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A ROBUST AND AUTOMATED DECONVOLUTION ALGORITHM OF PEAKS IN 
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2018-2019 
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Master of Science in Computer Science 

 

 The huge amount of spectroscopic data in use in metabolomic experiments 

requires an algorithm that can process the data in an autonomous fashion while providing 

quality of analysis comparable to manual methods. Scientists need an algorithm that 

effectively deconvolutes spectroscopic peaks automatically and is resilient to the 

presence of noise in the data. The algorithm must also provide a simple measure of 

quality of the deconvolution. The deconvolution algorithm presented in this thesis 

consists of preprocessing steps, noise removal, peak detection, and function fitting. Both 

a Fourier Transform and Continuous Wavelet Transform (CWT) method of noise 

removal were investigated. The performance of the automated algorithm was compared 

with the manual approach. The tests were conducted using data partitioned into 

categories based on the amount of noise and peak types. The CWT is shown to be an 

adequate method for estimating the locations of peaks in chromatographic data. An 

implementation was provided in Microsoft Visual C# with .NET 5.0. 
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Chapter 1 

Introduction 

In the 21st century, the prevailing view of health care focuses on personalized 

medicine where the information regarding an individual’s metabolic phenotype1 is 

extracted from the analysis of small molecules in body fluids such as plasma and urine 

[1]. Endogenous2 metabolites are analyzed using spectroscopic3 experiments that 

contribute to drug discovery efforts and gaining new understanding of the relationships 

between individual genetic variations and environmental triggers of disease [1]. 

Various spectroscopic techniques such as nuclear magnetic resonance (NMR), 

liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass 

spectrometry (GC-MS), capillary electrophoresis-mass spectrometry (CE-MS), and 

infrared spectroscopy allow scientists to monitor changes of multiple parameters in 

endogenous small-molecule metabolites that an organism may experience while in a 

perturbed state, for example, after administering drugs. The primary goal of 

metabolomics studies is to detect and measure a living system’s metabolic responses to 

external perturbations. This goal is accomplished by processing spectroscopic data to 

measure and identify peaks that correspond to the signals of endogenous metabolites [2]. 

Many types of analytical laboratories face the challenge of reliably processing 

data. Many software packages have been developed for computer-assisted analysis of 

spectroscopic data. However, a reliable and fully automated procedure with minimal 

                                                 
1 Observable presence of organic molecules resulting from chemical reactions of enzymes. 
2 Produced by the host organism. 
3 Spectroscopy is the use of the interaction between matter and electromagnetic radiation to study the 

composition of the matter. 
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human supervision has yet to be defined. In particular, the procedure for unsupervised 

automated processing should include identification, localization, and quantification of 

spectroscopic peaks while handling noise, missing signals, and abnormalities in collected 

data. An ideal procedure for automated data processing should be heavily self-optimizing 

to alleviate the need for human input. Ultimately, the peak analysis algorithm should be 

able to provide its user with a simple quality metric that specifies the confidence in the 

accuracy of produced results [3]. 

Recent improvements in data recording systems (high-speed analog-to-digital 

converters) have led to such large amounts of data that manual peak analysis has become 

virtually impossible [4]. The enormity of collected spectroscopic data poses new 

requirements on computer algorithms for peak analysis, forcing the focus of research to 

shift from computer-assisted peak analysis to creating completely automated and 

autonomous processing systems. There are many peak processing algorithms for various 

types of spectroscopic data. While most published algorithms perform well for certain 

specific experimental settings, few of them are applicable to a general case. There is a 

clear need for an algorithm that provides robust peak deconvolution with completely 

automated output without the need for manual verification of results. 

One of the most commonly used analytical tools for metabolomic analysis is LC-

MS. It is typically used in conjunction with other analytical techniques such as NMR 

spectroscopy, GC-MS, CE-MS, and so on. Liquid chromatography-mass spectrometry 

provides a precise and exhaustive measurement of the sample in terms of molecular 

weight and structure as well as the quantity and identity of present metabolites. High-

resolution accurate mass measurements coupled with ultrahigh pressure liquid 
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chromatography (UHPLC) has become the preferred platform for nontargeted LC-MS 

metabolomics due to superior chromatographic and mass spectral resolution as well as 

speed of analysis [2]. 

The combination of the LC and MS techniques for the simultaneous separation 

and detection of metabolite analytes results in complex data sets. This complexity 

necessitates significant preprocessing before the statistical analysis of multiple samples 

becomes possible. A peak detection−based preprocessing routine requires a robust 

method that results in reproducible characterizing peaks [5]. 

Multiple analytic tools are available for preprocessing data, but several difficulties 

hinder the integration of off-the-shelf analytics tools into workflows. One of the 

difficulties is the inability to verify the algorithm and examine the intermediate results 

because off-the-shelf tools can only be accessed as a nonmodular black box. Another 

issue is limited access to the underlying context information (e.g., peak shape or 

neighboring peaks) of intermediate results. Finally, the varying data formats used during 

different steps of the process increase the difficulty of rearranging the pipeline 

components to suit new experiments or technologies [6]. 

Zhang et al. [7] note that the first step in biomarker extraction from the mass 

spectrometry data is peak detection. This step significantly influences the following steps’ 

results. Proper method design for peak detection greatly depends on the data’s properties. 

The different types of data consist of different characteristics (e.g., width at half height, 

asymmetry factor, etc.). As a result, each different data type requires different MS 

instruments and the proper peak detection methods. A unique noise pattern often affects 

the data. Removing noise significantly improves the peaks’ signal-to-noise ratio, making 
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the data easier to process. Zhang et al. [7] propose one method of noise removal, which is 

an “adaptive short time discrete Fourier transform combined with wavelet transform to 

remove the chemical noise and the random noise.” 

This thesis studies the known approaches to peak detection and deconvolution, 

and their suitability for automation of processing high volumes of data. The combination 

of selected best practices from literature results in an algorithm that fully supports 

automated processing of spectroscopic data. The algorithm includes a noise-filtering 

module, a 5-point peak detection module, function fitting, and optimization. 

Chapter 2 describes the analysis of a typical high-resolution LC-MS data set in 

order to evaluate experimental data abnormalities and to develop a noise-handling 

approach. Peak shapes for different spectroscopic techniques were modeled by Gaussian, 

Lorentzian, and Voigt functions. The chapter also describes the problems encountered 

during peak detection and the use of the Maximum Entropy Principle to address these 

problems. Finally, chapter 2 details the process for function deconvolution, including 

approaches for eliminating noise, peak detection, and function fitting. 

Chapter 3 reports on the application of the Fourier transform decomposition 

algorithm for the analysis of spectroscopic data. The algorithm includes noise filtering by 

means of a discrete Fourier transform (DFT) low-pass filter and parameter estimation for 

each detected peak using least squares curve fitting. The algorithm can be modified to 

estimate the parameters of exponentially modified Gaussian, Lorentzian, and pseudo-

Voigt functions. The chapter includes the mathematical background for the use of the 

DFT in signal processing as well as test results using modeled data. 



5 

 

Chapter 4 discusses the wavelet transform approach for analyzing spectroscopic 

data. The continuous wavelet transform (CWT) procedure eliminates both high- and low-

frequency noise from the data. Peak detection is performed on CWT transformed data. 

The chapter includes the mathematical background of the CWT as well as a summary of 

test results for evaluating the approach. 

Chapter 5 explores the variability of experimental data and the selection of 

convolution cases for algorithm testing. It describes the results validation and testing 

methodology. Two groups of LC-MS data were tested for reproducibility of peak 

detection deconvolution per distinct type of chromatographic shapes defined in chapter 4. 

For each type of chromatographic curves, manual (computer-assisted) peak 

deconvolution was applied to calculate peak parameters. Then an automated 

deconvolution algorithm processed the data. Differences between manually picked peaks 

and peaks found by an automated deconvolution algorithm were subject to statistical 

analysis. Performance of the algorithm was analyzed in the context of both modeled and 

experimental data. Limitations of the algorithm were also defined. 

Chapter 6 provides conclusions for each part of the study. The results of the study 

show that the CWT is an effective means for estimating the locations of peaks in 

chromatographic data.  The thesis also shows that a mixture of symmetric Gaussian 

functions provides an adequate model for chromatographic data. 
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Chapter 2 

Analysis of Spectroscopic Data Sets4 

Assuming a spectrum is represented by a given mixture of Gaussian functions that 

may overlap, the goal of this study was to design a deconvolution algorithm for 

processing various liquid chromatography-mass spectrometry (LC-MS) data using the 

maximum entropy principle. Typical spectroscopic data were analyzed to assess usual 

abnormalities in order to develop an approach to deal with noise. The Gaussian, 

Lorentzian, and Voigt functions were used to model different peak shapes. 

Background: Peak Detection and Deconvolution – Overview 

Peak detection is essential to obtaining information from mass spectral data. 

Manual peak detection is very time-consuming, and it becomes increasingly unattainable 

to manually pick peaks as mass spectrometry data sets become ever larger [8]. 

Furthermore, this approach runs into the problem that a human may not be able to 

identify peaks by looking at the data. Peaks with height differences by one order of 

magnitude or more may be made invisible in the process of rendering the data points, 

which is called the zoom problem. Additionally, manual peak detection suffers from the 

issue that substances may be hidden in noise. Figures 1 and 2 show examples with about 

20 peaks each discernible by eye. 

                                                 
4 Chapter 2 is based on D. Gaffney and W. J. Burke’s research in 2015-2016. 
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Figure 1. Chromatogram of the total ion current for a rat plasma sample, collected using 

the Q-ExactiveTM mass spectrometer (Thermo Scientific, Bremen, Germany) interfaced 

with the Thermo Scientific Open Accela 1250 UHPLC system (Thermo Scientific, San 

Jose, CA). 

 

 

 

 
Figure 2. Underlying mass spectrum (electro-spray ionization, positive mode) for a peak 

at 4.14 minutes. The main ion peak in the spectrum (m/z = 185.0968) is consistent with a 

monoisotopic mass of spiked compounds in chemical d5-hippuric acid, which was 

introduced into the experiment as the internal standard. 
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Another common approach is to use a 5-point peak detection algorithm, which 

selects five consecutive points in the data set and marks the selection as a peak if the set’s 

middle point has the highest value of the five points. Formally, the algorithm can be 

described as follows. Assuming the data set 𝐷 = {(𝑥𝑖, 𝑦𝑖), 𝑖 ∈ [0, 𝑛 − 1]}, where ∀𝑖 >

0, {𝑦𝑖−1 < 𝑦𝑖}, (i.e., the data points are sorted by y values), then max(𝑥1, 𝑥2, … , 𝑥𝑛) =

𝑥𝑖 → 𝑥𝑖 is a peak. 

