an 

increase in the quality of bus service, as opposed to a fare reduction, parallels the 

contributions of Mohring (1972) and Turvey and Mohring (1975), who identify a first best 
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justification for bus subsidies due to the reduction in bus waiting times if frequency is 

optimally adjusted as demand grows, which is another way of speeding up bus travel.  

 

In terms of congestion externalities, most transport pricing studies focus on automobiles 

(and trucks in the freight context) as the major source of traffic congestion imposed on all 

modes that share the right of way; however this is not necessarily the case for high 

frequency bus services that may slow down both cars and buses. The effect of this 

congestion effect of buses on cars was analysed by Else (1985), who shows the impact of 

the external congestion cost of public transport over the second best fare and subsidy. 

Bus congestion by itself increases the optimal fare and reduces subsidy, however, using 

British data, Else (1985) shows that even when recognising that public transport 

contributes to congestion, the optimal fare does not cover operating cost, and an optimal 

subsidy is required. 

 

Finally, we mention the work of Parry and Small (2009), who show that substantial gains 

in social welfare are accrued from diverting car drivers into public transport (second best 

argument) in peak periods, whereas the case to subsidise fares due to the reduction of 

users costs (scale economies – first best argument) is stronger in the off-peak. When 

there are two public transport modes (bus and rail), they consider that reducing the fare 

on one has consequences over the other; for example a drop in the rail fare would attract 

bus passengers, resulting in increased waiting and access times scale economies, negative 

effect), but decreased bus operator cost, in-vehicle crowding and externalities (positive 

effect). 

 

In summary, the above suggests that setting public transport fares below average 

operator cost is supported by most of the formal analysis of pricing, resulting in the call 

for an ‘optimal’ subsidy regardless of whether it is based on first best or second best 

grounds. Despite the rigorous analytical approaches and empirical evidence, the extant 

literature has a number of limitations associated in particular with the omission of non-
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motorised modes such as walking and cycling, and the distortionary effect of bus 

subsidies, as identified by Kerin (1992), who more precisely states that “the results of the 

second-best pricing studies are derived under conditions that are probably unduly 

favourable to second-best bus pricing. If the key omitted factors could be incorporated 

into the trade-off process, the optimal second best subsidy level would probably be much 

lower than that suggested by existing formal models” (Kerin, 1992, p.39). Some of these 

factors have been accounted for in more recent research, such that possible inefficiencies 

associated with subsidy (Section 2.2.3), the existence of tax distortions and their 

interaction with the transport system (Section 2.3.4), and the impact of bus congestion on 

travel times and operation costs (Chapter 5). The influence of non-motorised transport on 

optimal pricing decisions is addressed with a multimodal pricing model for the 

maximisation of social welfare in Chapter 3. 

 

2.2.3 Issues that arise when subsidising public transport 

Observed practice has shown a number of problems associated with public transport 

subsidies that stylised first best and second best models have ignored. The realisation of 

the efficiency gains that optimal subsidies in theory yield in practice, depends on several 

factors, such as the form of the subsidy (operating subsidy per passenger or passenger-

kilometre versus one-off grant), the structure of the service provider (private or public 

company) and the relationship between the provider and the subsidising body (Else, 

1985). Moreover, the authority may not have sufficient information on costs and demand 

to estimate the optimal level of subsidy (Frankena, 1983).  

 

A potentially major problem is the inefficiency induced in the operation of public 

transport services by some types of subsidy. Several authors have shown that when a 

subsidy is outlaid to cover the gap between operating cost and revenue, in particular for 

public bus operators protected from competition, it may distort the incentives of 

managers and workers, reducing productivity and increasing labour wages, as empirically 

shown in the 80's by Bly et al. (1980), Cervero (1984), and Pickrell (1985) among others. 
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Recent research has shown that there are ways to contain the cost spiral in the presence 

of subsidies, through performance-based benchmarking and the use of service quality 

indicators in service contracts (Hensher and Prioni, 2002; Hensher and Stanley, 2003; 

Mazzulla and Eboli, 2006; Gatta and Marcucci, 2007), action by the regulator to enforce 

penalties for poor performance, and the application of competitive tendering (Hensher 

and Houghton, 2004; Hensher and Wallis, 2005).  

 

A related issue discussed by Preston (2008) comes from the distinction between capital 

and operating subsidies. One-off subsidies targeted specifically to capital investment may 

condition the decisions of policy makers and operators towards over-investing in capital, 

for example, acquiring more sophisticated or newer vehicles instead of spending on the 

maintenance of the current fleet. Pre-defined rail-specific capital subsidies may also lead 

to unjustified rail investments in areas with low demand for public transport, with the 

second round effect of inducing an unnecessarily large subsidy for operation. Therefore, 

the correct ex-ante determination of capital and operating subsidies is crucial to ensure 

efficiency in the allocation of resources to public transport service provision. 

 

In summary, the way in which a (supposed to be optimal) subsidy is paid matters, and the 

business environment should be defined in a way to minimise or eliminate potential 

money waste induced by ill-designed subsidies. The design of contracts to tackle this 

problem is a topic of ongoing research and continuous learning and adjustment in public 

transport agencies around the world.  

 

2.3 Results that Matter 

 

2.3.1 Peak versus off-peak fares 

Several authors have moved beyond considering a single period of operation, 

distinguishing peak and off-peak periods. This issue was first addressed qualitatively by 

Turvey and Mohring (1975), who make a case for a higher first best fare in the peak 

period and in the peak direction, given that bus occupancy is higher, and therefore, on the 
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one hand more passengers are affected when an extra passenger boards a bus, and on 

the other hand the probability of a passenger not being able to board a full bus is greater. 

 

A more complex way to consider this problem is that when travellers face an increase in 

the price of one mode in one period, they may not only switch mode, but also switch 

departure time, given values of cross-mode and cross-period demand elasticities (Glaister, 

1974; Glaister and Lewis, 1978; De Borger et al., 1996; Hensher, 2002). In a two-mode 

two-period second best pricing model, Glaister (1974) finds that both peak and off-peak 

bus fares are below marginal cost, but the relationship between the two cannot be 

determined a priori, and more specifically, peak bus fare is not necessarily greater than 

off-peak bus fare. This is despite the fact that a reduction in the peak fare should attract 

more peak car users than a reduction in the off-peak fare, due to the assumption that the 

cross elasticity between modes is greater during the peak than between the peak and the 

off-peak period. The rationale behind low off-peak bus fares is two-fold: first, it attracts 

peak car users, and second, some peak bus passengers are also transferred to the off-

peak, which reduces peak bus demand, which in turn decreases peak fares and therefore 

makes bus in the peak period more attractive for motorists.  

 

Glaister’s model was extended by Glaister and Lewis (1978) who added rail as a travel 

option to bus and car in a two-period framework, producing a total of six mode-period 

travel alternatives. Travel times by car and bus depend on both car and bus demand to 

account for congestion, whereas rail travel times are fixed. A system of equations for the 

optimal bus and rail fares are identified. In terms of estimation of elasticities, the authors 

use off-peak elasticities that are between two and three times the peak elasticities, based 

on London data, and assume that peak to off-peak elasticities are relatively low, around 

five percent of the corresponding within-period elasticity.   

 

A second argument to charging a higher fare in the off-peak than in the peak appears in 

Jansson (1993), who argue that if, in the peak, the frequency is high enough for 
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passengers to arrive randomly at bus stops, and in the off-peak, the frequency is low 

enough for passengers to plan their trip following a timetable, the lower value of the 

schedule delay savings value in the latter reduces the optimal frequency and increases 

the occupancy rates with respect to the peak, therefore increasing the marginal cost per 

passenger and, consequently, the off-peak fare.  

 

At this stage, it is worth noting that even though it is theoretically possible that optimal 

fares can be shown to be higher in the off-peak than in peak periods, as analysed by 

Glaister (1974) and Jansson (1993), such an outcome is rare in numerical applications of 

marginal cost pricing principles reported in the literature. Peak fares are greater than their 

off-peak counterparts in both second best (Glaister and Lewis, 1978) and first best (De 

Borger et al., 1996; De Borger and Wouters, 1998) scenarios. An exception is Proost and 

Van Dender (2008) who estimated optimal fares for bus and metro in London and 

Brussels, and found that off-peak fares are lower in London but higher in Brussels, relative 

to the optimal peak fares. In practice, the peak fare is commonly higher than the off-peak 

fare due to the higher marginal cost and capacity constraints that are characteristic of 

peak periods in bus and rail systems, at least in large cities. 

 

2.3.2 Effect of including other externalities beyond congestion 

A relatively few authors have studied the impact of other external costs of transport on 

pricing and subsidy decisions. Buses and trains do cause accidents, pollution and noise, 

and therefore consideration of these externalities on the setting of optimal fares is 

justified on economic grounds.  

 

When environmental externalities are included in first best pricing models, optimal prices 

increase for motorised modes, which would in turn reduce the first best subsidy 

calculated for public transport (Kerin, 1992). However, the second best analysis is 

different. Taking the case of fuel emissions, one bus is likely to pollute more than one car, 

but it carries more people with a single vehicle, thus reversing the result of comparing 
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vehicles only, i.e., the marginal external cost of car users is usually larger than that of 

public transport riders8

 

, therefore it is expected that the fare premium of considering 

externalities other than congestion on optimal prices is greater for private than for public 

transport. On second best grounds, this would tend to reduce the bus fare even more and 

subsequently justify higher subsidies (Else, 1985).  

Among the multimodal pricing models that include environmental, accident or noise 

externalities we can cite De Borger et al (1996), De Borger and Wouters (1998),  Proost 

and Van Dender (2008), Parry and Small (2009) and Jansson (2010). Because of data 

limitations, models that are applied to cities usually use a constant value for the marginal 

accidents and environmental externality costs per kilometre, independent of traffic flow; 

nevertheless, it is possible to use more sophisticated models that relate pollution or 

accidents costs to traffic speed and flow (e.g., Shepherd, 2008). The contribution of 

environmental and accident externalities to optimal fares relative to the congestion 

externality, strongly depends on the specific application, in particular on the degree of 

congestion observed. It is common that in peak periods in highly urbanised areas, the 

marginal cost of congestion is much higher than that of other externalities, whereas in the 

off-peak the external costs of congestion, accidents and pollution have the same order of 

magnitude, as reported by De Borger et al (1996) for Belgium, and Parry and Small (2009) 

for London and U.S. cities. Therefore, we can conclude that ignoring externalities other 

than congestion should not have a substantial impact on fares in the peak period, but it 

does matter for off-peak travel.  

 

2.3.3 Dedicated bus lanes  

The study of private and public transport pricing options is different if modes share the 

right of way or run on segregated roads. In this section, a review of studies that look at 

the convenience of providing segregated lanes for buses (at the cost of reducing road 

space for cars) is undertaken. 

                                                        
8 As empirically found for pollution and accidents, but not for noise (De Borger et al., 1996). 
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Mohring (1983) analyses the convenience of having reserved lanes for buses with first 

best pricing and with a number of second best scenarios, including a suboptimal toll for 

cars, and zero-bus-fare and zero-bus-deficit constraints. Using Minneapolis data, it is 

found that the travel cost savings of providing dedicated road infrastructure for buses are 

small when marginal cost pricing is in place (a result also obtained by Small, 1983), but 

considerable benefits are accruable when toll and fare constraints are present, to the 

point that the travel cost in a situation with exclusive bus lanes, toll and bus fare 

constraints, is only slightly higher than when first best pricing is implemented on mixed 

traffic (bus-automobile) roads. At the same time, Small (1983) finds that when total 

demand exceeds a threshold, the benefits of segregating a bus lane overcome the 

increased congestion cost for auto users.   

 

Berglas et al. (1984) study first best and second best pricing for bus and automobile with 

and without segregated facilities for buses, optimising fares and road width in each case. 

They show that if travel cost decreases with road width, and the cost of separating the 

right of way for buses and cars is nil, the mixed traffic operation is never superior, and is 

more likely inferior than providing exclusive lanes for buses and cars, given that a bus 

passenger has a lower contribution to congestion than a car user. The congestion 

interaction between buses and cars suggests that when an auto traveller switches to bus, 

both buses and cars obtain speed gains, whereas when there are segregated busways, 

only car users obtain a gain in travel time (assuming that an extra bus passenger has no 

effect on bus travel time). This argument is used by the authors to show that under 

segregated operation and second best pricing, the need of subsidies for buses is reduced. 

 

The superiority of providing exclusive bus lanes is also supported by Basso and Silva 

(2010), who using data from Santiago, Chile find that the provision of one bus lane on a 

corridor increases social welfare with respect to any scenario in which bus and car share 

the right of way (even when optimal pricing is applied in mixed traffic but not for exclusive 

bus lanes). The optimal operation with dedicated bus lanes is translated into a lower 
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requirement on the number of buses, a lower bus fare and higher frequency, providing 

large benefits for bus users. A distributional effect of the dedicated lane policy shows that 

the highest income group is the only segment worse off in terms of consumer surplus if 

this policy is applied, whereas middle and low income groups are better off.  

 

Summing up, implementing dedicated bus road infrastructure to fight congestion 

problems is exposed by the extant literature as being slightly worse (Mohring, 1983) or 

better (Basso and Silva, 2010) than providing marginal cost pricing on mixed traffic 

conditions, with the extra advantage that bus lanes as a transport policy tool are likely to 

be more politically and sociably acceptable than imposing marginal cost pricing (Mohring, 

1983), a fact that is evident when comparing the number of cities in which marginal cost 

pricing has been implemented, versus cities with dedicated bus lanes. A limitation of all 

economic models on bus lanes is that they abstract from the extra cost of reserved bus 

lanes produced by diversions and extra delays on intersections, as some movements need 

to be prohibited. This consideration is likely to reduce the welfare gain estimates of 

segregated bus lanes but is unlikely to change the main conclusions obtained by the 

authors.   

 

2.3.4 Interactions with other sectors of the economy 

The previous discussed research is based on partial equilibrium models that are 

concerned with the transport sector only, and therefore, abstract from the interaction 

between transport and other sectors of the economy. This is a significant issue because 

the result of a partial equilibrium model establishes, for example, the need to subsidise 

public transport as a way to maximise social welfare in the transport sector, but says 

nothing about how such a deficit should be covered, i.e., where that subsidy should come 

from and what are its repercussions on the wider fiscal system. In order to answer these 

questions, one needs to go further than a transport specific approach, into a general 

equilibrium model, which can be used to estimate the impact of transport pricing reforms 
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on the government budget, the labour market, land use, firms and so on9

 

. Large scale 

general equilibrium models are usually too complex to be able to develop analytic 

solutions, due to the large number of interrelations between sectors in the economy that 

must be accounted for, and therefore need to be solved numerically as, for example, the 

LUSTRE model calibrated for Washington DC (Safirova et al., 2007) and the TRESIS-SGEM 

framework under development for Sydney (Hensher et al., 2012). 

Things are simpler when the rest of the economy is reduced to a limited number of 

relevant markets, like for instance the labour market, and distortions in the economy are 

then collapsed into the labour tax only, as implemented in Parry and Bento (2001), who 

argue that public transport subsidies increase labour supply because the cost of 

commuting is reduced. Nonetheless, they conclude that spending road pricing revenue on 

cutting labour taxes directly is more welfare improving than earmarking the revenue to 

reduce fares. Their model assumes rail-car competition with no congestion interaction 

between modes, which is a relevant issue, because in a situation where there is 

congestion interdependence such as when buses and cars share the right of way, a 

transfer of passengers from cars to buses has a positive effect on bus speed due to the 

reduced number of cars in the road. This is a benefit from public transport subsidies that 

is not counted in bimodal rail-car models. 

 

The question of how to fund public transport subsidies was first analytically addressed by 

Dodgson and Topham (1987), who investigated the efficiency of raising the subsidy for 

public transport through a rise in the tax on other goods, in particular, the property tax on 

land and fixed structures. The convenience of such a subsidy strongly depends on the 

marginal cost of public funds (MCF), which measures the welfare loss for society in raising 

additional revenue to finance public spending through the application of distortionary 

taxes (Browning, 1976; Kleven and Kreiner, 2006). The MCF increases with the initial tax 

                                                        
9 For an extended discussion on the advantages of general equilibrium models, see Calthrop et al. (2010) 



37 
 

rate on the taxed good used to finance public transport; and the larger the marginal cost 

of public funds, the less likely that reducing fares through subsidies is welfare improving.  

 

The MCF does depend on what tax instrument is used to increase government revenue 

(e.g., uniform lump sum tax, income tax). Consequently, given the objective of subsidising 

public transport, the welfare analysis of transport pricing policies depends on the source 

of the money required to cover financial deficits or investments (Proost et al., 2007; 

Calthrop et al., 2010) or how the revenue is allocated if there is a surplus.  

 

The question therefore arises as to what is the impact of wider fiscal considerations in the 

calculation of optimal fares and (possibly) subsidies? It is expected that estimated public 

transport subsidies would decrease given that when there is no account on how the 

subsidies are funded, their cost is misrepresented in the social welfare analysis (Kerin, 

1992). This issue can be analysed in a simple (but not complete) way that avoids dealing 

with general equilibrium models, by simply including the marginal cost of public funds in 

partial equilibrium models, as implemented in De Borger et al.(1996) and Proost and 

Dender (2008) among others, who apply a weight to net transport revenues. De Borger 

and Swysen (1999) analyse the impact of the MCF on the optimal bus fare, showing that 

the consideration of the MCF makes the optimal bus fare deviate from its marginal social 

cost, even when cars are priced at marginal cost. The numerical application to Brussels 

and London of Proost and Van Dender (2008) shows that, as expected, road prices and 

public transport fares increase in the presence of costly public funds, as the benefits of 

generating revenue to be used elsewhere in the economy (or the benefits from reducing 

the subsidy for public transport) are taken into account. A similar conclusion is reached by 

Parry and Small (2009) who suggest that fiscal considerations would decrease optimal 

public transport subsidies, but not to the point of jeopardising their need on second best 

grounds. 
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In summary, approaching the problem by including the MCF to the net revenues of a 

transport intervention in a partial equilibrium model is useful as a first approximation to 

answering the question of how tax distortions affect, and are affected by, reforms in the 

transport sector, but a full understanding of this issue still requires a general equilibrium 

model, since for example, the impacts of a reduced congestion on other markets (as 

shown by Parry and Bento, 2001, for the income tax), derived from a public transport 

subsidy, are not going to be captured with an approach that only considers the MCF as 

representing the rest of the economy.  

 

2.3.5 Other public transport provision structures 

Thus far, optimal pricing rules assuming social welfare maximising behaviour by the 

authority or price regulator have been examined. Nevertheless, as discussed by Proost et 

al. (2007), in the real world that need not to be the case, as governments are subject to 

constraints and pressures from lobby groups, or simply have a different objective function 

(e.g., maximising votes instead of maximising welfare). The study of these issues is 

beyond simple economic optimisation models that are common in welfare maximising 

models, and falls under the regime of political economy analysis (Proost et al., 2007). 

 

Other departures from the social welfare maximisation assumption are simpler to 

analyse, such as the case of private operator profit maximisation and welfare 

maximisation subject to a budget constraint. In this section we briefly describe the main 

findings in the literature. 

 

In the numerical estimation of second best fares for public transport, it is common to find 

very low fares as a competitive neutrality argument to compensate for the underpricing 

of cars, or even negative fares for buses (e.g., Ahn, 2009)10

                                                        
10 When the in-vehicle time does not depend on the number of passengers and only the waiting time effect 

of frequency is accounted for, the first best bus fare is zero (Chang and Schonfeld, 1991; Ahn, 2009; Basso 

and Jara-Díaz, 2010), as under this assumption carrying an extra passenger is costless. Consequently the 

second best fare is negative, in order to attract travellers from the underpriced car. 

. This issue has resulted in 
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researchers introducing a budget constraint to the welfare maximisation problem (De 

Borger et al., 1996; De Borger and Wouters, 1998; Danielis and Marcucci, 2002; Ahn, 

2009; Basso and Silva, 2010), by either setting a maximum allowable subsidy or setting 

public transport fare equal to average operator cost. As expected, any financial constraint 

reduces the social welfare relative to the unconstrained case. 

 

Beyond constrained or unconstrained social welfare maximisation as the objective 

function to define optimal fares, another problem often examined is operator profit 

maximisation (e.g., Chang and Schonfeld, 1991; Chien and Tsai, 2007; Pels and Verhoef, 

2007; Wichiensin et al., 2007; Ahn, 2009). The general result when comparing profit and 

welfare maximisation is that the profit maximising fare exceeds the welfare maximising 

one by a monopolistic mark-up, which in the analysis of Ahn (2009) is a function of the 

degree of substitution between public transport and car; in particular, the lower the cross 

elasticity of demand, the higher the monopolistic fare.  

 

Proost and Van Dender (2004) compare first best pricing against the observed current 

situation and two alternative pricing policies: average cost pricing for all modes and 

Ramsey pricing11

 

 with budget equilibrium in the transport sector with respect to the 

reference situation. Results are obtained for several European cities using the partial 

equilibrium model TRENEN, and show that the more stringent a policy is in terms of 

budget constraints, the lower the social welfare it provides, to the point that average cost 

pricing (which requires cost recovery in public transport) yields welfare losses compared 

to the reference situation in which public transport is subsidised (even though it is not an 

optimal second best subsidy). 

                                                                                                                                                                       
 
11 The Ramsey pricing rule maximises welfare given a cost recovery constraint, and therefore optimal fares 

are higher than in the unconstrained case; the rule establishes that the price deviation should be inversely 

proportional to the price elasticity of demand (Ramsey, 1927; Hensher and Brewer, 2000; Jara-Díaz and 

Gschwender, 2005).  



40 
 

In terms of service outputs, Pels and Verhoef (2007) show that the rules for optimal 

frequency and capacity are the same under both profit and welfare maximisation, 

assuming congestion independence (car-rail model). However, this result does not hold 

when there is congestion interaction between cars and buses due to the effect of bus 

frequency on traffic congestion (Ahn, 2009). It is crucial to realise that even if the 

frequency rule is the same under profit and welfare maximisation, this does not 

necessarily mean that the frequency should be set at the same level under both regimes, 

as the frequency value depends on the final demand, which is likely to be price sensitive. 

Therefore, as the optimal fare is higher when maximising profit, it is expected that 

frequency is going to be lower than when maximising social welfare. This issue has gained 

renewed interest as van Reeven (2008) uses that the same functional form for the optimal 

frequency may hold under profit and welfare maximisation to suggest that a monopolistic 

public transport operator behaves as a social welfare maximiser, and that the service can 

be operated with a positive profit, therefore public transport subsidies would not justified 

on first best grounds. This conclusion strongly depends on van Reeven’s demand 

specification, as later shown by Basso and Jara-Díaz (2010) and Savage and Small (2010), 

who by means of a more general analysis on the price sensitivity of demand, find that the 

value of the optimal frequency is different under profit maximisation, an expected result 

when fares are different and demand is price-sensitive, as discussed before.  

 

A different problem was addressed by Wichiensin et al. (2007) in their analysis of car, bus 

and rail pricing. They compare the cases in which the public transport market behaves as 

a monopoly or as a non-cooperative duopoly, maximising profit in either case. They show 

that social welfare and consumer surplus are larger in the duopoly case due to the lower 

fares for both bus and rail, which also implies a higher modal share but lower profits for 

public transport relative to a profit maximising monopoly. 
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2.3.6 Other relevant aspects 

In this section, two elements that have not been addressed thus far are briefly discussed, 

namely travel distance and distributional implications of pricing. These elements are 

expected to play a role in the setting of optimal prices in urban transport.  

 

The impact of travel distance on fare has been analysed in depth by Kerin (1992) and Jara-

Díaz and Gschwender (2005). There is no definitive answer on whether or not fares 

should increase with travel distance; the outcome depends on the conditions of the trip. 

Turvey and Mohring (1975) show that first best bus fare can decrease with travel distance 

in radial corridors, as in the peak direction (towards the CBD), passengers that travel 

shorter distances get on buses when more passengers are already on board, which 

represents a greater social cost. This inverse relation between fare and travel distance 

might not hold if we consider that long distance passengers yield greater discomfort 

externalities than short distance passengers (Kraus, 1991), as the latter are less likely to 

have a seat available when boarding a bus, due to the presence of the former. As stated 

by Turvey and Mohring (1975), what matters is the marginal contribution of a passenger 

to the social cost of the public transport service, which may be related to travel distance 

in a proportional or inverse way, depending on the conditions of the trip. 

 

On distributional and equity issues, it has been widely recognised that pricing decisions 

not only have welfare implications in absolute terms, but also distributional effects which 

are generally ignored because they greatly complicate the analytical treatment of the 

pricing problem. Distributional concerns emphasise the need of a general equilibrium 

approach, as it seems necessary to identify who is affected by, for example, an increase in 

the labour or land properties tax to finance and increase the subsidy for public transport 

(Dodgson and Topham, 1987; Proost et al., 2007)12

 

.  

                                                        
12 Dodgson and Topham (1987) find that the existence of social benefits of fares subsidies financed by 

additional taxes depends on the income elasticities of demand for private and public transport, and for the 

taxed good. 
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2.4 Optimal Public Transport Supply 

 

2.4.1 Basic theory and main results 

In the microeconomic literature on public transport operations, the most common 

objective is the maximisation of social welfare, defined by the summation of the 

consumers and producer surplus, which is equivalent to minimising the total cost tC , i.e., 

users’ cost uC  plus operators’ cost oC , when demand is parametric (Jara-Díaz, 1990).  

Users cost is usually divided into access time cost aC , waiting time cost wC  and in-vehicle 

time cost vC , therefore the total cost can be defined as: 

t o u o a w vC C C C C C C= + = + + +     (2.1) 

The cradle of this body of literature is a paper by Mohring (1972), who attempts to find 

the optimal value of the service frequency for a single bus route. In Mohring’s simplest 

model it is assumed that frequency affects waiting time, but not in-vehicle (riding) time, 

that the number of bus stops is held constant and that the unitary cost of operating a bus 

per hour is fixed, c. In this case, total cost (2.1) is minimised by providing an optimal 

frequency that grows with the square root of demand N: 

*

2
w

c

Pf N
t c

=        (2.2) 

where wP  is the value of waiting time savings and ct  is the (constant) cycle time13

                                                        
13 In (2.2) it is also assumed that average waiting time is half of the average headway between two 

consecutive buses, which explains the factor 2 in the denominator. 

. This 

first version of the square root formula clearly shows the trade-off between the interests 

of users and operators; the value of waiting time savings and demand push frequency up 

(users want a high frequency to reduce waiting time), unit operator cost c acts in the 

opposite direction reducing frequency, as fewer buses mean a lower cost for the operator. 

Frequency (2.2) leads to the existence of scale economies in the optimal design of transit 

services, and subsequent need for subsidies under marginal cost pricing (as discussed in 

Section 2.3). 
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An important and sometimes forgotten outcome is that the square root rule does not 

necessarily mean that optimal frequency depends on the square root of demand; that is a 

result of the first Mohring model (Mohring, 1972). Subsequent extensions with more 

accurate representations of the users cost function - for example, including boarding and 

alighting time that makes the total travel time to increase with the number of passengers 

- have shown that, even though the square root form is maintained, demand under the 

root appears to a degree higher than one, for example, the quadratic formulation in 

Jansson (1980) who included the boarding and alighting effect on travel time. Therefore, 

even though the functional form for the optimal frequency is a square root when a single 

route is considered, it can vary with demand to a power higher than 0.5. 

 

The total cost minimisation approach has been subsequently extended to jointly optimise 

frequency and other variables, such as bus size (Jansson, 1980; Oldfield and Bly, 1988; 

Jara-Díaz and Gschwender, 2003a), route density (Kocur and Hendrickson, 1982; Chang 

and Schonfeld, 1991), the spatial structure of bus services, comparing corridors (with 

transfers) and direct lines to link origins and destinations (Jara-Díaz and Gschwender, 

2003b), and the optimal design of alternative fleet assignment strategies, including 

expressing (Leiva et al., 2010), short turning (Delle Site and Filippi, 1998; Tirachini et al., 

2011) and short turning integrated with deadheading (Cortés et al., 2011). Other 

methodological contributions include showing that bus operating cost is proportional to 

its size (Jansson, 1980), that the bus occupancy rate or load factor may increase average 

waiting time as buses are more prone to be full (Oldfield and Bly, 1988), and that the 

value of in-vehicle time savings is an increasing function of the load factor, in order to 

account for the disutility of crowding and standing (Kraus, 1991; Jara-Díaz and 

Gschwender, 2003a). Some of these authors have been able to arrive to closed forms for 

the optimal values of the two more common optimisation variables, bus frequency and 

bus size (e.g., Jansson, 1980; Chang and Schonfeld, 1991; Cortés et al., 2011), whereas in 

other cases the mathematical complexity of the models require numerical methods to 

locate a solution (e.g., Delle Site and Filippi, 1998; Leiva et al., 2010).   
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2.4.2 Public transport supply and road pricing 

A relevant issue for the economic analysis of pricing options is the determination of the 

optimal change in public transport frequency and capacity when road pricing is 

introduced. The answer is not straightforward; for instance, Jansson (2010) finds that bus 

frequency, when car travel is underpriced, should be lower than when marginal cost road 

pricing is in place, due to the negative impact of frequency on the environment, and 

excessive congestion derived from the greater than optimal car traffic. However, the 

bimodal rail-car analysis of Kraus (2003) concludes that both rail frequency and capacity 

should increase if cars are underpriced, assuming no congestion interaction and 

disregarding the environmental cost associated with rail, assumptions that are relaxed in 

the model derived in Chapter 3. The existing literature does not offer unambiguous 

evidence for the direction of change in frequency and capacity of public transport after 

applying road pricing; indeed the outcome seems to depend on the modelling 

assumptions. Bus (and rail) frequency should be increased with congestion pricing in 

situations where the expected modal switching (given the relevant cross price elasticities) 

might lead to a shortage of service capacity, at least in peak periods. The anticipation of 

modal switching in London and Stockholm delivered increased buses in advance of the 

application of cordon pricing, which was used to show that the revenue raised from the 

congestion charge was being hypothecated back to the transport sector for the benefit of 

modal switchers. 

 

2.4.3 When the capacity constraint is binding 

Transport capacity on a public transport route is given by the product of the frequency of 

service and the capacity of vehicles. This transport capacity sets the maximum flow that 

the service is able to accommodate in a given period of time. If the maximum passenger 

flow equals the transport capacity, it is said that the capacity constraint is binding, and, as 

expected, this has an influence on the determination of outputs like optimal fare and 

frequency, because in this case an increase in demand must be met by an increase in 

supply (e.g., more vehicles, bigger vehicles). 
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To our knowledge, the first transport pricing study in which capacity considerations are 

accounted for is Glaister (1974), who solves the second best problem with a constraint 

that limits the amount of travel in the peak to the capacity of the bus system, finding that 

a shadow price of capacity, i.e., the extra social benefit achieved if capacity is increased by 

one unit, should be incorporated into the bus fare. Glaister does not provide an 

expression for the shadow price of capacity because capacity is not an optimisation 

variable in his model. As an aside, he concludes that if the capacity constraint is active in 

the peak, but not in the off-peak period, it is more likely that the optimal peak fare will be 

greater that the off-peak counterpart.   

  

It has been subsequently shown that when transport capacity is optimised together with 

the fare, the shadow price of capacity is identified as a function of users and operators 

cost parameters (Pedersen, 2003; Small and Verhoef, 2007). For example, when the 

optimal frequency cannot accommodate total demand, and needs to be consequently 

increased, there is a positive effect on users cost and a negative effect on operator cost, 

that should somehow show up in the optimal fare, as shown by Pedersen (2003) using a 

public transport demand and supply model in which transport capacity is an optimisation 

variable.  

 

Another argument to increase bus fares when the capacity constraint is binding is 

provided by Turvey and Mohring (1975), who argue that higher fares should be levied 

when buses run full (or close to full), as this increases the probability of passengers not 

being able to board the first bus that arrives at their stop, and having to wait for one or 

more buses to continue their trip.  

 

In conclusion, transport capacity appears to play a role in increasing both first best and 

second best fares when the system is operating at capacity. Nevertheless, the fact that the 

capacity constraint is binding does not necessarily mean that the provided frequency and 

bus size are not optimal. This issue will be addressed in Chapter 3, where it is shown that 
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what really matters is not whether the capacity constraint is binding or not, but whether 

the supplied transport capacity is optimal. In other words, the first best fare equals 

marginal total cost minus average users cost when the transport capacity is optimal, even 

if the capacity constraint is binding (disregarding Turvey and Mohring’ argument of an 

increased probability of buses not stopping to collect passengers).  

 

2.5 Summary 

 

The basic theory on urban transport pricing and public transport optimisation has been 

reviewed, highlighting the main methodological contributions found in the literature. The 

review indicates that there are sufficient theoretical grounds to set public transport fares 

below average operator costs, and therefore an optimal subsidy seems justified on first 

best grounds, second best grounds, or both. Nevertheless, the answer as to which is the 

appropriate level of fare and subsidy does depend first on the modelling approach (first or 

second best, what externalities are included, possibility of day of time substitution), and 

second, on the actual context or city. As a result, estimated optimal bus fares vary from 

negative figures to values that actually cover operating cost (without considering capital 

investment). The optimisation of bus frequency and size is also extensively discussed, 

with reference to elements that influence their optimal level such as active capacity 

constraints and the setting of road pricing.  

 

This thesis adds to this body of literature by analysing the influence of non-motorised 

transport on public transport pricing, introducing new decision variables like the choice of 

a fare collection technique and level of infrastructure investment for bus corridors, and by 

providing a more comprehensive methodological framework for the introduction of bus 

congestion and passengers crowding in the optimisation of bus services and setting of 

fare and road pricing. These elements are presented in the next chapters. 
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Chapter 3 
3 Multimodal transport pricing: the influence of non-motorised modes 

Multimodal Transport Pricing: the Influence of Non-

motorised Modes14

 

 

 
 

3.1 Introduction 

 
Second best pricing models that take into consideration only two modes - cars and public 

transport (bus or rail) - have found that subsidies for public transport are desirable, with 

fares below marginal cost due to the underpricing of cars. However, as put forward by 

Kerin (1992), this approach neglects the existence of other modes, notably walking and 

cycling, that play an important and growing role in urban transport systems, especially for 

short trips. Disregarding non-motorised transport is a growing concern because low bus 

fares not only deter some drivers from using their cars, but also divert walkers and cyclists 

onto trains or buses, which is not necessarily a desirable outcome. As such, a pricing 

model that also includes non-motorised transport seems desirable in order to estimate 

the impact of these modes on (possibly decreasing) optimal subsidies for public transport. 

Even though there are no analytical models that address the issue of the influence of non-

motorised transport on urban transport pricing policy, we do find that walking and cycling 

are considered as travelling alternatives in applied models (Safirova et al., 2006; Proost 

                                                        
14 The multimodal pricing model presented in this chapter is published in Tirachini and Hensher (2012). 
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and Van Dender, 2008), but no attempt is made to identify how the design of the pricing 

instrument would change by considering or ignoring walking and cycling.  

 

In this chapter, a multimodal pricing model is developed, including three modes - 

automobile, public transport (either bus or rail) and non-motorised transport (either 

walking or cycling), with the objective of maximising social welfare. This model extends 

the previous literature by identifying the role that non-motorised transport can play in the 

optimal setting of fares for public transport. Emphasis is given to the effect of bus 

demand on car congestion when both modes share the right of way, and the way in which 

the optimal fare, frequency and vehicle size should be determined when the capacity 

constraint is binding for a public transport service, i.e., when demand meets the capacity 

offered by the operator (see Section 2.4.3). We also include in the framework the cost of 

externalities other than congestion, such as accidents, pollution and noise, and the toll 

collection cost, all of which increase the marginal cost of motorised transport compared 

with walking and cycling alternatives. The emphasis of this chapter is not on the 

determination of the empirical value for optimal fares and subsidies (where applicable) 

but with the economic principles behind them15

 

. 

