1,488 research outputs found

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    Quantifying physical insights cooperatively with exhaustive search for Bayesian spectroscopy of X-ray photoelectron spectra

    Full text link
    We analyzed the X-ray photoemission spectra (XPS) of carbon 1s states in graphene and oxygen-intercalated graphene grown on SiC(0001) using Bayesian spectroscopy. To realize highly accurate spectral decomposition of the XPS spectra, we proposed a framework for discovering physical constraints from the absence of prior quantified physical knowledge, in which we designed the prior probabilities based on the found constraints and the physically required conditions. This suppresses the exchange of peak components during replica exchange Monte Carlo iterations and makes possible to decompose XPS in the case where a reliable structure model or a presumable number of components is not known. As a result, we have successfully decomposed XPS of one monolayer (1ML), two monolayers (2ML), and quasi-freestanding 2ML (qfs-2ML) graphene samples deposited on SiC substrates with the meV order precision of the binding energy, in which the posterior probability distributions of the binding energies were obtained distinguishably between the different components of buffer layer even though they are observed as hump and shoulder structures because of their overlapping

    On the Inversion of High Energy Proton

    Full text link
    Inversion of the K-fold stochastic autoconvolution integral equation is an elementary nonlinear problem, yet there are no de facto methods to solve it with finite statistics. To fix this problem, we introduce a novel inverse algorithm based on a combination of minimization of relative entropy, the Fast Fourier Transform and a recursive version of Efron's bootstrap. This gives us power to obtain new perspectives on non-perturbative high energy QCD, such as probing the ab initio principles underlying the approximately negative binomial distributions of observed charged particle final state multiplicities, related to multiparton interactions, the fluctuating structure and profile of proton and diffraction. As a proof-of-concept, we apply the algorithm to ALICE proton-proton charged particle multiplicity measurements done at different center-of-mass energies and fiducial pseudorapidity intervals at the LHC, available on HEPData. A strong double peak structure emerges from the inversion, barely visible without it.Comment: 29 pages, 10 figures, v2: extended analysis (re-projection ratios, 2D

    A robust and automated deconvolution algorithm of peaks in spectroscopic data

    Get PDF
    The huge amount of spectroscopic data in use in metabolomic experiments requires an algorithm that can process the data in an autonomous fashion while providing quality of analysis comparable to manual methods. Scientists need an algorithm that effectively deconvolutes spectroscopic peaks automatically and is resilient to the presence of noise in the data. The algorithm must also provide a simple measure of quality of the deconvolution. The deconvolution algorithm presented in this thesis consists of preprocessing steps, noise removal, peak detection, and function fitting. Both a Fourier Transform and Continuous Wavelet Transform (CWT) method of noise removal were investigated. The performance of the automated algorithm was compared with the manual approach. The tests were conducted using data partitioned into categories based on the amount of noise and peak types. The CWT is shown to be an adequate method for estimating the locations of peaks in chromatographic data. An implementation was provided in Microsoft Visual C# with .NET 5.0

    Non-parametric PSF estimation from celestial transit solar images using blind deconvolution

    Get PDF
    Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. The measured image in a real optical instrument is usually represented by the convolution of an ideal image with a Point Spread Function (PSF). Additionally, the image acquisition process is also contaminated by other sources of noise (read-out, photon-counting). The problem of estimating both the PSF and a denoised image is called blind deconvolution and is ill-posed. Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the literature, our method does not assume a parametric model of the PSF and can thus be applied to any telescope. Methods: Our scheme uses a wavelet analysis prior model on the image and weak assumptions on the PSF. We use observations from a celestial transit, where the occulting body can be assumed to be a black disk. These constraints allow us to retain meaningful solutions for the filter and the image, eliminating trivial, translated and interchanged solutions. Under an additive Gaussian noise assumption, they also enforce noise canceling and avoid reconstruction artifacts by promoting the whiteness of the residual between the blurred observations and the cleaned data. Results: Our method is applied to synthetic and experimental data. The PSF is estimated for the SECCHI/EUVI instrument using the 2007 Lunar transit, and for SDO/AIA using the 2012 Venus transit. Results show that the proposed non-parametric blind deconvolution method is able to estimate the core of the PSF with a similar quality to parametric methods proposed in the literature. We also show that, if these parametric estimations are incorporated in the acquisition model, the resulting PSF outperforms both the parametric and non-parametric methods.Comment: 31 pages, 47 figure
    • …
    corecore