Real data were input into an implementation of the aforementioned algorithm, 

yielding inconsistent results. The approach found nearly all of the given mixture’s peaks, 

regardless of their magnitude relative to the other data. Therefore, the algorithm 

identified both actual peaks and insignificant spikes as peaks. The insignificant spikes 

occur due to the nature of raw data, which do not provide an image that is smooth enough 

for analysis. The lack of a smooth image is a result of the raw data neither being smooth 

nor interpolated. Another problem with the 5-point approach is that it will not detect the 

contribution of a smaller curve that is dominated by a larger curve. In this case, the 

convoluted curve covers the original component of the smaller curve. The process will 

not find a peak or part of a curve in the region because there is no remaining portion of 

the smaller curve left to find. Since the 5-point peak detection algorithm cannot correctly 

identify peaks, a different peak detection method is needed. 

LC-MS Peak Detection Problems 

Different types of noise in chromatograms result in peak detection problems in 

LC-MS. One such type of noise is baseline noise, which is noise that filtering and 

smoothing fail to remove [9]. Baseline noise makes measurement of peak areas difficult, 

thereby reducing confidence in analysis results [10]. Other types of noise include short-
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term noise, long-term noise, and drift, which are defined, respectively, as “random 

variations in detector signal whose frequency is greater than 1 cycle minute−1
,” 

“[v]ariations in detector signal whose frequency lies between 6 and 60 cycles hour−1
,” and 

“change in baseline position” [9]. Another problem for peak detection of LC-MS data is 

that it is difficult to identify peaks that are close to baseline or are overlapping [11]. For 

instance, when measuring peak areas, the peak start and endpoints must be identified, 

which can be difficult to accomplish if the peak overlaps with other peaks [12]. 

These problems can make it difficult to estimate the composition of the observed 

feature. A solution, therefore, is to identify and separate overlapping chromatographic 

peaks. This separation, known as deconvolution, is a difficult problem in and of itself. 

Two proposed methods for this problem are tangent skimming and the perpendicular drop 

method [11]. The former method involves measuring the area between the curve of the 

data and a baseline drawn across the peak’s bottom. This is useful in the case of a single 

peak being superimposed over a straight or broadly curved baseline. The latter method, 

on the other hand, involves drawing two vertical lines from the bounds of the peak down 

to the x-axis and measuring the total area of the figure created by the lines, the curve, and 

the x-axis [12]. However, both deconvolution methods are only approximate and are best 

used when there is only slight overlap in the peaks [11]. Another approach to 

deconvolution is to employ the maximum entropy, or maximum likelihood, principle. 

Maximum Entropy (Likelihood) Algorithm 

Deconvolution involves separating real observations from a point spread function 

(PSF) in a digital image [13]. The maximum entropy method, as introduced by Agmon et 

al. [14], is a means of accomplishing deconvolution [15]. 
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Maximum entropy (likelihood) principle. Maximum entropy algorithms are 

often derived from an application to a generic estimation problem, which is estimating an 

unknown, deterministic vector parameter in the linear model y = Gx + w, where G is a 

linear transformation, and w is a Gaussian noise vector. This equation in a simple form 

describes a large variety of signal processing and statistics problems. In their letter, 

Wiesel et al. [16] consider the problem of finding the maximum likelihood (ML) 

estimator in the linear model given a model matrix 𝐆 composed of independent and 

identically distributed Gaussian elements. In the linear model, 𝐆 is an 𝑁 × 𝐾 matrix that 

has a known mean 𝐇 and independent elements that have variance 𝜎ℎ
2 > 0. The Gaussian 

noise vector  has a mean of 0 and independent elements that have variance 𝜎𝑤
2 > 0 [16]. 

An estimator of 𝐱, 𝐱̂(𝐲,𝐇, 𝜎ℎ
2, 𝜎𝑤

2), is a function of the observation vector and the 

given statistics that results in values close to 𝐱. In ML estimation, the estimator is chosen 

as the parameter vector maximizing the likelihood of the observations. This is expressed 

mathematically in Equation (1): 

max 
𝑥

log 𝑝(𝐲; 𝐱), (1) 

where 𝑝(𝒚; 𝒙) is the probability density function of 𝐲 parameterized by 𝐱. Because 𝐲 is a 

Gaussian vector having mean Hx and covariance (𝜎ℎ
2‖𝐱‖2 + 𝜎𝑤

2)𝐈, the ML estimator is 

the solution to Equation (2): 

min
𝑥

{
‖𝐲 − 𝐇𝐱‖2

𝜎ℎ
2‖𝐱‖2 + 𝜎𝑤

2
+ 𝑁 log(𝜎ℎ

2‖𝐱‖2 + 𝜎𝑤
2)}. (2) 

Wiesel et al. [16] solve this difficult optimization problem by reformulating Equation (2) 

into Equation (3): 
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min
𝑡≥0

{
𝑓(𝑡)

𝜎ℎ
2𝑡 + 𝜎𝑤

2
+ 𝑁 log(𝜎ℎ

2𝑡 + 𝜎𝑤
2)}, (3) 

where 𝑓(𝑡) = min𝐱:‖𝐱‖2=𝑡‖𝐲 − 𝐇𝐱‖2 with optimal argument 𝐱(𝑡). The ML estimator in 

the linear model is simply 𝐱(𝑡∗), where 𝑡∗ is the solution to Equation (3). The solution, 

shown in Equation (4), is found by using a simple line search:5 

𝐱(𝑡) = (𝐇𝑇𝐇 + 𝛼𝐈)†𝐇𝑇𝐲, (4) 

where 𝛼 ≥ −𝜆min(𝐇
𝑇𝐇) is the unique root of Equation (5): 

‖𝐱(𝑡)‖2 = 𝑡. (5) 

Upon finding an 𝛼 satisfying Equation (5), 𝑓(𝑡) is found by evaluating ‖𝐲 − 𝐇𝐱(𝑡)‖2 

with the appropriate 𝐱(𝑡) [16]. 

For most biologically relevant samples, quantitative analysis becomes extremely 

complicated due to the high degree of spectral overlap [17]. Chylla et al. [17] developed 

an algorithm called fast maximum likelihood construction (FMLR) that performs spectral 

deconvolution of 1D–2D NMR spectra for the purpose of accurate signal quantification. 

They apply maximum likelihood to NMR spectra, but a similar concept is useful for 

chromatographic spectra. 

When there is some, but not enough, information to characterize a probability 

distribution, the maximum entropy principle can be used. This principle states that the 

correct distribution is the one that contains the maximal amount of unpredictability while 

still conforming to the known characteristics of the distribution [18]. Applying this 

principle here, the problem to be solved is: Given a set of data, what is the most probable 

                                                 
5 The operation † refers to the generalized inverse. 
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parent mass spectrum? The solution to this problem involves creating probability 

distributions based on what is known (calculated Gaussian distributions), inferring the 

missing information based on the known characteristics, and inputting the known 

information into the maximum entropy method. 

Mathematical framework. A proficient understanding of the mathematical 

background for the maximum entropy method is required to successfully implement the 

method for deconvolution. Deconvolution becomes a difficult problem because of the 

presence of noise in images [19]. 

Convolution. Convolution involves the formation of a new signal from two input 

signals. With linear expressions, convolution is used as follows: an input signal, x[n], 

enters a linear system with an impulse response, h[n], resulting in an output signal, y[n]. 

This can be expressed in equation form as x[n] ∗ h[n] = y[n]. That is, the output signal 

equals the input signal convolved with the impulse response. The star represents the 

convolution operation. If x[n] is an N point signal with points numbered 0 to N –1, and 

h[n] is an M point signal with points numbered 0 to M – 1, the convolution of the two, 

y[n] = x[n] ∗ h[n], is an N + M – 1 point signal with points numbered from 0 to N + M – 

2, given by Equation (6) [20]: 

𝑦[𝑖] = ∑

𝑀−1

𝑗=0

ℎ[𝑗]𝑥[𝑖 − 𝑗]. (6) 

The index, i, identifies the sample in the output signal being calculated [20]. 

Deconvolution. Given an image, where the “real image” O is observed through an 

optical system, and an intensity distribution I corresponding to O, then the relation 
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between the data and the image in the same coordinate frame is a convolution if the 

imaging system is linear and shift-invariant, defined by Equation (7): 

𝐼(𝑥, 𝑦) = ∫
+∞

𝑥1=−∞

∫
+∞

𝑦1=−∞

𝑃(𝑥 − 𝑥1, 𝑦 − 𝑦1)𝑂(𝑥1, 𝑦1)𝑑𝑥1𝑑𝑦1 + 𝑁(𝑥, 𝑦)

= (𝑃 ∗ 𝑂)(𝑥, 𝑦) + 𝑁(𝑥, 𝑦),

 (7) 

where P is the point spread function (PSF) of the imaging system and N is the additive 

noise. The goal in deconvolution is to determine O(x, y) based on the known values of I  

and P. This problem is difficult to solve and requires addressing the following two main 

difficulties: (1) the cutoff frequency of the PSF and (2) additive noise. In practice, there is 

no unique and stable solution to the equation above [19]. 

Maximum entropy method. The research presented in this thesis began with 

developing a prototype algorithm to process artificial data consisting of custom x and y 

values that form a mixture of Gaussian functions with “known” initial parameters. These 

data were used to develop and test the expectation-maximization (EM) portion of the 

algorithm. 

The expectation-maximization (EM) algorithm. The EM algorithm is an iterative 

approach for finding maximum likelihood parameter estimates. It consists of repetition of 

the alternating steps of expectation and maximization. Given initial parameter estimates, 

the EM algorithm optimizes the parameters to obtain the best approximation of the data 

[21]. Expectation is performed with respect to the unknown underlying variables, using 

the parameters’ current estimate and the observations as constraints. Then, the 

maximization step calculates a new estimate for the parameters. The two steps alternate 

and repeat until convergence [22]. The expectation and maximization steps are defined 
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by Equations (8) and (9), respectively: 

𝑄𝑖(𝑧
(𝑖)): = 𝑝(𝑧(𝑖)|𝑥(𝑖); 𝜃) (8) 

𝜃:= arg max
𝜃

∑

𝑖

∑

𝑧(𝑖)

𝑄𝑖(𝑧
(𝑖))log

𝑝(𝑥(𝑖), 𝑧(𝑖); 𝜃)

𝑄𝑖(𝑧(𝑖))
, (9) 

where Q is a chosen probability distribution, z is a set of latent random variables, x is the 

set of training data, and 𝜃 is the set of distribution parameters [23]. 

Testing implementation of the EM algorithm. When tested on modeled data, the 

implementation of the EM algorithm quickly converged to correct parameter values, 

providing an accurate estimation of individual function components in the given mixture. 