With reference to the outcomes of this multimodal pricing framework, it is shown that 

the effect of considering non-motorised transport alternatives on optimal public transport 

fares depends on the demand substitution between modes; the stronger is the demand 

substitution between public transport and non-motorised modes, relative to the 

substitution between car and public transport, and car and non-motorised modes, the 

more likely it is that a higher public transport fare would result from the allowance for the 

role of walking or cycling on fare setting. On the other hand, a capacity constraint on 

public transport plays a role in optimal pricing only when the transport capacity cannot be 

set at its optimal level. Finally, the internalisation of externalities other than congestion is 

                                                        
15 For numerical comparisons on fares and subsidies among several studies, see Proost and Van Dender 

(2008) and Parry and Small (2009). 
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likely to increase optimal fares and road charges, therefore increasing the generalised cost 

of motorised transport modes relative to a non-motorised alternative. 

 

The remainder of the chapter is organised as follows. Definitions, assumptions and 

formulation of the social welfare maximisation model are presented in Section 3.2. The 

first best and second best problems are solved and analysed in Sections 3.3 and 3.4, 

respectively. Section 3.5 extends the model by including external costs other than 

congestion and toll collection costs into the social welfare objective function. Finally, a 

summary and the main conclusions are given in Section 3.6. 

 

3.2 Model Assumptions 

 

Consider a single origin-destination pair and three modes: automobile (a), public 

transport (b) that could be a bus or rail based mode, and a non-motorised mode (e) that 

could be walking or cycling. At this point it is necessary to distinguish between non-

motorised modes as being complementary or an alternative to motorised modes; walking 

is commonly an access and/or egress mode in a trip chain that includes driving or riding a 

bus or train, in which case the modes are complementary. In this model, it is assumed 

that walking or cycling are a (linehaul) mode, i.e., are an alternative to choosing a 

motorised mode (walking and cycling as an access mode is included into the motorised 

alternatives). 

 

The competitiveness of walking and cycling is mainly associated with trip distance and 

factors like steepness of (some part of) the route, weather, availability of safe walking and 

cycling facilities, etc. In all situations, walking as a substitute to motorised modes typically 

declines as distance increases, for example, in Sydney 65.8 percent of trips shorter than 

one km are walking-only trips, a fraction that is 23.6 percent for trips between one and 

two km, and 5.4 percent for trips between two and five km (TDC, 2010). Donoso et al. 

(2006) reports a similar pattern for Santiago, Chile.  As such, there is a (location specific) 

distance range in which walking is an alternative for motorised modes. 
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Without loss of generality, it is assumed in the model that the public transport mode is a 

bus that shares the right of way with cars, resulting in congestion dependence between 

the two modes. The case of trains or buses running on segregated busways is a particular 

case of the above, derived after assuming congestion independence between modes, as 

usually assumed by researchers that address the rail-car pricing problem (Tabuchi, 1993; 

Arnott and Yan, 2000; Pels and Verhoef, 2007). The decision variables are optimal prices 

for both automobile and public transport, and frequency and size (capacity) of the public 

transport mode. We consider only one period of operation16

 

, which allows us to find a 

closed form formulae for the optimal prices of automobile and public transport to shed 

light on the impact of non-motorised transport and capacity constraints. Road capacity is 

fixed and tax distortions are ignored (see Section 2.3.4). 

We follow much of the notation of Small and Verhoef (2007). Ignoring income effects, the 

joint demand for the three modes can be obtained from the benefit function  

( )eba qqqB ,, , which expresses the consumers’ willingness to pay for a particular 

combination { }eba qqq ,,  of travel by automobile, public transport and non-motorised 

mode. The inverse demand function iD for mode i is given by: 

( ) ( ), ,
, , a b e

i a b e
i

B q q q
D q q q

q
∂

=
∂

   { }ebai ,,∈    (3.1) 

Let iC  and ic  be the total and average cost functions of mode i respectively (including 

both time and operation costs), that is: 

iii cqC =      (3.2) 

Let ( )bbbaa Kfqqc ,,,  and ( )bbbab Kfqqc ,,,  be the average cost of car and bus travel, 

respectively. Further, it is assumed that these cost functions depend on demand aq , bus 

                                                        
16 Examples of multiperiod analyses are Glaister (1974), Glaister and Lewis (1978),  De Borger et al. (1996) 

and Proost and Van Dender (2008). 
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frequency bf  and capacity bK  (related to bus size), and the activity of buses at bus stops, 

which is given by bf , demand bq  and capacity bK  if dwell time increases with crowding. 

The relationship between car demand aq  and car flow af  is aaa qf υ= , where aυ  is the 

inverse of the average occupancy rate per car17
bc. Bus cost  includes users cost uc (access, 

waiting and in-vehicle time costs) and operator cost oc  (which depends on bus frequency 

and size); hence 

oub ccc +=       (3.3) 

We assume that the travel time associated with walking or cycling is fixed and 

independent of demand or flow of any mode, i.e., the non-motorised mode is 

uncongestible.  

 

In equilibrium, the marginal benefit is equal to the generalised price, aac τ+  and buc τ+  

for cars and public transport, respectively (equation 3.4), where aτ  is the road use charge 

for the auto occupant and bτ is the fare for public transport.  

aa
a

c
q
B τ+=

∂
∂

  u b
b

B c
q

τ∂
= +

∂
    (3.4) 

 

The social welfare function SW (3.5) is maximised subject to a capacity constraint for 

public transport vehicles, given by expression (3.6), which states that the transport 

capacity bbKf  must be sufficient to carry demand bq . 

 ( ) ( ) ( ), , , , , , , ,a b e a a a b b b b b a b b b e eSW B q q q q c q q f K q c q q f K q c= − − −      (3.5) 

bbb Kfq ≤        (3.6) 

 

 
                                                        
17 We assume that the occupancy rate does not change with pricing reforms, i.e., we ignore the possibility 

of car-pooling if road price increases. 
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3.3 First Best Pricing 

 

To solve the constrained maximisation problem (3.5)-(3.6), we set the Lagrange function L 

given by (3.7). 

 

( ) ( ) ( ) [ ], , , , , , , ,a b e a a a b b b b b a b b b e e b b bL B q q q q c q q f K q c q q f K q c f K qλ= − − − + −      (3.7) 

 

whereλ  is the Lagrange multiplier associated with constraint (3.6), i.e. the marginal social 

benefit of increasing bus transport capacity by one unit.  

 

After applying first order conditions (see Appendix A1) we find:  

a

b
b

a

a
aa q

cq
q
cq

∂
∂

+
∂
∂

=τ       (3.8) 

0=eτ        (3.9) 

Equation (3.8) is the well-known Pigouvian tax for cars, including here the marginal cost 

on bus due to car demand (second term), whereas (3.9) shows that the price for walking 

or cycling is zero (the uncongestible mode). 

 

The solution for the optimal bus fare, frequency and capacity depends on whether or not 

the capacity constraint (3.6) is binding.   

 

Case 1: Capacity constraint is not binding  

 

In this case 0=λ  and the optimal fare is obtained as (3.10): 

b

b
b

b

a
aob q

cq
q
cqc

∂
∂

+
∂
∂

+=τ      (3.10) 

The optimal frequency and capacity are obtained by solving the following system of 

equations: 



53 
 

0a b
a b

b b

c cq q
f f

∂ ∂
+ =

∂ ∂
     (3.11a) 

0a b
a b

b b

c cq q
K K
∂ ∂

+ =
∂ ∂

     (3.11b) 

 

Case 2: Capacity constraint is binding  

In this case constraint (3.6) is active, i.e., bbb Kfq =  and the Lagrange multiplier is 0≠λ . 

From Appendix A1 (equation A1.3): 

λτ +
∂
∂

+
∂
∂

+=
b

b
b

b

a
aob q

cq
q
cqc      (3.12) 

From equation (A1.5), the marginal welfare benefit of capacity can be expressed as (3.13): 









∂
∂

+
∂
∂

=
b

b
b

b

a
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b f
cq

f
cq

K
1λ      (3.13) 

 

and using that 
b

b

b q
f

K
=

1
 we obtain: 





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b

b
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aob f

c
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q
qf

q
cq

q
cqcτ    (3.14) 

 

Equation (3.14) shows the effect of the capacity constraint on the optimal bus fare. A 

similar result was obtained by Pedersen (2003) in a model with no car-bus interactions. 

When the capacity constraint is binding, one possibility is to increase the frequency to 

satisfy constraint (3.6) to a higher than optimal value. In that case the term in brackets in 

(3.14) is positive and represents the impact on car and bus marginal cost of the increased 

frequency necessary to deal with a demand that the optimal frequency (solution of 

equation 3.11a) cannot meet. Nevertheless, note that frequency and capacity can be 

optimal and the capacity constraint can indeed be binding, if for example there is no extra 

benefit of providing excess capacity (no crowding or comfort costs) and therefore, once 

the frequency has been optimised, the vehicle size is obtained as the minimum value that 
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satisfies (3.6). In this case, expression (3.14) is valid, but the capacity related term in 

brackets is zero because frequency is optimal (solution of equation 3.11a), and then (3.14) 

is reduced to the optimal fare (3.11) with no capacity constraints. Therefore, an important 

outcome of equation (3.14) is that what really matters when setting optimal fares is not if 

the capacity constraint is binding, but whether or not the operator provides the optimal 

transport capacity.  

 

3.4 Second Best Pricing 

 

We can solve the same problem assuming that there is no road price for cars, i.e., 0=aτ . 

The Lagrange function is: 

( ) ( ) ( ) [ ], , , , , , , ,a b e a a a b b b b b a b b b e e b b b

a a b u b e e
a b e

L B q q q q c q q f K q c q q f K q c f K q

B B Bc c c
q q q

λ

γ γ τ γ

= − − − + − +

     ∂ ∂ ∂
+ − + + − + −     ∂ ∂ ∂     

    (3.15) 

 

The first order conditions are given in the Appendix A1. We can simplify the differential 

notation as follows: 

2 2

ij
i j j i

B B B
q q q q
∂ ∂

= ≡
∂ ∂ ∂ ∂

     (3.16a) 

i
ij

j

c c
q
∂

≡
∂

     (3.16b) 

ijB  is the derivative of the inverse demand id  given in equation (3.1) with respect to jq . 

That is, ijB  measures a marginal change in willingness to pay for mode i due to a marginal 

change in the amount of travel on mode j. If there is no substitution between two modes, 

then 0ijB = . If all modes are substitutes (e.g., an increase in bus fare would increase the 

amount of car and non-motorised travel), then 0ijB ≤  ji,∀ . On the other hand, 0ijB >  

implies that i and j are complements. Moreover, as Kraus (2003) discusses, following 

standard microeconomic theory for utility maximising consumers, it should hold that 
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(assuming that trip demand is independent of income) 0iiB ≤  and ii jj ij jiB B B B>  for any 

modes i and j. 

 

Case 1: Capacity constraint is not binding  

After some algebraic manipulation we obtain the second best bus fare SB
bτ  as expressed in 

(3.17). 

( ) 2

ae be
ab ab

SB ee
b b a aa b ba

ae
aa aa

ee

B Bc B
Bq c q c
Bc B
B

τ τ
− +

= − +
− +

    (3.17) 

where bτ  stands for the expression for the first best fare in (3.10). Unlike the first best 

pricing rule, under the second best rule, the non-motorised mode plays a role through the 

substitution parameters aeB , beB  and eeB . Note that if car is an uncongestible mode and 

does not interact with buses, then the second best correction is zero (second term at the 

right hand side of equation 17), and consequently the second best fare is equal to the first 

best fare, SB
b bτ τ= , analogous to a two-link road pricing analysis when one link is 

uncongestible (e.g., Knight, 1924; Verhoef et al. 1996). 

 

Two new results can be derived from equation (3.17). First, if we assume that there is no 

substitution between modes a and e, and b and e, then 0ae beB B= = , and (3.17) is 

reduced to 

( )0
SB ab ab
b b a aa b ba

aa aa

c Bq c q c
c B

τ τ −
= − +

−
     (3.18) 

 

which is the second best bus fare considering only two modes, as obtained by Small and 

Verhoef (2007) for the case in which there is no congestion interaction between modes, 

i.e., 0ab bac c= = , and by Ahn (2009) who considered that bus demand does not affect car 

travel time, that is 0=abc . If 0=abc , the second best bus fare equals the first best price 
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( b
SB
b ττ =0 ) when there is no cross demand elasticity between car and bus, i.e., when 

0=abB , and therefore a low bus fare has no effect on mode shifting, as noted by Small 

and Verhoef (2007) and Ahn (2009). Nevertheless, when delays related to bus passenger 

activities affect cars ( 0≠abc ), the second best fare (18) is not reduced to the first best 

fare (3.10) even if 0=abB  (noting that this does not mean that the second best fare 

decreases with abc  because abc  increases the first best fare bτ  in equation 3.18, as shown 

in equation 3.10). 

 

Second, equation (3.17) can be used to formally assess Kerin (1992)’s claim that second 

best fares obtained by considering car and public transport only are likely to be lower 

than optimal if the analysis is extended to walking and cycling. A comparison between 

(3.17) and (3.18), assuming for illustrative purposes that demand and congestion levels 

are the same, indicates that the second best bus fare will be larger when considering non-

motorised transport if: 

0
SB SB be ab ab
b b

ae aa aa

B c B
B c B

τ τ −
> ⇔ >

−
    (3.19) 

i.e., the larger the value of beB  and the lower aeB  and abB  (in absolute values), the more 

likely is (3.17) to be greater than (3.18). The intuition behind this result is that if the 

modal substitution between public transport and non-motorised modes ( beB ) is large 

relative to the substitution between car and public transport ( abB ) and car and non-

motorised modes ( abB ), a lower public transport fare attracts more passengers that 

would otherwise be walking or cycling than driving, at least in relative terms. However, 

note that the change could be in either direction ( 0
SB SB
b bτ τ< ), if the modal substitution 

between automobile and non-motorised transport is stronger than between public 

transport and non-motorised modes (low value of aebe BB ), the opposite result will 

ensue. Certainly, the final outcome depends on trip distance, since for long trips cycling 
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and walking are unlikely to be an option (as discussed in Section 3.2 when we analysed 

modal split per trip distance), which means 0ae beB B= =  and the analysis can be reduced 

to motorised modes only. 

 

Optimal frequency and bus capacity are the solution of equations (3.20). 

 ( ) 0a b
a a b

b b

c cq q
f f

γ ∂ ∂
− + =

∂ ∂
     (3.20a) 

( ) 0a b
a a b

b b

c cq q
K K

γ ∂ ∂
− + =

∂ ∂
     (3.20b) 

with 2
a aa b ba

a
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aa aa
ee

q c q c
Bc B
B

γ +
=

− +
 

That is, in the second best case the congestion externality of buses to cars is less 

internalised because 0aγ > , as commented by Ahn (2009), the intuition being that due to 

the underpricing of cars, the negative effect of buses on car travel time should be 

weighted less. If there is no congestion interaction, i.e., 0a bc f∂ ∂ = , the rules for first-

best and second-best frequency and bus capacity are the same (equations 3.11 and 3.20), 

then a higher bus demand bq  in the first best (due to the pricing of cars) would make the 

first best frequency higher than the second best one, which is not a straightforward result 

with cross congestion, due to the presence of aγ  in equation (3.20a). 

 

Case 2: Capacity constraint is binding 

 

Analogously to the first best case, the second best bus fare is obtained as (3.21), in which 

the marginal welfare benefit of capacity has the term ( )a aq γ−  discussed in the previous 

paragraph: 
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( ) 2

ae be
ab ab

SB ee a a a b
b b a aa b ba b

ae b b b
aa aa

ee

B Bc B
B q c cq c q c f
B q f fc B
B

γτ τ
− +

 − ∂ ∂
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  (3.21) 

 

3.5 Extensions: Other External Costs and Collection Costs 

 

In this section, the preceding approach is extended by including more cost components, 

namely toll collection costs and external costs such as accidents, pollution and noise. The 

toll collection and operator costs are usually disregarded from the formal analysis of 

pricing policies, even though current road pricing schemes show that they are not 

negligible; operating costs account for 7 percent of the revenues in Singapore, 25 percent 

in Stockholm, and 48 percent in London (May et al., 2010), mostly influenced by the 

choice of technology for charging and enforcement18

( ) aa qococqOC 10 +=

. A simple way to include operating 

costs OC is proposed in (3.22).  

     (3.22) 

0oc  is a fixed cost and 1oc  is the marginal cost per transaction. The fare collection cost for 

public transport is partially included in the bus or rail operator cost oc  (equation 3.4), 

which may include the fixed collection cost due to software requirements plus fare 

payment devices at stations or vehicles (an in-depth analysis is provided in Chapters 4 and 

7). The cost per transaction, if not negligible, can be incorporated in the same way as 

(3.22).  

 

 

 

                                                        
18 In the case of London, other authors present higher estimates of operating costs. Prud’homme and 

Bocarejo (2005) estimate that in 2003 the London congestion charging scheme’s operating costs were 85 

percent of toll revenue, and net revenue would not be enough to cover the annualised capital cost. Mackie 

(2005), Santos and Schafer (2004), and Santos (2005) are more optimistic; they conclude that the operating 

cost was respectively 75 percent, 72 percent, and 53–60 percent of the net revenue. 
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External costs EC other than congestion (Section 2.3.2) can be expressed as follows: 

( ) ( ) ( ), , , , , , , , ,a b b b a a a a b b b b b a b b bEC q q f K q EC q q f K f EC q q f Kυ= +  (3.23) 

aEC  and bEC  are the external cost rate per vehicle for car and public transport 

(assuming the external costs of walking or cycling as zero), and the car flow is a a af qυ=  

where aυ  is the inverse of the average occupancy rate per car, as previously defined. 

Expressions (3.22) and (3.23) can be subtracted from the social welfare formula (3.5) to 

derive first best and second best pricing results. Denoting ij i jEC EC q≡ ∂ ∂ the result for 

the first best prices are: 

1a a aa b ba a a aa a a b baq c q c oc q EC EC f ECτ υ υ= + + + + +    (3.24) 

 b o a ab b bb a a ab b bbc q c q c q EC f ECτ υ= + + + +     (3.25) 

Since external costs other than congestion are assumed positive for car and bus users,  it 

is likely that the result of expressions (3.24) and (3.25) will be greater than the optimal 

prices when considering only congestion externalities (equations 3.8 and 3.10), and 

therefore, the internalisation of accidents, noise or pollution costs would increase the 

generalised cost of motorised transport modes compared with non-motorised modes 

(although the final result depends on the sensitivity of demands aq  and bq  to price), and 

reduce the amount of subsidy for public transport on first best grounds. The second best 

analysis can be undertaken in the same fashion. Regarding the toll collection costs, only 

the marginal cost per transaction 1oc  shows up in the optimal toll (3.24), however, the 

fixed cost of collection 0oc  in (3.22) is accounted for in the calculation of social welfare; 

furthermore, 0oc  may be so high that the total collection cost is larger than the welfare 

gain from the internalisation of the external cost, in which case tolling is not welfare 

improving unless a more cost effective way of collecting tolls is implemented. 
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3.6 Summary and Conclusions 

 

This chapter presents a three-mode pricing model that reveals the effect of considering 

non-motorised transport alternatives on optimal public transport fares. Specifically, it 

shows that the change in the optimal fare due to the inclusion of non-motorised modes 

depends on the demand substitution between modes; the stronger the demand 

substitution between public transport and non-motorised modes is (relative to the 

substitution between automobile and public transport, and automobile and non-

motorised modes), the more likely it is that a higher optimal public transport fare would 

result when considering walking or cycling on fare setting. 

  

We revisited the role of a capacity constraint in public transport service provision, which 

suggested that a capacity constraint plays a role in optimal pricing only when the 

transport capacity cannot be set at its optimal level.  We also presented a way to include 

externalities other than congestion and toll collection costs into the analysis of optimal 

pricing under first and second best rules, which showed that the internalisation of 

externalities other than congestion is likely to increase optimal fares and road charges, 

therefore increasing the generalised price of motorised transport modes relative to a non-

motorised alternative. 
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Chapter 4 
4 Fare Collection Systems and Bus Boarding Time: Operational and Economic Effects  

Fare Collection Systems and Bus Boarding Time: 
Operational and Economic Effects 
 
 
Chapter 4  
4.1  Introduction 

 

A significant part of the total running time of buses is spent at stops and stations in the 

process of boarding and alighting of passengers. Understanding the nature of this process 

has potential benefits for both users and operators; if after a detailed characterisation of 

the time that a bus is stopped transferring passengers, recommendations can be made to 

reduce it. A possible reduction in this time can be translated into cost savings for the 

operator, if the total running time is reduced by a noticeable margin, and benefits for 

users as well, perceived as a reduction in their overall travel time, a benefit that can be 

monetised using the users’ value of travel time savings.  

 

The existing economic literature on bus transport considers that bus travel or in-vehicle 

time is either fixed or increases with the dwell time, i.e., time spent transferring 

passengers at bus stops (e.g., Mohring, 1972, Jansson, 1980), which in its simplest 

formulation is presented as the passengers’ boarding and alighting time plus the time 

necessary to open and close doors. When the dwell time is considered as a variable, and 

consequently the total travel time depends on demand, analysts have assumed the 

average boarding and alighting time per passenger is exogenously given, thus ignoring 
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that currently there are several alternative boarding and alighting policies and 

technological options for fare collection, which have an impact on travel times, operator 

costs, the complexity and image of the public transport service.  

 

Today, agencies face the challenge to decide on a fare payment system to operate new 

services, or whether it is worth upgrading from a slow old-fashioned method to a quicker, 

more efficient technology. Observed practice shows an evolution from cash payments to 

the driver on-board buses, to the use of paper based coupons or tickets, magnetic strip 

cards, and the latest smart cards and payment by SMS text messages. On the other hand, 

high-standard Bus Rapid Transit (BRT) systems like that implemented in Curitiba and 

Bogotá have shown that, in relation to fare payment, an efficient method of operating a 

bus service is to collect the fare at bus stations instead of on the vehicles themselves, 

allowing passengers to enter buses at all available doors, leading to considerable savings 

in dwell time and cost. Consequently, the boarding and alighting process and the fare 

payment technology can be regarded as decision variables from the design stage of a bus 

route or network, as proposed and implemented in this thesis. This will have a significant 

effect on the optimal level of outputs like frequency, bus size and fare, as shown and 

discussed in Chapter 7. 

 

The effect of upgrading the fare payment system on the performance and cost of urban 

bus services has received limited attention in the literature. Bertini and El-Geneidy (2004) 

estimate time savings from reducing the passenger boarding time by one second, but 

there is no calculation of how that one-second saving may be achieved. In this chapter, 

we estimate the boarding time savings that are achievable by upgrading the fare 

collection system; therefore calculations of total travel time savings or changes in 

operating speed have an empirical basis19

 

. 

The rest of the chapter is organised as follows. Section 4.2 presents the fare collection 

technologies and boarding and alighting rules that will be analysed. Boarding and 

                                                      

19 Other works that provide bus boarding times with alternative fare collection systems (including on-board 
and off-board payment options with cash and prepaid cards) are York (1993), TRB (2003), Balcombe et al. 
(2004) and Wright and Hook (2007). 



63 
 

alighting times are estimated in Section 4.3. In Section 4.4 functions for the average 

boarding and alighting time are estimated, which depend on the technology of payment, 

boarding and alighting policy and number of doors per bus. An empirical study of travel 

time savings and benefits that are achievable by upgrading the fare collection system is 

performed in Section 4.5. Conclusions are given in 4.6. 

 

4.2  Definition of Alternatives 

 

Alternative fare payment systems and bus boarding rules differ in requirements of 

infrastructure, ability to integrate fares across routes and modes, security, operating cost 

including transaction costs and evasion control, capacity to handle different fare 

structures (e.g., flat, zonal, distance-based or time-based fares), level of institutional 

arrangement, complexity of use, level of detail on demand information recorded, image 

of the public transport service and capacity to attract new users, among other factors20

Following Wright and Hook (2007), we distinguish between fare collection (i.e., payment 

of the fare) and fare verification (i.e., confirmation that the fare has been actually paid). 

Four fare payment systems are analysed: 

 

All these features should be weighed up when deciding on a fare payment system for a 

specific bus service or network. In this study, we focus on differences on travel time and 

operator costs. To this end, we estimate the average boarding time of several alternative 

fare payment systems and boarding policies, including on-board payment with cash, 

magnetic strip, contactless card, and off-board payment.  

i. On-board fare collection, cash payment to the bus driver (hereafter, “cash”) 

ii. Off-board fare collection and on-board fare verification using a magnetic strip 

(hereafter, “magnetic strip”). This ticket must be inserted in a verification device 

inside buses. See example in Figure 4.1a 

iii. Off-board fare collection and on-board fare verification using a contactless smart 

card (hereafter, “contactless card”). See example in Figure 4.1b. 

                                                      

20 For a detailed discussion on factors to consider when choosing a fare collection system for a bus service, 
see Section 12.2 of Wright and Hook (2007). 
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iv. Off-board fare collection and off-board fare verification using a contactless smart 

card (hereafter, “off-board payment”). This fare payment policy has been 

introduced in Bus Rapid Transit (BRT) systems like Bogotá and Curitiba.  

 
(a) Magnetic strip                                 (b) Contactless card 

Figure 4.1: Examples of on-board fare verification systems 
(Source: left photo by the author; right photo from Wright and Hook, 2007) 

 

We consider buses of several sizes, with one, two, three or four doors. Buses with more 

than one door can be operated with two alternative boarding and alighting policies 

regarding the use of doors, as follows: 

• Boarding is allowed only at the front door while alighting takes place 

simultaneously through the back door(s). If on-board card payment is required 

(alternatives i, ii and iii above), two card readers are provided next to the front 

door only. Denoting the number of doors per bus as n, this fare payment policy is 

referred to as TnB1 (Total number of doors=n, Boarding=1) 

• All doors are available for both boarding and alighting in a sequential way 

(regardless of the number of doors). In such cases, it is necessary to have card 

readers next to each door when payment is inside buses. This payment policy is 

referred to as TnBn. 

For the analysis of cash payment (case i above), we assume that boarding is performed at 

the front door only, regardless of the number of doors of a bus (i.e., policy TnB1). The 

case of on-board cash payment with boarding at multiple doors is not considered 
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because the data used to estimate the average boarding time in this case are obtained 

from buses in Sydney, in which cash payments are handled by the driver. For on-board 

payment with magnetic strip or contactless card (cases ii and iii), both TnB1 and TnBn 

boarding policies are available. Finally, for off-board payment (case iv), only boarding at 

multiple doors (TnBn) is considered, as the purpose of off-board fare collection is using all 

available bus doors to board and alight.  The scenarios to be considered are summarised 

in Table 4.1. 

Table 4.1: Summary of fare payment and bus boarding alternatives 

Payment Technology Boarding front door Boarding all doors 

On-board, cash Yes  

On-board, magnetic strip Yes Yes 

On-board, contactless card Yes Yes 

Off-board, contactless card  Yes 

 

The average boarding and alighting times per passenger are estimated using data from 

Sydney for the cases with cash, magnetic strip and off-board payment, whereas the 

boarding time with contactless card is obtained from a study from Santiago (Fernández et 

al., 2009).  

 

4.3  Estimation of Boarding and Alighting Times with Alternative Fare Payment 

Technologies and Boarding Policies21

 

 

4.3.1 Background: dwell time models  

In this section we introduce the fundamentals of dwell time models, which will be used 

on the estimation of boarding and alighting times with the alternative fare payment 

systems and boarding and alighting policies summarised in Table 4.1. 

 

There are a number of studies that have analysed the determinants of the time that a 

public transport vehicle spends at stops or stations. The standard procedure is to use 

                                                      

21 This section is partially reproduced in Tirachini (2011). 
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multiple regression models estimated through a series of observations which record the 

time a bus is stopped at stops and the number of passengers boarding and alighting, with 

different levels of detail regarding payment method, door used or type of bus. While 

some authors model the total time a bus is stopped at stops22

dt

 (York, 1993), others use 

only the time in which the doors are open, that is, the passenger service time (boarding 

and alighting) plus the time necessary to open and close doors (Lin and Wilson, 1992; 

Gibson et al., 1997; Dueker et al., 2004; Fernández et al., 2009, among others). In this 

study we use this second concept, referred to as bus dwell time. The simplest model of 

dwell time is a linear function of the number of passengers boarding and alighting. The 

specification depends on whether the processes of boarding and alighting are sequential 

(the same door is used to board and alight) or simultaneous (different doors to board and 

alight). Dwell time  can be expressed as (4.1) for a sequential process, or (4.2) for a 

simultaneous process: 

1 1

a b
d oc i j

i j
t c t t

λ λ− +

= =

= + +∑ ∑            (4.1) 

1 1
max ,a b

d oc i j
i j

t c t t
λ λ− +

= =

  = +  
  
∑ ∑           (4.2) 

 

where occ is the dead time, λ−  the number of passengers alighting, λ+ the number of 

passengers boarding, and a
it  and b

jt  the time that each passenger takes to alight and 

board, respectively. Expression (4.1) takes place in buses with one door, while for (4.2) it 

is assumed the existence of one door to board and another door to alight23

                                                      

22 Time between when the wheels stop and the moment they start moving off again. 

. The dead 

time accounts for the time necessary to open and close doors, plus any other time lost 

due to the nature of the process, for example, the time after the transfer of passengers 

has finished, in which the driver checks that everything is safe before closing the doors 

and the time lost in between boarding and alighting when the process is sequential. By 

denoting a and b as the average alighting and boarding times per passenger, respectively, 

(4.1) and (4.2) can be simplified to: 

23 In general, dwell time in buses with two or more doors is given by the dwell time in the busiest door. 



67 
 

d oct c a bλ λ− += + +            (4.3) 

{ }max ,d oct c a bλ λ− += +           (4.4) 

In some cases there are noticeable differences in boarding and alighting times depending 

on passengers’ age (young students, adults, seniors) and/or payment method and 

technology (prepay versus cash). To capture these differences, the expressions (4.3) and 

(4.4) can be further generalised to (York, 1993): 

1 2

1 1

m m

d oc k k l l
k l

t c a bλ λ− +

= =

= + +∑ ∑          (4.5)
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d oc k k l l
k l

t c a bλ λ− +

= =

 
= +  

 
∑ ∑          (4.6) 

where 1m  and 2m  denote the number of categories for passengers alighting and boarding 

(including different payment methods), respectively.  

 

4.3.2 Data collection 

Dwell time surveys were conducted in two areas of Sydney: the city centre and the 

Blacktown area in the western suburbs, approximately 25 kilometres from central 

Sydney. Surveys were conducted on weekdays between May and October 2009. Three 

types of service were surveyed: 

• Commercial services in the Blacktown area: These are bus services in a low density 

residential suburb to the west of Sydney, run by a private operator (Busways). In 

these services, passengers only pay directly with cash to the driver. This service 

will be referred to as “Blacktown”.  

• Commercial services in the inner Sydney area: These are services run by the State 

Transit Authority (STA) of New South Wales. The area surveyed comprises the city 

centre plus the inner west and eastern suburbs of Sydney. On these services, 

passengers are able to pay the fare either with a prepaid magnetic strip or with 

cash to the driver. In every bus, two devices are set next to the front door (one at 

the right and one at the left, close to the driver) for passengers to validate their 
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card, which has to be introduced in a slot in order to be read (case ii in Section 

4.2, Figure 4.1a). Boarding is only possible through the front door, whereas 

alighting takes place at both front and back doors. This service will be referred to 

as “inner Sydney”. 

• Free CBD shuttle: This is a service operated by the STA around the city centre, 

introduced during 2009, which is free for passengers. Boarding is allowed only 

through the front door while alighting is possible at both front and rear doors. 

Free buses are used as a proxy for obtaining boarding time rates on public 

transport systems with off-board payment. 

Buses are 12 metre long, have two doors and capacity for 60-70 passengers (seated and 

standing). A summary of the characteristics of each service is presented in Table 4.2. 

Table 4.2: Characteristics of the services surveyed 

Characteristic Blacktown Inner Sydney Free shuttle 
Payment method 
 

Cash 
 

Cash 
Magnetic strip 

Free 
 

Boarding Front door Front door Front door 
Alighting 
 

Front door 
 

Front door 
Back door 

Front door 
Back door 

 

Surveys were conducted on weekdays between May and October 2009 by the author, 

equipped with a stopwatch. For every bus stop observation, the following items are 

recorded: 

• Time in which doors are open, plus door opening and closing times. Any extra 

time in which the bus is stopped but has the doors closed is not recorded.  

• Number of passengers boarding, distinguishing: 

o Passengers that pay a fare, separated by payment method: magnetic strip 

and cash payment. 

o Student pass holders, who do not pay any fare on board, and only have to 

show their pass to the driver. These are school students (observed in 

Blacktown). 
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o Passengers that buy a daily or second ticket on board the bus, whose ticket 

is given and stamped by the driver, which makes the process slower 

(observed in Blacktown). 

• Number of passengers alighting 

 

Any unusual events are noted, such as particularly slow or disabled passengers boarding 

or alighting, passengers with prams, shopping trolleys, bags or other luggage, bus 

stopped with the doors open after the boarding and alighting processes have ended, etc. 

Observations with an extraordinary long dwell time due to exceptional events have been 

disregarded. Stops at termini are not considered as drivers sometimes keep buses 

stopped longer than the time necessary for the service of passengers. 

 

In general, there are several factors that may influence the duration of dwell times, such 

as the location of bus stops and headway control actions. If a stop is located before a 

traffic light, drivers may keep the door open to allow boarding while the light is red. In 

addition, control strategies at stops such as a bus holding to regularise headways or 

maintain adherence to a predefined timetable, could also enlarge dwell times. In our 

study, none of these cases have an influence on the results, as the bus drivers always 

closed doors when the boarding and alighting of passengers concluded, and secondly, 

among the routes surveyed, extra delays on control points were rare and deleted from 

the sample. Boarding and alighting times also depend on the internal design of a bus, for 

example, the height of the bus floor and the door width. In this sample, we only consider 

data from low floor buses with doors that are approximately 1.1 metre wide24

 

.  

 In this section we present the estimation of the average boarding and alighting time per 

passenger as a function of two variables: the technology of payment and the number of 

doors in which boarding and alighting is possible, the latter related to vehicle size. Dwell 

time models for the three services previously described are estimated with the program 

SPSS. 

                                                      

24 Dwell time models including differences in boarding and alighting times due to the age of passengers and 
the existence of steps at the entrance of a bus (compared with the case of low floor buses) are reported in 
Tirachini  (2011). 
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4.3.3 Model 1: Blacktown 

The following categories of passengers are defined, according to what is observed in the 

field: 

cλ
+ : number of passengers boarding, cash payment 

sλ
+ : number of students boarding, free fare  

tλ
+ : number of passengers boarding who are given a daily ticket by the driver 

λ− : number of passengers alighting 

The transfer of passengers is sequential; boarding and alighting is made through the front 

door, therefore, using equation (4.5) the dwell time is estimated as: 

d oc c c s s t tt c b b b aλ λ λ λ ε+ + + −= + + + + +        (4.7) 

where ε is the residual or unexplained variance. The estimated parameters a , cb , sb  and 

tb  and t-ratios for this model are presented in Table 4.3 (Model 1). The time in which a 

bus is stopped, not serving passengers, is 5.46 seconds on average, which is the sum of 

the time between when the bus doors are open and the first passenger boards (or 

alights), the time in between when the last passenger alights (or boards) and the doors 

are closed, and the time lost in between the boarding and alighting sequences. The 

second value, 9.94 s/pax is the average time for a passenger (other than school students) 

to board a bus, pay the fare and receive a ticket from the driver, considering the case in 

which passengers pay the exact fare or require change. Finally, the average time for a 

passenger to alight a bus is 1.56 seconds (the boarding time for students and passengers 

that require a second ticket are not relevant for the comparison of fare payment 

methods). 
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Table 4.3: Estimation of parameters for dwell time models 

Parameter Unit 
Model 1 
(Black- 
town) 

Model 2 
(Inner 

Sydney) 

Model 3 
(Free 

shuttle) 

Dead time ( occ ) s 
5.46 6.41 6.47 

(10.71) (14.20) (14.46) 

Boarding time cash ( cb )  s/pax 
9.94 11.54 

- 
(39.39) (27.84) 

Boarding time magnetic strip  ( mb ) s/pax - 
2.94 

(33.53) 
- 

Boarding time school students ( sb ) s/pax 
1.50 

- - 
(12.27) 

Boarding time daily ticket ( tb ) s/pax 
15.93 

(14.95) 
- - 

Boarding time free shuttle ( 1b ) s/pax - - 
1.46 

(32.94) 

Alighting time front door ( 1a ) s/pax 
1.56 2.53 1.64 

(12.65) (7.87) (6.31) 

Alighting time back door ( 2a ) s/pax - 
1.06 1.18 

(8.96) (15.01) 
Sample size  404 394 101 

Adjusted R-squared  
 

0.872 0.843 0.925 

Note: t-ratios in brackets 
 

4.3.4 Model 2: Inner Sydney 

Buses in this area have two devices at the front door for passengers to pay the fare with a 

prepaid card, which is inserted in a slot; one device is at the right of the door and the 

other one is at the left, close to the driver. In some sections of the network, outside the 

city centre, passengers are able to pay with cash to the driver as well. Alighting is allowed 

at both the front door and the rear door. The following categories of passengers are 

included in the analysis: 

cλ
+ : number of passengers boarding, cash payment 

mλ
+ : number of passengers boarding, prepaid magnetic strip  

1λ
− : number of passengers alighting, front door 

2λ
− : number of passengers alighting, back door 

Then, dwell time is estimated by extending equation (4.6) as: 
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{ }1 1 2 2max ,d oc c c m mt c b b a aλ λ λ λ ε+ + − −= + + + +       (4.8) 

Results in Table 4.3 (Model 2) show that the average boarding time for passengers paying 

with a prepaid magnetic strip is 2.94 s/pax, whilst users that pay with cash take on 

average 11.54 seconds, value that is 16 percent larger than the figure found for Model 1. 