However, when run on real data, the algorithm did not converge and could not accurately 

compute individual functions. This showed the dependence of the algorithm on proper 

initial parameter estimates, as the first implementation used arbitrary initial parameter 

values. To alleviate this problem, a k-means clustering algorithm was implemented to 

more accurately identify point membership across the individual functions, in the hope 

that a more accurate knowledge of point membership would lead to better peak estimates 

and initial parameter values. 

K-means algorithm for initial parameter estimation. The k-means algorithm is a 

clustering algorithm that separates n data points into k clusters such that each data point is 

assigned the cluster whose mean it is closest to. The algorithm works by taking an initial 

guess for what the optimal clusters would be and then assigns each point to the cluster 

with the smallest Euclidean distance between it and the cluster’s centroid, where the 

centroid is the mean position of all of the points in the cluster. Next, the algorithm 

computes the mean point of all the points belonging to each cluster and identifies the 
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calculated point as a new centroid of the cluster. Data points’ membership is recalculated 

with the new centroids. The process of cluster assignment and mean computation repeats 

until cluster centroids do not change [24]. 

K-means algorithm summary. K-means is formally described by the following 

algorithm [24]: 

    1.  Select 𝐾 points as initial centroids. 

    2.  Repeat 

    3. Form 𝐾 clusters by assigning each point to its closest centroid. 

    4.           Recompute the centroid of each cluster. 

    5.  until centroids do not change. 

Steps 3 and 4 are defined by Equations (10) and (11), respectively [25]: 

𝑐(𝑖): = arg min
𝑗

||𝑥(𝑖) − 𝜇𝑗||
2

 (10) 

𝜇𝑗: =
∑𝑚

𝑖=1 1{𝑐(𝑖) = 𝑗}𝑥(𝑖)

∑𝑚
𝑖=1 1{𝑐(𝑖) = 𝑗}

 (11) 

Testing prototype implementation. When testing the prototype implementation, it 

became clear that the algorithm worked well for custom data but still failed to converge 

for real data input. Further investigation revealed that the assumption that the initial 

mixture is described by a Gaussian function of evenly distributed data points is incorrect. 

This is because data points produced by a mass spectrometer are not guaranteed to be 

evenly distributed. Thus, the prototype could not correctly identify the number of peaks 

and initial values for individual function parameters. Input data must therefore be 

preprocessed before running the EM algorithm. This is why the EM algorithm worked 
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well for evenly distributed custom data but not for real data. The prototype 

implementation did not directly solve the problem, but it provided valuable insight into 

the nature of the problem. 

Function Deconvolution 

The process of deconvolving a mixture of Gaussian functions into its comprising 

individual curves involves data preprocessing, peak detection and function fitting, the 

expectation maximization (EM) algorithm, and the maximum entropy principle. Before 

peaks can be identified, raw data need to be preprocessed. Preprocessing steps include 

interpolation, smoothing, and spline calculation. After the data have been preprocessed, 

peaks are found by calculating the curve’s derivative and finding the points where the 

derivative changes sign from positive to negative. The found peaks are each fit into a 

Gaussian function. Taking into account initial parameter estimates of the Gaussian 

functions, the EM algorithm optimizes these parameters to achieve the best 

approximation of the data. Finally, the maximum entropy principle is used to optimize 

the data for the entire chromatogram given the finished Gaussian solutions for the picked 

peaks [21]. Figure 3 shows a convolution of Gaussian curves. Upon first glance, it is 

obvious that the mixture contains three convoluted curves, but it is unclear what the exact 

individual curves of the mixture are. The objective is thus to break down the convoluted 

mixture of Gaussian functions into individual curves. 
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Figure 3. Example of a Gaussian function mixture. 

 

 

 

An example deconvolution resulting from the curve in Figure 3 is presented in 

Figure 4, which shows the three curves F1, F2, and F3 that form a Gaussian mixture titled 

Data. 
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Figure 4. Example of a Gaussian function mixture deconvolution. 

 

 

 

Addressing Noise Issues 

Preprocessing of MS data involves transforming a large amount of raw spectral 

data into much smaller, statistically manageable peaks. Since each spectrum contains tens 

of thousands of data points, mass spectrometry is inherently noisy. Therefore, a variety of 

algorithms, each with different principles, implementations, and performance, have been 

created to address the problem of noise [26]. 

Data preprocessing. Data preprocessing involves several steps before the data’s 

peaks can be found. These steps include interpolation, smoothing, and spline calculation 

[21]. 

Lagrange interpolation. First, the time interval between points must be made 

uniform via interpolation. To make x values evenly spread, new points must be inserted, 
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ensuring that each fits the trend of the data. The implementation constructs Lagrange 

polynomials that model the behavior of a curve passing through n + 1 data points (x0, y0), 

(x1, y1), … , (xn, yn) [27]. The nth degree Lagrange polynomial is defined by Equation 

(12) [28]: 

𝑃(𝑥) = ∑

𝑛

𝑗=1

𝑃𝑗(𝑥), (12) 

where 

𝑃𝑗(𝑥) = 𝑦𝑗 ∏

𝑛

𝑘=1,𝑘≠𝑗

𝑥 − 𝑥𝑘

𝑥𝑗 − 𝑥𝑘
. 

 

 

Figure 5 displays an application of complete interpolation to a chromatogram in 

an interval between 3 and 4 minutes. The green triangle points represent the original data, 

which have inconsistent spread. The data set after interpolation, represented by red 

points, has a uniform spread. The points of the output have a uniform distance between x 

values. 
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Figure 5. An example of applying the Lagrange formula to interpolation of a 

chromatogram. 

 

 

 

However, the resulting data still have some noise. The data are thus treated with a 

5-step polynomial smoothing function, the Savitzky-Golay filter, in order to increase the 

signal-to-noise ratio of the interpolation algorithm’s output. 

Savitzky-Golay filter. The Savitzky-Golay filter increases the signal-to-noise ratio 

of input data without distorting the signal very much.  It is often applied to digital data 

sets for the purpose of smoothing. The filter achieves smoothing by fitting successive 

subsets of adjacent data points with a low-degree polynomial via the method of linear 

least squares. The data are a set of n(xj, yj) points j ∈ 1, … , n, where xj is an independent 

variable and yj is an observed value [29]. The points are treated with a set of m 
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convolution coefficients according to Equation (13): 

𝑌𝑗 = ∑
𝑚−1

2

𝑖=−
𝑚−1

2

𝐶𝑖𝑦𝑗+𝑖, 𝑗 ∈ [
𝑚−1

2
, 𝑛 −

𝑚−1

2
], (13) 

where m = 5, i ∈ [–2, 2]. With the 5-point smoothing formula, the jth smoothed data point 

Yj is given by Equation (14): 

𝑦𝑗 =
1

35
(−3𝑦𝑗−2 + 12𝑦𝑗−1 + 17𝑦𝑗 + 12𝑦𝑗+1 − 3𝑦𝑗+2), (14) 

where 

𝐶−2 = −
3

35
, 𝐶1 =

12

35
, etc. 

 
 

Figure 6 shows an example of 5-point polynomial smoothing. It shows an 

example of smoothing in a time interval of 3.5 to 3.7 minutes. The green points are the 

output of the interpolation algorithm, while the red points are the points after being 

treated by the smoothing algorithm. 
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Figure 6. Experimental, post-interpolation data plotted in tandem with smoothed data. 

 

 

 

Spline. The result of the Savitzky-Golay smoothing algorithm is a uniformly 

spread, low-noise set of discrete points. The remainder of the algorithm requires a 

continuous function as input, so the y value for a given x value is calculated using two 

linearly independent cubic polynomial terms. These terms avoid spoiling the agreement 

with the functional values yj and yj+1. 

The spline function first calculates three sets of coefficients based on the 

smoothed input data, and then the spline at any x value can be calculated based on the 

coefficients, according to Equation 15 [30]: 



23 

 

𝑦 = 𝐴𝑦𝑖 + 𝐵𝑦𝑖+1 + 𝐶𝑦𝑗
′′ + 𝐷𝑦𝑗+1

′′ , (15) 

where 

𝐴 =
𝑥𝑗+1 − 𝑥

𝑥𝑗+1 − 𝑥𝑗
,  

𝐵 = 1 − 𝐴,  

𝐶 =
1

6
(𝐴3 − 𝐴)(𝑥𝑗+1 − 𝑥𝑗),

2 and 
 

𝐷 =
1

6
(𝐵3 − 𝐵)(𝑥𝑗+1 − 𝑥𝑗).

2 

 

 

Figure 7 shows the result of the spline algorithm. The green points are the smoothed and 

interpolated experimental data, while the red points are the points of the continuous 

spline function. 

 

 

 

Figure 7. Smoothed, interpolated, experimental data overlaid with continuous   

data adjusted using the spline function. 
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Peak detection. After data preprocessing, peaks are found by calculating the 

curve’s derivative. Each peak, after being found, can be fit into a Gaussian function. 

Differentiation. Peaks occur at the function’s local maxima, which can be found 

based on Equation (16): 

d𝑦

d𝑥
=

𝑓(𝑥 − 2ℎ) − 8𝑓(𝑥 − ℎ) + 8𝑓(𝑥 + ℎ) − 𝑓(𝑥 + 2ℎ)

1200ℎ
 , (16) 

where 

ℎ =
𝑥1 − 𝑥0

10
.  

Figure 8 shows the spline function (in blue) plotted against its first derivative (in red). 

 

 

 

 

Figure 8. First derivative (slope) overlaid against experimental data approximated by the 

spline function. 
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Peak picking. Peak picking involves extracting frequencies of peaks, either from 

the entire spectrum or from selected regions. The frequencies are then typically displayed 

on the plot. This process does not consider all identified peaks [31]. 

Given the spline and the derivative, peaks of the chromatogram can be found 

using the properties of the derivative function. At each point the following test is 

conducted: the 𝑦 value at the point is examined to see if it is greater than that of the point 

before it as well as that of the point after it, and the derivative value at the point is 

checked to see if it changes from positive to negative. If the test is satisfied, then a 

potential peak has been found. Following the computation of the set of potential peaks, 

noninfluential peaks are eliminated by only keeping peaks whose apex values are greater 

than 1% of the overall maximum y value. All remaining peaks are considered influential. 

For each influential peak, the peak’s start and endpoints are determined by finding the 

local minima closest to the peak’s apex. Table 1 shows peak parameters detected in an 

experimental chromatogram between 3 and 4 minutes. 