This is explained to a large degree by the fact that all passengers in Model 1 (Blacktown) 

pay with cash and are commuters and regular users of the service that live nearby; 

whereas users that pay with cash on the city centre services are those that do not have a 

prepaid card, i.e. mainly occasional users, visitors and tourists that are less familiar with 

the way local bus services work, and are more likely to ask questions to the driver.  

 

The alighting times are considerably different depending on the door chosen to alight; for 

the front door passengers it takes 2.53 seconds on average, for the back door this figure 

is 1.06 seconds, which is a consequence of three issues observed in the field. First, 

alighting at the front door is allowed but discouraged because the front door is where 

boarding takes place. Second, passengers approach the front door from one direction 

only, whereas to alight through the back door they approach it from the front and back of 

the bus simultaneously (as the back door is in the middle of buses), therefore there can 

be two lines and two users may get off at the same time. The third reason is related to 

the composition of passengers that use the front and rear doors. Considering all 

passengers, it was observed that 74 (26) percent of users alight through the back (front) 

door, but there is a clear difference in terms of age groups: 79 percent of adults 

considered under 65 years old used the back door, whilst this figure is only 45 percent for 

passengers considered over 65, which indicates that older passengers tend to sit closer to 

the front door and, consequently, are more likely to use that door to alight. As shown by 

Tirachini (2011), older passengers are found to be slower at both boarding and alighting, 

which partly explains the difference in alighting times between the front and rear doors.  

 

4.3.5 Model 3: Free CBD shuttle 

Boarding time in a free bus service is an approximation to the time obtained in public 

transport systems with off-board fare collection, as done in most rail and some Bus Rapid 

Transit systems. In the case of the free CBD shuttle in Sydney, boarding is only through 
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the front door, but alighting is allowed at both the front and back doors. Using expression 

(4.6), the dwell time is estimated as: 

{ }1 1 1 1 2 2max ,d oct c a b aλ λ λ ε− + −= + + +        (4.9) 

where 

1λ
+ : number of passengers boarding, front door 

1λ
− : number of passengers alighting, front door 

2λ
− : number of passengers alighting, back door 

 

The results in Table 4.3 (Model 3) suggest that the average boarding time for passengers 

without paying any fare is 1.46 s/pax; i.e., roughly half of the time required for payment 

with magnetic strip, and between one seventh and one eighth of the time to board and 

pay with cash to the driver. There are at least two aspects that may push this figure down 

in a commercial service with payment outside of buses, in closed stations like the BRT 

systems of Curitiba and Bogotá.  First, a proportion of users of this shuttle service are 

tourists, unfamiliar with the transport system and the city, that are generally slower than 

regular commuters. Second, in this model as in Model 2, alighting time is shorter at the 

back door than at the front door, which suggests that if boarding is also allowed through 

the rear door(s), boarding time would be also shorter as passengers have more room to 

form two lines and, once inside the bus, two directions in the aisle to distribute 

themselves. In fact, Wright and Hook  (2007, p. 262) suggest a value of 1.1 s/pax for 

boarding time with off-board payment on 1.1 metre wide doors with stairways at the 

door entrance, the same figure being as short as 0.75 s/pax with at-level boarding in the 

Transmilenio system in Bogotá. This latter value is likely influenced by cultural and 

behavioural characteristics of passengers that are specific to the local context of Bogotá 

and South America, and are unlikely to be met in Australia (e.g., higher tolerance to walk 

or stand closer to other passengers). 
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4.3.6 Average passenger service times 

Next, it is necessary to derive a single value for each of the different categories of 

boarding and alighting times. For cash payment, we use the average between the two 

values in Table 4.3, i.e., 10.74 s/pax. In the case of alighting, for simplicity we calculate a 

single value as the average between the alighting times from Models 1 and 3 (1.56, 1.64 

and 1.18 s/pax), i.e., 1.46 s/pax. (Model 2 is disregarded for alighting because of the 

particular considerations that influence the considerable difference between 1a  and  2a , 

as discussed in Section 4.3.4). A dead time of 6.11 seconds is used, as the average of the 

three values on Table 4.3. Finally, a boarding time of 2.05 s/pax is used for the case with a 

contactless card, obtained by Fernández et al. (2009) for trunk services in Santiago, Chile. 

In summary, the values for boarding and alighting with different fare payment 

technologies are presented in Table 4.4. 

 

Table 4.4: Boarding and alighting times per passenger 

Parameter Time [s/pax] 
Boarding time cash  10.74 
Boarding time magnetic strip 2.94 
Boarding time contactless card  2.05 
Boarding time off-board payment  1.46 
Alighting time  1.46 

 

The boarding and alighting values shown in Table 4.4 can be used to estimate average 

passenger service times APST (boarding plus alighting) for the alternative fare payment 

technologies and boarding and alighting policies introduced in Section 4.2 (Table 4.1). The 

average passenger service time is the delay that one extra passenger imposes on a bus 

ride. Observed demand profiles of two bus routes in Sydney are used to estimate APST 

for all cases in Table 4.1. The boarding profile, alighting profile and bus load for each 

route is presented in Figure 4.2, in which the total demand along a trip is 51 passengers 

per bus for route 440, whist bus 753 carries 87 passengers.  
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Figure 4.2: Load profile routes 440 and 753 

 

These demand profiles are used as a seed to generate other profiles, by uniformly 

reducing and amplifying observed boarding and alighting numbers, in order to make the 

total demand along the routes move from 20 pax/bus to 100 pax/bus. APST is calculated 

as the total boarding and alighting time divided by the total number of passengers per 

bus (which is different from the time that each passenger takes to board and alight, as 

more than one passenger may be boarding and alighting at the same time). It should be 

noted that as the number of passengers inside a bus increases, APST may increase as well 

due to crowding and friction effects between passengers boarding, alighting and standing 

in the bus aisle or next to the doors, as theoretically proposed by Jara-Díaz and 

Gschwender (2003a) and empirically shown by Lin and Wilson (1992). At this point we 
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assume that the APST is independent of the demand level; the impact of crowding on 

travel times is analysed in depth in Chapter 6. 

 

Using the values of Table 4.4 and demand profiles of Figure 4.2, APST are estimated for 

buses with one, two, three and doors. Note that the parameters in Table 4.4 were 

obtained from services with boarding allowed at the front door only, and the extension of 

these results to a case with boarding at multiple doors is not trivial, since when there are 

multiple doors to board and alight, passengers can choose a door to get on and off buses, 

and the spatial dispersion of their decision will determine the length of the boarding and 

alighting times per door. The best scenario is a more and less even distribution of 

passengers across all doors, whereas the worst case is when they all concentrate in one 

or two doors, slowing down the entire boarding and alighting process.   

 

Unfortunately, there does not seem to exist studies on the behaviour of passengers that 

can choose a door to board buses, therefore an assumption has to be made for the 

derivation of average passengers service times for cases boarding at all available bus 

doors (denoted TnBn). It seems unreasonable to suppose that passengers will distribute 

uniformly across doors if middle or back doors have closer access to more seats than, say, 

the front door. For example, in buses with two doors in Sydney it was found that 75 

percent of passengers alight through the back door when alighting is also possible—but 

not encouraged— through the front door (Tirachini, 2011). In this analysis we assume 

that the middle doors would attract a number of passengers that is 50 percent higher 

than that of the front or back doors25

 

. The same assumption is made regarding alighting. 

Figure 4.3 and Table 4.5 show the estimated average boarding and alighting time per 

passenger, as a function of the fare payment method and the number of doors per bus, 

“TnB1” means “Total n doors, boarding at front door only”, whilst “TnBn” stands for 

“Total n doors, boarding at all doors”, where n is the number of doors at a bus. 

                                                      

25 For example, for buses with two doors, the rear door is placed towards the centre of the bus, and is 
therefore assumed to attract 60 percent of the boarding demand, leaving 40 percent boarding through the 
front door, next to the driver. 
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Figure 4.3: Average passenger service time 

 
Table 4.5: Average passenger service time (s/pax) 

Doors 
 

Cash 
 

TnB1 

Magnetic 
strip 
TnB1 

Contactless 
card 
TnB1 

Magnetic 
strip 
TnBn 

Contactless 
card 
TnBn 

Off- 
board 
TnBn 

1 12.20 4.40 3.51 4.40 3.51 2.92 
2 11.75 3.99 3.11 2.80 2.22 1.84 
3 11.34 3.58 2.70 2.15 1.71 1.41 
4 11.15 3.38 2.50 1.57 1.24 1.02 

 

Figure 4.3 shows the impact of technology and the number of doors on the average time 

to board and alight per passenger, APST. On the one hand, there is a technology effect 

interpreted as for any size of bus (number of doors), it is more efficient to provide an off-

board payment system than on-board payment with contactless card, which in turn is 

faster than paying with a magnetic strip. On the other hand, the door effect shows how 
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APST decreases with the number of doors, regardless of the fare payment technology. In 

the next two sections we analyse in detail the impact of the alternative fare payment 

technologies and boarding and alighting policies on the performance of a bus route, first 

by estimating functions for the curves in Figure 4.3 (Section 4.4), and secondly by 

estimating a bus travel time model to assess differences on the total running speed 

achievable with the fare payment and boarding options under study (Section 4.5). 

 

4.4  Technology Effect and Door Effect: Non-linearity and Interdependency26

 

 

Focusing on the scenarios in which boarding is allowed at all doors (TnBn in Figure 4.3), 

given a payment method, the evolution of the curves reveals a decreasing importance of 

the number of doors on lowering APST, i.e., the time savings due to increasing the 

number of doors by one unit decrease with the number of doors, something that has 

been observed in Bus Rapid Transit systems with off-board payment in Brazil (Wright and 

Hook, 2007). Figure 4.3 reveals that payment technology as a tool to reduce travel times 

becomes less powerful as the number of doors increases, which is shown by the 

reduction in the vertical difference between the TnBn lines as the number of doors 

increase. This means that the time savings due to upgrading the payment method and 

due to increasing the number of doors to board are not independent, i.e., there is a non-

linear relationship between the boarding and alighting time, the number of doors to 

board and the payment technology. Ignoring cash payment, a simple model to explain the 

relationship observed in Figure 4.3 is presented in equation (4.10).  

0.722.96 1.71 0.69 0.31 0.13TnBn mag con mag cont n n nδ δ δ δ−= + + − −   ( )2 0.997R =      (4.10) 

where n is the number of doors per bus and magδ  and conδ  are dummy variables to 

distinguish on-board from off-board payment as follows:  

1
0mag

if payment with magnetic strip
otherwise

δ


= 
  

                                                      

26 This section is partially reproduced in Section 2 of Jara-Díaz and Tirachini (2012). 
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1
0con

if payment withcontactless card
otherwise

δ


= 
  

With off-board payment, 0mag conδ δ= = . The last two terms of equation (4.10) show that 

the time savings of an off-board payment system are reduced by 0.31 and 0.13 seconds 

per passenger as the number of doors grows by one unit. This non-linear effect is not 

observable when boarding is permitted only at the front door (TnB1 lines in Figure 4.3), in 

which case the boarding and alighting time per passenger can be simply approximated as 

(magnetic strip and contactless card only): 

0.24
1 3.55 0.88TnB magt n δ−= + ( )2 0.989R =       (4.11) 

The scenarios with boarding through all doors are always more time efficient than their 

counterparts with boarding at the front door only, for a given number of doors, a non-

surprising result as boarding is more time onerous than alighting. However, permitting 

boarding through all doors has the extra cost of installing card readers on every door (for 

on-board payment) or at stations (for off-board payment), relative to scenarios with 

boarding at the front door only. All these considerations need to be taken into account to 

assess the convenience of one system over the other, as it is done in Chapter 7. 

 

4.5  Technology Effect and Door Effect: Assessment with an Empirical Bus Travel 

Time Model27

 

 

4.5.1 Background: bus travel time models 

Figure 4.3 is a graphic representation of the time savings attached to upgrading the fare 

payment technology (technology effect) and/or allowing boarding at all available bus 

doors (door effect). However, Figure 4.3 says nothing about the relative weight of that 

saving with regard to the total travel time of buses, which would provide an insight on 

the size of the benefits achievable by upgrading the boarding policy and/or fare payment 

technology. To address this issue, in this section we assess the effect of alternative 

                                                      

27 This section is partially reproduced in Tirachini (2012). 
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payment and boarding options on the operating speed and total travel time of a bus 

route, by means of estimating a bus travel time model which uses as an input parameter 

the average passenger service time.  

 

The traditional approach to analyse bus travel times is the use of linear regression 

models. Early research by Abkowitz and Engelstein (1983) showed that the main drivers 

of bus travel time are route length, the period of time in which a trip is made (peak or off-

peak), the number of passengers boarding and alighting and the number of signalised 

intersections. Outbound trips (from the Central Business District, CBD) were found to be 

slower than their inbound counterparts, whereas on-street parking also increases bus 

travel time. At the same time, Levinson (1983) studied a set of field data observations 

from several U.S. cities to  characterise differences in bus travel time as a function of the 

number of stops per mile, location of the route (CBD, city or suburbs), acceleration and 

deceleration times and dwell time per stop. Interestingly, In Levinson’s study it was 

suggested that generally the most effective way to reduce bus travel time is decreasing 

the number of stops and dwell times through changes in fare collection policies and door 

configuration, rather than providing bus priority lanes or reducing traffic-related 

congestion. In Section 4.5.5 we provide a simple comparative assessment of bus speed 

gains with two policies – providing dedicated busways and upgrading the fare collection 

system – and show that the latter can yield greater time savings if bus demand is high 

enough. 

 

Following Abkowitz and Engelstein (1983), multivariate regression models to analyse bus 

travel time have been subsequently estimated and utilised with several purposes, such as 

analysing the appropriateness of scheduled service recovery times (Strathman et al., 

2002), the estimation of time savings by means of limited-stop services (Tétreault and El-

Geneidy, 2010) and the examination of variables describing service reliability and 

schedule adherence (Strathman et al., 1999; 2000; El-Geneidy et al., 2008). Apart from 

the key factors identified in the 1980s, other variables found to influence travel times are 

departure delays (Strathman et al., 2000; El-Geneidy et al., 2008; Tétreault and El-

Geneidy, 2010), scheduled headway (Strathman et al., 2000), driver-related effects 

(Strathman et al., 2002; El-Geneidy et al., 2008), type of route service (whether the route 



81 
 

is cross-town or feeder, Strathman et al., 2002) and weather conditions (presence of rain 

and snow, Tétreault and El-Geneidy, 2010). Car travel time (McKnight et al., 2003) and car 

traffic counts (Mazloumi et al., 2011) have also been used as an explanatory variable for 

bus travel time, as a way to quantify the effects of traffic congestion on bus operations28

 

.  

4.5.2 Data collection and travel time model estimation 

On-board travel time surveys are used for the estimation of travel time models, collected 

by a bus operator (Busways) on weekdays from November 2007 to March 2009 in the 

Blacktown area, which is characterised by having a low residential density with a 

relatively low demand for public transport (2.1 pax/bus-km on average) and bus 

operating speed of 25.9 km/h on average. Figure 4.4 shows the bus network in the study 

area, which has been divided in four zones for the estimation of zone-specific factors; the 

zones are South-East, South-West, North-East and North-West. A fifth zone, referred to 

as Transversal-North is also defined, comprising routes that run across both the North-

East and North-West zones. 

The travel time surveys are manually collected by a single observer onboard buses, on 

either one-way or round trips.  The following information is recorded: 

• Bus route number. 

• Time of the day. 

• Scheduled arrival and departure times at the beginning of the route, end of the 

route and at every bus stop along the route. 

• Actual arrival and departure times at the beginning of the route, end of the route 

and at every bus stop along the route. 

• Number of passengers boarding and alighting per bus stop. Only actual stops are 

recorded, i.e., designated bus stops with no boarding and alighting demand 

(where the bus does not stop) are not noted. 

                                                      

28 Beyond multiple regression models, more sophisticated techniques are usually proposed in the literature 
of real time estimation of bus travel time, such as artificial neural networks (Chien et al., 2002; Chen et al., 
2007) and Kalman filter algorithms (Shalaby and Farhan, 2004; Padmanaban et al., 2009) developed to 
predict arrival times at bus stops. Jeong and Rilett (2005) found that artificial neural network models 
outperform regression models and historical data-based models when predicting bus arrival in real time, 
using automatic vehicle location data on a route in Houston, Texas. 
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In total there are 316 surveys corresponding to 23 different bus routes spread out across 

the entire network29

 

. 

Figure 4.4: Bus network in the study area 
(Source: www.busways.com.au) 

 

In order to assess the impact of the road configuration on bus travel times, the total 

number of traffic light intersections, give-way intersections, roundabouts and speed 

humps per route are added as potential explanatory variables, to complement the 

information from the travel time surveys. Finally, the route length for each observation 

(which may vary along the day for a specific bus line) is obtained from the schedule 

program of the bus operator. 

                                                      

29 Routes 718, 721, 722, 724, 725, 726, 737, 738, 739, 743, 745, 751, 752, 753, 753W, 754, 755, 756, 756G, 
757, 761, T70 and T71. 

 

North-West North-East 

South-East South-West 

http://www.busways.com.au/�
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Dummy variables are assigned to each zone to analyse zone-specific differences in travel 

times. The best estimated model, including only statistically significant variables, is given 

by expression (4.12). Estimations of the models are made using the program SPSS.  

( )
( )

47 47 89 89 912 912

912 912

c L se se dep dep

i r s N N f

T c t t t t t t n L

t I t R t S t t N

δ δ δ δ

δ ε

= + + + + + + +

+ + + + + +
     (4.12) 

where the dependent variable is the total travel time cT , and the independent variables 

and parameters are defined as follows: 

c: Constant [s] 

L : Length of the route [km] 

Lt : One-kilometre non-stop travel time [s/km] 

47t : Extra one-kilometre non-stop travel time is trip is between 4 and 7 AM [s/km] 

47

1 if trip is between 4 and 7 AM 
0 otherwise

δ


= 
  

89t : Extra one-kilometre non-stop travel time is trip is between 8 and 9 AM [s/km] 

89

1 if trip is between 8 and 9 AM 
0 otherwise

δ


= 
  

912t : Extra one-kilometre non-stop travel time is trip is between 9 AM and 12 PM [s/km] 

912

1 if trip is between 9 and 12 AM 
0 otherwise

δ


= 


 

set : Extra one-kilometre non-stop travel time is trip is in South-East zone [s/km] 

1 if trip is in South-East zone  
0 otherwiseseδ


= 
  

dept : Extra non-stop travel time per minute of late departure, per kilometre [s/min-km]  

depn : Late departure time [min] 

it : Average delay per traffic light intersection [s/intersection] 

I : Number of intersections 

rt : Average delay per roundabout [s/roundabout] 

R : Number of roundabouts  
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st : Average stopping delay per bus stop [s/stop] 

S : Number of bus stops 

Nt : Average boarding and alighting time per passenger (passenger service time) [s/pax] 

912Nt : Extra boarding and alighting time per passenger if trip is between 9 AM and 12 PM 

[s/km] 

fN : Total demand per bus [pax] 

ε : Residual or unexplained variation 

The results of the estimation of parameters for model (4.12) are shown in Table 4.6. 
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Table 4.6: Estimation of travel time model 

Parameter Unit Value 
Constant c 30

 
  

s 
-55.4 

(-1.55) 
One-kilometre travel time Lt  

s/km 
92.6 

(22.46) 
Extra time 4-7 AM 47t  

s/km 
-12.8 

(-4.60) 
Extra time 8-9 AM 89t  

s/km 
11.9 

(5.89) 
Extra time 9 AM-12 PM 912t  

s/km 
-10.2 

(-3.19) 
Extra time South-East zone set  

s/km 
15.8 

(6.43) 
Extra time late departure dept  

s/min-km 
-0.9 

(-3.09) 
Delay per traffic light it  

s/intersection 
23.3 

(6.80) 
Delay per roundabout rt  

s/roundabout 
7.7 

(1.78) 
Delay per bus stop st  

s/stop 
16.8 

(5.91) 
Average passenger service time Dt  

s/pax 
6.7 

(7.07) 
Extra delay passenger 9 AM-12 PM 912Dt  

s/pax 
9.9 

(4.88) 
Adjusted R-squared   0.955 

Note: t-ratios in brackets 
 

All variables are statistically significant at the 95 percent level of confidence, except for  

rt , the delay due to roundabouts, which is significant at the 90 percent level. Table 4.6 

shows that buses take on average 92.6 seconds to travel along one kilometre, without 

interruptions of any sort (equivalent to a non-stop speed of 38.9 km/h). This base travel 

time has some variations depending on the period and zone where a route is. For 

example, if a trip is between 4 AM and 7 AM, the uninterrupted travel time is 12.8 s/km 

shorter (equivalent to 45.1 km/h), whereas if the trip is on the morning peak, between 8 

                                                      

30 Constant c is negative which means that, theoretically, the estimated model could predict a negative 
travel time. However, that is not physically possible with the data used for the estimation (or on any 

realistic bus route), because given the estimated parameter values in Table 4.6, for cT  to be negative the 

route would have to be shorter than one kilometre and, for example, have no passengers boarding buses. 
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AM and 9 AM, travel time is 11.9 s/km longer on average. In terms of spatial distinctions, 

the only zone with a statistically significant difference in travel time with respect to the 

others is the South-East zone, whose non-stop travel time is 15.8 s/km longer on average 

than in the others (equivalent to 34.4 km/h). This is a measurement of the increased 

traffic congestion in this zone with respect to the rest of the network, which makes buses 

to be slower.  The parameter dept =-0.9 s/min-km suggests that drivers drive slightly faster 

when they depart late at the beginning of the route. The average delay related to traffic 

lights is 23.3 seconds per intersection, which accounts for accelerating, decelerating and 

waiting time at intersections. Roundabouts, on the other hand, yield an average delay of 

7.7 seconds. The average stopping delay per bus stop is 16.8 s/bus (including the time 

necessary to open and close doors), while the extra delay per passenger— the average 

passenger service time APST— is 6.7 seconds, which include both passengers paying the 

fare with cash to the driver and free concessions (pooled together as only total number 

of passengers getting on and off is available in this sample), therefore it is not 

representative of any fare payment alternative. Then, APST from Table 4.5 will be used to 

analyse differences on operating speed with alternative fare payment and boarding 

policies. 

 

4.5.3 Percentage of time spent at each stage 

The parameters of the travel time model in Table 4.6 are useful to benchmark the 

performance of bus routes. In this section we show how a travel time model, once 

estimated, can be used back to calculate the amount of time spent at each stage of a trip. 

Five stages are considered: 

• Non-stop running time 

• Delay due to traffic lights 

• Delay due to roundabouts 

• Time lost at bus stops– acceleration, deceleration, opening and closing of doors 

(AD) 

• Time lost at bus stops– passenger service time (PST). 
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In previous research, the percentage of time spent at different stages of a bus trip has 

been directly measured in the field (Levinson, 1983; Maloney and Boyle, 1999; Bertini 

and El-Geneidy, 2004). In this study we take a different approach by using a travel time 

model to indirectly estimate the time spent on-route, at intersections and at bus stops. 

These estimates are used to predict the impact of changes due to proposed modifications 

on a particular route or the entire network, such as the addition or removal of bus stops, 

traffic lights, roundabouts, or upgrading the fare collection system, something that is 

hard to do when running times or delays are directly measured with no account of the 

underlying factors behind them.  

Table 4.7: Percentage of time spent at each stage 
Time period Non-stop 

running 
Traffic 
lights 

Roundabouts 
 

Bus stops 
(AD) 

Bus stops 
(PST) 

04:00-07:00 66.0% 13.1% 3.2% 11.7% 5.9% 
07:00-08:00 60.7% 10.9% 2.8% 14.1% 11.4% 
08:00-09:00 62.4% 9.5% 2.2% 12.9% 12.9% 
09:00-12:00 60.9% 12.5% 2.6% 10.2% 13.8% 
12:00-14:00 67.9% 10.4% 2.9% 12.0% 6.8% 
14:00-16:00 62.0% 10.0% 2.4% 14.2% 11.4% 
16:00-18:00 63.5% 12.3% 2.7% 12.4% 9.0% 
18:00-20:00 71.4% 10.9% 3.0% 10.1% 4.6% 
Day average 63.3% 11.3% 2.7% 12.3% 10.3% 

 

We estimate the amount of time spent in each of the five categories previously defined, 

for all recorded bus trips which are then averaged per time period in Table 4.7. It is 

shown that if buses did not have to stop or decelerate because of traffic lights, 

roundabouts or bus stops, the travel time would be, on average, 63.3 percent of the total 

current time, whereas average delays in traffic lights and roundabouts account for 11.3 

and 2.7 percent of the total travel time, respectively. The time spent at bus stops is 22.6 

percent of the total, decomposed in 12.3 percent spent on accelerating, decelerating and 

opening and closing doors, while 10.3 percent of the time is lost when boarding and 

alighting passengers. There are some differences between time periods, as for example, 

in the periods 04:00-07:00, 12:00-14:00 and 18:00-20:00, buses actually spend shorter 

times serving passengers (PST) relative to the total travel time, which reveals that these 

periods are off-peak in terms of demand. 
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In summary, Table 4.7 illustrates how this type of travel time model is useful to 

disaggregate bus travel times in stages, and therefore, to provide a first idea of the main 

sources of delays along a route. In turn, this can be used as background information to 

propose control strategies or corrections policies if necessary, such as adjustments in the 

number of bus stops and improvements in the efficiency of the boarding and alighting 

process (see Section 4.5.5 for a comparison of having busways versus upgrading the fare 

collection system). Changing the location and number of bus stops is a strategy that has 

received considerable attention in the literature (e.g., Levinson, 1983; Kuah and Perl, 

1988; Furth and Rahbee, 2000; Saka, 2001; Ibeas et al., 2010; Tétreault and El-Geneidy, 

2010), whereas the implications of upgrading the fare payment technology are analysed 

in Sections 4.5.4, 4.5.5 and 4.5.6.  

 

4.5.4 Bus operating speed 

Using the values of Table 4.5, it is possible to estimate the potential time and cost savings 

due to upgrading the fare collection system and/or boarding policy. However, before 

attempting this exercise a couple of considerations need to be made. First, the full 

realisation of potential time savings depends on how timetables can be adjusted after 

changing the fare collection system; for instance, the need to synchronise transfers 

between two or more lines (Ceder et al., 2001; Fleurent et al., 2004) or to publish 

timetables at bus stops with departure times rounded to entire minutes would set 

constraints for the translation of potential savings into actual savings. In what follows, 

potential benefits from having a quicker fare payment method are estimated, with no 

concern about the adaptation of timetables; in this respect the approach is directly 

applicable to bus services that are not based on timetables for passengers (e.g., a high 

frequency route with one bus every five minutes or less). 

 

Second, the composition of the patronage is relevant because if there are passengers 

exempted from paying a fare (e.g., school students, senior pensioners), the effectiveness 

of upgrading the fare payment technology as a tool to decrease travel times is reduced. 

On the other hand there might be differences within the group that pays a fare; for 

example senior passengers might be slower to board and alight buses than younger 
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passengers, although the time differences with alternative fare payment methods exist 

regardless of the age of the passengers (Tirachini, 2011)31

 

.   

In order to apply the estimated bus travel time model (Equation 4.12), an estimation of 

the actual number of stops that a bus makes to serve passengers is required. In formal 

urban public transport systems that face high demand, such as BRT services, it is common 

that buses have to stop at every designated station along the line, regardless of whether 

or not there are passengers that actually want to board or alight. Nevertheless, in the 

case of low-demand bus services, it is usual that buses stop only when they are required 

to by passengers on board that need to get off at the next stop, or by passengers who 

signal to the driver while waiting on a bus stop. Intuitively, the number of times that a 

bus actually stops along a route depends on ridership, as with a low total demand per 

bus, it is less likely that buses are required to stop at every scheduled bus stop. The 

relation between the actual number of stops per bus-kilometre and demand per bus-

kilometre found in the travel time surveys is shown in Figure 4.5. It is evident that a high 

proportion of the variation in the actual number of stops is explained by the average bus 

demand. 

 

 
Figure 4.5: Actual number of bus stops as a function of passengers per bus 

                                                      

31 The figures in Table 4.5 are average boarding and alighting times for all age groups. 
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Numerically, we find that the curve that better fits the scatter plot depicted in Figure 

4.5.is the power function shown in equation (4.13), where kmS  is the actual number of 

stops per kilometre and kmD  is the average number of passengers per bus- kilometre. The 

power 0.528 implies that the actual number of stops per kilometre roughly varies with 

the square root of demand.  

0.5280.763km kmS D=     (R2=0.736)        (4.13) 

The operating (or commercial) speed is the average speed along a route including both 

running time and stops of any sort. We simulate the circulation of buses with two and 

four doors, assuming that travel time model (4.12) is valid for the two types of buses 

despite their difference in size, on a route of 16 kilometres of length, with 11 traffic lights 

and 8 roundabouts (these figures are the average values of the variables in the sample) 

during the morning peak (8-9 AM). Average demand varies between 1 and 8 pax/bus-km, 

which in turn determines the actual number of bus stops per kilometre, as given by 

Equation (4.12). The APST per payment system are obtained from Table 4.5. Figure 4.6 

shows how operating speed decreases with demand, and the loss of speed is stronger the 

more inefficient the fare payment system is. For example, on 2-door buses speed drops 

from 24.8 to 14.3 km/h for cash payment, while in the same demand range the drop is 

26.4 to 19.7 km/h for contactless card with boarding at the front door only. This is a 

quantification of an expected result, that the benefits of having an efficient fare payment 

system, with prepaid cards or off-board payment, are greater the larger demand is.   
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  (a) 2-door buses 

 
(b) 4-door buses 

Figure 4.6: Bus operating speed as a function of demand and fare payment and 
boarding policy 

 

When boarding is allowed at the front door only (cases T2B1 and T4B1), in both plots 

there is a noticeable gain in speed when upgrading the fare collection method from cash 

to magnetic strip, and from magnetic strip to contactless card; nevertheless, the 
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technology effect on increasing speed (reducing travel time) is weaker when boarding is 

allowed at all doors (cases T2B2 and T4B4). This is particularly evident in buses with four 

doors, as the vertical difference between the three T4B4 curves is almost marginal in 

Figure 4.6b. In other words, upgrading the fare payment technology has a major impact 

on performance when boarding is allowed at the front door only, but this technology 

effect diminishes when boarding is allowed at all doors, especially on bigger buses. Note 

that the TnBn boarding policy is superior to TnB1 in all cases, even if the fare is paid with 

magnetic strip (with contact) in the former case and with the faster contactless card in 

the latter case. This  indicates that if a bus service is provided with on-board magnetic 

strip payment and boarding is allowed at the front door only, in order to save travel time 

it is more effective to allow boarding at the back doors (installing card reading devices) 

than to upgrade the technology of payment to contactless card keeping the one-door 

boarding policy. In other words, the door effect can be more powerful than the 

technology effect. 

 

4.5.5 Going cashless or creating busways?  

The bus travel time model and the passenger service times with alternative fare 

collection systems are useful as a starting point to compare bus speed gains, achieved by 

upgrading the fare collection system and/or providing dedicated bus lanes or busways. A 

busway aims at separating buses from cars in order to reduce bus travel times and 

improve service reliability; in this sense it is a measure to reduce travel time in links (the 

non-stop time in Table 4.7), as opposed to improving the boarding and alighting process 

which decreases the time spent at bus stops. Table 4.7 reveals that the non-stop running 

time for buses along the network amounts to 63.3 percent (daily average) of the total 

running time, whilst the passenger service time is only 10.3 percent of the total time. In 

this section we analyse if this evidence is sufficient to suggest the provision of on-road 

priority schemes for buses -instead of more efficient fare collection techniques- with the 

objective of speeding up buses.  

The result depends on the relative impact of traffic congestion and bus demand levels on 

bus travel times. Analytically, if the introduction of a busway reduces non-stop bus travel 

time from 1Lt  to 2Lt  s/km and, on the other hand, upgrading the fare payment system 
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decreases passenger service time from 1Nt  to 2Nt  s/pax, the relevant comparison is 

between time savings ( )1 2L Lt t L−  and ( )1 2N N ft t N− , where L  is the route length and 

fN  is the total demand per bus ride. Let us define the average demand per bus kilometre 

as km fN N L= , then for a bus demand greater (lower) than ( ) ( )*
1 2 1 2km L L N NN t t t t= − −  

pax/bus-km, buses will be faster (slower) with a policy that reduces boarding and 

alighting times, relative to a policy that increases the non-stop bus speed. For a numerical 

comparison, three scenarios are defined using parameters of the travel time model given 

in Table 4.6. These are: 

• Segregated bus operation: we assume that the period between 4 and 7 AM 

presents free-flow conditions and can be used as a proxy to an operation of buses 

on dedicated busways. From Table 4.6, the non-stop travel time in this case is 

92.6-12.8=79.8 s/km (equivalent to a non-stop speed of 45.1 km/h). 

• Mixed-traffic operation, peak congestion: in this case we use the morning peak to 

represent congested operation with buses and cars sharing the right-of-way, 

therefore the non-stop travel time is 92.6+11.9=104.5 s/km (34.4 km/h).  

• Mixed-traffic operation, off-peak congestion: we use the base one-kilometre 

travel time to represent off-peak congestion, which is applicable to the periods 7-

8 AM and after 12PM. In this case the non-stop travel time is 92.6 s/km (38.9 

km/h).  

Two fare payment methods are chosen in each scenario: on-board cash payment (cash 

T2B1) and on-board contactless card payment (contactless card T2B1). The estimated 

operating speed for each scenario is presented in Figure 4.7 (2-door buses), where the 

cases with peak and off-peak congestion are compared against the segregated bus 

operation separately. 
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(a) Peak traffic 

 
(b) Off-peak traffic 

Figure 4.7: Bus operating speed, mixed-traffic versus segregated bus operation 
 

As expected, the faster fare collection system (contactless card) with segregated bus 

operation provides the highest operating speed for all demand levels, whilst the lowest 

speed is obtained with cash payment in mixed traffic (for both peak and off-peak traffic). 
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A more interesting outcome comes from the comparison of slow boarding on fast buses 

(cash payment on segregated busways) against a quick bus boarding system combined 

with a low bus speed (contactless card payment in mixed-traffic); in this case the 

superiority of one or the other is given by the demand level as shown by the curves that 

intersect each other in Figures 4.7a and 4.7b. Under congested conditions, a busway 

provides a higher bus operating speed for demand up to * 3kmN =  pax/bus-km (Figure 

4.7a, intersection of curves “Card payment, peak traffic” and “Cash payment busway”), 

whereas with mild congestion the threshold is * 1.6kmN =  pax/bus-km (Figure 4.7b). 

Implementing a prepaid fare collection system outperforms busways beyond demand 

*
kmN . In summary, the fact that buses spend most of the travel time running between 

stops does not alone suggest a preference for on-road bus priority schemes over tools 

aimed at reducing dwell times at bus stops; the bottom line is identifying if the bottleneck 

is on the road or at bus stops in the first place, in order and to apply a corrective measure 

accordingly.  

 

4.5.6 Estimation of benefits from upgrading the fare collection system: fleet size, 

travel time, operator and environmental cost savings 

In this section we estimate a number of potential benefits associated with improving the 

boarding and alighting process. The approach outlined can be used as an input for a 

wider cost benefit analysis that needs to consider transaction, implementation and 

operating costs of upgrading the fare payment system (Wright and Hook, 2007), the 

implications for demand (Balcombe et al., 2004), type of passengers (number of fare 

paying passengers, students, elderly, etc.), capacity to handle different fare structures, 

etc. 

 

First, we examine the fleet size requirement and bus in-service time as a function of 

frequency, passenger demand and fare payment strategy. The number of buses B 

required to provide a service on a single route is given by the product of the cycle time T 

(expression 4.12) and the frequency f [bus/h]: 

[ ]B T f += ⋅           (4.13) 
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where [ ]+⋅  denotes the upper integer. In Table 4.8 we estimate the number of buses 

(Fleet size - FS) required for 5-minute headway (high frequency – 12 veh/h) and 20-

minute headway (low frequency – 3 veh/h) services for different levels of demand. The 

results show that with a 20-minute headway the number of buses needed does not 

change in some demand ranges, e.g., between 4 and 6 pax/bus-km, three buses are 

required to provide the service regardless of the fare collection technique, whereas for a 

demand between 7 and 8 pax/bus-km, one bus is saved by having a prepaid fare 

collection system, relative to on-board cash payment. However, on a high frequency 

service, between one and four buses could be saved by upgrading the fare payment 

system and/or boarding rule, depending on the demand level. 

 

Even when the same number of buses is required to provide the service with slow or fast 

fare payment methods, the travel time of buses is shorter if the fare payment technology 

is quicker, as shown by the resulting operating speeds in Figure 4.6, therefore there will 

be savings in terms of fuel consumption, labour and travel time cost for users. A measure 

of the operating cost saving is presented in Table 4.8 as the in-service time ratio STR 

(percentage of time in which buses are running the service), which demonstrate that 

even when the number of required buses is the same, more efficient fare payment 

systems require a lower utilization time for buses, which may be translated in further 

fleet size savings if buses are sequentially used in several routes that share a terminal.    
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Table 4.8: Fleet size (FS – buses) and in-service time ratio (STR) 
20-minute headway 

pax/bus-
km 

 

Cash 
 

T2B1 

Magnetic 
strip 
T2B1 

Contactless 
card 
T2B1 

Magnetic 
strip 
T2B2 

Contactless 
card 
T2B2 

Off- board 
 

T2B2 
FS STR FS STR FS STR FS STR FS STR FS STR 

1 2 96.7% 2 91.6% 2 91.0% 2 90.9% 2 90.1% 2 89.9% 
2 3 72.1% 2 97.9% 2 96.7% 2 96.4% 2 95.0% 2 94.4% 
3 3 79.3% 3 68.9% 3 67.7% 3 67.5% 2 99.1% 2 98.2% 
4 3 86.1% 3 72.3% 3 70.7% 3 70.4% 3 68.5% 3 67.7% 
5 3 92.7% 3 75.5% 3 73.5% 3 73.1% 3 70.7% 3 69.8% 
6 3 99.3% 3 78.6% 3 76.2% 3 75.7% 3 72.8% 3 71.7% 
7 4 79.3% 3 81.5% 3 78.8% 3 78.2% 3 74.9% 3 73.5% 
8 4 84.0% 3 84.4% 3 81.3% 3 80.6% 3 76.8% 3 75.3% 

5-minute headway 
 

pax/bus-
km 

Cash 
 

T2B1 

Magnetic 
strip 
T2B1 

Contactless 
card 
T2B1 

Magnetic 
strip 
T2B2 

Contactless 
card 
T2B2 

Off- board 
 

T2B2 
FS STR FS STR FS STR FS STR FS STR FS STR 

1 8 96.7% 8 91.6% 8 91.0% 8 90.9% 8 90.1% 8 89.9% 
2 9 96.2% 8 97.9% 8 96.7% 8 96.4% 8 95.0% 8 94.4% 
3 10 95.1% 9 91.9% 9 90.3% 9 90.0% 8 99.1% 8 98.2% 
4 11 93.9% 9 96.4% 9 94.3% 9 93.9% 9 91.3% 9 90.3% 
5 12 92.7% 10 90.6% 9 98.1% 9 97.5% 9 94.3% 9 93.0% 
6 12 99.3% 10 94.3% 10 91.5% 10 90.9% 9 97.1% 9 95.6% 
7 13 97.6% 10 97.9% 10 94.6% 10 93.9% 9 99.8% 9 98.0% 
8 14 96.0% 11 92.1% 10 97.6% 10 96.8% 10 92.2% 10 90.3% 

If c is a unit of bus cost per hour [$/bus-h], the cost saving C∆  [$/h] from speeding up 

the passenger service time from  1Dt  to 2 1D Dt t<  is given by (4.14). 

( )1 2D DC c f P L t t∆ = −         (4.14) 

where P is the bus demand [pax/bus-km] and L is the length of the route [km]. Both 

operating and external costs can be expressed as a cost c per bus-hour of operation. For 

instance, travel time savings due to upgrading the fare payment method can be 

translated into fuel and (potentially) labour cost savings for operators, and environmental 

benefits as reductions of air pollution. These effects are monetised next.  

 

Based on Frey et al. (2007), we estimate a fuel consumption rate of 2.52 litres per hour in 

idle time (while bus is at bus stop) for a diesel technology, which is purchased at $1.20 
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per litre (2011 Australian dollar, AUD)32

1c =

, therefore, the hourly cost of fuel in idle time is 

estimated as 3.02 $/bus-h. On the other hand, the average labour cost of bus drivers 

in Australia is 2c = $29.90 $/bus-h (Hensher, 2010). Thirdly, we can estimate benefits due 

to the reduction of air pollution. Attaching a social or external cost to gas emissions is 

highly variable depending on several factors such that fuel technology, vehicle technology 

and population density. Watkiss (2002) estimates a marginal environmental cost of  $0.58 

(2002 AUD) per litre of fuel consumed by diesel buses in  Australia33

 

. 

Assuming an average fare paying demand of 4 pax/bus-km, the fuel, labour and 

environmental cost savings of upgrading from an on-board cash payment to one of the 

other payment systems are given in Tables 4.9, 4.10 and 4.11, respectively, as a function 

of the service headway, i.e., the inverse of frequency. 

 

Table 4.9: Fuel cost savings with respect to on-board cash payment 

Headway 
[min] 

 

Magnetic 
strip 

T2B1 [$/h] 

Contactless 
card 

T2B1 [$/h] 

Magnetic 
strip 

T2B2 [$/h] 

Contactless 
card 

T2B2 [$/h] 

Off- board 
 

T2B2 [$/h] 
30 0.83 0.93 0.95 1.07 1.11 
20 1.25 1.39 1.42 1.60 1.67 
15 1.67 1.86 1.90 2.13 2.22 
10 2.50 2.79 2.85 3.20 3.34 
5 5.01 5.57 5.70 6.39 6.67 
2 12.52 13.93 14.24 15.98 16.68 

 
 
 
 
 
 
 

                                                      

32 AUD 1≈ USD 1 ≈ EUR 0.76 on December 2011. 
33 For buses manufactured between 1996 and 1999. Value is representative of inner areas of large capital 
cities (Melbourne, Sydney, Brisbane, Adelaide and Perth). Pollutants considered are NOx (oxides of 
nitrogen), PM (particulates), HCs (hydrocarbons), SO2 (sulfur dioxide), CO (carbon monoxide) and CO2 
(carbon dioxide). This value is given only with illustration purposes and might not be representative of the 
current 2011 situation as gas emission rates have likely changed due to technological improvements in bus 
emissions. 
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Table 4.10: Potential labour cost savings with respect to on-board cash payment 

Headway 
[min] 

 

Magnetic 
strip 

T2B1 [$/h] 

Contactless 
card 

T2B1 [$/h] 

Magnetic 
strip 

T2B2 [$/h] 

Contactless 
card 

T2B2 [$/h] 

Off- board 
 

T2B2 [$/h] 
30 8.25 9.19 9.39 10.54 10.99 
20 12.37 13.78 14.08 15.80 16.49 
15 16.50 18.37 18.77 21.07 21.99 
10 24.75 27.56 28.16 31.61 32.98 
5 49.50 55.11 56.32 63.21 65.96 
2 123.75 137.78 140.81 158.03 164.89 

 
Table 4.11: Environmental cost savings with respect to on-board cash payment 

Headway 
[min] 

 

Magnetic 
strip 

T2B1 [$/h] 

Contactless 
card 

T2B1 [$/h] 

Magnetic 
strip 

T2B2 [$/h] 

Contactless 
card 

T2B2 [$/h] 

Off- board 
 

T2B2 [$/h] 
30 0.40 0.45 0.46 0.51 0.54 
20 0.60 0.67 0.69 0.77 0.81 
15 0.81 0.90 0.92 1.03 1.07 
10 1.21 1.35 1.38 1.54 1.61 
5 2.42 2.69 2.75 3.09 3.22 
2 6.05 6.73 6.88 7.72 8.06 

 

As an example, upgrading from cash to on-board contactless card payment with boarding 

at the front door only (T2B1), keeping the headway constant at 10 minutes, would yield 

savings of $2.79 per hour on fuel, and up to $27.56 on labour (depending on the 

percentage of total time savings that can actually be translated into a reduction of driver 

work hours), plus $1.35 per hour on environmental benefits. As expected, larger cost 

savings are accruable for high frequency (short headway) services. Note that for a 

different value of average demand 2kmN  [pax/bus-km], savings from Table 4.9 to 4.11 

simply need to be amplified by 2 4kmN , being 4 pax/bus-km the demand used for the 

calculations. Also, the cost savings of moving between any of the other fare passenger 

boarding alternatives are obtained by subtracting the respective values in Tables 4.9 to 

4.11.  

 

Finally, the benefits for users due to reductions in bus travel time are estimated, which 

depend on their travel distance and willingness to pay for time savings. Using 18.3 $/h as 

the value of in-vehicle time savings (estimated in Section 6.3) and assuming that the 
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average travel distance for passengers is 6.4 km (which is the average travel distance for 

bus passengers in Sydney, TDC, 2010), the user cost savings per passenger, with respect 

to the on-board cash payment system, are presented in Table 4.12. Again, as the saving 

of time is proportional to demand, so is the benefit perceived by users. 

 

Table 4.12: Average user cost savings with respect to on-board cash payment 

Demand 
[pax/bus-

km] 

Magnetic 
strip 

T2B1 [$/h] 

Contactless 
card 

T2B1 [$/h] 

Magnetic 
strip 

T2B2 [$/h] 

Contactless 
card 

T2B2 [$/h] 

Off- board 
 

T2B2 [$/h] 
1 0.26 0.29 0.29 0.33 0.33 
2 0.50 0.57 0.57 0.64 0.67 
3 0.76 0.83 0.86 0.98 1.00 
4 1.00 1.12 1.14 1.29 1.33 
5 1.26 1.41 1.43 1.62 1.69 
6 1.53 1.69 1.72 1.93 2.03 
7 1.76 1.98 2.00 2.26 2.36 
8 2.03 2.24 2.29 2.57 2.69 

 

The generalisability of the quantitative results obtained in this section depends on the 

accuracy of the passenger service time estimations used for the calculations (Table 4.5). 

These figures are obtained based on average boarding times estimated in Sydney and 

Santiago. In general, passenger boarding and alighting times depend on several factors, 

namely the existence of steps at the entrance of doors (York, 1993), width of doors 

(Fernández et al., 2010), proportion of seniors and students among passengers (Tirachini, 

2011) and crowding and friction effects (Milkovits, 2008), which are specific to each local 

situation, and consequently, transferability of the results to other places is not 

guaranteed. However, the analysis in this section is parametric on PST and therefore, the 

estimation of benefits with other values for boarding and alighting times (from other 

countries or obtained under different assumptions) is straightforward. 

 

4.6  Conclusions 

 

In this chapter it has been argued that with the current availability of several 

technological options for the choice of a fare payment system on bus services, together 

with the assignment of doors to the processes of boarding and/or alighting, the time that 
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buses spend at bus stops boarding and alighting passengers can be manipulated; hence 

the boarding and alighting time per passenger becomes an important decision variable 

instead of being treated as exogenous parameters, as traditionally assumed in the 

microeconomic literature of public transport operations. 

 

Based on a series of dwell times surveys in Sydney and a study in Santiago, we estimated 

average passenger service time (including boarding and alighting) for four fare payment 

methods (off board payment and on board with cash, magnetic strip and contactless 

card), when bus boarding is allowed only at the front door or at all available doors 

(Section 4.3). This information is later used to analyse, on the one hand, the effect of 

upgrading the fare collection technology, and on the other hand, the effect of increasing 

the number of doors in which boarding is permitted. In Section 4.4 we find that the time 

savings due to upgrading the payment technology (technology effect) and due to 

increasing the number of doors to board (door effect) are not independent, and rather 

depend on the bus size. The scenarios with boarding through all doors are always more 

time efficient than their counterparts with boarding at the front door only, for a given 

number of doors.  

 

In Section 4.5, the impact of alternative fare collection systems and boarding policies is 

analysed over an empirically estimated bus travel time function in Sydney, which 

revealed that upgrading the fare payment technology has a major impact on performance 

when boarding is allowed at the front door only; but this technology effect diminishes 

when boarding is allowed at all doors, especially if big buses with four doors are used. We 

estimate savings on fleet size requirements, fuel and labour cost, travel time for users 

and air pollution. This is a novel application in the literature on bus travel times, and 

shows how the benefits from upgrading the fare payment system from slower to quicker 

techniques increase with demand and bus frequency. Thus, the analysis performed in this 

study can be applied to other bus systems by transit agencies and transport policy 

makers, to make a more informed decision on bus service provision alternatives when 

considering several alternatives referring to fare collection policy, for the implementation 

of new services or the enhancement of existing systems.  
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The relative merits of upgrading the fare collection system as a measure to reduce travel 

times are compared with the commonly suggested policy of segregating buses from car 

traffic by implementing bus lanes or busways. It is shown that the superiority of one or 

the other, as stand-alone policies, is given by the demand level, as implementing a faster 

fare payment technology can provide lower bus travel times for high demand. 



103 
 

 
 
 
 
 
 
 
 
 
 

Chapter 5 
5 Determinants of Bus Congestion and its Inclusion in the Economic Analysis of Transport Policies 

Determinants of Bus Congestion and its Inclusion in 
the Economic Analysis of Transport Policies 
 
 
Chapter 5  
5.1  Introduction 

 
Traditionally, microeconomic models for the operation of urban bus services assume that 

the travel time in between bus stops of buses is fixed, i.e., the bus running time is not 

influenced by bus frequency (e.g., Mohring, 1972; Jansson, 1980; Kuah and Perl, 1988; 

Jara-Díaz and Gschwender, 2003a) but may be influenced by car flow, as empirically 

found in regression models where car flow plays a role in determining bus travel time34

                                            
34 The traffic flow influence on buses is considered either implicitly -through time-of-day specific dummy 
variables to account for peak and off-peak periods, as in the model of Section 4.5- or explicitly –using car 
flow as an explanatory variable of bus travel time (McKnight et al., 2003). 

. 

The assumption of no delays due to bus frequency is plausible for services in which the 

frequency is relatively low, such that there is no noticeable bus interaction due to 

bunching or queuing delays behind bus stops. Nevertheless, as frequency grows, it is 

more likely that buses will arrive at bus stops when there are other buses transferring 

passengers, therefore bus queues may arise before bus stops. This is a relevant issue for 

pricing analysis and frequency setting, as the existence of frequency-induced congestion 

increases bus travel time for users and operators, in contrast to the economies of scale 

effect on reducing waiting times (Kerin, 1992).  
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The existence of delays due to the interaction of buses with each other -and with cars in 

the case of mixed traffic operation- is referred to as “bus congestion”. In practice, we find 

that bus congestion is present even in cities that have a very low total bus usage. For 

example, in the city of Sydney the number of trips by bus is between 5.5 and 5.8 percent 

of the total on the period 2001-2009 (TDC, 2010), however if we focus on the CBD only, 

the modal split of public transport (including bus and rail) for commuting trips is between 

73 and 76 percent, with very high frequencies of bus services in the morning and 

afternoon peak periods (e.g., more than 40 buses per hour in George Street, the main 

CBD road) that cause bus queues before stops and intersections. 

 

In this chapter, a method to include bus congestion in the economic analysis of bus 

service provision is proposed and operationalised, which has effects on the optimal 

design of the system and pricing level. Section 5.2 presents a review of bus congestion in 

the literature. The estimation of queuing delays is presented in Section 5.3, while the link 

between bus congestion, fare collection technology and bus boarding policy is discussed 

in Section 5.4. Finally, conclusions are provided in Section 5.5. 

 

5.2  Bus Congestion in the Literature  

 

In general, the treatment of bus congestion is limited in the existing literature. A technical 

problem for the introduction of bus congestion in formal microeconomic analysis is that 

the bus congestion technology has not been realistically understood and defined, 

because of the myriad number of factors that intervene on how buses interact with each 

other, with other modes (e.g., cars, trucks, motorcycles, bicycles) and with passengers in 

an urban environment.  

 

Jara-Díaz and Gschwender (2003a) postulate a general model in which the bus running 

time bt  is a function of frequency, but no functional form for the relationship is provided, 

while the few authors that assess bus congestion do so by applying to buses flow-delay 

functions borrowed from car traffic models, such as the linear function (5.1) 

implemented by Ahn (2009) in his analysis of bus services and road pricing, and the 



105 
 

Bureau of Public Roads (BPR) function (5.2) used by Fernández et al. (2005) in their 

analysis of bus cost structure, and by Wichiensin et al. (2007) in their analysis of car, bus 

and rail pricing.  

( ) ( )0 1b b b b a bt f t t f fϕ= + +           (5.1) 

( )
1

0 01 a b
b b b

r

f ft f t
K

α
ϕα

  +
 = +  
   

         (5.2) 

where af  is the car flow, bf  is the bus frequency, 0bt , 1bt , 0α  and 1α  are parameters ( 0bt  

is the free-flow travel time), 1ϕ ≥  is the passenger car equivalency factor of a bus, and 

rK  is the capacity of the road. Expressions (5.1) and (5.2) assume that cars and buses 

share the right of way. Pels and Verhoef (2007) also choose a linear function to account 

for congestion in (independent) cars and trains. BPR or linear delay functions are 

commonly used to represent traffic congestion in traffic assignment models; and as an 

extension could be used to represent delays that buses face on the road, for example, 

due to intersections. However, travel time functions that depend only on flow measures 

(frequency in the case of buses) such as (5.1) and (5.2) do not explicitly account for the 

fact that buses have to stop to transfer passengers, an issue that is sometimes implicitly 

internalised by applying to buses a large passenger car-equivalency factor, e.g., to assume 

that a standard bus is equivalent to ϕ =4 or 5 cars (Parry and Small, 2009). Therefore, the 

application of functions inspired in car traffic models as the only measure of congestion is 

incomplete for public transport, as, among other things, cars do not have to stop at bus 

stops and do not interact with passengers getting on and off. Bus stop congestion implies 

that frequency is not the only variable that triggers bus delays. A poor operation of bus 

stops or an inefficient boarding and alighting process can impact on the time that buses 

are stopped, possibly imposing delays on other buses even for relatively low frequencies.  

In this work, two sources of bus congestion are considered:  

(i) On the road and intersections, commonly expressed as a static congestion 

function such as (5.1) and (5.2) above.  

(ii) At bus stops, in the form of queuing delays that arise behind bus stops when a 

bus arrives and all berths are being used by other buses. Note that the dwell 
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time, i.e., the time necessary to board and alight passengers, is not a form of 

congestion. 

There exist a few studies that have advanced the understanding of the congestion 

associated with bus stops. When buses stop to transfer passengers, part of that delay 

may be transferred to cars if both modes run in shared lanes; and given that the dwell 

time of buses depends on the number of passengers transferred, car travel time would 

also be affected by the number of passengers boarding and alighting a bus. Koshy and 

Arasan (2005) analyse the influence of two types of bus stops -curbside and bus bays- on 

the running speed of other modes that share a road with buses in India (cars, trucks, 

motorised two-wheelers, autorickshaws and bicycles); it is found that curbside bus stops 

cause more congestion on other modes than bus bays, and the impact increases with the 

dwell time of buses. Zhao et al. (2007) show that road capacity reductions due to the 

operation of a bus stop depend on the location of the stop with respect to a signalised 

intersection (nearside, farside and stop-intersection distance35

 

). Finally, Basso and Silva 

(2010) propose a non-linear function for bus frequency that accounts for the delay that 

cars experience when buses stop at a bus stop, in a way that the mean delay transferred 

to cars is small when bus frequency is low, and equals bus dwell time when bus frequency 

is high, and therefore, it is assumed that cars sharing the road have no option but to 

behave like buses.  

In summary, the existing models are far from a realistic characterisation of the 

phenomenon of congestion when urban buses are involved. The inclusion of engineering 

or simulation models that deal with bus dynamics at bus stops (Fernández and Tyler, 

2005; Fernández, 2010) into economic pricing analysis is a possible way forward to 

                                            
35 Bus stops are usually classified into three groups: (i) before an intersection or nearside, (ii) after an 
intersection or farside, and (iii) isolated from intersections or midblock. Each location has advantages and 
disadvantages that make impossible to give general recommendations over which one is superior without 
taking into account myriad local considerations like the programming of signalised intersections, the 
number of vehicles turning left or right at intersections, the geometry of bus access to the curb, the size of 
the bus stop, the distance between the bus stop and the nearest intersection, traffic safety, pedestrian 
interference with bus movements at bus stops and with general traffic at intersections, etc. (TRB, 1996, 
2003). However, when bus stops are analysed in isolation from other bus stops upstream or downstream, 
authors tend to agree that generally farside stops yield shorter delays than midblock and nearside stops 
(TRB, 1996; Furth and SanClemente, 2006). On the other hand, when traffic signals are synchronised to 
facilitate car flow, buses can reduce overall delays by alternating nearside and farside bus stop locations 
(TRB, 2003; Vuchic, 2005). 
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improve our understanding of bus delays at bus stops and of congestion interactions in 

mixed systems, and its implications for pricing policy. In this chapter, a bus stop simulator 

is used to estimate queuing delays at bus stops as a function of bus frequency and size, 

number of berths and average dwell time. As dwell time depends on the number of 

passengers being transferred, the fare collection system and the boarding and alighting 

policy, we will be able to link bus congestion to the technological choice of a fare 

payment method and boarding regime, analysed in Chapter 4. Consequently, the 

proposed congestion function is more comprehensive than traffic borrowed formulae 

commonly used in the economic literature of urban transport. 

 

5.3  Estimation of Queuing Delays at Bus Stops 

 

The total time delay per bus stop consists of the (i) acceleration and deceleration delay 

act , (ii) the average queuing time qt , (iii) the dwell time dt  and (iv) an internal waiting 

delay iwt .
 
The queuing time is a measure of the external congestion caused by a bus stop, 

observed when a bus arrives at a stop and all berths are occupied. This delay is commonly 

present in high frequency services, but it may also occur in poorly controlled low 

frequency services where buses tend to bunch.  

 

If bf  represents the bus frequency, bN  denotes passenger demand and ∆  represents a 

fare payment technology and boarding and alighting policy (which determines boarding 

and alighting times), we have: 

( ),q q b dt t f t=             (5.3) 

( ),d d bt t N= ∆            (5.4) 

There is little research on the empirical estimation of qt ; after analysing bus stop 

operations with the simulation model IRENE, Fernández et al. (2000) found that qt  grows 

exponentially with the frequency of buses that enter a bus stop. On the other hand, Lu et 

al. (2010) apply a Cellular Automaton model to simulate qt  on bus stops with multiple 

berths and multiple bus routes arriving. In this chapter, these previous works are 
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extended upon by estimating a queuing delay function that depends on the design of the 

bus stop (number and length of berths), bus length, bus frequency and average dwell 

time (the latter given by the number of passengers getting on and off, the fare collection 

system and the number of doors to board and alight). 

 

As argued by Fernández and Planzer (2002), a simulation approach is well suited to 

analyse key performance measures of bus stops (like the queuing delay), because the 

processes involved in the arrival of buses, passengers and the interaction between them 

are very complex and usually random, which suggests that analytical steady-state 

approaches like the Highway Capacity Manual (HCM) formula to calculate bus stop 

capacity (TRB, 2000) have a limited real world applicability. Consequently, we use IRENE 

to estimate delay-frequency functions qt  that depend on frequency and average dwell 

time dt . IRENE is a bus stop simulator that calculates the capacity, queuing delay, dwell 

time, berth usage and other indicators of the performance of a bus stop, as a function of 

a number of inputs such as the boarding and alighting demand, number of berths, 

stochasticity of both user and bus arrivals, etc. For a detailed description of the program 

see Gibson et al. (1989) and Fernández and Planzer (2002).  

 

We consider linear bus stops with one, two or three linear berths, and four possible bus 

sizes: mini (8 m), standard (12 m), rigid long (15 m) and articulated (18 m). A description 

of the assumptions regarding bus stop location, berth length and bus saturation flow is 

presented in the Appendix A2. A total of 265 simulations were run encompassing all bus 

sizes and bus stop designs previously described for a range of frequencies from 20 to 220 

bus/h and dwell times between 10 and 65 seconds. Buses are assumed to arrive at a 

constant rate at stops (no bus bunching) and bus stops are isolated from traffic lights.  

 

The estimated model for the queuing delay qt  [s/bus] as a function of the bus length bs

[m], dwell time dt [s/bus], frequency bf  [veh/h] and number of berths per bus stop is 

shown in expression (5.5) 

 

( ) ( )2 4 5 2 6 30.001
0 1 1 2 2 3 30.001 b f l b d d d df s Z Z t

q l b d d d dt s Z Z t e β β β β ββ β β β β  + + + + = + + + +     (5.5)  
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where 0β , 1lβ , 2lβ , 1dβ , 2dβ , 3dβ , 4dβ , 5dβ , 6dβ  and fβ are estimated parameters and 

factors 0.001 are introduced for scaling of the parameters (see Appendix A2 for further 

details). 2Z  and 3Z  are dummy variables defined as follows: 

2

1
0

if bus stop has twoberths
Z

otherwise


= 


 

3

1
0

if bus stop has threeberths
Z

otherwise


= 


 

The case of split bus stops (a large stopping area consisting of two subgroups with one, 

two, or three berths each) can be accommodated by setting a rule for the assignment of 

buses to the stopping areas (e.g., 50 percent of buses to each stopping area). A similar 

expression to (5.5) was first proposed by Fernández et al. (2000), but with the boarding 

demand instead of the total dwell time as an explanatory variable, and therefore, the 

function from Fernández et al. (2000) is linked to a particular fare collection system (cash 

payment on board buses in Santiago, Chile). However, expressing the queuing delay (5.5) 

as a function of the dwell time makes it more general to accommodate the influence of 

different fare collection systems and boarding and alighting policies. The parameters 

estimated for equation (5.5) are presented in Table 5.1. 
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Table 5.1: Queuing delay parameters 

Parameter Estimate t-ratio 

0β  -2.952 -3. 328 

1lβ  0.061 3.050 

1dβ  2.185 4.123 

2dβ  -1.903 -3.844 

3dβ  -2.044 -4.008 

fβ  23.089 31.935 

2lβ  0.361 7.848 

4dβ  1.807 19.857 

5dβ  -0.374 -4.022 

6dβ  -0.627 -7.207 

2R  0.921 
Sample size 265 

 

Figure 5.1 shows the estimated growth of queuing delay (5.5) as a function of frequency 

and dwell time, for bus stops of two berths and buses of 12 metres; both Figures 5.2a and 

5.2b represent the same estimated function (5.5), but Figure 5.1b has a larger domain 

(frequency and dwell time) and its z-axis (queuing delay) has been cut at 60 s/bus in order 

to reveal the differences in queuing delays in the middle range of frequency and dwell 

time. 
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(a) 

 
(b) 

Figure 5.1: Queuing delay as a function of bus frequency and queuing delay, two-berth 
bus stops 

The exponential nature of (5.5) is clear in Figure 5.1a, as queuing delay is negligible for 

low frequencies and dwell times, but it explodes quickly once a threshold is reached, up 

to 45 s/bus if frequency is 100 bus/h and dwell time is 40 seconds. The threshold depends 

on how high bus frequency is or how long dwell time is. For example, Figure 5.1b reveals 
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that an average dwell time of 40 seconds yields noticeable queuing delays for a frequency 

of 60 veh/h, whereas a dwell time of 20 seconds can operate with negligible average 

queuing delays for frequencies up to 100 veh/h36

 

.  

The particular influence of the number of berths and size of vehicles is illustrated in 

Figure 5.2. For a given frequency, qt  increases with bus size (Figure 5.2a), a difference 

that is amplified the more berths are provided on the bus stop (Figure 5.2b).  

 

 

 

 

 

 

 

                                            
36 This does not mean that all individual buses have no queuing delays, some vehicles actually have to wait 
in queue due to the randomness in dwell times on the preceding bus, but the average value of the queuing 
delay, over one hour of simulation, is close to zero. 
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(a) Average queuing delay for buses of 8, 12, 15 and 18 metres, 1 berth, dwell time=20 s 

 
(b) Average queuing delay for buses of 12 and 18 metres, 1 and 3 berths, dwell time=20 s 

Figure 5.2: Bus stop queuing delay in different configurations 
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5.4  The Relationship between Bus Congestion, Fare Collection Technique and Bus 

Boarding Policy 

 

Now that we have an estimation of the extent to which bus stop congestion (i.e., queuing 

delays at bus stops) is determined by the dwell time at bus stops, it is worth investigating 

the link between congestion and alternative fare collection systems and boarding 

policies, another issue that is missing in the extant literature. This is possible by 

embedding into dwell time dt  in queuing delay (5.5) the parameters for average boarding 

and alighting times with alternative fare collection technologies, estimated in Chapter 4. 

For example, for a bus with two doors dwell time dt  is estimated as: 

 

  
{ }max ,

oc
d

oc

c b a if sequential boarding and alighting at all doors
t

c b a if boarding at front door and alighting at back door

λ λ

λ λ

+ −

+ −

 + += 
+

   (5.6) 

 

where occ is the dead time (which will be referred to as time to open and close doors), b

and a  are the average boarding and alighting time per passenger, respectively (which 

depend on the fare collection system), and λ+ and λ−  are the number of passengers 

getting on and off, respectively. Thus, introducing (5.6) into (5.5), queuing delays can be 

estimated as a function of the fare collection and boarding/alighting systems.  

 

Existing bus routes in the urban context show that queuing delays are observed only in a 

subset of all bus stops, namely those stops with a high demand of passengers boarding or 

alighting passengers. In particular, based on the Sydney evidence, demand is usually 

concentrated in a few stops, and long dwell times (prone to cause queuing delays) are 

triggered at stations with a large number of passengers boarding rather that at stations 

with a large number of passengers alighting, because boarding is more time consuming 

than alighting. Consequently, we define as “high demand bus stops” stations with a large 

number of passengers boarding. For example, based on a the dwell time surveys analysed 

in Section 4.3, we find that usually between 30 and 50 percent of the passengers 

boarding buses are concentrated at 10 to 20 percent of the bus stops along a route, and 

moreover, at those high demand bus stops, on average the number of passengers 
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alighting buses is 20 percent of the number of passengers boarding. Therefore, we 

estimate queuing delays in bus stops (eq. 5.5) for two levels of boarding demand, 5 and 

15 pax/bus, in which the number of alightings is 20 percent the number of boarding, i.e., 

1 and 3 pax/h, respectively (using eq. 5.6 to estimate dwell time). Results for all fare 

payment and boarding policies defined in Section 4.2 are presented in Figure 5.3, for the 

case of two-door buses (T2B1 denotes simultaneous boarding at the front door and 

alighting at the back door, T2B2 denotes sequential boarding and alighting at both doors). 

The time to open and close doors ( occ ) is 6.1 seconds, the average of the three values for

occ in Table 4.3. 

 

Figure 5.3 reveals that the frequency threshold that triggers queuing delays depends on 

the fare payment method, boarding and alighting policy, and boarding and alighting 

demand. As expected, the quicker a fare payment method and the lower the demand, 

the larger the flow of buses that can be accommodated without causing major delays, in 

other words, the larger the bus stop capacity. Therefore, a reform towards implementing 

a quicker fare collection system and/or to allow boarding buses at all available doors, not 

only provides shorter dwell times at bus stops or stations, but also has the potential of 

reducing (or eliminating) queuing delays and increase bus stop capacity, which is the 

main bottleneck in high-frequency bus routes. 

 

Finally, Figure 5.3 reinforces a significant insight into the inclusion of bus congestion in 

the economic analysis of transport policies, in the sense that bus congestion not only 

depends on frequency or flow (as usually assumed for car traffic), but also on boarding 

demand at bus stops, the fare payment and boarding policies. Therefore, we have shown 

that models that use flow measures (including frequency only or frequency plus traffic 

flow) as the only explanatory variables for bus congestion are incomplete. 
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(a) Boarding demand 5 pax/bus 

 
(b) Boarding demand 15 pax/bus 

Figure 5.3: Queuing delay for alternative fare payment and boarding policies 
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5.5  Conclusions  

 

In this chapter, an approach to incorporate bus congestion in the economic analysis of 

pricing policies and optimisation of bus services has been introduced, by estimating a 

function for the queuing delays that are observed behind bus stops when demand and 

frequency are high. We argue that this approach is more comprehensive than usual 

models that assume either that the travel time between two bus stops is fixed (no 

congestion), or that the bus congestion technology is only explained by delays borrowed 

from car traffic theory, like BPR or linear flow-delay functions. In fact, travel time 

functions such as (5.1) and (5.2) that represent travel time in-between bus stops, could 

be used in combination with a bus stop congestion function like (5.5) to provide a better 

representation of frequency induced bus delays along a route. 

 

A bus stops simulator, IRENE, is used to estimate queuing delays at bus stops as a 

function of the dwell time, frequency of service, number of berths and size of vehicles. 

The estimated formula (5.5) is then used to investigate the influence on queuing delays of 

the number of passengers boarding and alighting buses, the use of alternative fare 

collection technologies and boarding policies. It is concluded that providing a faster 

boarding and alighting process not only reduces dwell times, but also has the potential of 

reducing bus congestion. The bus congestion approach developed in this chapter will be 

embedded into the public transport optimisation models of Chapters 7 and 8 in order to 

analyse the impact of congestion on the optimal value of variables like the bus frequency, 

bus size and distance between bus stops.  
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Chapter 6 

6 The Effects of Passenger Crowding on Public Transport Demand and Supply 

The Effects of Passenger Crowding on Public 
Transport Demand and Supply 

Chapter 6  

6.1  Introduction 
 

The empirical assessment of modal choice in transport has traditionally relied on time 

and cost as the main attributes influencing people’s travel decisions. Nevertheless, with 

the improvement of both our understanding of the modal choice problem and analytical 

tools (e.g., advanced choice models), we have accumulated unambiguous evidence that 

shows how users take into account several qualitative aspects that enhance or harm the 

experience of travelling. In the case of public transport, this could include the number of 

passengers that have to share a bus or train, the quality of seats, the smoothness of the 

ride and the availability of air conditioning. This chapter is concerned with the first of 

these characteristics, i.e., the occupancy level on public transport vehicles and stations, 

and more specifically, the case in which there is a significant number of people sharing a 

limited space while travelling, which is usually referred to as crowding.  

 

Crowding at bus stops, at rail stations, on buses and trains is becoming a major concern 

to service providers as they struggle to cope with increased public transport demand. 