 

 

 

Table 1 

Peak Parameters Calculated in Peak-Picking Procedure 

Peak Start Intensity at 

Peak Start 

Peak Apex Intensity at 

Peak Apex 

Peak End Intensity at 

Peak End 

3092 1.42E+07 3127 1.87E+08 3166 2.33E+07 

3167 2.32E+07 3184 6.75E+07 3193 5.56E+07 

3194 5.58E+07 3217 4.55E+08 3257 2.47E+07 

3258 2.49E+07 3294 5.51E+08 3344 1.70E+07 
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Table 1 (continued) 

Peak Start Intensity at 

Peak Start 

Peak Apex Intensity at 

Peak Apex 

Peak End Intensity at 

Peak End 

3345 1.70E+07 3368 4.98E+07 3370 4.96E+07 

3371 4.96E+07 3400 1.63E+08 3452 1.23E+07 

3485 1.71E+07 3496 2.43E+07 3499 2.37E+07 

3500 2.40E+07 3529 9.26E+08 3566 1.00E+03 

3572 1.03E+07 3597 2.13E+09 3663 2.57E+07 

3664 2.59E+07 3690 3.75E+08 3735 3.76E+07 

3736 3.76E+07 3746 3.95E+07 3760 2.60E+07 

3761 2.60E+07 3774 3.67E+07 3776 3.60E+07 

3777 3.59E+07 3806 7.83E+08 3873 9.49E+06 

3874 9.46E+06 3896 3.01E+07 3937 4.07E+06 

 

 

 

The data are visualized in Figure 9. 

 

 

 

 

Figure 9. Close-up visualization of peak picking. 
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Function fitting. After peaks have been found, each is fit into a Gaussian 

function. Fitting involves using the data set to calculate parameters that represent a 

Gaussian distribution that closely models the data set. 

Anatomy of a Gaussian distribution. The Gaussian distribution is a continuous 

function that approximates the exact binomial distribution of events. The Gaussian 

distribution is also commonly called the “normal distribution” [32]. Its probability 

density function is defined by Equation (17): 

𝑃(𝑥) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2 , (17) 

where 𝜇 is the mean, and 𝜎2 is the variance [33]. 

Fitting Gaussian functions for peak identification. The mathematical procedure 

to fit experimental data with a Gaussian-like exponential function is described by Jean 

Jacquelin [34]. For a given data set of (x0, y0), (x1, y1), … , (xn, yn), a direct fit with the 

function 

𝑦 = 𝑐𝑒
(𝑥−𝑎)2

𝑏  (18) 

requires transformation into a new coordinate system as defined by Equations (19) and 

(20): 

𝑠1 = 0, 𝑠𝑖 = 𝑠𝑖−1 +
1

2
(𝑦𝑖 − 𝑦𝑖−1)(𝑥𝑖 − 𝑥𝑖−1), (19) 

𝑡1 = 0, 𝑡𝑖 = 𝑡𝑖−1 +
1

2
(𝑥𝑖𝑦𝑖 + 𝑥𝑖−1𝑦𝑖−1). (20) 
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Coefficients a, b, and c are obtained by solving the following system of equations: 

[
𝐴
𝐵
] =

[
 
 
 
 
 ∑

𝑛

𝑖=1

(𝑠𝑖)
2 ∑

𝑛

𝑖=1

𝑠𝑖𝑡𝑖

∑

𝑛

𝑖=1

𝑠𝑖𝑡𝑖 ∑

𝑛

𝑖=1

(𝑡𝑖)
2

]
 
 
 
 
 
−1

[
 
 
 
 
 ∑

𝑛

𝑖=1

(𝑦𝑖 − 𝑦1)𝑠𝑖

∑

𝑛

𝑖=1

(𝑦𝑖 − 𝑦1)𝑡𝑖
]
 
 
 
 
 

. 
(21) 

The values of the coefficients are defined by Equation (22): 

𝑎 = −
2

𝐵
, 𝑏 = −

𝐴

𝐵
, 𝑐 =

∑𝑛
𝑖=1 𝑦𝑖

∑𝑛
𝑖=1 𝑒−

(𝑥𝑖−𝑎)2

𝑏

. 
(22) 

The coefficients are used to generate the Gaussian peak approximations. An example of 

fitting experimental data from an extracted ion chromatogram peak is shown in Figure 

10. The coefficients of the Gaussian function were determined as a = 9.0957, b = 

18.2562, and c = 2.0436. 

 

 
Figure 10. An example of fitting experimental data from an extracted 

ion chromatogram peak. 
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Fitting Gaussian functions – future work. The function fitting procedure 

described above assumes Gaussian functions are symmetrical in nature. However, 

asymmetric Gaussian functions are more commonly found in experimental data. 

Asymmetry broadens the base of a peak and increases peak overlap, thereby resulting in 

more difficult measurement. The asymmetry of a curve can be described in terms of a 

Tailing Factor: 

Tailing Factor =
𝑤0.05

2𝐴
=

𝐵 + 𝐴

2𝐴
. (23) 

The tailing factor is sometimes called the Asymmetry Ratio, and it compares the peak 

half widths on either side of the peak. The Asymmetry Ratio varies with peak height. 

Measurement of asymmetry is typically done near the peak base (at about 10% of peak 

height), where asymmetry is greatest [10]. 

Implementation 

The procedures described in this chapter were implemented using the C# 

programming language in the Visual Studio 2013 Integrated Developer Environment. 

Input data were tabulated points extracted from an LC-MS experiment collected on the 

Thermo Fisher Orbitrap instrument in the form of a Microsoft Excel file. Data structures 

used included a simple dynamic list of input points and a Peak class that stores the 

calculated peak parameters. Data output consisted of detected peaks and parameters of 

the approximated Gaussian function reported in a Microsoft Excel file. 

Resulting Software 

Work on the project presented in this chapter resulted in a C# Windows Forms 

application that reads raw data and performs data preprocessing. After preprocessing, the 
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software detects peaks and fits experimental data into a Gaussian approximation and then 

optimizes Gaussian parameters with the EM algorithm. Finally, the software uses the 

maximum entropy principle to approximate and analyze the entire spectra. 
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Chapter 3 

Deconvolution Algorithm for Spectroscopic Data with Noise 

Deconvolution involves disassembling a spectrum into peaks and resolving 

overlapping signals. The original multistep algorithm to process data and determine 

configuration parameters was presented in chapter 2. This work resulted in software that 

reads raw data and performs data preprocessing, detects peaks and fits experimental data 

into a Gaussian approximation, optimizes Gaussian parameters with the EM algorithm, 

and uses maximum entropy to approximate and analyze entire spectra. However, stability 

testing revealed that the algorithm falters in the presence of noise. A major improvement 

to the algorithm has been made with the addition of low-pass filtering with Fourier 

transforms, which enable noise elimination. The new algorithm was implemented in C#, 

and software was tested using a variety of modeled and experimental data. Additionally, 

a graphical user interface (GUI) was implemented for the deconvolution software. 

Discrete Fourier Transform Filtering 

The goal of the algorithm is to remove residual error (i.e., noise) from the input 

data. In this implementation, it was assumed that unfiltered spectroscopic points are 

affected by high-frequency noise. The discrete Fourier transform (DFT) can be used to 

implement a low-pass filter to eliminate noise. The Fourier transform works by 

converting waveform data from the time domain into the frequency domain. This task is 

accomplished by breaking down the original time-based input into a series of sinusoidal 

terms, each having a unique magnitude, frequency, and phase. The process thus converts 

a difficult-to-describe waveform from the time domain to the frequency domain, creating 



32 

 

a more manageable series of sinusoidal functions that reproduce the original waveform 

exactly when added together [7]. 

Algorithm overview. The deconvolution algorithm with DFT filtering added 

functions that are very similar to those described in chapter 2. The main goal, however, 

remains the same: to decompose an input data set into a sum of functions that describe 

individual peaks and the residual error. Data points are read from an input file and 

preprocessed using interpolation to ensure they are evenly spaced. Discrete Fourier 

transform filtering occurs in the preprocessing phase following interpolation. It results in 

a smooth signal. After data preprocessing, peaks are detected, and deconvolution is 

carried out using function fitting. Finally, the results are displayed in a graphical user 

interface (GUI), as shown in Figure 11. The x axis shows the time, while the y axis shows 

the intensity. 

 

 

 
Figure 11. Result of DFT filtering displayed in GUI. 
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Due to the DFT’s large computational requirements, a direct implementation of 

the DFT is not practical for real-time applications. However, a DFT can also still be 

implemented using algorithms known as Fast Fourier Transforms (FFTs) [35]. 

Noise removal – FFT limitations. The FFT is a computationally efficient method 

of calculating a Fourier transform. Its main advantage is speed, which results from 

decreasing the number of calculations needed to analyze a waveform [36]. However, 

restrictions may apply in most FFT algorithms [35]. The FFT is limited in application 

only to high-frequency noise, and it does not handle poorly resolved peaks well. 

Additionally, since the FFT generates a power spectrum based on a 2nth power data point 

section of waveform (e.g., 512, 1024, 2048, etc.), the number of points in the power 

spectrum may be less than originally intended. A solution to this involves the user 

defining a precise range over which the Fourier transform will be calculated, 

circumventing the 2nth power limitation. This method is called the discrete Fourier 

transform (DFT) and allows the evaluation of a waveform containing any number of 

points, providing more flexibility than the fixed-length FFT [36]. 

DFT definition. The DFT is defined by J. O. Smith [37], as shown in Equation 

(24): 

𝑋(𝜔𝑘) ≜ ∑ 𝑥(𝑡𝑛)𝑒−𝑗𝜔𝑘𝑡𝑛

𝑁−1

𝑛=0

, 𝑘 = 0, 1, 2, … , 𝑁 − 1, (24) 

where  

x(tn) ≜  input signal amplitude (real or complex) at tn (sec), 

tn ≜  nT = nth sampling instant (sec), n an integer ≥ 0, 

T ≜  sampling interval (sec), 
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X(𝜔k) ≜  spectrum of x (complex valued), at frequency 𝜔k, 

𝜔k ≜  kΩ = kth frequency sample (radians per second), 

Ω ≜  
2𝜋

𝑁𝑇
 = radian-frequency sampling interval (rad/sec), and 

N = number of time samples = no. frequency samples (integer). 

How DFT filtering works. The Fourier transform takes real-valued data in the 

time domain and transforms them into complex-valued points in the frequency domain. 

Points whose frequencies are above a certain threshold, defined by the user, are 

eliminated. Using the DFT results in smooth, noise-free data. Figure 12 shows the 

experimental data before and after DFT filtering. The noise is up to 30% of the original 

signal’s intensity. The graph with noise has much more variance, and, while it is still 

clear where the maxima of the peaks approximately are, it is impossible to tell where the 

peaks begin and end. The algorithm clearly makes the peaks much easier to analyze, thus 

allowing for easy numerical integration. As seen in Figure 13, DFT filtering can be useful 

even in an extreme case. Filtering makes it possible to determine the start and endpoints 

of the peaks after removing the excessive amount of noise. The threshold is the 

percentage of the highest frequency to cut off at. 
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Figure 12. How DFT works, before filtering and after filtering (30% threshold). 

 

 

 

 
Figure 13. Filtering in extreme case (90% noise), before and after filtering (20% 

threshold). 