Together with travel time, cost, trip time reliability and service headway (or frequency), 

crowding is now seen as having a significant influence on modal choice through the value 
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attached to reducing crowding in all its definitional variants. The cost of crowding, 

summed up over a whole public transport network might be substantial; for example, in 

the case of Sydney, it is estimated that the passenger crowding cost in the rail network is 

around $82 million per annum (Wang and Legaspi, 2012). The inclusion or omission of the 

crowding cost is expected to influence optimal frequency, bus size and fare level, among 

other variables.  

 

A technical advantage of the concept of crowding is that it can be quantitatively assessed, 

although there is no a single measure of the crowding phenomenon. The most common 

metric used in quantitative assessment is the occupancy rate or load factor, which is 

defined as the ratio between the actual number of passengers inside vehicles and the 

number of seats (Whelan and Crockett, 2009). Other authors use the nominal capacity of 

a vehicle (including both seating and standing) to measure the load factor (Oldfield and 

Bly, 1988; Jara-Díaz and Gschwender, 2003); using this definition we could suggest that, 

for example, if the load factor is over 80 percent a vehicle can be regarded as crowded. 

However, none of the load factor definitions provide a clear picture of the degree of 

crowding for passengers standing, which is more accurately captured by computing the 

density of standees per square metre (Wardman and Whelan, 2011). For example, a load 

factor of 150 percent, relative to the seating capacity, indicates that one out of three 

passengers is standing, but it does not say anything about the crowding conditions of 

those standing. On the other hand, a standing density of four or five passengers per 

square metre is an unmistakable indicator of crowding, regardless of the size or capacity 

of a bus or train.  

 

This chapter presents a review of multiple dimensions of crowding effects on public 

transport demand and supply, including the impact of crowding on travel time, waiting 

time, value of travel time savings, optimal supply and pricing (Section 6.2). Next, 

crowding cost functions estimated using data from Sydney are presented (Section 6.3), in 

order to analyse how users value time under uncrowded and crowded conditions in 

terms of the number of available seats inside a vehicle and the density of standees. The 

ultimate goal is including the estimated taste parameters in the social welfare 
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maximisation model of Chapter 8. Finally, the main conclusions of the chapter are 

discussed in Section 6.4. 

 

6.2  Effects of Crowding  

 
6.2.1 Effect on in-vehicle time 

When buses and trains circulate with a low number of passengers, everyone is able to 

find a seat, transfer of passengers at stations is smooth, and passenger-related 

disruptions that impose unexpected delays are rare. As the number of passengers 

increase, a threshold is reached at which not everyone is able to find a seat and some 

users need to stand inside vehicles. In turn, this may make more difficult the movement 

of other passengers that need to board to or alight from a vehicle, as shown in Figure 6.1. 

Therefore, riding time increases due to friction or crowding effects among passengers. 

 

 
Figure 6.1: Crowding can slow down both alighting and boarding of passengers  

(Photos: Bogotá's Transmilenio, source: Wright and Hook, 2007) 
 

The crowding effect on increasing boarding and alighting times has been captured by a 

number of authors who have estimated dwell time functions for trains and buses under 

uncrowded and crowded operation. Lin and Wilson (1992) estimate dwell time models 

for light rail trains in the Massachusetts Bay and find a statistically significant friction 

effect between passengers alighting and those standing at stations to board, and 

between passengers boarding and those that are standing inside trains. The authors 

estimate linear and non-linear dwell time models on crowding, with the latter providing a 

slight better fit to the observed data than the former. A later analysis over the same light 
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rail system by Puong (2000) showed that the interaction between boarding passengers 

and through standees is well explained by a cubic term on the number of passengers 

standing around a door; the average boarding time is 2.3 seconds per passenger in 

uncrowded conditions but raises to 2.9 and 4.4 seconds per passenger with 10 and 15 

through standees per door, respectively. 

 

In the case of buses, using data from Chicago Mikovits (2008) finds that dwell time 

increases with the square of the number of standees inside a bus, multiplied by the total 

number of passengers boarding and alighting at a bus stop. Like in the previously 

described rail models, this quadratic term captures the increased friction amongst 

passengers when the number of standees is high. Other authors have found average 

boarding and alighting times per passenger that depend on the number of passengers 

boarding and alighting (Dueker et al., 2004; Fernández et al., 2009), i.e., the length of the 

queue to board may speed up or slow down the boarding process.  

 

The limited capacity of bus stops and train stations may also represent a problem if a 

large volume of passengers need to be handled at the same time, particularly in those 

stations in which many bus services stop. In such cases, some passengers may take longer 

to reach a door to board a vehicle if several other people are standing on his/her way, or 

obstructing his/her line of sight to sign and approach an incoming bus (TRB, 2003; Jaiswal 

et al., 2007, 2010). Passengers inside buses may also face difficulties leaving a vehicle if 

the station is crowded. These station-related crowding issues have also been analysed in 

the literature; for example Lin and Wilson (1992) estimate the marginal friction effect 

between passengers alighting and those standing at stations to board, while Gibson et al. 

(1997) in Santiago and Jaiswal et al. (2010) in Brisbane found that the boarding time per 

passenger also depends on how congested is the platform on bus stations. 

 

In summary, there is strong evidence that supports the fact that travel times increase 

when bus stops, train stations, buses and trains get crowded, which has a negative 

impact on both users and operator costs.  

 

 



122 
 

6.2.2 Effect on waiting time 

When the number of passengers is low relative to the capacity of the system, users are 

able to board the first vehicle that arrives at their bus stop or train station, and therefore 

the waiting time at stations is given by a fraction of the headway between two 

consecutive vehicles. Nonetheless, when the occupancy rate is high, having a limited 

capacity becomes an issue, as the chance of buses circulating full in some sections 

increases, which consequently implies that passengers waiting to board are left behind, 

increasing waiting time and the discomfort of travel. A formal treatment of this 

phenomenon was presented by Oldfield and Bly (1988) in their analysis of optimal bus 

size; they proposed that average waiting time is related not only to the headway (the 

inverse of bus frequency), but also to the occupancy rate or crowding level in an additive 

or multiplicative way.  

 

The effect of high demand on increasing waiting times for passengers has received 

considerable attention in the literature on passengers’ assignment to public transport 

networks. Spiess and Florian (1989) considered that the travel cost per link is a function 

of the passengers flow, to internalise the fact that waiting time and in-vehicle comfort 

may be a function of how many passengers use the service. On the other hand, Cominetti 

and Correa (2001) and Cepeda et al. (2006) model waiting time as inversely proportional 

to the effective frequency, which is a function of the actual frequency that decreases with 

the occupancy rate of buses upstream of a bus stop. The assignment model of Kurauchi et 

al. (2003) introduce that passengers may be risk-averse in their behaviour regarding what 

line or service to use, and therefore, be more prone to choose routes in which occupancy 

levels are lower as a way to reduce the chance of failing to board a bus (for the effect of 

seating and standing probabilities on route choice, see Section 6.2.4). In real-world 

applications, the increase in waiting time due to capacity constraints has been considered 

in the estimation of public transport load and demand in large scale scenarios including 

London (Department of Transport, 1989; Maier, 2011), Winnipeg, Stockholm and 

Santiago (Florian et al., 2005), Los Angeles and Sydney (Davidson et al., 2011) and San 

Francisco (Zorn et al., 2012). 
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A second effect of high occupancy levels on waiting times is the possibility of triggering 

bus bunching (Abkowitz and Tozzi, 1987). When a bus is full and does not stop to pick up 

passengers at a bus stop (or if it stops but it is unable to load all passengers waiting), a 

larger number of passengers than is expected are left to wait for the next bus, which will 

need to stop for a longer period of time to board the increased number of passengers, 

presuming it too has capacity to accept the additional passenger load. As such, this 

second bus will likely be delayed and run late decreasing its headway relative to the next 

bus behind, and increasing its headway with respect to the next bus ahead, a 

phenomenon that is amplified as buses advance along the route if control measures like 

bus holding are not applied (Sun and Hickman, 2008; Daganzo, 2009; Delgado et al., 2009; 

Sáez et al., 2012). In short, bus bunching leads to variability in headways, which increases 

average waiting time (Welding, 1957). 

 

6.2.3 Effect on travel time reliability 

We have discussed that when the occupancy of buses or trains approaches capacity, 

there might be an increase in both waiting and in-vehicle times. The inherent 

randomness of public transport demand, however, makes those delays difficult to 

predict. In other words, when occupancy rates are always low, users know that they will 

board the first bus that approaches their stops; nevertheless when the occupancy rate is 

high on average, passengers do not know for sure if the next bus will have spare capacity 

or will be full, implying having to wait for at least another bus, i.e., there is an increase in 

waiting time up to a probability. This is a source of unpredictability of travel times, which 

adds to the generalised cost of travel beyond an increase in average waiting time, 

because a higher variability in travel times is negatively valued by travellers as shown by 

the growing body of research on travel time variability and reliability (e.g., Senna, 1994; 

Bates et al., 2001; Bhat and Sardesai, 2006; Li et al., 2010).  

 

A second issue worth of note is the likely relation between high crowding levels and the 

occurrence of incidents at bus stops or train stations, which is a source of unexpected 

delays that affects the service performance and reliability (beyond the phenomenon of 

bus bunching mentioned in Section 6.2.2). A common example of this situation is the case 

of passengers blocking the closing of doors in trains in order to enter a crowded carriage, 
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thereby introducing an extra delay in the process of closing doors (that might include 

several seconds for safety reasons). 

 

6.2.4 Effect on the valuation of travel time savings and route choice 

Users dislike travelling in crowded conditions due to a number of reasons, including the 

discomfort of sharing a limited space with several people, a feeling of ‘invasion of privacy’ 

(Wardman and Whelan, 2011) or a possible loss in productivity for passengers that work 

while sitting on a train (Fickling et al., 2008). Consequently, crowding levels inside 

vehicles and at bus stops or train stations do have an impact on travel decisions. Thus, we 

can define a crowding cost, crowding externality or crowding penalty, which arises in 

some way as the occupancy levels of vehicles or transfer stations increase. Intuitively, we 

could expect users to be willing to pay more to reduce their travel time if they travel in a 

bus with an average occupancy of four passengers per square metre, than in the case in 

which a bus has a few passengers, all comfortably seated. Then, a relationship between 

crowding and the value of travel time savings (VTTS) is expected to exist, as empirically 

found by Maunsell and Macdonald (2007), Whelan and Crockett (2009) and Hensher et 

al. (2011) among others37

 

. Moreover, this relationship may not be linear as an extra 

passenger per bus or train does not impose the same cost on everyone else when the 

occupancy level is 20 or 95 percent (measured against total capacity). The effect of 

crowding at train stations on increasing the discomfort of travellers has been estimated 

by Lam et al. (1999) and Douglas and Karpousis (2005). 

A common methodology used within the literature to derive preference or utility 

functions for crowding is discrete choice models. A usual outcome of discrete choice 

models that include a crowding parameter on the valuation of in-vehicle travel time 

savings is the estimation of a “crowding multiplier”, i.e., a factor that multiplies the value 

of in-vehicle time savings found under uncrowded conditions. For example, Whelan and 

Crockett (2009) estimated the crowding multiplier for rail services in England, as a 

function of either the load factor (defined as the total number of passengers inside a 

                                            
37 For recent reviews of crowding valuation studies, see Wardman and Whelan (2011) and Li and Hensher 
(2011). 
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vehicle, over the seating capacity) or the number of passengers standing per square 

metre. The results for the latter case are quite illustrative, as shown in Figure 6.2. 

 

 

Figure 6.2: Crowding multiplier for passengers seating and standing 
 (Source: adapted from Whelan and Crockett, 2009) 

 

For passengers seating, the crowding multiplier increases from 1.0 to 1.63 as the density 

of standing passengers increases from zero to six passengers per square metre, whereas 

for passengers standing these figures are 1.53 and 2.04, respectively. Figure 6.2 confirms 

intuition, as passengers standing have a higher willingness to pay to reduce travel time 

than passenger seating (when the former have not chosen to stand, but rather have to do 

it because all seats are taken), the discomfort of travelling of passengers seating and 

standing increases with the number of standees.  

 

The disutility of standing may influence route choice when passengers have multiple 

alternatives to complete a trip. This has been recently incorporated into public transport 

assignment models like Sumalee et al. (2009), Leurent and Liu (2009), Schmöcker et al. 

(2011) and Hamdouch et al. (2011), who estimate the probability of getting a seat both 

when boarding a bus, and once on board if the passenger has to stand at the beginning of 

his/her trip. Passengers choose departure time and route according to their perceived 

travel disutility, which includes the probability of getting a seat (or failure to do so) as a 
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key attribute. Numerical applications show that the perceived seat availability may have a 

significant influence on both departure time and route choice; for example, Leurent and 

Liu (2009) found that the predicted passenger load in the Paris metro is reduced by 

around 30 percent when applying a model with different seat/stand disutilities, relative 

to a model that does not distinguish seating from standing.  

 

6.2.5 Impact of crowding externality on optimal supply and fare 

Crowding as a factor that affects the users’ generalised cost of travelling has been 

recognised by several authors in the analysis of road and public transport pricing policy 

(Jansson, 1979; Kraus, 1989, 1991; Jansson, 1993; Arnott and Yan, 2000; Huang, 2002; 

Pedersen, 2003; Pels and Verhoef, 2007; Parry and Small, 2009). The basic idea is that 

when a person boards a bus or a train, he or she may impose a discomfort externality on 

everyone else on board, which is especially noticeable when there are passengers 

standing. Therefore, the crowding externality raises the marginal social cost of travelling, 

thus increasing the optimal bus fare, which is obtained as the difference between total 

marginal cost and average users cost on first best pricing (Section 2.2).   

 

It is usually proposed in the literature that when users’ waiting time cost is included in 

the total cost function of public transport services, the marginal cost pricing rule does not 

cover operator cost due to the positive effect of increasing frequency in reducing waiting 

time for users (Mohring, 1972; Turvey and Mohring, 1975; Jansson, 1979). This is a 

common result obtained from a number bus pricing and optimisation studies along the 

lines of Mohring (1972)’s square root formula (expression 2.2), which states that an 

increase in demand is met by a less than proportional increase in frequency. Therefore, 

as demand grows there is an increase in the occupancy rate or load factor inside vehicles, 

that is, an increase in crowding levels. Consequently, it is reasonable to analyse what 

would happen if a crowding disutility is considered in the frequency and fare optimisation 

problem.  

 

The first answer to this problem is provided by Kraus (1991), who considers the standing 

externality that long-distance passengers who are able to find an empty seat, impose 

upon short-distance passengers that have to stand if all seats are taken by long-distance 
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passengers. Kraus (1991) assumes that the value of in-vehicle time savings ( vP ) is higher 

for standees than for passengers seating due to the discomfort caused by standing, which 

is shown to increase the optimal fare for long-distance travellers relative to short-

distance travellers. The effect of a crowding externality on optimal bus supply is later 

analysed by Jara-Díaz and Gschwender (2003), who by including that vP  is a linear 

function of the average bus occupancy rate, demonstrate that the optimal frequency is 

higher than in the case in which there is no crowding externality reflected on vP .  

 

The inclusion of crowding externality in public transport optimisation models has also 

been shown to challenge frequency-related total cost savings (scale economies). When 

the disutility of crowding is accounted for as increasing vP , average total cost could pass 

from a decreasing function of demand for low to middle demand levels, to an increasing 

function of demand for middle to high demand levels, as shown by Tirachini et al. (2010a) 

with a frequency optimisation model on a single public transport route. This result is due 

to the increase in crowding level when demand rises, which (in a model that takes 

crowding into account) is translated into an increase of users in-vehicle time cost. 

However, the result of a crowding-induced increasing total cost for a single route 

vanishes if the number of routes is also an optimisation variable, in which case route 

density is adjusted to keep total costs down (Tirachini et al., 2010b).  

 

In summary, the acknowledgement of a crowding externality on the valuation of travel 

time and on travel time itself might have sizeable impacts on the design of a public 

transport system, particularly in terms of the capacity provided to serve demand. When 

the crowding cost is ignored, policy makers may choose to provide a transport capacity 

that is just enough to meet demand, in which buses would be full (or close to full if a 

safety level of spare capacity is defined by design) in the most loaded sections of a route. 

Nevertheless, when the crowding cost is considered in the design stage of a route, it 

should be optimal to provide a greater service frequency and bus capacity in order to 

reduce the occupancy levels inside vehicles, and consequently improve the quality of 

travelling (Jara-Díaz and Gschwender, 2003). This issue will be revisited in the next 

section with new crowding cost functions that account separately for the proportion of 
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users seated and the density of standees inside public transport vehicles. This approach, 

together with the consideration of bus congestion and the election of a boarding and 

alighting technique and fare payment method, will be used in Chapter 8 for the 

optimisation of public transport services. 

 

6.3  Estimation of Crowding and Standing Costs 

 

Section 6.2 discussed several dimensions of the influence of having a large number of 

users inside public transport vehicles and stations, which may be generically referred to 

as crowding cost or disutility. In particular, Section 6.2.4 reviewed previous studies that 

estimate crowding and standing costs as increasing the valuation of travel time savings. In 

this section we estimate mode choice models that include the proportion of available 

seats and the density of standees as attributes. The database used for the estimation of 

choice models is part of a feasibility study for a new metro system proposed for Sydney, 

conducted in 2009 at the Institute of Transport and Logistics Studies, The University of 

Sydney38

 

. The modes included are car, bus, train and metro. In the stated choice 

experiment, respondents compare the levels of access and in-vehicle times, frequency, 

proportion of users seating and number of users standing, and costs (e.g., public 

transport fare, running cost and parking fee for cars). The experiment design, study area, 

sample size and socioeconomic characteristics of respondents are described at length in 

Hensher et al. (2011). Crowding levels on bus, train and metro were represented with 

diagrams, two examples of different levels of bus and train crowding are shown in Figure 

6.3. 

                                            
38 The original study is not part of this thesis. The author thanks David Hensher and John Rose for providing 
access to their dataset for the development of this work. 
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(a) Bus                                              (b) train car 

Figure 6.3: Different levels of occupancy in stated preference study  
(Source: stated choice model described in Hensher et al., 2011) 

 

Hensher et al. (2011) estimate the crowding disutility as a function of the proportion of 

users seating (which affects the probability of getting a seat), and the number of users 

standing, in order to estimate the willingness to pay to get a seat as a function of the 

number of people seating and standing. In this work we use the density of standees per 

square metre -instead of the number of standees- to represent the disutility of crowding 

and standing, in order to have a common base among the three public transport modes 

considered, which have different sizes and proportion of area for seating and standing 
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(For example, in Figure 6.3 the train has proportionally more space allocated to standing 

than the bus).  

 

Let mU  be the utility of mode m. In order to compare values of travel time savings and 

crowding multipliers, we propose three different models that incorporate attributes 

representing the number of passengers seating and standing, interacting with travel time; 

these models will be compared with a specification that ignores any crowding or standing 

cost. The models, named M1 to M4, are described as follows: 

 

• M1: No crowding cost (eq. 6.1). 

• M2: Only the density of standees [pax/m2

• M3: The density of standees and the proportion of seats occupied are sources of 

disutility (eq. 6.3). 

] imposes an extra discomfort cost (eq. 

6.2). 

• M4: The density of standees and the proportion of seats occupied are squared in 

the utility function (eq. 6.4). 

 M1 M1 M1 M1 M1 M1
m m a am h m vm vm e em c mU t h t t cα β β β β β= + + + + +

 
(6.1)

 

 M2 M2 M2 M2 M2 M2 M2
m m a am h m vm vm e em c m den den vmU t h t t c n tα β β β β β β= + + + + + +

 
(6.2)

 

 M3 M3 M3 M3 M3 M3 M3ij
m m a am h m vm vm e em c m den den vm seat seat vmU t h t t c n t p tα β β β β β β β= + + + + + + +

 
(6.3)

 

 M4 M4 M4 M4 M4 M4 2 2
2 2m m a am h m vm vm e em c m den den vm seat seat vmU t h t t c n t p tα β β β β β β β= + + + + + + +

 
(6.4)

 
  

In (6.1) to (6.4), amt  and  emt  are the access and egress time, respectively, mh  is the 

headway between two consecutive vehicles (representing a proxy of the waiting time 

cost or scheduling delay), vmt  is the in-vehicle time, mc  the money cost or fare, denn  the 

density of standees per square metre, seatp  the proportion of seats been used, mα  is an 

alternative specific constant (ASC) and kβ  are the parameters associated with the 

different attributes.  

 

Multinomial logit (MNL) models are estimated in order for the parameters to be used as 

input into the social welfare maximisation model presented Chapter 8, which assumes a 
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log-sum function for the calculation of the users benefit. The estimation of parameters 

for commuting and specification tests are presented in Table 6.1 (n=1932 observations): 

 
Table 6.1:  Estimation of parameters, MNL models  

Parameter M1 M2 M3 M4 

Access time aβ  
-0.016 
(-1.22) 

-0.017 
(-1.33) 

-0.017 
(-1.33) 

-0.017 
(-1.33) 

Headway hβ  
-0.0088 
(-2.71) 

-0.010 
(-3.06) 

-0.010 
(-3.07) 

-0.010 
(-3.06) 

Travel time public 
transport ( vmt  ) vβ  

-0.019 
(-5.09) 

-0.013 
(-3.45) 

-0.004 
(-0.58) 

-0.006 
(-1.25) 

Egress time eβ  
-0.055 
(-4.31) 

-0.058 
(-4.54) 

-0.059 
(-4.59) 

-0.059 
(-4.61) 

Travel time car    
( vmt  ) vβ  

-0.016 
(-3.11) 

-0.018 
(-3.41) 

-0.018 
(-3.37) 

-0.018 
(-3.37) 

Cost cβ  
-0.062 
(-5.50) 

-0.064 
(-5.63) 

-0.064 
(-5.62) 

-0.064 
(-5.63) 

ASC train tα  
-3.393 
(-5.16) 

-3.455 
(-5.24) 

-3.473 
(-5.26) 

-3.476 
(-5.27) 

ASC bus bα  
-4.131 
(-5.67) 

-4.275 
(-5.82) 

-4.313 
(-5.86) 

-4.315 
(-5.86) 

ASC metro mα  
-2.526 
(-4.30) 

-2.444 
(-4.14) 

-2.465 
(-4.17) 

-2.460 
(-4.16) 

vmt × den stand denβ   
-0.004 
(-4.48) 

-0.003 
(-2.82)  

vmt × prop seat seatβ    
-0.013 
(-1.70)  

vmt × (den stand)2

2denβ     
-0.0005 
(-2.41) 

vmt × (prop seat)
2seatβ

2

    
-0.013 
(-2.46) 

Specification tests 
Log-likelihood -1283.4 -1273.1 -1271.7 -1271.7 
Adjusted ρ2

(relative to ASCs) 
  0.107 

 
0.113 

 
0.113 

 
0.113 

 

Likelihood ratio 
test with respect to 
M1  

20.53 
( > 1,0.001χ
=10.83) 

23.39 
( > 2,0.001χ
=13.82) 

23.34 
( > 2,0.001χ
=13.82) 

Likelihood ratio 
test with respect to 
M2   

2.86 
( < 1,0.05χ =3.84)  

Note: t-ratio in bracket below parameter estimates. Time in minutes, cost in $ (AUD). 
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Focusing on the goodness-of-fit measures, the log-likelihood and adjusted ρ2 statistics 

relative to a model with alternative specific constants (ASCs) only, demonstrate that the 

three crowding models (M2-M4) outperform the model with no crowding (M1), but the 

difference in overall fitness amongst the crowding models is not significant. In fact, M2, 

M3 and M4 have the same adjusted ρ2 value, and a likelihood ratio test indicates that 

M2, M3 and M4 are significantly superior than M1 at the 99.9 percent confidence level, 

however M2 and M3 are not statistically different at 95 percent confidence level39

 

. 

Therefore, if we use the density of standing to characterise crowding costs, the inclusion 

of the availability of seats as a variable that influences modal choice is not statistically 

relevant, nevertheless from a behavioural perspective, the alternative crowding cost 

specifications do provide differences on the estimation of value of travel time savings.  

Figure 6.4 shows the crowding multiplier (mark-up on the VTTS induced by crowding 

conditions, compared against uncrowded travel conditions) for increasing levels of 

occupancy of buses. The bus configuration of Figure 6.3a is used, in which there are 44 

seats and a maximum of 27 standees, which corresponds to 4.4 pax/m2 at crush capacity. 

Occupancy rate is measured against the seating capacity. In model M2, the only cause of 

discomfort is the density of standees, in which case the crowding multiplier grows only 

when the occupancy rate is over 100 percent, until reaching a value of 2.2 at crush 

capacity (higher than the values for seating and standing obtained by Whelan and 

Crocket, 2009 for rail in Britain). On the other hand, the models that are sensitive to the 

availability of seats (M3 and M4) present considerable differences in the VTTS relative to 

the number of passengers seating and standing, with crowding multipliers up to 4.6 (M4) 

and 7.3 (M3) at crush capacity.  

 

The estimated value of travel time savings is graphically shown in Figure 6.5, which shows 

that models M3 and M4 are very sensitive to the availability of seats for the estimation of 

in-vehicle time savings. Importantly, not accounting for crowding differences (M1) in the 

valuation of time savings would imply an overestimation of the value of in-vehicle time 

savings for low occupancy levels and an underestimation for high occupancy rates, with a 

                                            
39 Models M2 and M4 cannot be compared with a likelihood ratio test because they are not nested. 
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threshold between one and two standees per square metre, depending on the 

specification of the crowding costs (M2, M3 and M4). Chapter 8 explores the implications 

of explicitly accounting for crowding in the determination of the optimal number of seats 

inside buses. 

 

 
Figure 6.4: Crowding multiplier as a function of occupancy rate and density of standees 
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Figure 6.5: Value of in-vehicle time savings 

 

6.4  Conclusions 

 

As the income of a population increases, improving the quality of public transport 

services may become more important in attracting passengers to public transport -

relative to the valuation of travel time savings- which suggests that attributes like 

crowding, reliability and security will be increasingly relevant for public transport policy 

over time, in both developing and developed economies. 

 

This chapter has provided a comprehensive review of the multiple effects that the 

crowding of passengers in public transport systems has on the quality and comfort of 

travelling, waiting and riding times, travel time variability and the determination of the 

service frequency, size of vehicles and optimal fare. Using data from Sydney we have 

estimated crowding cost functions that depend on the availability of seats and the 

density of standees per square metre, which shows the dependence of the valuation of 

travel time savings on the level of crowding inside vehicles. It is expected that the 
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specification of the crowding cost does have an influence in the optimal design of a bus 

system, including frequency, bus size and number of seats, an issue that is analysed in 

detail in Chapter 8.  

 



136 
 

 
 
 
 
 
 

 

 

Chapter 7 
7 Bus Congestion, Optimal Infrastructure Investment and the Choice of a Fare Collection System:  
an Extended Total Cost Minimisation Model 

Bus Congestion, Optimal Infrastructure Investment 
and the Choice of a Fare Collection System:  an 
Extended Total Cost Minimisation Model40

 

 

 
CHAPTER 7  
7.1 Introduction 

 

The most common modelling approach in the microeconomic literature on public 

transport operations is the minimisation of total cost, defined as the summation of 

operators and users cost (Mohring, 1972; Jansson, 1980; Chang and Schonfeld, 1991; 

Jara-Díaz and Gschwender, 2003a). A growing number of elements of transit service 

provision have been progressively built within the cost minimisation framework, in order 

to describe dimensions that matter to operators and users, including the search for 

optimality conditions for service frequency [veh/h], vehicle size [pax/veh] and distance 

between stops, among other variables, as reviewed in Section 2.4.  

 

In this chapter we extend the existing literature by including two key decision variables 

that are increasingly available to public transport policy makers: the optimal choice of a 

fare collection system and boarding policy (introduced in Chapter 4), and the investment 

in dedicated infrastructure for buses, the latter related to the speed that decision makers 

                                                 
40 This chapter is an extended version of Tirachini and Hensher (2011). 
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want buses to achieve. In addition, we assess the influence of congestion caused by the 

interaction of buses in the determination of the optimal design of a system, using the 

queuing delay function defined in Chapter 5 (equation 5.5).  

 

As discussed in Chapter 4, the existing economic literature on bus transport considers 

boarding and alighting times as given, thus ignoring the current availability of several 

technological options for fare payment, with different levels of investment, complexity 

and efficiency in the transfer of passengers. We consider the fare payment system as a 

policy variable, with implications for travel times and operator cost. As done with the 

empirical estimation of benefits from upgrading the fare collection system (Section 4.5), 

the performance of six alternative payment methods and bus boarding policies is 

compared, namely: 

 

i. On-board cash payment, front door boarding TnB1, referred to as “cash TnB1” 

ii. On-board magnetic strip verification, front door boarding TnB1, referred to as 

“magnetic strip TnB1” 

iii. On-board contactless card verification, front door boarding TnB1, referred to as 

“contactless card TnB1” 

iv. On-board magnetic strip verification, all doors boarding TnBn, referred to as 

“magnetic strip TnBn” 

v. On-board contactless card verification, all doors boarding TnBn, referred to as 

“contactless card TnBn” 

vi. Off-board contactless card verification, all doors boarding TnBn, referred to as 

“off-board TnBn” 

 

Together with the analysis of fare collection systems and bus boarding rules, we take a 

closer look at bus running speed, defined as the cruising speed that buses attempt to 

maintain in between two consecutive stops. All previous studies treat running speed as 

an exogenous parameter, given by the physical conditions and regulations (speed limits) 

of the bus routes under study; however, bus running speed can be a decision variable, if 

an investment in infrastructure, like upgrading or building new busways, is designed to 

have a positive impact on the running speed of buses. A linear relationship between 
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infrastructure cost per kilometre and running speed is used, based on a positive 

correlation between infrastructure investment and commercial speed (total speed 

including stops), empirically identified by comparing data from a number of Bus Rapid 

Transit (BRT) systems. We show that a target speed increases the investment in 

infrastructure but also reduces the travel time between stops, and hence a compromise 

running speed is selected as the optimal solution.  

 

In the present chapter, we stay within the usual total cost minimisation approach with 

parametric demand to optimally choose frequency, bus capacity and station spacing as 

previously undertaken in the literature, and incorporate decisions on running speed and 

the fare payment system and bus boarding rule, under uncongested and congested bus 

operations. The circulation of buses in a dedicated corridor is modelled in terms of three 

components: links, bus stations and (traffic light) intersections. In Section 7.2 the time 

lost at each stage of a round-trip is derived, which is then used in Section 7.3 to find 

expressions for the cost to users and operators. Section 7.4 presents an in-depth analysis 

of the results and implications of different modelling assumptions. Section 7.5 

summarises the main findings of the chapter. 

 

7.2 Bus Round-trip Time  

 

We consider a linear bi-directional corridor of length L  and a single period of operation. 

The round-trip or cycle time, cT , is defined as the total travel time during one cycle, given 

both service time and slack time at termini. Let rT  be the running or movement time 

along the route, iT  the delay at intersections (due to traffic lights), sT  the time lost at bus 

stops, and kT  the layover time at the end of the route; then the round-trip time is:  

c r i s kT T T T T= + + +       (7.1) 

Buses circulate with no interaction with other modes on a dedicated road corridor, apart 

from the implicit delay due to traffic lights. The running time without any delay due to 

stopping is given as (7.2), where 0v  is the constant running (cruising) speed.   
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0

2
r

LT
v

=       (7.2) 

To model the delay in the process of decelerating to stop, and accelerating to start 

running again (either at intersections or bus stops), we assume uniform acceleration and 

deceleration; thus the extra stopping delay on top of the uniform travel time given by 0v , 

is expressed as (7.3)41

0 1 1
2l

a d

vt
r r

 
= + 

 

. 

     (7.3) 

ar  and dr  are the acceleration and deceleration rates of the bus [m/s/s], respectively. The 

mean queuing delay at intersections is modelled as (7.4). 

1 2i ac iT d d t h= + +      (7.4) 

In (7.4), 1d  is the non-random delay due to signal cycle effects, calculated assuming an 

average non-random arrival rate (Akçelik, 1981; Akçelik and Rouphail, 1993), 2d  is the 

overflow delay (including the effects of random arrivals and over-saturation), act  is the 

acceleration and deceleration delay given by (7.3), and ih  is the average number of stops 

per vehicle. The final expression for (7.4) is given in (7.5) (see Appendix A3 for details): 

( )2
00.5 1 1 1 1

1 2 1
T

i
b a d b

C u v uT I
ux r r ux

 −   −
= + +  − −   

    (7.5) 

where TC  is the traffic light cycle time [s], Tu g C=  is the ratio of effective green time 

g  [s] to the cycle time TC , b b Ix f K=  is the degree of saturation, given the capacity IK  

of the intersection [veh/h], bf  is the bus frequency [veh/h], and I  is the number of 

intersections along the route. 

 

                                                 
41 From kinematics, the total deceleration time is 0 dv r and the deceleration delay (on top of uniform 

speed movement) is 0 2 dv r . The acceleration delay is obtained analogously.  
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Next, we will analyse the delays caused by bus stops. Let st  be the total delay time per 

bus stop, which consists of the acceleration and deceleration delay act  (equation 7.3), the 

average queuing time qt , the dwell time dt , and an internal waiting delay iwt , i.e. 

s ac q d iwt t t t t= + + +       (7.6) 

As discussed in Chapter 5, the queuing time qt  is a measure of the external congestion 

caused by a bus stop, observed when a bus arrives at a stop and all berths are occupied. 

This delay is commonly present in high frequency services, but it may also occur in poorly 

controlled low frequency services where buses tend to bunch. We use the functional 

function established in Chapter 5: 

( ) ( )2 4 5 2 6 30.001
0 1 1 2 2 3 30.001 b f l b d d d df s Z Z t

q l b d d d dt s Z Z t e β β β β ββ β β β β  + + + + = + + + +    (7.7)  

which estimates queuing delay qt  [s/bus] as a function of the bus length bs [m], dwell 

time dt [s/bus], frequency bf  [veh/h] and number of berths per bus stop. Parameters 0β , 

1lβ , 2lβ , 1dβ , 2dβ , 3dβ , 4dβ , 5dβ , 6dβ  and fβ are estimated in Table 5.1, and factors 

0.001 are introduced for scaling of the parameters. 2Z  and 3Z  are dummy variables 

defined as follows: 

2

1
0

if bus stop has twoberths
Z

otherwise


= 


 

3

1
0

if bus stop has threeberths
Z

otherwise


= 
  

When applying equation (7.7), it is relevant to recall that in real public transport 

corridors, bus queues develop only on high frequency services at a subset of bus stops, 

namely those stops with a high passenger boarding demand, and therefore, low capacity 

in terms of buses per hour they can handle. In this context, and observing the exponential 

nature of qt  in (7.7), in order to properly model the effects of congestion in bus 

operations, it is inappropriate to assume that demand is uniformly distributed along the 

corridor (i.e., assuming that the same number of passengers board and alight at every bus 

stop), in which case we would likely be underestimating bus stop delays.  For example, 

based on the Sydney bus dwell time surveys described in Section 4.3, in most cases 
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between 30 and 50 percent of the passengers boarding buses are concentrated at 10 to 

20 percent of the bus stops along a route. Accordingly, we separate bus stops into two 

groups: a percentage hp  of high demand stops (low capacity, possible queuing delay), at 

which most boardings (a percentage dp ) are concentrated, and a percentage 1 hp−  of 

low demand stops (high capacity, zero or little queuing time). We define ‘high demand 

stops’ as those with high boarding numbers because boarding is more time consuming 

than alighting; therefore, as observed in Sydney, long dwell times (prone to cause 

queuing delays) are triggered at stations with a large number of passengers boarding 

rather that at stations with a large number of passengers alighting.  

 

Based on the Sydney evidence, we assume that 30dp =  percent of the total demand 

boarding buses in 10hp =  percent of the stops, and on those high demand stations on 

average the number of passengers alighting buses is 20cp =  percent of the number of 

passengers boarding. Hence the average number of passengers boarding (λ+ ) and 

alighting (λ− ) a bus per bus stop in high (h) and low (l) demand stops by direction j            

( { }1,2j∈ ) is given in (7.8), where S  is the number of bus stops along the corridor. 

    d bi
hj

h b

p N
p S f

λ+ =       (7.8a) 

( )
( )
1
1

d bi
lj

h b

p N
p S f

λ+ −
=

−
     (7.8b) 

    c d bi
hj

h b

p p N
p S f

λ− =       (7.8c) 

( )
( )
1
1

c d bi
lj

h b

p p N
p S f

λ− −
=

−
     (7.8d) 

The estimation of the dwell time per stop requires the cases with boarding allowed at all 

doors (TnBn) and at the front door only (TnB1) to be addressed separately, since in TnBn 

boarding and alighting is sequential at all doors, whereas in TnB1 boarding at the front 

door occurs simultaneously with alighting at the rear doors. As discussed in Section 4.3.6, 

where there are multiple doors to board and alight, passengers can choose a door to get 
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on and off buses, and the spatial dispersion of their decision determines how long the 

boarding and alighting process is going to last. It seems unreasonable to suppose that 

passengers will distribute uniformly across doors if middle or back doors have closer 

access to more seats than, say, the front door. We assume that the middle doors would 

attract a number of passengers that is 50 percent higher than that of the front or back 

doors. For example, for buses with two doors, the rear door is placed towards the centre 

of the bus, and is therefore assumed to attract 60 percent of the boarding demand, 

leaving 40 percent boarding through the front door, next to the driver. The same 

assumption is made regarding alighting. With this, the proportion of passengers assumed 

to get on and off buses at each door for the case TnBn is shown in Table 7.1, as a function 

of the number of doors per bus (door numbers are assigned from front to back, i.e., door 

1 is the front door and door 2 is its closest door). 

 

Table 7.1: Proportion of passengers boarding and alighting at each door, as a function 
of the number of doors per bus, regime TnBn 

Number of doors Door 1 Door 2 Door 3 Door 4 

1 100% 

   2 40% 60% 

  3 29% 43% 28% 

 4 20% 30% 30% 20% 

 

On the other hand, for the cases with boarding at the front door only (TnB1), we assume 

that passengers alighting spread out through the back doors with proportions given in 

Table 7.2 (also assuming that middle doors get 50 percent more demand that the back 

door). 
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Table 7.2: Proportion of passengers alighting at each door, as a function of the number 
of doors per bus, regime TnB1 

Number of doors Door 1 Door 2 Door 3 Door 4 

2 0% 100% 

  3 0% 60% 40% 

 4 0% 38% 38% 24% 

 

Thus, the dwell time is obtained as expression (7.9) 

  
{ }

( )

max , ( 1)
oc b b a ai

d
oc b a a

c p p if boarding at all doors TnBn
t

c p if boarding at front door only TnB

β λ β λ

β λ β λ

+ −

+ −

 + += 
+

   (7.9) 

where the number of passengers boarding (λ+ ) and alighting (λ− ) a bus are given by 

equations (7.8), and factors ap  and bp  are the proportion of passengers boarding and 

alighting at the busiest door, respectively, given by the bold figures in Tables 7.1 and 7.2. 

Factors ap  and bp are summarised in Table 7.3. 

 

Table 7.3: proportion of passengers boarding and alighting at the busiest door 

Number of doors 
TnBn 

ap ( )bp=  
TnB1 

ap  

1 100% - 

2 60% 100% 

3 43% 60% 

4 30% 38% 

 

Equations (7.8) and (7.9) and Table 7.3 conclude the derivation of the dwell time per stop 

on the bus corridor.  

 

The internal waiting delay iwt  occurs in stops with two or more berths, when one bus 

blocks the movement of the bus behind if the latter wants to leave the stop, or when 

there is a traffic light immediately after the stop. We will consider stops isolated from 
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traffic lights and with a second lane to overtake buses; therefore iwt  is nil (Valencia and 

Fernández, 2007).  

 

In consequence, the total delay along the corridor due to bus stops is given as (7.10) 

 

( ) ( )( )1 2 1 21h h l l
s h s s h s sT p t t p t t S = + + − +      (7.10) 

 

where jh
st  and jl

st are the delay for high demand and low demand stops in direction j, 

respectively. 

 

The last component of the round-trip time (equation 7.1) is the layover time kT . Bus 

travel time can vary significantly between trips and days, and layover time is usually 

introduced into the schedule to accommodate delays and to provide a break for drivers. 

As such, a scheduled layover time should be determined as a function of the travel time 

variability (Furth, 2000). We will include layover time as a constant and exogenously 

defined value (e.g., 5 minutes). 

 

In summary, the round-trip time cT  given in (7.11), is the summation of expressions (7.2), 

(7.5), (7.10) and the layover time kT . 

 

( ) ( ) ( )( )
2

1 2 1 20

0

0.5 12 1 1 12 1
1 2 1

T h h l l
c h s s h s s k

b a d b

C u vL uT I p t t p t t S T
v ux r r ux

 −   −  = + + + + + + − + +    − −   
   (7.11) 

 

7.3 User Cost, Operator Cost and Problem Formulation 

 

User cost is divided into access, waiting and in-vehicle time costs. For the formulation of 

the access time cost, recall that the number of low and high demand stations, hp S and 

( )1 hP S−  respectively, are also a variable of the problem. We assume the existence of 

two geographic areas, a high demand area (where all hp S  high demand stops are 
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located), and a low demand area (where all ( )1 hP S−  low demand stops are located), 

and in each of these areas, demand is uniformly distributed. This implies that around a 

bus stop (either with low or high demand), passengers are homogeneously distributed. 

Therefore, if the bus stops are equally spaced, passengers have to walk on average 4L S  

at both the origin and the destination. Hence, the average total walking distance is 2L S , 

and the access time cost aC  is given as (7.12), where aP  is the value of access time savings 

[$/h], and vw is the walking speed [km/h]. 

( )
2a a b

w

LC S P N
v S

=      (7.12) 

The waiting time cost wC  is linked to the bus frequency. We distinguish between cases 

with low and high frequency; when frequency is high, passengers usually arrive at the 

stations randomly at a constant rate, but when frequency is low, generally a timetable of 

services is provided, and most of the users arrive at stations following the schedule, in 

order to reduce their waiting time. We assume that for frequencies greater than 5 veh/h, 

equivalent to an average headway up to 12 minutes, users arrive randomly at stations. 

Following Tirachini et al. (2010a), the two cases can be formulated as the single 

expression (7.13). 

( ) 1
0 2w b w b

b

tC f P t N
f

 
= + 

 
    (7.13) 

with 

0

0 5 /
0 5 /

b

w b

if f veh h
t

t if f veh h
≥

=  < <
  1

1 5 /
0 5 /

b

b

if f veh h
t

if f veh hµ
≥

=  < <
 

wP  is the value of waiting time savings [$/h]. For the low frequency case

( )0 5 /bf veh h< < , tw is a fixed ‘safety threshold’ time that passengers spend waiting at 

stations before the expected arrival of the next vehicle, and h wP Pµ =  is the ratio of the 

value of home waiting time savings hP  to the value of station waiting time savings wP  (for 
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example, µ = 0.33)42

 

. Implicit in (7.13) is that the capacity constraint of the vehicles is not 

binding; in fact the frequency will be set to avoid overloading of vehicles (as will be seen 

in expression 7.24a).  

In-vehicle time is modelled as a fraction il L of the total travel time tiT  in direction i [h], 

where il  [km] is the average trip length in direction i  and L  [km] is the route length. 

Then, if vP  is the value of in-vehicle time savings [$/h], the in-vehicle time cost vC  of 

users is given as (7.14)43

1 2
1 1 2 2v v t b t b

l lC P T N T N
L L

 = + 
 

 

     (7.14) 

The travel times in each direction are given as equation (7.15), derived in an analogous 

way to the round-trip time (equation 7.11).  

( ) ( )
2

1 10
1

0

0.5 1 1 1 1 1
1 2 1

T h l
t h s h s

b a d b

C u vL uT I p t p t S
v ux r r ux

 −   −  = + + + + + −    − −   
  (7.15a) 

( ) ( )
2

2 20
2

0

0.5 1 1 1 1 1
1 2 1

T h l
t h s h s

b a d b

C u vL uT I p t p t S
v ux r r ux

 −   −  = + + + + + −    − −     

 (7.15b) 

 

Operator cost is divided into five components: 

1c : Busway infrastructure and land costs [$/km-h] 

2c : Station infrastructure cost [$/station-h] 

3c : Personnel costs (crew) and vehicle capital costs [$/bus-h] 

4c : Running costs (fuel consumption, lubricants, tyres, maintenance, etc.) [$/bus-km] 

                                                 
42 We assume that when users arrive at stations following a timetable, there is a waiting time cost outside 
stations because departures are not at the time desired by users (called “schedule delay”). As this passive 
waiting time can be spent at home or another place where passengers can assign their time to a more 
productive use or leisure, the opportunity cost or value of passive waiting time savings, Ph, is lower than the 
value of station or active waiting time savings, Pw. 
43 In this formulation, the influence of crowding on increasing both travel time and its valuation is ignored, 
because only total demand and average bus load are assumed to be known. The effect of crowding on the 
optimal design of bus systems is analysed in Chapter 8, with a multimodal pricing model in which the 
number of passengers seating and standing is known stop by stop.  
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5c : Implementation cost related with the fare payment technology (e.g., software 

requirements) [$/h]   

 

First, we assume a positive relationship between the investment in infrastructure for 

buses and the speed buses achieve, specifically, that the bus running speed is to some 

extent a function of the land cost and infrastructure investment (for example, buses run 

faster if dedicated busways are built). That is, ( )0 0 1v v c= , which has to be inverted for 

the estimation of 1c  as a function of variable 0v , i.e., ( )1 1 0c c v= , the latter interpreted as 

the necessary investment 1c  in order to achieve a target running speed 0v .  We further 

assume that ( )1 0c v  is a linear function, as justified in Appendix A4.  

( )1 0 10 11 0c v c c v= +       (7.16) 

Secondly, the station cost 2c  (equation 7.17), consists of two components: the station 

infrastructure cost which depends on the bus length bs  i.e., ( )20 bc s , and the cost of fare 

vending machines and fare collection readers (if validation is undertaken at the station 

and not on bus), ( )21c ∆ , where the dependency on ∆  denotes the fare payment 

method.  

( ) ( ) ( )2 20 21,b bc s c s c∆ = + ∆      (7.17) 

Thirdly, the cost per bus-hour 3c  also has two elements: the personnel cost (wages) and 

the capital cost of a vehicle, which includes the cost of the fare collection readers 

(validation devices) installed in buses.  As in Chapter 5, we consider four commercial sizes 

for buses: mini (8 m), standard (12 m), rigid long (15 m) and articulated (18 m). Let 

( )30 bc s  be the cost associated with bus size and driving wages, and ( )31c ∆   the cost of 

the fare collection readers, then, the total cost per bus-hour 3c  is expressed as (7.18). 

( ) ( ) ( )3 30 31,b bc s c s c∆ = + ∆      (7.18) 

Finally, the fourth component of operator cost is the running cost per vehicle-kilometre 

4c , which could include fuel consumption, lubricants, tyres, maintenance, etc. We 

assume that the running cost function depends on bus size and running speed, and is 
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estimated using data on fuel consumption, bus size and average speed of several bus 

operators in New South Wales collected by Hensher (2003) as follows: 

( )4 0 40 41 42 0,b bc s v c c s c v= + +      (7.19) 

Finally, ( )5c ∆ accounts for the cost of software and implementation of the alternative 

fare collection technologies and boarding and alighting policies. The estimation of the 

parameters for equations (7.16) to (7.19) is given in the Appendix A4. After deriving 

expressions (7.16) to (7.19), we can define the total operator cost Co as formula (7.20).  

( ) ( ) ( ) ( ) ( )1 0 2 3 4 0 5, , ,o b b bC c v L c s S c s F c s v VF c= + ∆ + ∆ + + ∆   (7.20) 

where F  is the fleet size requirement and V  is the commercial speed (operating speed 

including movement and stops). The fleet size requirement is given in (7.21) as the 

product of the frequency bf  and the round-trip time cT  (the latter given as equation 

7.11). 

b cF f T=       (7.21) 

Rewriting cT  as 2L V  and introducing this into (7.21), we see that the fourth term in 

(7.20) does not depend on the commercial speed and passenger demand. Thus, the final 

expression for operator cost is given by (7.22). 

( ) ( ) ( ) ( ) ( )
( ) ( )

0 1 0 2 3 0

4 0 5

, , , , , , , , , ,

2 ,
o b b b b b c b b

b b

C f s S v c v L c s S c s f T f s S v

c s v L f c

∆ = + ∆ + ∆ ∆ +

+ + ∆
     (7.22) 

Finally, after deriving expressions for operator and user costs, the total cost minimisation 

problem is formulated as: 

( ) ( ) ( ) ( ) ( )0 0 0, , , , , , , , , , , ,t b b o b b a w b v b bMin C f s S v C f s S v C S C f C f s S v∆ = ∆ + + + ∆   (7.23) 

Subject to  

( )max b b b bN f K sα κ≤      (7.24a) 

min b maxf f f≤ ≤      (7.24b) 

0min maxv v v≤ ≤      (7.24c) 
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{ }1 4,...,b b bs s s∈      (7.24d) 

{ }1 6,...,∆∈ ∆ ∆      (7.24e) 

In (7.23), total cost tC  is the sum of operator and user costs (equations 7.12, 7.13, 7.14 

and 7.22). Frequency bf  and running speed 0v  are assumed to be continuous variables, 

the number of stops S is an integer (but for the solution will be considered continuous), 

there are four alternatives for bus size (expression 7.24d) and the boarding and alighting 

policy and fare collection technology ∆  belongs to one of the six alternative systems 

defined in Section 7.1 (expression 7.24e). Formally, we are minimising the total cost 

associated with the designated bus system, evaluated at market prices. There is no 

consideration of deviations between market and shadow prices, nor of the fact that part 

of the operator costs may be shared between several routes in a network and two or 

more levels of government. 

 

As for the constraints, inequality (7.24a) is a capacity constraint, where maxα  is the 

fraction of passengers that traverse the most loaded section of the line, ( )b bK s  is the 

capacity of a bus given its length, and κ  is introduced to have spare capacity to absorb 

random variations in demand (for example, 0.9κ = ). Thus, (7.24a) states that the 

passenger capacity of the system (the product of bus capacity and frequency) must be 

sufficient to cover demand in the most loaded section of the route. Next, for (7.24b), 

frequencies are also constrained by a minimum policy frequency minf  (set to have a 

minimum level of service, if desired) and the maximum feasible frequency maxf  which will 

be given by the capacity constraints of the corridor. Expression (7.24c) establishes 

minimum and maximum values for the running speed. The system (7.23)-(7.24) is solved 

for the six different payment methods and results are then compared. The constrained 

optimisation problem is solved using the optimisation toolbox of MATLAB. 
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7.4 Results and Analysis 

 

7.4.1 Assumptions 

We assume a corridor of length 20L = km. The minimum and maximum bus running 

speeds are minv = 20 km/h and maxv =80 km/h. For the acceleration and deceleration 

rates, a standard value is a dr r= = 1.2 m/s2 (TRB, 2000). Traffic light intersections are 

every 800 m, which implies that the number of traffic lights is I L= /0.8=25. We further 

assume for all traffic lights that the cycle time is TC =120 seconds, and the ratio of 

effective green time is u =0.6. For the relative distribution of demand along the line, 

based on the Sydney evidence, we assume that 30dp =  percent of the total demand 

boards buses in 10hp =  percent of the stops, and on those high demand stations on 

average the number of passengers alighting buses is 20cp =  percent of the number of 

passengers boarding (on both directions), as explained in Section 7.2. For the user cost 

functions, the values of travel time savings are aP =15.5 $/h (access), wP =17.0 $/h 

(waiting), and vP =18.4 $/h (in-vehicle), calculated as the ratio of the respective time and 

cost parameters from M1 (the model without crowding attributes) in Chapter 6, Table 

6.1, i.e., M1 M1
a a cP β β= , M1 M12w h cP β β= and M1 M1

v vb cP β β= respectively44

1 2l l= =

. The average 

trip length is the same in both directions, 10 km, and the walking speed is wv = 4 

km/h. Total directional demand is the same in both directions, i.e., 1 2b bN N N= ≡ . We 

assume that 8 metre long buses have two doors, 12 metre long buses have three doors 

and 15 and 18 metre long buses have four doors.  Bus stops have two berths. 

 

7.4.2 Results 

The most notable results are reported in Table 7.4 and Figures 7.1 to 7.7. On the x-axis is 

the one-way demand N . First, in terms of total average cost (users plus operators, Figure 

7.1), we observe that the system with on-board cash payment is by far the least efficient 

                                                 
44 wP  assumes that the waiting time parameter is twice the headway parameter, which comes from 

assuming that average waiting time is half of the headway. In our results frequency is always higher than 10 
veh/h, therefore this assumption is in line with the waiting time specification (equation 7.13) for high 
frequency operation. We ignore the egress time parameter from Table 6.1 because it yields an unrealistic 
value of egress time savings, 53.2 $/h. Throughout the chapter, we use the following dollar notation, $: 
Australian Dollar, US$: U.S. Dollar. 
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and cannot handle more than 10,000 pax/h, at which demand level the average queuing 

delay on high demand stops is 35 seconds (Figure 7.2) because the large boarding time 

associated with cash payment increases dwell time, frequency, and consequently, 

queuing delay (eq. 7.7). Second, the systems with boarding at all doors (TnBn) provide the 

lowest total cost across the demand range under study; Figure 7.1 shows that the cost of 

the three TnBn systems is virtually the same and clearly lower than the scenarios with 

boarding at the front door only (TnB1). The system with off board fare collection and 

verification is the most cost effective for a demand greater than 600 pax/h, and only for a 

low demand of 500 pax/h an on-board verification system with a magnetic strip would be 

more effective (although up to 4,000 pax/h the difference in total cost between the three 

TnBn systems is lower than 1 percent, and the highest demand of 15,000 pax/h the 

difference is up to 2 percent). Therefore, we can conclude that once on-board cash 

payment has been ruled out, allowing boarding at all doors is more important as a tool to 

reduce both users’ and operator’s costs than technological improvements on fare 

collection.   

 

Third, total average cost for the TnBn alternatives is always decreasing (economies of 

scale) in contrast to the increasing total average cost that is observed for higher demands 

when boarding is allowed at the front door only. For example, average cost increases 

beyond a demand of 4,000 pax/h, which is a result of the increasing bus stop congestion 

provoked by slow boarding systems (Figure 7.2).  

 

Fourth, Figure 7.1 also shows that the TnBn systems have economies of scale along the 

whole demand range tested, whereas the TnB1 boarding methods have diseconomies of 

scale from some point (3,500; 8,000 and 10,500 pax/h for cash, magnetic strip and 

contactless card, respectively), which is directly related to the queuing delays resulting 

from having high frequencies for high demands, as depicted in Figure 7.2. The slowest 

method (cash payment) would yield delays of up to 36 s/bus for 10,000 pax/h, whereas 

magnetic strip and contactless card reach delays of 34 and 25 s/bus at 15,000 pax/h, 

respectively. This increase in travel time due to higher demand is what pushes the 

average total cost up. On the other hand, for the TnBn alternatives, average queuing 

delay is under 4 seconds for the whole demand range.  
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Figure 7.1: Total average cost 

 

 

Figure 7.2: Average queuing delay 

 
Table 7.4 presents the optimal bus size for different demand levels. For every fare 

collection system and boarding policy, bus size grows with demand as previously found 

by Jara-Díaz and Gschwender (2003a); the novelty of Table 7.4 is that reducing boarding 
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and alighting time (TnBn) may result in the use of bigger buses for a smaller demand level 

than the cases with front door boarding45

 

. The use of bigger buses when the boarding 

and alighting process is quicker, is matched by a lower bus frequency (Figure 7.3); this is 

because one of the objectives of bus frequency in this model is to reduce dwell time by 

reducing the number of passengers getting on and off one bus; if the time to board and 

alight is short, it is not necessary to provide a frequency as high as when boarding and 

alighting are slow.  

Table 7.4: Optimal bus size [m] 
Demand 
[pax/h] 

Cash 
TnB1 

Magnetic 
strip TnB1 

Magnetic 
strip TnBn 

Contactless 
card TnB1 

Contactless 
card TnBn 

Off-board 
TnBn 

1,000 8 8 8 8 8 8 
2,000 8 8 12 8 12 12 
3,000 8 8 12 8 12 12 
4,000 8 8 18 8 18 18 
5,000 8 8 18 12 18 18 
6,000 12 12 18 12 18 18 
7,000 12 12 18 12 18 18 
8,000 12 12 18 12 18 18 
9,000 12 12 18 12 18 18 

10,000 15 15 18 15 18 18 
11,000 

 
15 18 15 18 18 

12,000 
 

18 18 15 18 18 
13,000 

 
18 18 18 18 18 

14,000 
 

18 18 18 18 18 
15,000 

 
18 18 18 18 18 

 

 

                                                 
45 For example, between 6,000 and 9,000 pax/h the service with TnBn alternatives should be provided with 
18 metre long buses, whereas 12 metre buses are preferred if boarding is at the front door only. 
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Figure 7.3: Optimal frequency 

 

The optimal running speed 0v  is analysed next. Figure 7.4 shows that 0v  grows with 

demand at a decreasing rate; it is always increasing for the TnBn systems, while in the 

cases of on-board payment with cash, magnetic strip and contactless card through the 

front door only, the optimal running speed reaches a maximum and then decreases. This 

finding is related to the results on station spacing (Figure 7.6) and the previously analysed 

queuing delay (Figure 7.2). For example, for demand over 6,000 pax/h for front door 

boarding and payment with magnetic strip and contactless card, in order to reduce bus 

congestion it is optimal to decrease the distance between stations, or equivalently, 

increase the number of stations, so that the number of passengers per station is reduced, 

and consequently the queuing delay (that depends on the number of passengers getting 

on and off buses though the dwell time) is shorter. Therefore the number of stops along 

the route is increased. As the delay due to acceleration and deceleration per stop 

(equation 7.3) increases linearly with the constant running speed, 0v , the model 

responds by reducing the optimal speed to be provided. 

 

On Figure 7.5, total infrastructure cost (land, busways and stations) is shown, i.e., the 

summation of costs 1c  and 2c  per kilometre, which grows following the evolution of 
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optimal speed, as the investment in busways ( 1c ) is large relative to the investment in 

stations per kilometre ( *
2c S L , where *S  is the optimal number of stations along the 

route). A numerical analysis of the curves in Figure 7.4 and 7.5 shows that the optimal 

speed and investment in infrastructure per kilometre grow with the natural logarithm of 

demand for the case with no queuing delay (the off-board payment method): 

 

( )0 16.07 ln 73.17v N= − ( )2 0.998R =     (7.25) 

( )
*

1 2 8.55ln 49.28Sc c N
L

+ = − ( )2 0.997R =    (7.26) 

 

That is, if bus congestion is negligible, it is optimal to increase infrastructure investment 

as demand grows, if that investment has an increase in running speed as output. Major 

increases in investment are suggested when facing growth in a low range of demand (for 

example, from 2,500 to 5,000 pax/h), whilst growth within a high demand range (for 

example, from 10,000 to 15,000 pax/h) is matched by a much smaller increment in 

investment, since the system is already relatively fast in terms of bus speed (buses 

running over 70 km/h 46

 

). 

                                                 
46 Such high speeds are reachable with complete segregation of busways from traffic, such as the case of 
Brisbane’s South East Busway in which buses run at 80 km/h (FTA, 2008). 
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Figure 7.4: Optimal bus running speed 

 

 

Figure 7.5: Infrastructure cost per kilometre 
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Figure 7.6: Optimal bus stop spacing 

 

Given that bus running speed increases for a greater demand before bus stop congestion 

builds (Figure 7.4), it is interesting to analyse the resulting commercial or operating speed 

(Figure 7.7), which include running plus detentions due to bus stops and intersections47

                                                 
47 The slack time introduced at the end of a roundtrip is not included. 

. 

For all systems, commercial speed increases with demand when demand is low due to 

the increase in operating speed; nevertheless, bus stop congestion reduces commercial 

speed for the systems with payment through the front door only (TnB1). A maximum 

speed of 34.4 km/h is reachable for 13,000 pax/h if off-board payment is provided (Figure 

7.7), however, higher demand results in commercial speed slowly decreasing also for the 

TnBn alternatives. In summary, there is a middle demand range at which a bus corridor is 

able to realise its maximum potential in terms of speed and reduction of users costs; 

however, if demand is too high (over 13,000 pax/h-direction in our example) inevitably 

total speed is going to drop even if high investments in dedicated bus infrastructure are 

made and the most efficient fare collection system and boarding policy are implemented. 

In such cases, it might be appropriate to develop alternative operation strategies to 

speed up buses and increase the capacity of the corridor, for example, the combination 

of local and express services designed in the Transmilenio system in Bogotá, which 
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records the highest transport capacity for a bus corridor around the world (45,000 pax/h, 

Wright and Hook, 2007). 

 

 

Figure 7.7: Operating speed (running plus detentions) 

 

Finally, Figure 7.8 depicts the number of buses required in each case, allowing for 5 

percent of vehicles to be left as spare in depots. As expected, the implementation of 

efficient fare collection systems and boarding policies could imply sizeable savings in 

terms of fleet size requirements. This result, obtained with an optimisation model, is in 

line with the savings in fleet size due to upgrading the fare collection technology or 

speeding up the boarding process, estimated with the empirical bus travel time model of 

Section 4.5 (Table 4.8). 
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Figure 7.8: Fleet size 

 

7.4.3 Analysis of other scenarios 

Changes in the optimal values of the variables resulting from the application of other 

modelling assumptions are analysed in this section. A couple of new scenarios are 

compared against the base case, analysed in Section 7.4.2. We consider the case of on-

board contactless card and front door boarding (TnB1), as the conclusions are the same 

for the other fare payment methods. Two modifications are introduced as follows: 

 

A. The effect of ignoring congestion 

 

The objective is to look at the differences in the design of the system that arise if the bus 

station queuing delays are disregarded in the optimisation. Such differences are 

observable only when there are queuing delays in the solution depicted in Figure 7.2. 

Results in Figure 7.9 show that ignoring the queuing delay (case labelled as Congestion 

not accounted) would yield larger frequencies for a ridership over 10,000 pax/h, given 

that from this point, the model with queuing delay (base case) starts to adjust the 

frequency (down) to reduce the increasing congestion in high-demand bus stops, as 

shown in Figure 7.2 (Curve “Contactless card TnB1”). As expected, the solution that 
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ignores the queuing delay in the design would yield a disproportionate average queuing 

time for high demands (Figure 7.10). Also, the consideration of congestion in the design 

yields a shorter distance between stations (Figure 7.11), with the objective of reducing 

the number of passengers boarding per stop, as previously discussed. 

 

B. Running speed cannot be optimised 

 

So far we have assumed that an increase in running speed through investment in 

infrastructure is possible, for example, by acquiring land and upgrading busways. 

However, in some cases, such improvements are not feasible due to physical, 

geographical or financial constraints, which prevent public transport planners and 

decision makers from building the dedicated busways they want for a high standard bus 

corridor, especially in city centres. In such a case, there is little or no room to influence 

running speed. In this scenario we fix the running speed 0v  at 50 km/h. This scenario is 

referred to as Fixed speed in Figures 7.10 and 7.11. Optimal frequencies with fixed speed 

are virtually the same as in the base case (Figure 7.9). What does change is the optimal 

station spacing; as with fixed speed, the distance between stations is always decreasing, 

i.e., the higher the demand, the larger the number of stations. As already mentioned, 

when speed is optimised, there is a range in which the distance between stops increases 

with demand (up to 7,000 pax/h, base case curve in Figure 7.11) in order to reduce the 

delay due to acceleration and deceleration. On the other hand, the queuing delay with 

fixed speed is lower than in the base case, where for high demand, there are more 

stations (and consequently fewer passengers boarding on each of them) when the 

running speed is constant. 
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 Figure 7.9: Optimal frequency, contactless card payment TnB1 

 

 

Figure 7.10: Queuing delay, analysis of scenarios with contactless card payment TnB1 
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Figure 7.11: Optimal distance between stops, analysis of scenarios with contactless card 
payment TnB1 

 
7.5 Summary and Conclusions 

 

We have presented a model to optimise key variables in the design of bus services 

provided in a dedicated corridor, such as the frequency, bus capacity, station spacing, 

running speed and fare payment method. The former three variables have been widely 

analysed in the previous literature, whilst the consideration of different alternatives for 

the fare payment technology and the running speed as a variable (related to the 

investment in infrastructure for buses) are new in the microeconomic modelling of bus 

operations. The introduction of these two elements as decision variables in a formal 

model of public transport operation is not only a theoretical contribution, but also has 

the potential of influencing practice; given the widespread recognition of buses as crucial 

players in enhancing urban mobility in metropolitan areas, the selection of efficient fare 

collection policies and investment in dedicated infrastructure to speed up buses are two 

strategic instruments increasingly available to public transport policy makers to improve 

the quality of existing services and/or to design new high standard transit systems. 
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Another important feature of this approach is that congestion amongst buses is also 

embedded in the model, by considering that bus queues arise behind stations, if demand 

and frequency are high, which shows that a comprehensive treatment of bus congestion 

should go beyond the consideration of flow measures as explanatory variables, to also 

include passenger demand and the fare payment system. We provide a more detailed 

representation of the circulation of buses in a corridor than what is usual in 

microeconomic models of public transport operation, embedding relevant engineering 

aspects within the traditional approach of total cost minimisation (considering both 

operators plus users).  

 

The main conclusions derived from the application of the model are the following: 

 

• The systems with boarding at all doors (TnBn) provide the lowest total cost across 

the demand range under study. If all-door boarding is allowed, off-board fare 

collection emerges as the most efficient payment system for a demand larger than 

600 pax/h; however the difference in total cost saving relative to on-board 

payment with magnetic strip and contactless card is no greater than 2 percent.  

Therefore, we can conclude that once on-board cash payment has been ruled out, 

allowing boarding at all doors is more important as a tool to reduce both users’ 

and operator’s costs than technological improvements on fare collection.   

• For the off-board payment system and the on-board payment alternatives before 

congestion builds, optimal speed (and consequently the optimal investment in 

infrastructure) grows with the logarithm of demand. This result depends on the 

existence of a positive and linear relationship between investment in 

infrastructure and desired running speed. 

• Decreasing total average cost is observed when boarding is allowed at all doors, 

whereas increasing average costs occur for high demand if boarding is restricted 

to the front door only. The highest total cost is associated with on-board cash 

payment, followed by payment with magnetic strip and contactless card. This is 

because buses spend more time in bus stops boarding passengers when payment 

is on-board at the front door only, which triggers bus queues that in turn increase 

travel time and operator costs. 
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• Disregarding bus congestion in the design of the service would yield greater 

frequencies when congestion is noticeable, i.e., for high demand. 

 

The present model can be extended in several ways, for instance, by considering elasticity 

of demand, or the optimisation of two or more bus routes forming a network. This 

chapter has focused on dedicated bus corridors, and hence interactions with other modes 

were ignored. In the next chapter we include modal competition on a multimodal 

framework with bus, car and walking as travel alternatives, and congestion interactions 

between car and bus. 
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Chapter 8 

8 Optimal Design of Bus Services on an Extended Multimodal Framework 

Optimal Design of Bus Services on an Extended 
Multimodal Framework 

 
CHAPTER 8  
 
8.1 Introduction 

 

The optimisation of a bus service on a dedicated corridor was the focus of Chapter 7, in 

which a total cost minimisation model was set up to analyse decisions on fare collection 

methods, bus boarding rules, and investment in bus road infrastructure, which is related 

to a target running speed. Bus congestion in the form of queuing delays was also 

considered, and its impact on design variables such as bus frequency and the spacing of 

bus stops was assessed. In this chapter, we extend the analytical model of Chapter 7 by 

incorporating modal choice, travel time interaction between cars and buses and the 

existence of bus crowding and its impact on the valuation of travel time savings. The new 

features of the model and contributions to the literature are introduced and highlighted 

in this section. 

 

As discussed in Chapter 6, the analysis of the economic effects of crowding and standing 

costs inside public transport vehicles has focused, on the one hand, on estimating how 

the perception of travel time changes with levels of crowding, i.e., the influence of 

crowding on the value of travel time savings (Maunsell and Macdonald, 2007; Whelan 
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and Crockett, 2009; Hensher et al., 2011; Wardman and Whelan, 2011), and on the other 

hand, on determining the effect of this crowding or comfort externality on the optimal 

bus fare (Kraus, 1991), and the values of bus frequency and size (Jara-Díaz and 

Gschwender, 2003).  

 

The literature on crowding valuation suggests that the discomfort of travelling depends, 

among other things, on the number of passengers seating and standing, which can be 

reflected in the value of travel time savings through the estimation of in-vehicle time 

parameters that interact with the proportion of seats being used and the density of 

standees per square metre (Whelan and Crockett, 2009). The importance of people’s 

dislike of crowding as a behavioural outcome goes beyond applications to estimate travel 

demand or the willingness to pay for a seat on a bus or train, as it can be used to 

determine the optimal distribution of space inside a vehicle, that is, the proportion of 

space that the designer should allocate to seating and standing. A change in the number 

of seats inside a bus or train has an impact on the discomfort of travelling, as it influences 

the number and density of passengers seating and standing. This is a key insight from the 

estimation of crowding and standing externalities that has been given no attention in the 

literature on the design and optimisation of public transport systems.  

 

Microeconomic models that have included the level of crowding as an influence on the 

value of in-vehicle time savings do not distinguish between passengers seating and 

standing (Jara-Díaz and Gschwender, 2003; Tirachini et al., 2010a; 2010b), whereas Kraus 

(1991) applies a premium on the value of travel time savings for passengers standing, but 

his work is concerned with the marginal cost and pricing of services considering the 

discomfort of standing, rather than with the design of vehicles. Thus, even though 

crowding and discomfort externalities have been analysed in the public transport 

economic literature, it is always assuming a given internal design or layout of the vehicles 

involved, i.e., a given bus or train capacity. In short, it is assumed that size implies 

capacity. In this chapter we develop a new approach to find the optimal bus capacity 

given bus size, on account of the fact that bus capacity can be manipulated through 
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different configurations of seating and standing layouts (i.e., different number of seats), 

given the length of a vehicle. The model is developed for buses but the same principles 

are applicable to rail. 

 

A social welfare maximisation model with disaggregated origin and destination demand, 

and multiple travel alternatives, is proposed in this chapter, in a framework that includes 

bus frequency, bus size, number of bus seats, fare collection system, bus boarding policy, 

fare level and congestion toll as decision variables. In contrast to other social welfare 

maximisation models (e.g., De Borger et al., 1996; Proost and Van Dender, 2004; 

Wichiensin et al., 2007; Ahn, 2009; Parry and Small, 2009; Basso and Silva, 2010; Jansson, 

2010), this approach is more detailed in the characterisation of bus operations and 

includes a larger number of variables on the bus supply side, uncovers the trade-off 

between bus crowding and traffic congestion under several modelling assumptions, and 

shows that the inclusion of a non-motorised mode (walking) as an alternative to choosing 

bus and car may have a significant role when the transport system is optimised in highly 

congested scenarios. A numerical analysis over a transport corridor in Sydney is 

undertaken using the alternative specifications of multinomial logit models for mode 

choice, with and without crowding variables, that were estimated in Chapter 6. 