 

 

 

Observations 

There is a resolution requirement while running the deconvolution algorithm with 

DFT filtering. Peaks must be well enough resolved to be uniquely identifiable, otherwise 

the error in the calculated parameters increases. However, the algorithm is able to handle 

both complex and highly noisy data, as the number of peaks does not have an effect on 

the error, and the algorithm can still find peaks with up to 100% noise. In both cases, the 

only requirement is that peaks are sufficiently well resolved. 
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Deconvolution Algorithm Test Results 

Tests were conducted to determine the impact of decreased peak spacing and of 

noise. Two sets of test data were examined: Test 1 describes the result of increasing the 

width of peaks, while Test 2 gives the result of moving peak centers closer together. 

Impact of decreased peak spacing: Test 1. Figure 14 shows the impact of 

decreased peak spacing. Figure 14A has relatively large peak spacing, where the peaks 

are easily visually distinguished from each other, while Figure 14D has almost no spacing 

between the peaks, making them difficult to visually distinguish. 

 

 

 
Figure 14. Test 1 results: Impact of decreased peak spacing. 

 

 

 

Tables 2-3 show the results of Test 1. In the tables, the data for input file 

2peak50noise_spacing_0.txt correspond to the result of increasing width of peaks as 

shown in Figure 14A. The data for input file 2peak50noise_spacing_3.txt correspond to 
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the result of increasing width of peaks as shown in Figure 14D. Errors in height, width, 

and position were calculated by dividing the absolute value of the difference between the 

calculated and actual parameters by the actual parameter. As the tables show, the overall 

error in the parameters height, width, and position increased as the spacing between the 

peaks decreased. For instance, the errors in position, width, and height started out in the 

ranges of 0% to 3%, 1.5% to 35%, and 0% to 5%, respectively, and ended in the ranges 

of 4% to 30%, 15% to 100%, and 5% to 45%, respectively. The error in width is 

especially pronounced in both cases, reaching percentages above 50% both times. 

Additionally, the errors seem to be smaller overall when lowering the filtering threshold, 

as indicated by comparing the starting and ending errors of the first test with those in the 

second test. 

 

 

Table 2 

Test 1 Results: Impact of Decreased Peak Spacing, Filtering With 20% Threshold 

Filename 

Modeled 

Position 

Calculated 

Position 

Position 

Error 

(%) 

Modeled 

Width 

Calculated 

Width 

Width 

Error 

(%) 

Modeled 

Height 

Calculated 

Height 

Height 

Error 

(%) 

2peak50noise_spacing_0.txt 1.500 1.500 0.013 0.100 0.098 1.796 99706.337 100621.813 0.918 

2peak50noise_spacing_0.txt 2.500 2.492 0.309 0.100 0.105 5.445 99643.775 99366.099 0.279 

2peak50noise_spacing_1.txt 1.500 1.544 2.908 0.200 0.227 13.345 96658.805 101029.293 4.522 

2peak50noise_ spacing_1.txt 2.500 2.434 2.650 0.200 0.270 34.834 98989.501 97507.638 1.497 

2peak50noise_spacing_2.txt 1.500 1.521 1.402 0.300 0.308 2.577 97551.171 102809.133 5.390 

2peak50noise_spacing_2.txt 2.500 1.866 25.374 0.300 0.018 94.156 99875.246 120085.092 20.235 
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Table 2 (continued) 

Filename 

Modeled 

Position 

Calculated 

Position 

Position 

Error 

(%) 

Modeled 

Width 

Calculated 

Width 

Width 

Error 

(%) 

Modeled 

Height 

Calculated 

Height 

Height 

Error 

(%) 

2peak50noise_spacing_2.txt 2.500 2.347 6.111 0.300 0.473 57.685 99875.246 105386.074 5.518 

2peak50noise_spacing_3.txt 1.500 1.665 10.995 0.400 0.563 40.846 99935.842 116400.868 16.476 

2peak50noise_spacing_3.txt 2.500 2.138 14.472 0.400 0.017 95.769 99060.531 140451.345 41.783 

2peak50noise_spacing_3.txt 2.500 2.397 4.131 0.400 0.470 17.522 99060.531 112331.844 13.397 

 

 

 

Table 3 

Test 1 Results: Impact of Decreased Peak Spacing, Filtering With 10% Threshold 

Filename 

Modeled 

Position 

Calculated 

Position 

Position 

Error 

(%) 

Modeled 

Width 

Calculated 

Width 

Width 

Error 

(%) 

Modeled 

Height 

Calculated 

Height 

Height 

Error 

(%) 

2peak50noise_spacing_0.txt 1.500 1.501 0.074 0.100 0.102 1.904 99706.337 99580.635 0.126 

2peak50noise_spacing_0.txt 2.500 2.498 0.076 0.100 0.098 1.558 99643.775 101480.000 1.843 

2peak50noise_spacing_1.txt 1.500 1.546 3.070 0.200 0.231 15.612 96658.805 100723.327 4.205 

2peak50noise_spacing_1.txt 2.500 2.435 2.591 0.200 0.257 28.476 98989.501 99021.184 0.032 

2peak50noise_spacing_2.txt 1.500 1.606 7.079 0.300 0.389 29.610 97551.171 106255.038 8.922 

2peak50noise_spacing_2.txt 2.500 2.352 5.907 0.300 0.460 53.446 99875.246 105741.414 5.873 

2peak50noise_spacing_3.txt 1.500 1.684 12.268 0.400 0.584 46.087 99935.842 117534.076 17.610 

2peak50noise_spacing_3.txt 2.500 2.576 3.043 0.400 0.260 35.021 99060.531 126613.507 27.814 
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Impact of decreased peak spacing: Test 2. Figure 15 shows the impact of 

decreased peak spacing, with limited resolution. Figure 15A shows extremely well 

resolved peaks, while Figures 15C and 15D show peaks with very poor resolution. 

 

 

 
Figure 15. Test 2 results: Limitation of resolution. 

 

 

 

Tables 4 and 5 show the results of running the algorithm on the peaks shown in 

Figure 15 (Test 2). Similar to Test 1, errors seem to have a negative correlation with peak 

spacing. Increasing the width caused an especially pronounced error, which reached up to 

60%. A difference in Test 2, as compared to Test 1, is that the error values in height and 

width were very similar. Specifically, the errors were between the 10% threshold and the 

20% threshold case (ranges of 0% to 30% and 0% and 35%, respectively). 
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Table 4 

Test 2 Results: Limitation of Resolution, Filtering With 20% Threshold 

Filename 

Modeled 

Position 

Calculated 

Position 

Position 

Error 

(%) 

Modeled 

Width 

Calculated 

Width 

Width 

Error 

(%) 

Modeled 

Height 

Calculated 

Height 

Height 

Error 

(%) 

spacing2_test0.txt 1.000 1.000 0.000 0.100 0.100 0.000 120000.000 120000.226 0.000 

spacing2_test0.txt 3.000 3.000 0.000 0.100 0.100 0.000 120000.000 120000.674 0.001 

spacing2_test1.txt 1.600 1.617 1.080 0.100 0.110 9.988 120000.000 120619.369 0.516 

spacing2_test1.txt 2.400 2.406 0.255 0.100 0.093 6.851 120000.000 128143.800 6.786 

spacing2_test2.txt 1.750 1.830 4.573 0.100 0.132 32.082 120000.000 140006.236 16.672 

spacing2_test2.txt 2.250 2.278 1.258 0.100 0.073 27.118 120000.000 151459.486 26.216 

spacing2_test3.txt 1.750 1.829 4.508 0.100 0.132 32.135 120000.000 139650.002 16.375 

spacing2_test3.txt 2.250 2.273 1.040 0.100 0.072 28.482 120000.000 153813.320 28.178 

 

 

 

Table 5 

Test 2 Results: Limitation of Resolution, Filtering With 10% Threshold 

Filename 

Modeled 

Position 

Calculated 

Position 

Position 

Error 

(%) 

Modeled 

Width 

Calculated 

Width 

Width 

Error 

(%) 

Modeled 

Height 

Calculated 

Height 

Height 

Error 

(%) 

spacing2_test0.txt 1.000 1.000 0.000 0.100 0.100 0.000 120000.000 120000.226 0.000 

spacing2_test0.txt 3.000 3.000 0.000 0.100 0.100 0.000 120000.000 120000.674 0.001 

spacing2_test1.txt 1.600 1.617 1.080 0.100 0.110 9.988 120000.000 120619.369 0.516 

spacing2_test1.txt 2.400 2.406 0.255 0.100 0.093 6.851 120000.000 128143.800 6.786 

spacing2_test2.txt 1.750 1.830 4.573 0.100 0.132 32.082 120000.000 140006.236 16.672 



41 

 

Table 5 (continued) 

Filename 
Modeled 

Position 

Calculated 

Position 

Position 

Error 

(%) 

Modeled 

Width 

Calculated 

Width 

Width 

Error 

(%) 

Modeled 

Height 

Calculated 

Height 

Height 

Error 

(%) 

spacing2_test2.txt 2.250 2.278 1.258 0.100 0.073 27.118 120000.000 151459.486 26.216 

spacing2_test3.txt 1.750 1.830 4.559 0.100 0.133 32.698 120000.000 139745.361 16.454 

spacing2_test3.txt 2.250 2.133 5.222 0.100 0.158 58.411 120000.000 140067.457 16.723 

 

 

 

Impact of noise. Tables 6 and 7 show the result of applying the algorithm to test 

the impact of increasing noise. The tables show that increasing noise does not seem to 

have much effect on error, with a very weak positive correlation in each case. Overall, the 

noise caused the errors, ranging from 0% to 1% for position, 0% to 12% for width, and 

0% to 6% for height in each case. 