 

The remainder of the chapter is organised as follows. The theoretical model is developed 

in Section 8.2, including assumptions and definitions (Section 8.2.1), demand and 

crowding modelling (8.2.2), travel time and congestion (8.2.3), internal bus layout (8.2.4) 

and operator cost items (8.2.5); the section concludes with the formulation of the social 

welfare maximisation problem. Section 8.3 presents the numerical application of the 

model to Sydney and discussion of results in several scenarios. Conclusions are provided 

in Section 8.4. 
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8.2. Model Set Up 

 

8.2.1 Assumptions and definitions  

We consider a linear bi-directional road of length L  and a single period of operation with 

directions denoted as 1 and 2. The road is divided into P  zones denoted as { }1,...,i P∈ ,  

and the total demand ijY per origin-destination pair ( ),i j is fixed. The distance between 

zone i  and zone 1i +  is denoted as iL  such that 
1

1

P

i
i

L L
−

=

=∑ , as shown in Figure 8.1. Users 

can choose to travel by car (a), bus (b) or to walk (e). Then, if ij
my  is the travel demand for 

mode m  between zones i  and j , it holds that: 

 

ij ij ij ij ij
m a b e

m
Y y y y y= = + +∑       (8.1) 

Let 1
i

af  be the traffic flow between zone i  and zone 1i + (direction 1) and 2
i

af  be the 

traffic flow between zone 1i +  and zone i  (direction 2). The decision variables of the 

problem are denoted as follows: 

bf  : bus frequency [bus/h] 

bs  : bus size (length) [m] 

seatn : number of seats inside a bus 

∆  : fare collection technology and boarding policy (one-door or all-door boarding) 

aτ  : car toll [$/trip] 

bτ  : bus fare [$/trip] 
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Figure 8.1: Transport corridor diagram 

 

It is assumed that there is only one bus stop per zone48

seatn

 and that the travel distance 

between zones is the same for the three modes. Bus frequency is assumed to be 

continuous, whereas options on bus lengths are constrained by the size of commercial 

vehicles; four sizes are considered in the application of the model as defined in Section 

7.3; these are mini (8 m., 1 or 2 doors), standard (12 m., 2 or 3 doors), rigid long (15 m., 3 

or 4 doors) and articulated (18 m., 4 doors).  A larger number of doors reduces boarding 

an alighting time (Chapter 4) but also reduces the capacity of the bus as the area next to a 

door must be left clear of seats and standees (Appendix A5). The number of seats  

can be freely chosen subject to lower and upper bounds, the former is given by a 

minimum number of seats per bus that is exogenously decided in order to provide a 

minimum level of service, whereas the latter is determined by a minimum area on a bus 

that must be clear of seats (i.e., aisle, doors, space for a wheelchair, area next to the 

driver). As defined in Section 4.2, we consider four alternative fare collection 

technologies: on-board payment with (i) cash, (ii) magnetic strip (with contact) and (iii) 

smart card (contactless), plus (iv) off-board payment (on the bus stop). The bus boarding 

and alighting policy can be chosen as well, two alternatives are available to implement in 

buses with more than one door: (a) simultaneous boarding and alighting, in which 

boarding is allowed at the front door only while alighting takes place at the back(s) doors 

(denoted TnB1), and (b) sequential boarding and alighting, in which boarding is allowed 

                                            
 
48 The location of bus stops is fixed in this model, which allows us to know the number of passengers that a 
bus carries in each segment of the route (between two consecutive zones). For models that optimise the 
number of bus stops see Chapter 7, Kikuchi (1985), Chien and Schonfeld (1998) and dell’Olio et al. (2006) 
among others.  
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at all doors giving priority to passengers alighting (denoted TnBn). In principle, we assume 

that cars and buses share the right-of-way and that bus stops do not directly affect cars, 

an assumption that is revised in Section 8.3.5.  

 

8.2.2 Demand modelling and crowding 

Mode choice models that include the proportion of available seats and the density of 

standees as attributes for buses are estimated. Data collected from a stated choice 

survey conducted in Sydney in 2009 is used to this end, as shown in Section 6.3 for public 

transport and car modes. Let ij
mU  be the utility associated with travel by mode m in OD 

pair ( ),i j . In order to analyse differences in optimal bus service design due to alternative 

assumptions regarding user’s valuations of seating, standing and crowding levels inside 

buses, we propose three different models that incorporate attributes representing the 

number of passengers seating and standing, interacting with travel time; these models 

will be compared with a specification that ignores any crowding or standing cost.  The 

models, named M1 to M4 for the bus mode, are described as follows: 

 

• M1: No crowding cost (eq. 8.2). 

• M2: Only the density of standees [pax/m2] imposes an extra discomfort cost (eq. 

8.3). 

• M3: The density of standees and the proportion of seats occupied are sources of 

disutility (eq. 8.4). 

• M4: The density of standees and the proportion of seats occupied are squared in 

the utility function (eq. 8.5). 

 

Bus – M1:     M1 M1 M1 M1 M1ij i ij
b b a ab h b vb vb c bU t h tα β β β β τ= + + + +

 
(8.2)

 

Bus – M2:  M2 M2 M2 M2 M2 M2ij i ij ij
b b a ab h b vb vb c b den den vbU t h t n tα β β β β τ β= + + + + +

 
(8.3)

 

Bus – M3:  M3 M3 M3 M3 M3 M3ij i ij ij ij
b b a ab h b vb vb c b den den vb seat seat vbU t h t n t p tα β β β β τ β β= + + + + + +

 
(8.4)

 

Bus – M4: M4 M4 M4 M4 M4 2 2
2 2

ij i ij ij ij
b b a ab h b vb vb c b den den vb seat seat vbU t h t n t p tα β β β β τ β β= + + + + + +

 

(8.5)
 



 
 
 

171 
 

In (8.2) to (8.5), i
abt  is the access time at zone i, bh  is the headway between two 

consecutive buses, ij
vbt  is the in-vehicle time between zones i and j, bτ  is the bus fare, denn  

is the density of standees per square metre, seatp  is the proportion of seats been used, 

bα  is an alternative specific constant (which will be calibrated to predict an observed 

modal split) and kβ  are the parameters associated with the different attributes. For each 

model (M1 to M4), the utility of the alternative modes (car and walk) have the same 

specification: 

 

Car: ( )M Mij ij ij
a va va ca r a rU t c oβ β τ⋅ ⋅= + +  

(8.6) 

Walk: Mij ij
e e ve veU tα β ⋅= +

 
(8.7) 

where ij
rc  is the car running cost to travel between zones i and j, aτ  is the road charge 

(decision variable) and ro  is the average car occupancy rate (therefore ij
aU  is the average 

utility of car users). Assuming a multinomial logit model for the estimation of demand, 

the number of trips by mode m in OD pair ( ),i j is given by:  

ij
m

ij
n

U
ij ij
m y

n

ey Y
e

=
∑

,i j∀       (8.8) 

where ijY  is the total demand between zones i and j. The estimation of parameters for 

models M1 to M4 was discussed in Section 6.3 (Table 6.1) and will be summarised in 

Section 8.3.1 in this chapter, including the estimation of the travel time parameter for 

walking.  

In this framework, the consumer surplus B is given by the logsum formula: 

0ln
I

ij
m

ij
Um

ij mu

yB e B= +∑ ∑       (8.9) 
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where Iu  is the marginal utility of income49 M
cβ

⋅, equal to minus the cost parameter  

estimated with the choice models50
0B, and  is a constant that has no effect on the 

solution of the problem, and therefore can be set to zero.  

 

8.2.3 Travel time, congestion and bus stop delay 

We assume that buses and cars share the right-of-way, which is subject to congestion. 

Furthermore, buses have to stop at bus stops to load and unload passengers. Bus stops 

are also subject to congestion in the form of queuing delays when the bus frequency is 

high and/or the dwell time is long. Taking direction 1 for illustration, we model travel 

time between zone i and zone i+1 by car ( 1
i
vat ) and bus ( 1

i
vbt ) as a function of traffic flow 

and bus frequency by using the well-known Bureau of Public Roads (BPR) formula51

 

: 

( ) ( ) 1

1
1 1 0 0, 1

i
a b bi i i

va a b a
r

f s f
t f f t

K

α
ϕ

α
  +
 = +  
   

    (8.10) 

( ) ( ) 1

1
1 1 0 0 1, 1

i
a b bi i i i

vb a b b s
r

f s f
t f f t t

K

α
ϕ

α
  +
 = + + 
   

   (8.11) 

 

where 0
i
at , 0

i
bt , 0α  and 1α  are parameters ( 0

i
at  and 0

i
bt  are the free-flow travel times), 

1ϕ ≥  is the passenger car equivalency factor of a bus, which depends on the bus length 

bs , and rK  is the capacity of the road52

                                            
 
49 The marginal utility of income is assumed constant, i.e., we ignore income effects on demand (Jara-Díaz 
and Videla, 1989; Jara-Díaz, 2007). 

. The travel time by bus includes the delay due to 

50 Note that M
cβ

⋅ is estimated with the choice of motorised modes only because walking is for free. 
51 For simplicity, we disregard the formulation that specifically accounts for delays due to traffic lights used 
in Chapter 7, because the mixed-traffic scenario analysed in this chapter has a saturation degree that 
produces overflow delays on top of non-random delays (see equation 7.4), which greatly complicates the 

expression for the overall delay due to traffic signals; however, the road capacity rK of the implemented 

BPR function will take into account the effective green time ratio of traffic signals, as described in Section 
8.3.1. 
52 A static model like (8.10)-(8.11) cannot accommodate hypercongestion, which refers to the fact that a 
small throughput or outflow is possible not only with a low inflow demand, but also with a high inflow on 
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bus stops, 1
i
st , which consists of the acceleration and deceleration delay 1

i
act , the average 

queuing time 1
i
qt and the dwell time 1

i
dt  (ignoring internal delays at bus stops), i.e., 

1 1 1 1
i i i i
s ac q dt t t t= + +      (8.12) 

The acceleration and deceleration delay and queuing delay are modelled as in Chapter 7. 

The delay in the process of accelerating and decelerating at bus stops assumes uniform 

acceleration (at rate ar  m/s/s) and deceleration (at rate dr  m/s/s), thus the extra 

stopping delay on top of the uniform travel time given by the running speed 1
i
bv , is 

expressed as (8.13), and the queuing delay at bus stops is presented in equation (8.14) 

1
1

1 1
2

i
i b
ac

a d

vt
r r

 
= + 

 
     (8.13) 

( ) ( )2 4 5 2 6 3 10.001
1 0 1 1 2 2 3 3 10.001

i
b f l b d d d df b b s b b Z b Z ti i

q l b d d d dt b b s b b Z b Z t e
 + + + +  = + + + +    (8.14)  

where bs [m] is the bus length, 1
i
dt [s/bus] is the dwell time, bf  [veh/h] is the bus 

frequency and 0b , 1Lb , 2Lb , 1db , 2db , 3db , 4db , 5db , 6db  and fb are estimated parameters 

and factors 0.001 are introduced for scaling of the parameters (see Appendix A2 for 

further details). 2Z  and 3Z  are dummy variables defined as follows: 

2

1
0

if bus stop has twoberths
Z

otherwise


= 


 

                                                                                                                                    
 

traffic breakdown, reached when inflow is higher than capacity (Walters, 1961). This outcome is 
represented by a backward bending shape of the speed-flow curve. However, it is relevant to note that 
even though hypercongestion may be necessary to model if the focus is on peak periods with severe 
congestion, hypercongestion is a temporary phenomenon generally caused by a bottleneck, and despite 
the fact that the instantaneous relationship between travel time and performed flow can be backward 
bending, this has nothing to do with the supply curve to be used in the economic analysis of road transport, 
which has to be a function of the quantity demanded or inflow, the latter relationship being monotonic 
(i.e., when more vehicles use a road, travel time is the same or greater). For a more detailed discussion on 
hypercongestion, see May et al. (2000) and  Small and Chu (2003). 
 



 
 
 

174 
 

3

1
0

if bus stop has threeberths
Z

otherwise


= 


 

As discussed in Chapter 7, the estimation of the dwell time per stops requires the cases 

with boarding allowed at all doors (TnBn) and at the front door only (TnB1) to be 

addressed separately, since in TnBn boarding and alighting is sequential at all doors, 

whereas in TnB1 boarding at the front door occurs simultaneously with alighting at the 

rear doors. These two cases are summarised in expression (8.15) 

  
{ }

( )

max , ( 1)
oc b b a ai

d
oc b a a

c p p if boarding at all doors TnBn
t

c p if boarding at front door only TnB

β λ β λ

β λ β λ

+ −

+ −

 + += 
+

   (8.15) 

where occ  is the time to open and close doors, aβ  and bβ  are the average alighting and 

boarding times per passenger, λ+  and λ−  are the number of passengers boarding and 

alighting a bus at the bus stop and factors ap  and bp  are the proportion of passengers 

boarding and alighting at the busiest door, given in Table 7.3. Equations (8.13), (8.14) and 

(8.15) conclude the derivation of the delay at bus stops (8.12). 

 

8.2.4 The choice of bus size and internal layout 

Using data from London, Jansson (1980) finds a linear relationship between bus running 

costs and bus size measured as the number of seats per bus, a relationship that has been 

used by Jansson and other authors to find the optimal size of buses in urban routes (e.g., 

Jara-Díaz and Gschwender, 2003) under the implicit assumption that there is a unique 

relationship between bus size and capacity, measured as number of seats or total 

number of passengers that can be carried, as also assumed in Chapter 7. However, the 

number of passengers that a bus can carry is not only given by the bus size, but also by 

the internal layout of space allocated to seating and standing, as a passenger sitting takes 

up more space than a passenger standing. A standard value for the area needed for a 

passenger sitting is 0.5 square metres (TRB, 2003), whereas, depending on crowding 

conditions, passengers standing may have a density of up to five or six passengers per 

square metre, and as such the minimum area required by a standee is approximately 

0.17-0.20 square metres, i.e., less than half the space required for a person seated. 
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Therefore, if the number of seats inside a bus can be manipulated, there is no one-to-one 

relationship between capacity and bus size, and the final capacity of a bus is outcome 

function of decisions made about both the bus length and internal layout altogether. In 

this context, bus capacity is not an absolute value, but rather a function of the maximum 

density of standees that is acceptable to have, given by policy, demand and cultural 

constraints53

 

.  

In this chapter, we consider the number of seats as a variable, which triggers a trade-off 

between comfort and capacity. That is, decreasing the number of seats on a bus increases 

its capacity at the expense of reducing the comfort of travelling, represented by a higher 

cost of standing and crowding. Several physical constraints need to be considered when 

deciding the number of seats, including minimum space for aisles, doors and in front of 

the bus (next to the driver) that must be clear of seats. Formulae for seating and standing 

areas and constraints are presented in Appendix A5.  

 

8.2.5 Bus operator cost and problem formulation 

Operator cost is divided into four components which are obtained in the same way as in 

Chapter 7:  

 

2c : Station infrastructure cost [$/station-h] 

3c : Personnel costs (crew) and vehicle capital costs [$/bus-h], and 

4c : Running costs (fuel consumption, lubricants, tyres, maintenance, etc.) [$/bus-km] 

5c : Implementation cost related to the fare payment technology (e.g., software 

requirements) [$/h]   

 

                                            
 
53 In crowded bus and train systems in Asia or Latin America is not unusual to operate at crush capacity, 
with 6 passengers standing per square metre in peak periods, however, such a high density of standees 
could not be acceptable in other regions. 



 
 
 

176 
 

The busway infrastructure and land cost 1c of Chapter 7 is disregarded because, in this 

chapter, buses are assumed to run in an existing mixed-traffic road. Following equations 

(7.17) to (7.20), the total operator cost Co can be defined as (8.16):  

( ) ( ) ( ) ( )
( ) ( )

2 3 0

4 5

, , , , , , , , ,

2
o b b b b b c b b

b b

C f s S c s S c s f T f s S v

c s L f c

∆ = ∆ + ∆ ∆ +

+ + ∆
         (8.16)    

Importantly, we are assuming that the number of seats inside a bus (and consequently, 

the number of passengers) has no effect on the bus capital cost, which is only determined 

by the bus size and arrangements regarding fare collection readers (i.e., the cost of seats 

if assumed negligible relative to the cost of the bus). After obtaining an expression for the 

operator cost (8.16), we can formulate the social welfare maximisation problem as 

follows: 

Max      ln
I

ij
m

ij
U ij ij

a a b b o
ij m ij iju

ySW e y y Cτ τ= + + −∑ ∑ ∑ ∑
   

 (8.17) 

Subject to  

{ } ( )1 2max , ,i i
b b b b b seati

y y f K s nκ≤
    (8.18a)

 

min max
seat seat seatn n n≤ ≤      (8.18b) 

min max
b b bf f f≤ ≤      (8.18c) 

{ }1 4,...,b b bs s s∈      (8.18d) 

{ }1 6,...,∆∈ ∆ ∆      (8.18e) 

 

Inequality (8.18a) is a capacity constraint that ensures that the bus transport capacity              

( b bf Kκ ) is large enough to accommodate the maximum bus load; κ  is a design factor 

introduced to allow spare capacity to absorb random variations in demand (for example, 

0.9κ = ) and bK  is the bus capacity, given by the bus length bs  and number of seats seatn . 

Expression (8.18b) states that the number of seats is constrained by minimum and 

maximum values, which are obtained in Appendix A5. Frequencies are also constrained 
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by a minimum policy frequency minf  (set to have a minimum level of service, if desired) 

and the maximum feasible frequency maxf  as given in expression (8.18c). Finally, (8.18d) 

and (8.18e) establish that bus size bs  and the boarding and alighting policy and fare 

collection technology ∆  are taken from available choices.  

 

The constrained optimisation (8.17)-(8.18) is solved using the optimisation toolbox of 

Matlab. The solution procedure implemented considers bus frequency as a continuous 

variable while the number of seats, car toll and bus fare are discrete (fare and toll are 

constrained to be a multiple of 5 cents). In this setting, modal choice depends on travel 

times, which in turn depend on modal choice; this fixed-point problem is solved by simply 

iterating between modal choice and travel times until convergence is reached.  

 

8.3 Application 

 
8.3.1 Physical setting and input parameters 

The social welfare maximisation model is applied with demand and supply data from 

Military Road in North Sydney (Figure 8.2). The section modelled comprises 3.44 km of 

road which is divided in 12 zones (therefore the average zone length is 286 metres). The 

origin-destination matrix for car and bus trips is obtained from a traffic simulation study 

undertaken in this corridor by the Roads and Traffic Authority (RTA)54

                                            
 
54 This corridor is chosen because of the availability of origin-destination demand data at the level of small 
zones. The estimation of taste parameters for utility functions (8.2) to (8.7) is done with data collected in an 
adjacent area in Sydney (the CBD and the North West); we assume that the estimated parameters are also 
applicable to the Military Road area. 

. In order to add 

walking trips to the matrix we use Sydney’s Household Travel Survey (TDC, 2010) to 

obtain the city’s modal split by trip distance; 66.7 percent of trips shorter that one 

kilometre are made on foot, a figure that drops to 24.7 percent for trips between 1 and 2 

km, and 5.7 percent for trips between 2 and 5 km (considering car, bus and walk only). 

Then we amplify each cell (bus+car trips) by the respective percentage of walking trips 

according to the distance between origin and destination. The matrix obtained with this 
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procedure is presented in Figure 8.3, with a total of 19,234 trips in the morning peak 

(7.30 to 8.30am), from which 54.3 percent are from east to west, towards the CBD 

(Direction 2 in Figure 8.1). 

 

 
Figure 8.2: Test corridor, Military Road 
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O/D 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 856 1324 54 23 8 74 99 419 71 16 1405 

2 165 0 192 15 4 1 20 19 68 14 3 326 

3 829 93 0 0 0 0 0 0 0 0 0 0 

4 50 12 0 0 0 0 1 3 13 1 0 91 

5 146 0 0 0 0 0 0 0 1 0 0 11 

6 235 9 3 0 0 0 0 3 9 0 0 17 

7 87 13 4 0 0 0 0 12 48 12 0 187 

8 18 1 0 0 0 0 0 0 3 9 0 8 

9 396 22 5 1 1 3 24 9 0 27 3 763 

10 7 0 0 0 0 0 0 0 0 0 12 1511 

11 119 11 1 0 0 0 12 0 3 123 0 1027 

12 1780 277 54 21 16 27 151 65 207 3763 1685 0 

Figure 8.3: Origin-Destination matrix 

 

The road has two lanes per direction, BPR functions (8.10) and (8.11) are assumed to 

represent travel times with commonly used parameter values 0 0.15α =  and 1 4α = , and 

a capacity 2000 /rK veh h=  obtained by assuming a 60 percent for effective green time 

ratio at signalised intersections. Speed at free flow is 50 km/h. With these assumptions, 

the average car speed is 26.3 km/h in direction 1 (outbound) and 21.5 km/h in the 

direction 2 (inbound), similar to the measured average speed of 22 km/h on this road 

(RTA, 2011, which only reports average speed in the inbound direction in the morning 

peak). The bus equivalency factors ( )bsϕ  are 1.65 for small buses (8 m), 2.19 for 

standard buses (12 m), 2.60 for rigid long buses (15 m) and 3.00 for articulated buses (18 

m), following the linear relationship of Basso and Silva (2010). 

 

Users can choose between travelling by car, bus or to walk; other alternatives like 

switching time period or changing origin and/or destination are not considered. The car 

operating cost is 14 cents/km (fuel consumption) and the average car occupancy 1.45 

pax/car (TDC, 2010), which we assume remains unchanged after pricing reforms (the 
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sensitivity of car occupancy to raising tolls is ignored). Walking speed is assumed to be 4 

km/h. 

 

The constraints for the minimum and maximum number of seats per bus are explained in 

Appendix A5. As a minimum, a space free of seats must be left next to the driver, next to 

doors, for a central corridor and for a wheelchair, which would determine the maximum 

number of seats max
seatn  that can be fit in a bus. On the other hand, the minimum number of 

seats min
seatn  is exogenously fixed such that, regardless of the size of the bus, at least 25 

percent of the available area for seating and standing is allocated to seating. It is assumed 

that a passenger sitting needs 0.5 m2 whereas the maximum density of standees is 4 

pax/m2, i.e., 0.25 m2 per passenger (see Appendix A5). 

 
Parameters for the utility functions (8.2) to (8.7) are taken from Table 6.1, with the 

exceptions of the time parameter for walking and the mode specific constants, which are 

estimated as follows. First, walking as a travel alternative was not considered in the 

survey of the main stated choice experiment from 2009 in Sydney, described in Section 

6.3; therefore a reasonable value for the disutility of travel time while walking has to be 

supplemented. To this end, a secondary intra-CBD model described in an internal 2009 

report by Hensher and Rose is used, in which walking was an alternative to public 

transport modes and taxi  for short CBD trips; in the intra-CBD model, it is found that the 

time parameter of walking ( veβ ) is 1.86 times greater than the in-vehicle time parameter 

for bus ( vbβ )55
veβ. Thus, we assume a constant value of  across models, equal to 1.86 

times vbβ  on M1 (because the latter is an average value of vbβ for all crowding 

conditions); therefore, 1.86 0.019 0.035veβ = ⋅− = − . 

 

                                            
 
55 This figure is in the order of the values estimated by Jovicic and Hansen (2003) for Copenhagen (1.36 and 

2.32 for the ratio ve vbβ β  for purposes commuting and education, respectively, considering walking and 

cycling altogether as a non-motorised mode, and trips up to 30 minutes long). 
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Second, mode specific constants for demand models M1 to M4 are calibrated to 

represent the current Sydney modal split of trips shorter than 5 kilometres: 62.5 percent 

car, 31.6 percent walk, and 5.9 percent bus (TDC, 2010). The current bus frequency of 16 

bus/h in the morning peak is used, with a fare of $2.10 and no car toll. The car specific 

constant is fixed at zero. With these two considerations for the time parameter for 

walking and the mode specific constants, the estimated parameters used in this section 

are presented in Table 8.1 (goodness-of-fit and t-ratios were shown in Table 6.1). 

 
Table 8.1: Parameter values 

Attribute M1 M2 M3 M4 

Access time aβ  -0.016 -0.017 -0.017 -0.017 

Headway hβ  -0.009 -0.010 -0.010 -0.010 

In-vehicle time bus ( vbt  ) vbβ  -0.019 -0.013 -0.004 -0.006 

In-vehicle time car ( vat  ) vaβ  -0.016 -0.018 -0.018 -0.018 

Travel time walk veβ  -0.035 -0.035 -0.035 -0.035 

Cost cβ  -0.062 -0.064 -0.064 -0.064 

Modal constant bus bα  -2.080 -2.112 -2.129 -2.134 

Modal constant walk eα  -0.092 -0.099 -0.099 -0.100 

vbt × den stand denβ  

 

-0.004 -0.003 

 vbt × prop seat seatβ  

  

-0.013 

 vbt × (den stand)2
2denβ  

   

-0.0005 

vbt × (prop seat)2
2seatβ  

   

-0.013 

Note: Time in minutes, cost in $ (AUD). 

 

8.3.2 Base results 

Results with the current OD matrix (Figure 8.3) for demand models M1 to M4 are shown 

in Table 8.2. First, the solution regarding bus size, frequency, fare, toll and number of 

seats is similar for M1 and M2, and for M3 and M4. In the case of M1 (no crowding or 

standing externality internalised) it is optimal to operate with mini buses (8 metre long) 
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at a frequency of 21.7 veh/h and to charge a fare of 10 cents, whereas in M2 (with 

standing disutility) the optimal solution has a slightly greater frequency of 23.7 veh/h. 

The similarity of results is because at this level of bus demand almost all passengers are 

seating, as shown by the maximum occupancy rate (over number of seats), which is 1.08 

for M1 and 0.98 for M2 (tenth row in Table 8.2), therefore, due to the absence of 

standees, both models have similar optimal outputs. A different result is obtained if we 

assume that the proportion of bus riders seating also is a source of disutility, either in a 

linear (M3) or quadratic (M4) form; in these cases the optimal solution comprises bigger 

(12 m) and more frequent buses (between 25 and 26.1 veh/h), and the optimal fare that 

escalates to 40 cents. The difference in fare is explained by the fact that in M1 and M2 

the marginal cost of carrying an extra passenger is only given by the extra boarding and 

alighting time, whereas for M3 and M4 the optimal fare also accounts for the discomfort 

caused by a passenger that reduces the number of free seats on a bus.  

 

Next, regarding the optimal number of seats, in all cases the optimal result is having the 

maximum number of seats possible (24 for 8 m.-long buses, 39 for 12 m.-long buses), 

constrained by the minimum area required free of seats56

 

. Out of the available area for 

seating and standing, 80 percent is allocated to seating and 20 percent to standing. The 

greater frequency and bus size of models M3 and M4 considerably reduces the average 

occupancy rate (as a function of the number of seats) from over 50 percent in M1 and 

M2, to 30 percent in M3 and M4 (the supply of seats per hour is almost doubled from 521 

in M1 to 1,017 in M3).  

 

 

 

                                            
 
56 Note that bus utility in M1 is indifferent to the number of seats inside buses, therefore as long as the 
capacity constraint is not binding, any number of seats would produce the same level of social welfare. In 

Table 8.2 the capacity constraint is inactive for buses with the maximum number of seats max
seatn , therefore 

max
seatn

 
is arbitrarily chosen for M1.  
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Table 8.2: Base case results 

Optimal value M1 M2 M3 M4 

Bus length  [m] 8 8 12 12 

Frequency [veh/h] 21.7 23.7 26.1 25.0 

Fare [$] 0.1 0.1 0.4 0.4 

Toll [$] 2.0 2.0 2.0 2.0 

Number of seats 24 24 39 39 

Bus capacity [pax/bus] 36 36 58 58 

Seating area/total bus area 0.58 0.58 0.63 0.63 

Seating area/ (seating plus standing area) 0.80 0.80 0.80 0.80 

Average occupancy rate (over number of 
seats) 

0.57 0.52 0.30 0.31 

Max. occupancy rate (over number of seats) 1.08 0.98 0.56 0.58 

Max. occupancy rate (over total capacity) 0.62 0.56 0.32 0.33 

Seat capacity bus route (seats/h) 521 569 1,017 975 

Total capacity  bus route (pax/h) 782 854 1,512 1,450 

Fare collection technology 
Off-

board 
Mag. 
strip 

Mag. 
strip 

Mag. 
strip 

Boarding regime 
All 

doors 
All 

doors 
All 

doors 
All 

doors 
Social welfare [$] 129,544 122,984 122,897 122,801 

Consumer surplus [$] 114,290 107,721 107,454 107,319 

Bus operator profit [$] -671 -645 -467 -436 

Toll revenue [$] 15,925 15,908 15,909 15,917 

Subsidy/bus operator cost 0.83 0.83 0.46 0.44 

Fleet size [buses] 11 12 13 13 

Modal split bus 7.1% 7.0% 7.0% 7.1% 

Modal split car 60.0% 59.9% 60.0% 60.0% 

Modal split walk 32.9% 33.1% 33.0% 32.9% 
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The outputs regarding number of doors, bus boarding policy and fare collection 

technique are described as follows. First, in all cases it is optimal to have the maximum 

number of doors given by the bus size, i.e., 2 doors for 8 metre buses and 3 doors for 12 

metre buses, as the more doors are in place the shorter are the boarding and alighting 

times57

 

. Second, sequential boarding and alighting at all doors (TnBn system) is more 

efficient than operating with boarding at the front door only (TnB1). Third, the optimal 

fare collection technology is off-board with M1 and on-board with a magnetic strip with 

M2 to M4.  

The consideration of a crowded seating disutility has a strong effect on the financial state 

of the public transport provider and the subsidy required to run the system: in M1 and 

M2 with an optimal fare of 10 cents it is required a subsidy that needs to cover 83 

percent of the operator cost, whereas if the optimal fare of M3 is charged (40 cents) the 

required subsidy is halved58

 

.  In all cases the toll revenue is more than enough to cover 

the bus operator deficit (ignoring toll collection costs). Finally, we observe that the 

predicted modal splits are almost identical under the four models, and that compared to 

the observed modal split (62.5 percent car, 31.6 percent walk and 5.9 percent), more 

people decide to walk (33 percent) and ride a bus (7 percent), reducing the car modal 

split to 60 percent.  

In the next subsections, we analyse how the bus service and pricing levels (fare and toll) 

should be adapted when faced with an increase in transport demand. The trips by origin 

and destination of Figure 8.3 are uniformly scaled in five steps, up to a total demand of 

28,850 trips/h (50 percent higher than the current number of trips). The main results 

                                            
 
57 This result ignores that the time to open and close doors may increase with the number of doors, 
because drivers may spend more time to check that all doors are clear of passengers if more doors are 
provided in a bus.   
58 The current operation of Sydney buses has a minimum fare of $2.10 for a single ticket, which in our 
model would produce profits, however the current system has to be subsidised. This divergence is 
explained by a number of elements, including the likely existence of a large amount of fixed costs that is 
not considered in this application, and that we are only modelling the morning peak period in which 
demand is the highest.   
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regarding modal split, bus service design, pricing, crowding and congestion are discussed. 

Model M4 is not shown because its results are similar to those of M3. 

 

8.3.3  Optimal bus frequency: The trade-off between congestion and crowding 

The evolution of the optimal bus frequency is presented in Figure 8.4. It is evident that 

regardless of the demand model considered, frequency does not vary monotonically with 

demand, in particular optimal frequency can decrease as demand grows, although the 

reasons for this result are not the same across the models. Focusing on M2 (standing 

disutility) first, we observe that frequency is increasing up to 32 veh/h for 1,900 pax/h, 

but drops to 22 pax/h for 2,100 pax/h; this is because up at 1,900 pax/h the optimal bus 

is mini (8 metres) whereas at 2,100 pax/h it becomes optimal to operate with standard 12 

metre buses with a higher capacity. Similarly for M3, a discrete increase in bus size (from 

12 to 15 metres) also explains the drop in frequency from 26 to 24 veh/h with 1,550 

pax/h. However, if bus size remains unaltered, frequency is always an increasing function 

of demand if we assume that crowding and standing disutilities matter (case of M2 up to 

1,900 pax/h and M3 beyond 1,550 pax/h) which is in line with all total cost minimisation 

models that optimise bus frequency either assuming a fixed bus size, or that bus size can 

be freely adjusted to meet demand once frequency has been optimised (e.g., Mohring, 

1972; Jansson, 1980; Jara-Díaz and Gschwender, 2003).  

 

What happens with the optimal frequency in the model that is insensitive to crowding as 

a source of increasing the valuation of time savings (M1) is even more noteworthy. In this 

case the optimal bus size does not change across the whole demand range (mini buses) 

and in spite of that, frequency slightly decreases from 21.7 to 20.8 veh/h as demand 

increases from 1,370 to 2,250 pax/h59

                                            
 
59 This frequency reduction is not necessarily in opposition of traditional bus optimisation models that 
predict bus frequency to increase with demand, such as Mohring (1972). In the “square root rule”, 
frequency decreases with the cycle time, which in this case is increasing with demand because of road 
congestion.  

. This is because of congestion on the road: as total 

demand grows so does the number of people that use the congestible road facility (the 

actual speed drop for cars and buses is shown in Figure 8.5), and given that bus frequency 
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adds to traffic congestion, the model tries to reduce the number of buses on the street at 

the expense of increasing crowding levels inside buses, which in M1 is welfare improving 

because crowding comes at no comfort loss.  

 

Figure 8.4: Optimal frequency 

 

 

Figure 8.5: Average speed M1 
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The examination of optimal frequencies does not provide a full picture of the transport 

supply being provided by the bus operator because different optimal bus sizes are chosen 

in Figure 8.4. The total seat supply (frequency times number of seats per bus) and seat 

plus stand supply (frequency times bus capacity) are shown in Figures 8.6 and 8.7. It is 

clear that the optimal capacity that a planner would choose is quite sensitive to the 

characterisation of the crowding and standing disutilities. M1 is insensitive to the number 

of seats chosen as long as the bus capacity constraint (8.18a) is not binding; therefore we 

have shown the maximum number of seats per bus such that (8.18a) is not active, which 

passes from 24 seats per bus when demand is 1,370 pax/h, to 11 seats per bus when 

demand is 2,250 pax/h, as reflected in Figure 8.6 with a total seat supply decreasing for 

M1. In other words, when confronted with an increase in demand, part of the (optimal) 

increase in supply is provided simply by reducing the number of seats in order to increase 

the number of passengers that can be accommodated in a bus, at no crowding cost in 

M160

 

. A completely different outcome is obtained if crowding and standing matter, in 

which case the number of seats is kept at the maximum possible given constraint (8.18b) 

and total seat capacity is increasing for the whole demand range on M2 and M3, as 

shown in Figure 8.6.  

The fact that planners or bus operators would choose to reduce the number of seats per 

bus if crowding and standing disutilities are not explicitly accounted for (M1) does not 

mean that the total transport capacity (seat plus stand) is decreasing; as Figure 8.7 shows 

that with M1, total capacity is actually increasing, due to the increase in bus capacity 

coupled with a slightly decreasing (almost flat) bus frequency (Figure 8.4). 

 

                                            
 
60 Note that a model in which the number of seats cannot be adjusted would force the frequency and/or 
bus size to increase if the capacity constraint is binding, which comes at a cost for the operator.  
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Figure 8.6: Optimal seat supply 

 

 
Figure 8.7: Optimal seating+standing supply 
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is only given by traffic flow (cars remain in two lanes). As depicted in Figure 8.8, when 

buses do not affect cars optimal frequency increases with demand across the whole 

demand range.  

 

Finally, it is worth mentioning that in all scenarios, bus frequencies are low enough not to 

cause any queuing delay at bus stops (equation 8.14), which are assumed to have two 

berths each. As shown in Chapter 7 (Figure 7.2), for prepaid (cashless) fare collection 

systems, queuing delays are observable for a bus demand over 3,000 pax/h, a threshold 

that is not reached in this example. 

 
Figure 8.8: Optimal bus frequency on shared and dedicated right-of-way 
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Figure 8.9: Optimal toll and bus fare 

 
Next, modal splits are analysed. The resulting modal split with optimised bus design and 

pricing structure is almost identical under all demand models (Table 8.1), thus only M2 is 

shown for illustration in Figure 8.10. The worsening of road congestion61

                                            
 
61 Shown in Figure 8.6 for M1; the result for M2 is similar. 

 as total demand 

grows encourages walking. This results in a car modal share dropping from 60 to 54 

percent, the (assumed uncongestable) alternative of walking increases from 33 to 38 

percent, and the bus choice grows from 7 to 8 percent of all trips (due to increased 

frequency and price difference between toll and fare). Therefore, if transport demand 

grows in the future and road capacity is held constant, the model predicts walking to 

become more relevant as a travel alternative, which in this example is supported by the 

fact that trips are relatively short (the corridor is 3.4 km long). In fact, Figure 8.11 displays 

the modal split per trip length for trips starting in Zone 1; it is clear that there is a loss of 
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Figure 8.10: Modal split M2 

 

 
Figure 8.11: Modal split per trip length, M2 base case (total demand=19,234)  
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8.3.5 The case with increased bus-induced congestion 

In the previous scenario it was assumed that passenger car equivalency factor for buses 

( )bsϕ
 
is solely given by bus size, from 1.65 for mini buses (8 metres) to 3 for articulated 

buses (18 metres). However, as discussed in Chapter 5 on bus congestion, some authors 

such as Parry and Small (2009) assume that, in mixed traffic, buses should be given a 

greater weight in the congestion functions (8.10) and (8.11), given that their stops to load 

and unload passengers have an effect on the capacity of lanes and impose delays on 

other modes including cars (Koshy and Arasan, 2005; Zhao et al., 2007). We find that 

when doubling the passenger car equivalency factor (to between 3.3 and 6) optimal bus 

frequency is reduced, and that the impact is stronger if no crowding externalities are 

explicitly modelled (M1, Figure 8.12) than when the crowding disutility is accounted for 

(M2, Figure 8.13). In Figure 8.12, the increase in frequency for a bus demand beyond 

1,800 pax/h is because the minimum number of seats min
seatn  has been reached, the 

capacity constraint (8.18a) is binding and therefore the operator has no option but 

increasing the bus frequency to meet demand. 

 
Figure 8.12: Optimal bus frequency M1, double equivalency factor for buses 
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Figure 8.13: Optimal bus frequency M2, double equivalency factor for buses 

 

8.3.6 The relationship between the number of seats and optimal frequency  

In this section, we study the sensitivity of the optimal bus frequency to alternative bus 

layouts regarding number of seats. As previously discussed, in all scenarios in which the 

crowding externality is considered (M2, M3 and M4), the optimal bus design comprises 

having as many seats as possible, given an optimal bus size, in order to reduce the 

crowding effects of seating and reduce the number of standees. In this context, we study 

what happens if the number of seats is exogenously chosen to be lower than the 

maximum (and therefore the bus capacity is increased); Figure 8.14 shows that for both 

M2 (mini buses, 8 m.) and M3 (standard buses, 12 m.) frequency should be increased as a 

response to the users’ discomfort of having fewer seats. In other words, the number of 

seats inside a bus does have an effect on the optimal design of a public transport system 

if the planner acknowledges that users dislike crowding. 
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Figure 8.14: Optimal bus frequency for suboptimal numbers of seat 

 

8.3.7 The second best scenario 

The preceding analysis was undertaken by assuming that a congestion toll on cars is in 

place, as shown in Figure 8.9. In this section, the second best case in which there is no car 

toll is investigated. The principles behind first best and second best pricing were 

extensively discussed in Chapter 3. In this section we limit the analysis to a graphical 

comparison of relevant optimisation outputs between the first best and second best 

scenarios.  

 

The second best bus fare is negative across the demand range tested and for all utility 

specifications (M1 to M4), i.e., the optimal decrease in bus fare to face a zero toll policy is 

larger than the optimal first best bus fare (between 10 and 40 cents)62

                                            
 
62 A negative second best bus fare is also obtained by Ahn (2009). 

. Figure 8.15 shows 

the difference between optimal toll and fare in the first best and second best scenarios 

for demand models M1, M2 and M3 (therefore, in the second best scenarios the curves 

are equal to the absolute value of the negative bus fare). The difference between toll and 

fare is lower in the second best scenario, as also found by Ahn (2009) with a numerical 

application of a model similar to the one developed in Chapter 3. In Ahn (2009), the 
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second best bus fare does not decrease sufficiently to maintain the difference between 

fare and toll in the first best scenario because such a low bus fare would produce a 

greater than socially optimal amount of total trips; whereas in our framework the 

amount of total trips is fixed but the amount of motorised trips is not, and hence a low 

(negative in this case) bus fare attracts not only car users but also walkers to public 

transport. This explains that the second fare bus fare is not so low as to maintain the first 

best toll-minus-fare difference. 

 

 
Figure 8.15: Optimal toll minus bus fare, first best and second best scenarios 

 

Finally, Optimal bus frequency is lower in the second best scenario as shown in Figure 
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Figure 8.16: Optimal bus frequency, first best and second best scenarios 

 

8.4. Conclusions 

 
In this chapter we have introduced a social welfare maximisation model with 

disaggregated origin destination demand and multiple travel alternatives, with the aim of 

optimising the design of urban bus routes including pricing decisions for both bus and car. 

The influence of bus crowding is highlighted as we analyse its impact on both the design 

of the bus service and the congestion level on the road. The consideration of crowding 

externalities as increasing the discomfort of public transport users pushes towards having 

bigger and more frequent buses (Jara-Díaz and Gschwender, 2003), which in turn may 

worsen both bus and traffic congestion on shared roads. The number of seats in buses is 

introduced as a decision variable for the first time in a microeconomic public transport 

model; the number of seats is the result of the trade-off between passengers’ comfort 

(that drives the number of seats up) and vehicle capacity (which might be increased by 

removing seats). The model is applied to the Military Road corridor in North Sydney and 

results are discussed in several scenarios with different demand levels and modelling 

assumptions. 
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A number of results stand out from our numerical application. The consideration of 

crowding externalities (at both seating and standing) imposes a higher optimal bus fare, 

and consequently, a reduction of the optimal bus subsidy. Optimal bus frequency results 

from a trade-off between the level of congestion inside buses, i.e., passengers’ crowding, 

and the level of congestion outside buses, i.e., the effect of frequency on slowing down 

both buses and cars in mixed-traffic. In particular, optimal bus frequency is quite sensitive 

to the assumptions regarding crowding costs, the impact of buses on traffic congestion 

and the overall congestion level. We show that if crowding matters, bus frequency should 

increase (for a given bus size) with demand even under heavy congestion, however that 

might not be the case if the crowding externality is not accounted for, in which case an 

increase of total demand might be met by a decrease of both frequency and number of 

seats per bus, at the expense of crowding passengers inside buses and making more 

passengers stand while travelling. 

 

Regarding the relevance of non-motorised modes in urban mobility, in a corridor of 3.4 

km, an increase in total transport demand worsens traffic congestion which increases the 

choice of walking relative to its motorised alternatives (with optimised bus service, fare 

and toll). This suggests that at least for short trips, improving the travel conditions of non-

motorised modes is a wise strategy to tackle worsening congestion problems in cities.  

 

Finally, the existence of a crowding externality implies that buses should have as many 

seats as possible, up to a minimum area that must be left free of seats. If for any other 

reason planners decide to have buses with fewer seats than optimal (e.g., to increase bus 

capacity), bus frequency (and the number of buses itself) should be increased to 

compensate for discomfort imposed on public transport users. Future research should 

test the optimality of providing the maximum number of seats in a high demand scenario, 

in which an active capacity constraint may push the number of seats down.  
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Chapter 9 

9 Conclusions 

Conclusions 

 
 
 
9.1 Summary 

 
The main topics of this thesis are the design of urban bus systems and the determination 

of pricing levels in multimodal settings that include cars, public transport and non-

motorised transport (walking or cycling) as travel alternatives. Analytical and empirical 

models for the circulation of buses on a route are developed. Variables analysed 

comprise bus frequency and size, the number of bus stops, fare collection technique and 

bus boarding policy, investment in dedicated bus infrastructure, number of bus seats, 

fare and road price for car users. We analyse the influence of elements such as bus 

congestion, bus crowding and fare collection techniques and boarding policies in the 

optimal design of a bus system. A number of engineering aspects are embedded into the 

microeconomic analysis of urban transport, such as the determination of bus boarding 

times with alternative fare payment technologies and the estimation of bus queuing 

delay at bus stops as a source of congestion; the relationship between queuing delays 

and fare collection and bus boarding times is also explored. Finally, the effect of non-

motorised travel alternatives on the pricing decisions of cars and public transport is 

studied, with the objective of maximising social welfare. 
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Several results of both scientific and practical relevance have been obtained. These are 

summarised next.  

 

9.2 Contributions 

 

9.2.1 Result on research questions 

Seven research questions were put forward in Chapter 1. The analysis undertaken in this 

thesis suggests the following main conclusions. 

 

Question 1: What is the effect of including non-motorised transport alternatives in the 

optimal pricing of motorised modes (public transport and car)? 

 

A non-motorised alternative (walking and cycling) only has an influence on the second 

best public transport fare (when there is no marginal cost pricing for cars), and the final 

result depends on the substitution between motorised and non-motorised modes. We 

obtain analytically the conditions that lead to the underestimation or overestimation of 

the optimal public transport fare when non-motorised modes are ignored in the 

calculation of optimal public transport fares. If the modal substitution between public 

transport and non-motorised modes is strong relative to the substitution between car 

and public transport, and between car and non-motorised modes, it is more likely that 

the optimal public transport fare is underestimated if non-motorised alternatives are 

ignored. 

 

Question 2: What is the impact of alternative fare collection systems and bus 

boarding policies on bus travel times and associated costs (e.g., fleet size, 

operating cost, environmental cost)? 

 

The effect of alternative fare collection systems and bus boarding policies on bus 

performance and key operator and service outputs was quantified with an empirical bus 

travel time model in Chapter 4, and with a theoretical total cost minimisation model in 

Chapter 7. Sizeable savings on fleet size, operator cost, environmental cost and travel 

time for users are accruable when speeding up the boarding and alighting process of 
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passengers, by upgrading the fare collection system from a slow (e.g. on-board cash 

payment) to a quicker one (e.g., on-board or off-board fare payment verification by 

means of a contactless card), and/or allowing boarding at all available bus doors.  

 

Question 3: What is the optimal fare collection system and bus boarding rule, 

given demand and operator cost parameters? 

 

The optimal fare collection system and bus boarding rule depend on the demand level; as 

bus patronage increases it is efficient to invest money in speeding up boarding and 

alighting times. In general, it was found that once on-board cash payment has been ruled 

out, allowing boarding at all doors is more important as a tool to reduce both users’ and 

operator’s costs than technological improvements on fare collection. This analysis is 

based on the travel times associated with each fare collection technology and the cost of 

implementing such systems.   

 

Question 4: What is the impact of disregarding the effects of crowding on people’s 

preferences on the design of the optimal road pricing and public transport service 

and fare levels? 

 

The consideration of crowding externalities (in respect of both seating and standing) 

imposes a higher optimal bus fare, and consequently, a reduction of the optimal bus 

subsidy. Bus crowding has no practical effect on the determination of congestion tolls. 

Optimal bus frequency results from a trade-off between the level of congestion inside 

buses, i.e., passengers’ crowding, and the level of congestion outside buses, i.e., the effect 

of frequency on slowing down both buses and cars in mixed-traffic. We show that if 

crowding matters, bus frequency increases (for a given bus size) as a function of demand, 

even under heavy congestion, however that might not be the case if the crowding 

externality is not accounted for, in which case an increase of total demand might be met 

by a decrease in both frequency and number of seats per bus, at the expense of crowding 

passengers inside buses, and making more passengers stand while travelling. 
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Question 5: Considering both crowding and standing disutilities, how many seats 

should buses provide? 

 

The existence of a crowding externality implies that buses should have as many seats as 

possible, up to a minimum area that must be left free of seats. If for any other reason 

planners decide to have buses with fewer seats than optimal (e.g., to increase bus 

capacity), bus frequency (and the number of buses itself) should be increased to 

compensate for discomfort imposed on public transport users.  

 

Question 6: What is the effect on the design of bus systems of misrepresenting bus 

congestion (or not considering it at all) for scenarios with high bus demand (and 

which are consequently, subject to bus congestion). 

 

Disregarding bus congestion at bus stops in the design of the service would yield greater 

frequencies than optimal when congestion is noticeable, i.e. for high demand (over 

10,000 pax/h in the example of Chapter 7). In congested mixed-traffic operation, optimal 

bus frequency depends on the marginal effect of an extra bus on overall congestion (for 

both buses and cars); if detentions in bus stops are captured through an increased value 

of the car equivalency factor of a bus, then optimal bus frequency decreases.     

 

 Question 7: If bus speed can be increased by investment in infrastructure in 

dedicated bus corridors, what is the optimal level of investment in busways (which 

in turn determines the running speed of buses)? 

 

For the off-board payment system and the on-board payment alternatives before 

congestion builds, the optimal investment in infrastructure grows with the logarithm of 

demand. This result depends on the existence of a positive and linear relationship 

between investment in infrastructure and desired running speed. If additional bus stops 

are added to a high demand area with the objective of reducing the number of 

passengers per stop, and consequently the duration of queuing delays, then bus running 

speed should be decreased. 
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9.2.2 Methodological contributions 

The second-best public transport fare with explicit account of underpriced cars and an 

uncongestible non-motorised mode as travel alternatives is analytically derived. We 

obtain the conditions that lead to the underestimation or overestimation of the optimal 

public transport fare when non-motorised transport is ignored in the determination of 

optimal prices for motorised transport. 

 

The decision by the operator of a fare collection system and bus boarding policy is 

embedded into microeconomic models for the optimisation of bus systems. Faster bus 

boarding techniques (e.g., upgrading from of-board cash payment to off-board 

contactless card payment validation) present the trade-off of reducing ride time and 

increasing capital cost. 

 

Bus congestion in the form of queuing delays behind bus stops is estimated using 

simulation. The delay function depends on the bus frequency, bus size, number of berths 

and dwell time (which is given by the number of passengers boarding and alighting, the 

number of doors per bus and the fare collection technology). Therefore, we conclude that 

models that use flow measures (including frequency only or frequency plus traffic flow) 

as the only explanatory variables for bus congestion are incomplete. 

 

The use of bus running speed as an optimisation variable, linked to the investment in 

infrastructure, is also a novelty in the literature on urban bus transport optimisation, 

which has traditionally focused on determining the optimal value for bus frequency, size, 

distance between stops, density of routes and fare.  

 

The existence of a crowding externality and standing disutility for passengers inside buses 

is used to determine the optimal internal layout of buses in respect of spacing allocated 

to seating and standing. Explicit constraints are considered for the determination of 

seating and standing areas, including areas free of seats next to the bus driver, doors, for 

a central aisle and for a wheelchair.  
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9.2.3 Further results of practical relevance 

An empirical model on bus running times with and without the influence of traffic 

congestion is used to compare two policies aimed at reducing bus travel times: providing 

bus lanes versus upgrading the fare collection system. It was found that the bus demand 

level in terms of passengers per bus-kilometre is crucial in determining the superiority of 

one policy or the other. A demand threshold is identified beyond which speeding up the 

boarding and alighting process is more effective in increasing bus operating speed than 

segregating cars from buses. The demand threshold depends on the congestion level 

associated with mixed-traffic operation. 

 

Using empirical data on the actual number of bus stops from an on-call bus service (i.e., 

in which buses are allowed to skip bus stops if no one desires to get off or on) in Sydney, 

it was possible to estimate a relationship between the actual number of stops, the 

scheduled (designated) number of stops, and the total number of passengers riding a bus. 

This function is useful to estimate the number of stops per bus ride given the number of 

passengers boarding and alighting, and consequently total ride time in on-call services. 

 

The bus congestion function estimated with the bus stop simulator IRENE is helpful to 

analyse the influence of several factors on the occurrence of queuing delays at bus stops, 

such as the number of passengers boarding and alighting, the fare collection technology, 

the number of doors to board and alight, the bus frequency and size and the number of 

berths. 

 

9.3 Caveats of the Research 

 
The empirical and theoretical analysis developed in this thesis adds to the literature in 

several respects; however there are a number of caveats or limitations that have to be 

highlighted in order to understand the scope of the contributions and to provide a 

research path for ongoing inquiry. 
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In terms of geographical or spatial scope, the empirical analysis in this thesis has been 

limited to a single corridor, either for the optimisation of bus services only (i.e., a single 

route in Chapter 7) or for the multimodal social welfare maximisation model that includes 

cars and non-motorised modes (Chapter 8). Transport networks are not treated and 

would be relevant, for example, for the adoption of a new fare collection system (in 

which the analysis of a network may suggest the convenience of applying off-board fare 

collection in only a subset of bus stops or bus routes with high demand).  

 

The empirical estimation of bus travel times in Chapter 4 considers several time periods; 

however, the total cost minimisation and social welfare maximisation models are 

developed in a single period framework, which is assumed to be the morning peak in the 

numerical applications. In this respect, we assume that travellers can choose a mode but 

cannot switch period of travel, which is relevant if a percentage of the peak transport 

demand can be actually spread to off-peak periods when faced with, for example, the 

application of a time-of-day congestion toll. In Chapter 8, changes in origin and/or 

destination, and the option of not travelling at all were not considered either. 

 

The focus of the thesis is on adding to the knowledge base in the field of public transport 

economics, and although private transport is taken into account, the policy tools 

considered for car users are limited to the application of a fixed road user price. Other 

policies such as optimal parking fees or dynamic tolls are disregarded. The latter have an 

influence on aggregate social welfare and resulting modal split; however it is considered 

unlikely that a more refined modelling of the car alternative would significantly affect the 

main results regarding the optimisation of bus systems, in terms of crowding effects on 

service design and pricing, bus congestion, and boarding and alighting policy. 

 

On the subject of bus operations, the models assume that buses maintain a regular 

headway, i.e., the issue of bus bunching is ignored. The optimisation of bus timetables is 

not addressed either, which might be important when translating the potential time 

benefits of, for example, upgrading the fare collection system from a slow to a quicker 

technique. The physical and fare integration between buses and other public transport 

modes such as rail are also ignored.  For example, a contactless smartcard fare collection 
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system would provide further benefits if is implemented in a multimodal public transport 

network, in which transfers are charged at a different rate (or are for free); in such a 

setting it is more cumbersome to have paper- or cash-based payment systems. 

Smartcards can also be used to pay for both transport and non-transport services. 

 

Implementation issues have not been embedded in our analysis. These include the 

existence of fare evasion and the fact that advanced smartcard fare collection systems 

may be difficult to implement due to technological or contractual obstacles (e.g., delays 

on approval by various authorities), as reported by Hidalgo and Carrigan (2010). 

 

The economic analysis considers the transport sector only, abstracting from distortions in 

the rest of the economy and general equilibrium issues (reviewed in Section 2.3.4). 

Distributional concerns were also ignored, which emphasise the need for a general 

equilibrium approach to fully gauge the distributional and welfare effects of transport 

pricing reforms.  

 

9.4 Areas for Further Research 

 

The discussion on the caveats imposed on the research focus of this thesis suggests 

several lines of future research inquiry that are natural extensions of the contribution of 

this thesis. Some of these extensions are summarised in this section. 

 

The examination of a public transport network with multiple routes and modes (e.g., bus, 

light rail and heavy rail) is a natural extension of this work. Simple networks such as those 

proposed by Chang and Schonfeld (1991) or Jara-Díaz and Gschwender (2003b) could be 

used as a first step to determine the sensitivity of the new results of this thesis on the 

design of a single bus route, to elements particular to public transport networks like the 

existence of two- or three-legged trips with transfers, or to the possibility of passengers 

choosing between two or more public transport alternatives to complete a trip. Looking 

beyond this immediate extension, the ultimate goal would be the optimisation of a real-

world public transport network, including decisions on network design, number and size 

of bus stops (given by the number of berths), fare collection system, bus size and 
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frequency, number of doors and number of seats per bus, and cost of tickets for different 

pricing structures (with and without fare integration across modes). The optimal choice of 

rail or bus based services for a particular route can also be considered. 

 

The effect of crowding on bus service design was only partially incorporated as an 

influence on increasing the valuation of in-vehicle time savings. As reviewed in Chapter 6, 

a more comprehensive account of the crowding externality needs to also consider the 

effect of crowding on the valuation of waiting times (if bus or train stations get crowded) 

and on increasing waiting and boarding and alighting times. All these considerations are 

expected to increase the optimal bus frequency to reduce crowding levels in vehicles and 

at stations. 

 

Regarding the relationship between non-motorised modes and the optimal pricing of cars 

and public transport, an application of the model of Chapter 3 could include safety issues, 

as empirical findings suggest a safety in numbers effect for non-motorised travel; that is, 

the probability of getting involved in an accident by a person walking and cycling 

decreases the more people are walking and cycling (Jacobsen, 2003; Robinson, 2005). 

 

Travel time variability and modal reliability are known to have a significant role in 

influencing the quality of service and hence demand (Hensher and Prioni, 2002; Hensher 

et al., 2003); however travel time variability and modal reliability have been disregarded 

in this study. The relationship between service reliability and public transport supply and 

pricing decisions should be incorporated in future research efforts.  

 

Finally, another area worthy of further research is building in preference heterogeneity in 

modal choice, which can be embedded in a social welfare maximisation framework 

through, for example, the specification of a mixed multinomial logit model (MMNL). It is 

not known to what extent outputs on the optimisation of public transport systems are 

sensitive to the choice model assumed to explain travel behaviour. 
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9.5 Concluding Remarks 

 

This thesis presents, on the one hand, a number of extensions and new elements in the 

analysis of urban bus operations, and on the other hand, a number of contributions 

designed to integrate engineering and economic aspects, as a way of improving our 

understanding of economic and operational measures that can be implemented to 

increase social welfare in the passenger transport sector. Contributions of both scientific 

and practical significance have been presented and substantiated with analytical and 

empirical methods.  

 

First, we have shown how sensitive the optimal design of urban bus services is to the 

consideration of elements such as bus congestion and passenger crowding. Second, we 

have set out and implemented methods for the study of other interventions in the public 

transport system, including decisions on bus running speed and investment in road 

infrastructure for buses, and the choice of a fare collection system and bus boarding and 

alighting rules. Finally, the role of walking and cycling in the setting of optimal prices for 

motorised transport was revealed. The generally agreed proposition that public and non-

motorised transport are fundamental for the development of sustainable transport 

policies and sustainable cities suggests that it is vital to assess the relevance of these 

findings. This thesis is a step forward towards a more comprehensive treatment of 

sustainable transport alternatives in formal policy analysis. 
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Appendices 

 

Appendix A1: First Order Conditions, First Best and Second Best Pricing Models  

(Chapter 3) 
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Recalling the equilibrium condition (3.4), (A1.2) and (A1.4) yield results (3.8) and (3.9). 
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First order conditions for second best (Section 3.4) 
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Appendix A2: Estimation of the Queuing Delay Function (Chapter 5) 

 

To estimate the queuing delay of buses, we use the bus stop simulator IRENE, which can 

determine the capacity, queuing delay, dwell time, berth usage and other indicators of 

the performance of a bus stop as a function of a number of inputs such as the boarding 

and alighting demand, number of berths, bus size and frequency. For a more detailed 

description of the program see Fernández and Planzer (2002).  

 

Regarding inputs, the following assumptions are made for the simulations: 

• Bus size: Four different bus sizes are considered in accordance with standard 

commercial vehicle sizes: 8-, 12-, 15- and 18-metre long buses. 

• Number of berths: Three configurations are simulated, with one, two and three 

contiguous berths.  

• Berth length: Each berth is assumed to be 1.5 times the bus length, which is the 

minimum distance necessary for buses to manoeuvre and overtake a preceding 

bus if necessary (Wright and Hook, 2007). 

• Bus saturation flow: This parameter depends on the length of the bus and 

influences the queuing delay. We assume a basic saturation flow of s = 2086 

passenger cars per hour per lane (Akçelik and Besley, 2002) and apply the 

following equivalency factors depending on the size of the bus (Basso and Silva, 

2010): 1.65 (8 m), 2.19 (12 m), 2.60 (15 m) and 3.00 (18 m), yielding estimated 

saturation flows of 1262, 951, 823 and 694 bus/h for 8, 12, 15 and 18-metre 

buses, respectively. 

 

A total of 265 simulations were run encompassing all bus sizes and bus stop designs 

previously described for a range of frequencies from 20 to 220 bus/h and dwell times 

between 10 and 65 seconds. Buses are assumed to arrive at a constant rate at stops (no 

bus bunching) and bus stops are isolated from traffic lights.  
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Appendix A3: Estimation of Delay at Intersections (Chapter 7) 

 

The mean queuing delay at intersections is modelled as equation (7.4), where 1d  is the 

non-random delay, 2d  is the overflow delay, lt   is the acceleration and deceleration delay 

given by (7.3), and ih  is the average number of stops per intersection. The non-random 

delay can be expressed as (A3.1) (Akçelik, 1981; Akçelik and Rouphail, 1993). 

( )2
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ux
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−

      (A3.1) 

TC  is the traffic light cycle time [s], Tu g C=  is the ratio of effective green time g [s] to 

the cycle time TC , and b b rx f K=  is the degree of saturation, given the capacity of the 

intersection I bK s u= ⋅ [veh/h], where fs  is the saturation flow rate [veh/h] and bf  is the 

bus frequency [veh/h]. On the other hand, the overflow delay 2d  is positive only for a 

degree of saturation greater than 0.67 (Akçelik, 1981). Assuming u =0.6 and bs =694 

bus/h, the critical bus flow that would yield overflow delays is 279 bus/h, which is larger 

than the capacity of the corridor (given by the capacity of the busiest bus stations, 

typically between 100 and 200 buses per hour), and then the overflow delay 2d  can be 

ignored.  

The average number of times that vehicles stop per intersection (stops/veh) is given by 

(A3.2) and accounts for the fact that not all vehicles get to stop at intersections (note that 

A3.2 is imbedded in the uniform delay A3.1). 
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Then, given (A3.1), (A3.2) and the acceleration and deceleration delay (7.3), the total 

delay at intersections is obtained as (7.5).  
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Appendix A4: Estimation of Parameters of the Operator Cost Functions (Chapters 7 and 

8) 

 

For the infrastructure and land cost 1c , there is no empirical data to directly support 

equation the linear function proposed in equation (7.16); nevertheless, drawing on data 

on several Bus Rapid Transit systems around the world reported in Wright and Hook 

(2007), we found a positive correlation between investment in infrastructure per 

kilometre and the operating (commercial) speed V  (total speed including running time 

and stops) achieved by the buses63

 

, as shown in Figure A4.1 (the straight line represents 

the linear fit).  

 

 

 

                                                           
63 In principle, it is always possible to increase the bus running speed in a corridor up to a limit, even if it 
comes at a very high cost, e.g., if space limitations make it impossible to have busways on the ground, 
tunnels could be provided for a fast circulation of buses. However, if a costly solution is suggested by the 
optimality analysis carried out in Chapter 7 but is not possible due to financial constraints, there will be an 
active constraint on the running speed of buses given by the budget that is available for infrastructure 
investment. In this case, if demand increases and improvements in speed are not possible, the gap in total 
cost between the optimal (unconstrained) and the actual solution is increased. 
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Figure A4.1: Infrastructure cost per kilometre versus operating (commercial) speed64

 

 

If the cost of bus stations is excluded from the infrastructure cost (because it will be 

considered in 2c ), we postulate that the main impact of investment in infrastructure is on 

the running speed 0v . Unfortunately there is no information in the available data sources 

on the relative investment in land, roads, bus stops, etc., that leads to the values 

presented in Figure A4.1. It seems reasonable to assume that 70 percent of the 

infrastructure cost is allocated to road infrastructure (land acquisition plus busway 

construction), and also that the constant running speed 0v  is 30 percent higher than the 

commercial speed; hence we can estimate the linear relation (7.16) for the data in Figure 

A4.1, where 10 235.9c = −  $/h-km, 11 12.4c =  $/km2

                                                           
64 Based on data from Wright and Hook (2007), including a total of 29 BRT systems in which both data items  
infrastructure cost and average commercial speed) are provided: Brisbane, Sydney, Mexico City, León, 
Quito Central, Quito Ecovía, Guayaquil, Bogotá, Pereira, Curitiba, Sao Paulo, Goiana, Porto Alegre,  Miami, 
Eugene, Los Angeles, Pittsburgh West, Pittsburgh East, Pittsburgh South, Amsterdam, Eindhoven, Rouen, 
Crawley, Beijing, Kunning, Hangzhou, Seoul, Jakarta and Taipei. Guided busways (i.e., systems with side 
guide wheels, such as Nagoya and Adelaide) are excluded.  

. A range of non-linear functional 

forms support the linear approximation (7.16). Calculation assumes an asset life of 50 

years, discount rate of 7 percent. To translate annuity calculations into hourly costs, it is 

necessary to estimate the amount of equivalent hours of operation of a particular period 
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over a year. Using the morning peak, it can be estimated that a year is equivalent to 2947 

peak hours of operation for a typical urban bus service in Australia (see Tirachini et al., 

2010), value that was used to calculate 10c  and 11c . The overall explained variation in 

infrastructure cost per kilometre attributable to commercial speed is R2

 

=0.625.  

The station infrastructure cost depends on the amenities provided, quality of shelter and 

overall design, ranging from $15,000 for a simple shelter to $150,000 or more for stations 

with passenger enclosure, at-level boarding, retail services and detailed passenger 

information (FTA, 2009). In this paper we assume that the cost increases linearly with bus 

length: $50,000 (8 m. bus), $75.000 (12 m. bus), $100,000 (15 m. bus) and $125,000 (18 

m. bus), values that are amplified by 25 percent if off-board payment is provided.  

 

There are two vending machines per station, and four fare collection readers in case of 

off-board payment. Fare collection costs are taken from Wright and Hook (2007), the cost 

of a fare collection reader is $750 (coins), $1,750 (magnetic strip) and $2,500 (contactless 

card), while the cost per vending machine is $10,000 (magnetic strip) and $15,000 (smart 

card). The cost of software is $100,000 for coin payment, $300,000 for magnetic strip and 

$500,000 for contactless card. Bus driving cost is $29.9 (Hensher, 2010), value that is 

increased by 21 percent to account for overhead operating costs (e.g., administration, 

supervision, depot-relating costs), following ATC (2006). The cost of buses is $160,000 (8 

m.), $370,000 (12 m.), $520,000 (15 m.) and $700,000 (18 m.). The estimated parameters 

in Tables A4.1 and A4.2 are adjusted to 2011 Australian Dollars assuming 20 years of 

asset life for buses, 15 years for stations and 5 years for software, card readers and 

vending machines; one year is equivalent to 2947 peak hours of operation.  

 

Table A4.1: Cost items related to bus size 

Bus size 

[m] 

Bus cost 

[$/bus-h] 

Driver cost 

[$/bus-h] 

Station cost 

[$/station-h] 

8 5.1 37.6 4.4 

12 11.9 37.6 6.5 

15 16.9 37.6 8.7 

18 22.0 37.6 10.9 
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Table A4.2: Cost items related to fare collection technology 

Technology 

Software cost 

[$/h] 

Card reader 

[$/h] 

Vending 

machine [$/h] 

Coin 12.1 0.1 0.0 

Magnetic strip 36.3 0.2 2.4 

Contactless card 60.5 0.3 3.6 

Off-board 60.5 0.3 3.6 

 

In general, operators have a reserve fleet to deal with unexpected breakdowns and 

maintenance, which in the model is internalised by applying a safety factor η>1 to the 

calculation of the fleet size (e.g., η=1.05 meaning that 5 percent of vehicles are not used 

and kept at depots). Equivalently, in the model, η is applied to the part of 3c  (cost per 

bus-hour) that accounts for the rolling stock capital cost.  

Finally, for the running cost per vehicle-kilometre 4c  (equation 7.19) the estimated 

parameters are65
40c = 0.077 $/bus-km, 41c = 0.029 $/m-km and 42c = -0.0013 $-h/bus-

km2
42c. The negative value of  means that the fuel consumption is a decreasing function 

of speed on a distance base (litres/km) as also found by Hossain and Kennedy (2008) for 

speeds up to 80 km/h, even though the fuel consumption can increase with speed on a 

time base (litres/h). The overall goodness of fitness of expression (21) is R2

 

=0.53. A 

number of non-linear functional forms did not produce a significant improvement over 

the linear function (21). 

 

 

 

 

                                                           
65 Using data collected by Hensher (2003). The sample size is 82 observations. It is assumed that the running 
speed is 30 percent higher than the average (commercial) speed.  
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Appendix A5: Bus Internal Layout: Passengers Seating and Standing and Constraints for 

the Determination of the Number of Seats (Chapter 8) 

 

Let ( )bA s  
be the total area available in a bus for seating and standing, which is a function 

of the bus length bs . If sP  is the proportion of A  allocated to seating, the areas for 

seating seatA  and standing standA can be formulated as: 

( ) ( ),seat s b s bA P s P A s=       (A5.1) 

( ) [ ] ( ), 1stand s b s bA P s P A s= −       (A5.2)
 

If seata is the area required by one bus seat (m2
seatn), then the number of seats  per bus is 

seat
seat

seat

An
a

=
       (A5.3) 

For the estimation of in-vehicle time costs, it is necessary to determine the proportion of 

seats being occupied seatp  and the density of standees denn  (if any) in each segment of a 

bus trip. Taking direction 1, if iλ +  and iλ −

 are the number of passengers getting on and 

off a bus at stop i, the number of passengers iq  on board a bus between stops i and i+1 is 

calculated recursively: 

0 0q =         (A5.4) 

1i i i iq q λ λ− + −= + −   { }1, 1i P∀ ∈ −     (A5.5)
 

Separating iq  among passengers seating i
seatq and standing i

standq , we can obtain i
seatp  and 

i
denn as follows: 

{ }min , ii
seati seat

seat
seat seat

n qqp
n n

= =
      (A5.6)

 

i i i
i stand seat
den

stand stand

q q qn
A A

−
= =

      (A5.7)
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To calculate the area available for seating seatA  and standing standA , we need an estimation 

of the area occupied by seats, standees, doors and other elements. The U.S. 

Transportation Research Board recommends the following values (TRB, 2003): 

Chapter 1  
Table A5.1: Area occupied by passengers sitting, standing and other objects  

(Source: TRB, 2003) 

Situation Projected area [m2

Standing 

] 

0.15-0.20 

Standing with briefcase 0.25-0.30 

Standing with daypack 0.30-0.35 

Standing with suitcase 0.35-0.55 

Transverse seating 0.50 

Longitudinal seating 0.40 

Wheelchair space 0.95 

Rear door 0.80 

 

We use Table A5.1 and the following assumptions in order to calculate seating and 

standing areas, feasible numbers of seats and total bus capacity:   

 (a1) Buses have transverse seating only, therefore 0.5 m2

(a2) The maximum density of standees 

 is the value used for the area 

occupied by passengers sitting.  

maxd  is around 6.7 pax/m2, equivalent to an area 

of 0.15 m2
maxd per standee. However, given the Sydney context is set as 4 pax/m2

(a3) Buses are 2.55 metre wide (regardless of length)  

 in 

Chapter 8.  

(a4) The front area must be left clear of passengers, for the driver and front door. This 

area is 1.5 metre long. 

(a5) Next to each rear door there has to be a 0.8 m2

doorsn

 area clear of standees. The number 

of doors per bus is denoted as .  
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(a6) Buses must have a 0.95 m2

Using (a3) to (a6), the total area 

 area reserved for wheelchairs. 

A  (m2

( ) ( )2.55 1.5 0.8 1 0.95sit stand b doorsA A A s n= + = − − − −

) available for seating and standing is:  

   (A5.8) 

And the capacity of a bus (maximum number of passengers that can be accommodated) 

is:  

( ) ( ), , 1s
b s doors s max

seat

PK s P n P d A
a
 

= + − 
      (A5.9)

 

(c1) An aisle is provided in the centre of the bus, with a minimum width of 0.5 metre.  

This aisle does not necessarily have to cover the full length of the bus as the back row 

may have a seat in the middle (where the aisle ends). Therefore, assuming that 1.5 metre 

is left at the front and 0.7 metres is used for a seat at the back, the minimum area that 

has to be reserved for the aisle is

Constraints 

( )min 0.5 2.2stand bA s= − . Then, the number of seats is upper 

bounded by: 

min
max stand

seat seat
seat

A An n
a
−

≤ =
     (A5.10)

 

(c2) A minimum number of seats must be provided, i.e., the proportion sP  of A  allocated 

to seating has a lower bound min
sP , which is arbitrarily decided (e.g., min 0.3sP =  meaning 

that at least 30 percent of the available area must be reserved for passengers sitting). 

Therefore  

min
min s

seat seat
seat

P An n
a

≥ =
      (A5.11)

 

Combining constraints (A5.10) and (A5.11) the number of seats per bus must comply with 

inequality (8.18b): min max
seat seat seatn n n≤ ≤ .  
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