 

 

Table 6 

Test Results: Impact of Noise, Filtering With 20% Threshold 

Filename 

Modeled 

Position 

Calculated 

Position 

Position 

Error 

(%) 

Modeled 

Width 

Calculated 

Width 

Width 

Error 

(%) 

Modeled 

Height 

Calculated 

Height 

Height 

Error 

(%) 

2peak62.txt 1.500 1.501 0.091 0.100 0.097 3.208 102541.193 104395.329 1.808 

2peak62.txt 2.500 2.501 0.021 0.100 0.102 1.688 99456.923 101666.985 2.222 

2peak75.txt 1.500 1.504 0.244 0.100 0.099 0.541 101798.138 104789.288 2.938 

2peak75.txt 2.500 2.502 0.092 0.100 0.097 3.233 97986.481 98239.387 0.258 

2peak87.txt 1.500 1.495 0.307 0.100 0.100 0.261 103804.031 104898.812 1.055 
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Table 6 (continued) 

Filename 
Modeled 

Position 

Calculated 

Position 

Position 

Error 

(%) 

Modeled 

Width 

Calculated 

Width 

Width 

Error 

(%) 

Modeled 

Height 

Calculated 

Height 

Height 

Error 

(%) 

2peak87.txt 2.500 2.498 0.087 0.100 0.088 11.699 101225.142 106735.985 5.444 

2peak100.txt 1.500 1.491 0.569 0.100 0.104 3.544 102627.487 98137.866 4.375 

2peak100.txt 2.500 2.486 0.554 0.100 0.104 3.822 100477.727 100414.466 0.063 

 

 

 

Table 7 

Test Results: Impact of Noise, Filtering With 10% Threshold 

Filename 

Modeled 

Position 

Calculated 

Position 

Position 

Error 

(%) 

Modeled 

Width 

Calculated 

Width 

Width 

Error 

(%) 

Modeled 

Height 

Calculated 

Height 

Height 

Error 

(%) 

2peak62.txt 1.500 1.502 0.118 0.100 0.099 1.469 102541.193 103884.793 1.310 

2peak62.txt 2.500 2.502 0.089 0.100 0.099 0.795 99456.923 102200.715 2.759 

2peak75.txt 1.500 1.503 0.195 0.100 0.104 3.890 101798.138 103385.275 1.559 

2peak75.txt 2.500 2.506 0.237 0.100 0.093 7.241 97986.481 99413.895 1.457 

2peak87.txt 1.500 1.496 0.270 0.100 0.098 2.117 103804.031 105155.040 1.301 

2peak87.txt 2.500 2.493 0.280 0.100 0.105 5.302 101225.142 100731.108 0.488 

2peak100.txt 1.500 1.489 0.717 0.100 0.107 6.797 102627.487 96766.143 5.711 

2peak100.txt 2.500 2.490 0.382 0.100 0.097 2.545 100477.727 103076.285 2.586 
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Conclusion 

The algorithm described above is useful for most applications requiring 

deconvolution. However, it still has some limitations.  Peaks that are not visually distinct 

will not be found. There may also be some false positives, although these can be 

alleviated by decreasing the noise threshold. There are also potential improvements to be 

made to the algorithm, namely, applying a more complex filter that produces fewer 

artifacts than the simple low-pass filter, and using curve fitting for types of functions 

other than Gaussian. 
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Chapter 4 

Wavelet Deconvolution 

In a previous study, Gaussian, Lorentzian, and Voigt functions were used to 

accurately model chromatographic peaks. Preprocessing steps included smoothing and 

interpolation. An adaptive polynomial formula was used to create equal spacing between 

points. The Fourier transform was originally used to remove high-frequency noise, but 

the application of the Fourier transform with low-pass filtering is limited only to high-

frequency noise and is not effective in handling poorly resolved peaks. An alternative to 

the Fourier transform is the continuous wavelet transform (CWT), which can construct a 

time-frequency representation of a signal that offers very good time and frequency 

localization. 

The Wavelet Transform 

The problem with the Fourier transform is that it gives the spectral content of the 

signal but provides no indication of the time at which spectral components appear [38]. 

The Short Time Fourier Transform (STFT) was then developed as a solution. This 

method shows the times at which certain frequencies are active in the signal. While 

windowing a signal, a different function is used to select a subset of the signal, and then 

the Fourier transform is applied. The window then shifts to different portions of the 

signal, where more Fourier transforms are calculated until the entire analysis is complete. 

This technique provides time localization of a signal’s frequencies [39]. However, the 

STFT has the disadvantage of having a time versus frequency resolution trade-off. 

Narrow windows provide good time resolution but bad frequency resolution, while wide 

windows provide good frequency resolution but bad time resolution [38]. Therefore, an 
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alternative method to the Fourier transform is necessary. One alternative is wavelet 

analysis, which removes the need for window widths entirely by computing a transform 

over all width scales [39]. The process of wavelet analysis involves shifting a wavelet 

with a certain scale across the signal. For the process to be useful, multiple wavelets, each 

with different scales, need to be employed.  Using different scales for the wavelets allows 

information to be gained about both the signal’s times and frequencies [39]. 

Peak Detection with the CWT 

Du et al. [40] describe a method that uses the CWT to detect peaks in 

spectroscopic data. Their method involves identifying ridge lines in a matrix computed 

from the CWT and filtering these ridge lines according to a minimal signal-to-noise ratio 

and minimal ridge line length. Ridge lines are lines that link the local maxima for the 

CWT coefficients at each scale. The matrix contains coefficients reflecting the pattern 

matching between the input signal 𝑠 and the wavelet function 𝜓𝑎,𝑏(𝑡), where higher 

coefficients indicate a better match [40]. 

Algorithm overview. The wavelet transform creates a localized analysis of the 

input signal. A high-level overview of the CWT algorithm adapted from [40] can be 

expressed as follows: 

1. Compute the 𝑁 × 𝑀 CWT matrix of the input, where 𝑁 is the number of 

scales to use and 𝑀 is the length of the input spectrum 

2. Identify ridge lines 

3. Filter ridge lines to identify peaks 
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CWT definition. The CWT is defined in [41] as shown by Equation (25): 

𝐶(𝑎, 𝑏) = ∫
∞

−∞

𝑠(𝑡)𝜓𝑎,𝑏(𝑡)d𝑡, 𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡 − 𝑏

𝑎
), (25) 

where 𝑠(𝑡) is the signal, 𝑎 is the scale, 𝜓(𝑡) is the mother wavelet function, and 𝑏 is the 

translation. For 𝜓, the Marr wavelet was chosen [41]. The CWT is a linear 

transformation, and it is covariant under dilations [42]: 

𝑓(𝑥) → 𝑓(𝑚𝑥),    𝑊𝜓𝑠𝑎(𝑏) → 𝑚−1/2𝑊𝜓𝑠𝑚𝑎(𝑚𝑏). (26) 

Ridge line identification. After the CWT matrix is computed, the algorithm 

initializes ridge lines based on local maxima found in the 𝑵th row of the CWT coefficient 

matrix, which corresponds to the row with the largest scale. Each ridge line is assigned a 

gap number with an initial value of 0. The gap number is a measure used to identify 

which ridge lines are still to be searched by the algorithm. The algorithm then iterates 

over ridge lines with gap numbers less than a given threshold, searching for the nearest 

maximum point at the next adjacent scale. If the maximum point is less than the sliding 

window size for the current scale level, the ridge line’s gap number is set to 0, and 

otherwise it is increased by 1. After each iteration, ridge lines with a gap number higher 

than the threshold are saved and removed from the list of ridge lines to search. New ridge 

lines are initialized for maxima not linked to upper level points. The previous steps are 

repeated until row 𝒏 = 𝟏 (the row with the smallest scale) is reached in the CWT matrix 

[40]. 

Ridge line filtering. Ridge line filtering occurs based on three factors [40]: 

1. The scale of the ridge line at the maximum amplitude should be within a 

certain range. 
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2. The signal-to-noise (S/N) ratio should be larger than a given threshold. 

3. Ridge lines should be longer than a given threshold. 

The signal of a peak is defined as the maximum CWT coefficient for a ridge line 

within a given scale range. Noise for a peak is defined as the 95-percent quantile of the 

absolute CWT coefficient values (𝑎 = 1) within a window surrounding the peak. The 

SNR is thus defined as the ratio of the peak’s estimated signal strength and the peak’s 

local noise level [40]. After filtering is performed, the CWT provides the location of 

peaks and their heights. This information can be supplied into the next steps of the 

algorithm to find more detailed information about the peaks, including width, location of 

endpoints, and so on. 

Testing 

The CWT algorithm was implemented in C# with Microsoft .NET Framework 

4.6.1. Testing of the algorithm involved testing the algorithm’s accuracy on modeled data 

for which the Gaussian parameters were already known and measuring the runtime of the 

algorithm on several data sets with differing numbers of data points. 

Testing on modeled data. The input data set is a series of points generated from 

a sum of two Gaussian functions that slightly overlap, as shown in Figure 16. The 

parameters used to generate the first peak are height = 110,000, width = 0.70, and center 

= 2.0. The parameters used to generate the second peak are height = 120,000, width = 

0.70, and center = 2.3. 
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Figure 16. Modeled sum of Gaussian curves for  

CWT testing. 

 

 

 

The CWT was used to calculate the positions of the peaks, which are shown with vertical 

dashed lines in Figure 17. 

 
Figure 17. Peak position results from CWT. 
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The positions found by the CWT were used along with initial Gaussian parameter 

estimates to generate function fits with the package lmfit [43]. The results of the fit along 

with residuals are shown in Figure 18. 

 
Figure 18. Best fit and residuals resulting from the least-squares 

minimization procedure. 
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The parameters found by the lmfit package are shown in Table 8. The table shows 

that the CWT is able to find positions of peaks accurately, and it can allow for accurate 

fitting with least-squares minimization or another appropriate curve fitting method. 

 

 

Table 8 

Results of Least-Squares Minimization Fit 

Name Value 

𝜎1 0.070589 

center1 2.003 

height1 1102213.07 

𝜎2 0.07028453 

center2 2.299 

height2 1202303.29 

𝜒2 6.4275 x 1010 

 

 

 

Performance testing. The algorithm was run on a Windows 10 desktop with an 

Intel Core i7-7700K 4.20GHz CPU and 32 gigabytes of RAM. Results were collected 

with the dotTrace performance profiler. Test results are shown in Table 9. For each data 

set, the algorithm ran on the original data set as well as the 1000-point set resulting from 

interpolation. 
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Table 9 

Runtimes for the CWT Algorithm 

Filename 

Original 

Number of  

Points 

Runtime for 

Original Number 

of Points (ms) 

Runtime for  

n = 1000 Points 

(ms) 

Hydrophilic_Double_5_185.0957.txt 54 32 6741 

Hydrophilic_Double_65_215.0148.txt 77 5.6 8268 

Hydrophilic_Triple_121_242.9807.txt 103 10 8174 

Lipophilic_Double_865_524.3573.txt 45 1.1 8523 

Lipophilic_Single_827_509.txt 22 17 7973 

Lipophilic_Triple_253_288.1739.txt 522 1148 8446 

Mixed_Single_1308_915.6949.txt 18 0.7 8284 

Mixed_Double_985_585.3342.txt 43 1.2 8105 

Mixed_Triple_1315_933.3913.txt 238 118 8174 

 

 

 

Conclusion 

The algorithm is very fast for the original number of points for each data set, but 

performance could be improved for the interpolated data sets.  One potential 

improvement is to use an FFT for the convolution required by the calculation of the CWT 

matrix instead of a direct implementation of convolution.  The bulk of the work of the 
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algorithm is done in the convolution step, and using an FFT can improve performance 

from O(n2) ro O(n log n). 
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Chapter 5 

The Application of Deconvolution for Analysis of High-Resolution LC-MS Data 

This chapter describes the applicability of the CWT algorithm to automated 

analysis of high-resolution LC-MS data collected in metabolomics experiments for rat 

plasma samples. Experimental LC-MS data used in this chapter were acquired on a 

Thermo Fisher Scientific Open Accela 1250 UHPLC system coupled with an Orbitrap 

mass spectrometer as described in Hnatyshyn and Shipkova [2]. Raw LC-MS data were 

preprocessed and converted to ASCII files. Each sample in the experiment has a 

corresponding folder that contains a collection of all detected signals. Each file stored in 

the sample folder represents an extracted ion chromatogram at a specific mass-to-charge 

ratio. Each ion chromatogram was extracted within a 10 ppm window of the selected 

mass-to-charge ratio. The collection of all extracted chromatograms represents a 

chemical makeup of a sample, where each extracted ion chromatogram is a measure of all 

detected isobaric chemicals in the sample makeup. Peaks in an extracted ion 

chromatogram represent a quantitative measurement of the contribution of the 

corresponding chemical in the sample composition [2]. Changing peak shapes, noise 

levels, and convolution states reflect the physio-chemical states of interactions of mobile 

and stationary phases of chromatographic separation throughout the duration of an LC-

MS experiment [3]. 

An extracted ion chromatogram can be modeled simply as a sum of peaks, where 

each peak can be approximated by a Gaussian function [44]. The CWT algorithm was 

used to automatically analyze each extracted ion chromatogram data file to detect all 

peaks and calculate the parameters of Gaussian functions that approximate them. 
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To summarize the performance tests and validate the CWT algorithm, all 

experimental data were classified into 27 different cases reflecting all possible variations 

of peak properties in the experiment according to their elution time, noise levels, and 

convolution state. 

The classification procedure for the entire input extracted ion chromatogram is 

based on the following differences: (1) presence of background noise, (2) elution time of 

the most intense peak of the extracted ion chromatogram, and (3) state of convolution. 

Signal-to-noise (S/N) ratio was calculated as a ratio between corresponding signals 

measured in a solvent blank and signals measured in plasma samples. Three arbitrary 

elution regions were established using elution profiles of compounds with known 

physical-chemical properties. The degree of peak convolution was measured by counting 

the number of peaks in an extracted ion chromatogram. 

Classification of Extracted Ion Chromatograms 

The most important determining factor for the quality of chromatographic data is 

the presence of noise. There are two major types of noise in a chromatographic 

experiment: (1) chemical noise and (2) random noise. A typical procedure to measure the 

presence of chemical noise in a chromatographic system is an experiment with a blank 

injection, which does not contain any sample but rather includes only the solvent used to 

dissolve the sample in the chromatographic experiment. A signal measured in the blank 

injection represents chemical noise (see Figure 19). 
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Figure 19. Comparison of rat plasma samples. Reproduced with permission from 

Dr. S. Hnatyshyn [2]. 

 

 

 

Classification by signal-to-noise (S/N) ratio. The comparison of correspondent 

signals matched by the mass-to-charge ratio in the blank injection and rat plasma sample 

allows the sorting of detected signals into four categories: 

1. “Clean” unique to plasma samples 

2. Low-noise signals with an S/N ratio greater than 10 

3. High-noise signals with an S/N ratio between 3 and 10 

4. Chemical noise signals with an S/N ratio less than 3 (signals in this category were 

removed from consideration) 

Classification by physical-chemical properties. Physical-chemical properties of 

a substance define its behavior during a separation experiment in a chromatographic 

system. The behavior of a substance and its interactions inside the chromatographic 

system define elution time and shape of correspondent peaks on the extracted ion 
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chromatograms [44]. Substances can be classified into three categories based on the value 

of the elution time of the correspondent peak (see Figure 20): 

1. Signals that correspond to substances with hydrophilic properties (retention 

time of 0-6 minutes) 

2. Signals that correspond to substances with mixed hydrophilic/hydrophobic 

properties (retention time of 6-10 minutes) 

3. Signals that correspond to substances with lipophilic properties (retention 

time of 10-16 minutes) 

 

 

 
Figure 20. Substance properties over time. Reproduced with permission from  

Dr. S. Hnatyshyn [2]. 
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Classification by degree of peak convolution. Finally, the categories based on 

peak elution time are further divided into categories determined by degree of peak 

convolution (see Figure 21): 

1. Signals corresponding to chromatograms with a single peak 

2. Signals corresponding to chromatograms with two overlapping peaks 

3. Signals corresponding to chromatograms with three or more overlapping peaks 

 

 

 
Figure 21. Degree of peak convolution. 

 

 

 

Classification results. Table 10 shows the number of chromatograms in each 

category. For each of the 27 categories, a representative sample was chosen and used as 

input to the CWT deconvolution algorithm. Obtained results were compared with the 

results of manual convolution for the same traces. 
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Table 10 

LC-MS Extracted Ion Chromatogram Categories 

Noise 

Level 

Hydrophilic Mixed Lipophilic 

Single Two Three 

or 

More 

Single Two Three 

or 

More 

Single Two Three 

or 

More 

Clean 333 29 9 257 10 14 515 97 86 

Low 173 25 39 284 7 8 212 24 62 

High 91 39 160 157 29 72 393 49 360 

 

 

 

Discussion 

The CWT was tested with a representative data set from each of the 27 categories. 

The results of the tests are shown in Table A1. The Data File column contains the file 

name for each data set. Each file was interpolated with a step of 0.0015 and had a peak 

width of 0.2. The Model Fit Statistics column shows the measurements of the model 

generated by lmfit. In the case where multiple models were generated, the ones with the 

lowest Bayesian and Akaike information criteria were chosen. The Model View column 

shows the resulting variables for each of the Gaussian peaks. In the model view, 𝐴𝑛 

represents the height of the 𝑛th peak, 𝐵𝑛 represents the position of the 𝑛th peak, and 𝐶𝑛 

represents the width of the 𝑛th peak. Table A1 explains the model fit statistics. The 

figures corresponding to the models for each data file are shown in Appendix B. 

Clean and hydrophilic samples. CHS_5_185.0957 shows a sample with a single 

peak and no noise. The peak is close to being symmetric, and the model generated creates 

a Gaussian peak with minimal residual error compared to the original. CHD_65_215 
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shows a sample with two visually distinct peaks and a small bump at the right end of the 

data. The model contains one Gaussian peak for the larger of the distinct peaks, a high-

width Gaussian peak for the smaller of the peaks, and a low-height Gaussian for the 

bump at the end of the data. CHT_121_242 shows a sample with two visually distinct 

peaks at the left end of the data, and multiple smaller, less distinguishable peaks in the 

right half of the data. The model generated includes Gaussians for the two visually 

distinct peaks in the left half of the data and has five Gaussian peaks for the right half of 

the data (two pairs from peaks that were convoluted and one at the right end of the data). 

Clean and mixed samples. CMS_1308_915 shows a sample with a tall, thin peak 

at the beginning of the data and a wider, visually distinct peak in the first half of the data 

from the left. The model computed includes both of these peaks as well as two small 

peaks for the second half of the data. CMD_985_585 shows a set of peaks of which each 

appears to consist of two or three overlapping peaks. The computed model finds 

Gaussians for each of the overlapping peaks, as well as wider peaks for the baseline. 

CMT_1315_933 has multiple overlapping peaks, each of which is narrow and close 

together. The resulting model is a set of multiple thin Gaussian peaks. Some peaks from 

the original data were not considered significant and thus were excluded from the model. 

Clean and lipophilic samples. CLS_827_509 shows a single, symmetric peak 

that has no noise. The model computed accurately represents the peak. CLD_865_524 

shows two peaks with slight overlap that are each symmetric and that have a small 

amount of noise. The resulting model accurately finds two overlapping Gaussian peaks. 

CLT_253_288 shows two main visually distinct peaks in the first half of the data from the 
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left and one small peak in the second half of the data. The larger of the two peaks has 

some tailing, and both are narrow. The resulting model accurately finds the three peaks. 

Low-noise and hydrophilic samples. LHS_49_230 shows a single peak that has 

a slight amount of noise and is slightly asymmetric. The model computed accurately 

represents the peak. LHD_108_86 shows two slightly overlapping peaks with 

surrounding noise. The model computed finds two overlapping peaks as well as one 

distinct peak to the right in the data. LHT_75_261 shows a single visually distinct peak 

with significantly more height than the remainder of the data along with two smaller 

peaks that overlap and are only slightly higher than the noise. The model finds the high 

peak as well as the two overlapping peaks. 

Low-noise and mixed samples. LMS_7_189 shows a single, slightly asymmetric 

peak with a low amount of noise. The model calculates the peak accurately. 

LMD_151_297 shows a single, visually distinct peak in the middle data with two smaller 

peaks at the front and tail ends of the data. The model finds these peaks accurately. 

LMT_163_300 shows a single, visually distinct peak at the front end of the data with 

several small, overlapping peaks at the end of the data. The model finds the visually 

distinct peak and four peaks for the tail end. 

Low-noise and lipophilic samples. LLS_89_272 shows a single, slightly 

asymmetric peak that is narrow and has low noise. There is a small bump of noise to the 

left of the peak. The model calculates a peak with lower height than the peak in the data. 

LLD_81_263 shows two sets of peaks of which each is composed of two low-noise 

overlapping peaks. The model accurately identifies the left pair of overlapping peaks, but 

the position it calculates for the smaller peak of the right pair of peaks is to the right of 
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the actual position of the peak. LLT_57_238 has six peaks of varying heights that are 

each narrow and are all visually distinct. The model marks five of the six peaks as being 

legitimate peaks, and each of these has its position, height, and width calculated 

correctly. 

High-noise and hydrophilic samples. HHS_507_306 shows a peak with 

peaklike oscillations to its right. The model finds two peaks: one to represent the peak 

itself, and one to represent the baseline noise of the data. HHD_507_306 is similar to the 

previous sample, which has a single visually distinct peak with peaklike oscillations to its 

right. The model calculates four peaks to account for the given peak and its noise. 

HHT_23_185 has three narrow peaks that are each surrounded by high-frequency noise. 

The model finds the three peaks as well as several groups of small peaks that are visually 

indiscernible from the noise in the data. 

High-noise and mixed samples. HMS_125_211 shows a single symmetric peak 

and the left half of a peak at the tail end of the data. The model finds the visually distinct 

peak and two peaks for the tail end of the data. HMD_152_217 shows two visually 

distinct peaks of which each has noisy oscillations to its right. The model successfully 

calculates two peaks that correspond with those in the data. HMT_85_199 appears to 

have an asymmetric peak that spreads throughout the data, with one narrow, high peak in 

the middle of the data. The model actually finds 13 narrow peaks to represent the data. 

High-noise and lipophilic samples. HLS_609_343 shows a single, slightly 

asymmetric peak that has a low baseline to its right. The model calculates two peaks: one 

narrow peak representing the peak in the data, and one very wide peak that represents the 

baseline. HLD_159_219 has several noisy peaks that are slightly asymmetric and 
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overlapping. The model finds one wide, high peak and three smaller peaks. HLT_83_199 

shows several noisy peaks that appear to be symmetric and slightly overlapping. The 

model calculates several overlapping peaks that mix to produce a representation of the 

data. 

Conclusion 

The CWT provides an effective automated procedure for the analysis of extracted 

ion chromatograms. The CWT is robust to different numbers of peaks and levels of noise 

in input data. Additionally, a mixture of symmetric Gaussian functions provides an 

adequate model for chromatographic data. 
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Chapter 6 

Conclusions 

The goal of this thesis was to develop an algorithm that provides robust peak 

deconvolution with completely automated output without the need for manual 

verification of results. The deconvolution algorithm presented consists of preprocessing 

steps, noise removal, peak detection, and function fitting. For noise removal, both a 

Fourier Transform and Continuous Wavelet Transform method of noise removal were 

examined. Testing of the algorithm involved running the automated algorithm on data 

divided into distinct categories based on amount of noise and peak types. 

The presence of noise in images causes deconvolution to be a difficult problem, 

the solution to which is to identify and separate overlapping peaks. The research 

presented in this thesis began with prototyping an algorithm for processing modeled data 

composed of custom x and y values that form a mixture of Gaussian functions with 

“known” initial parameters. These data were used to develop and test the expectation-

maximization (EM) portion of the algorithm for deconvolution. When tested on modeled 

data, the implementation of the EM algorithm quickly converged to the correct parameter 

values, providing an accurate estimation of individual function components in the 

mixture. However, when run on real data, the algorithm did not converge and could not 

accurately compute individual functions. A k-means clustering algorithm was 

implemented with the assumption that more accurate knowledge of point membership 

would lead to better estimates of peak parameter values. Testing of the prototype 

implementation revealed that the algorithm continued to work well with custom data but 

still failed to converge for real data input. It was found that the assumption that the initial 
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mixture is described by a Gaussian distribution of evenly distributed data points is 

incorrect, as spectroscopic data points are not guaranteed to be evenly distributed. Thus, 

the prototype could not correctly identify the number of peaks and initial values for 

individual function parameters. This showed the necessity of preprocessing the input data 

before running the EM algorithm. 

To address the problem of noise, various algorithms, including the preprocessing 

steps of interpolation, smoothing, and spline calculation, were introduced. After noise 

continued to be present in the data, a 5-step polynomial smoothing function, the 

Savitzky-Golay filter, was added to increase the signal-to-noise ratio of the interpolation 

algorithm’s output. The Savitzky-Golay smoothing algorithm resulted in a uniformly 

spread, low-noise set of discrete points. The remainder of the algorithm required a 

continuous function as input; thus, the y value for a given x value was calculated using 

two linearly independent cubic polynomial terms in the spline function. After data 

preprocessing, peaks were found by calculating the curve’s derivative. Each peak, after 

being found, was fit into a Gaussian function. The function fitting procedure described in 

chapter 2 assumes Gaussian functions are symmetrical in nature. However, asymmetric 

Gaussian functions are more commonly found in experimental data. Asymmetry 

broadens the base of a peak and increases peak overlap, thereby resulting in more 

difficult measurement. The work presented in chapter 2 resulted in software that reads 

raw data and performs data preprocessing. After preprocessing, the software detected 

peaks and fit experimental data into a Gaussian approximation and then optimized 

Gaussian parameters with the EM algorithm. Stability testing revealed that the algorithm 

continued to falter in the presence of noise. 
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A major improvement to the algorithm was made with the addition of noise 

elimination through low-pass filtering with Fourier transforms. Tests were conducted 

with a low-pass filter implemented with a DFT to determine the impact of decreased peak 

spacing and of noise. Two sets of test data were examined: Test 1 describes the result of 

increasing the width of peaks, while Test 2 gives the result of moving peak centers closer 

together. The tests conducted showed that increased overlap in input data resulted in 

increased error in estimated parameter values after the DFT was applied. While the DFT 

is useful for most applications requiring deconvolution, there are still some limitations: 

Peaks that are not visually distinct will not be found. Potential improvements to the 

algorithm include (a) applying a more complex filter that produces fewer artifacts than 

the simple low-pass filter and (b) using curve fitting for types of functions other than 

Gaussian. 

An alternative to the Fourier transform is the continuous wavelet transform 

(CWT). The main advantage of the wavelet transform as a method for time-frequency 

analysis is that it is able to perfectly reconstruct functions [45]. Testing of the algorithm 

involved testing the algorithm’s accuracy on modeled data for which the Gaussian 

parameters were already known and measuring the runtime of the algorithm on several 

data sets with differing numbers of data points. The CWT was able to find positions of 

peaks accurately, and it can allow for accurate fitting with least-squares minimization or 

another appropriate method of curve fitting. The algorithm is very fast for the data sets 

without interpolation, but could have improved performance for interpolated data sets. 

The algorithm’s performance could be improved by using an FFT implementation of 

convolution instead of a direct implementation. 
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To test the performance of the CWT algorithm, all input data were classified 

based on the following differences: (1) presence of background noise, (2) elution time on 

the extracted ion chromatogram, and (3) state of peak convolution. Data were classified 

by signal-to-noise (S/N) ratio, by physical-chemical properties, and by degree of peak 

convolution. Extracted ion chromatograms were sorted into 27 categories that reflect all 

possible combinations of classification differences. The CWT was tested with 

representative data sets from each of the 27 categories. The results, presented in the form 

of a sum of Gaussian function models, are shown in Appendices A and B. Appendix A 

shows the values of Gaussian function parameters and the details of the statistical 

evaluation of fits. Appendix B is a graphical representation of the experimental data, 

models, and residuals. Presented results for the CWT’s application to experimental data 

illustrate that the algorithm is an effective method for estimating the locations of peaks in 

chromatographic data and that a sum of symmetric Gaussian curves is a reasonable model 

that approximates all types of extracted ion chromatograms. 

Future improvements can include expanding the model-fitting capabilities of the 

CWT algorithm by utilizing different functions to describe chromatographic peaks (e.g, 

asymmetrical Gaussians; see chapter 2) and creating an unbiased model optimizer that 

will automatically select the most adequate model based on the values of the Akaike 

information criterion or Bayesian information criterion [46]. 
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Appendix A 

Continuous Wavelet Transform (CWT) Test Categorical Results 

Appendix Table A1 includes the data files and parameters, Gaussian model fit 

statistics, and Gaussian model view for the following CWT test categories:  

 

 

Table A1 

CWT Test Categorical Results 

Data File Model Fit Statistics Model View 

Clean + hydrophilic 

CHS_5_185.0957 

Fitting method = least sq. 

Function evals = 65 

Data points = 165 

Variables = 2 

Chi-square = 1.11 x 1013 

Reduced chi-sq. = 6.80 x 1010 

Akaike info crit = 4117.45 

Bayesian info crit = 4124.66 

C1: 0.016  B1: 4.052  A1: 291944.773 

CHD_65_215 

Fitting method = least sq. 

Function evals = 1516 

Data points = 214 

Variables = 6 

Chi-square = 1.41 x 1012 

Reduced chi-sq. = 6.80 x 109 

Akaike info crit = 4850.89 

Bayesian info crit = 4871.08 

C1: 0.177  B1: 0.685  A1: 49982.973 

C2: 0.010  B2: 0.778  A1: 14044.863 

C3: 0.010  B3: 0.943  A3: 789.664 

CHT_121_242 

Fitting method = least sq. 

Function evals = 23 

Data points = 530 

Variables = 14 

Chi-square = 2.72 x 1012 

Reduced chi-sq. = 5.26 x 109 

Akaike info crit = 11877.26 

Bayesian info crit = 11937.08 

C1: 0.010  B1: 0.671  A1: 4526.952 

C2: 0.010  B2: 0.777  A2: 14942.912 

C3: 0.010  B3: 0.957  A3: 2250.164 

C4: 0.010  B4: 1.017  A4: 1987.361 

C5: 0.010  B5: 1.169  A5: 1559.910 

C6: 0.010  B6: 1.247  A6: 1739.057 

C7: 0.010. B7: 1.439  B7: 1063.765 
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Table A1 (continued) 
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Table A1 (continued) 
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Table A1 (continued) 
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Table A1 (continued) 
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Table A1 (continued) 
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Table A1 (continued) 
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Table A1 (continued) 
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Table A2 

Explanation of Model Fit Statistics 

Attribute Name Description / Formula 

nfev Number of function evaluations 

nvarys Number of variables in Nvarys 

ndata Number of data points: N 

nfree Degrees of freedom in fit: N – Nvarys 

residual Residual array, returned by the objective function: {Residi} 

chisqr Chi-square: 𝜒2 = ∑ [𝑁
𝑖 𝑅𝑒𝑠𝑖𝑑𝑖]

2 

redchi Reduced chi-square: 𝜒𝜐
2 = 𝜒2/ (N – Nvarys) 

aic Akaike information criterion statistic (see below) 

bic Bayesian information criterion statistic (see below) 

var_names Ordered list of variable parameter names used for init_vals and covar 

covar Covariance matrix (with rows/columns using var_names) 

init_vals List of initial values for variable parameters 

 

 

 

The MinimizerResult includes the traditional chi-square and reduced chi-square 

statistics, shown in Equations (A1) and (A2): 

𝜒2 = ∑𝑟𝑖
2

𝑁

𝑖

 (A1) 

𝜒𝜐
2 = 𝜒2/ (N – Nvarys),  (A2) 
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where r is the residual array returned by the objective function, which, for data modeling 

usages, is likely to be (data-model / uncertainty), N is the number of data points (ndata), 

and Nvarys is number of variable parameters. 

The Akaike Information Criterion (aic) and Baeysian Information Criterion (bic) 

statistics are also included. These each give slightly different measures for the relative 

quality of a fit. These statistics attempt to balance the quality of the fit with the number of 

variable parameters the fit uses. The equations for the aic and bic are shown in Equations 

(A3) and (A4), respectively: 

aic = 𝑁 ln (
𝜒2

𝑁
) + 2𝑁𝑣𝑎𝑟𝑦𝑠 (A3) 

bic = N ln (
𝜒2

𝑁
) + ln (𝑁)𝑁𝑣𝑎𝑟𝑦𝑠. (A4) 

One typically selects the model with the lowest reduced chi-square, the Akaike 

Information Criterion, and/or the Bayesian Information Criterion, when comparing fits 

with different numbers of varying parameters. The most conservative of these statistics is 

the Bayesian Information Criterion. 
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Appendix B 

CWT Test Categories 

 Appendix B includes images of the Gaussian Model Fit and Model View for the 

CWT test categories. 

Clean-Hydrophilic Category  

 

 Results are shown for the following categories: clean-hydrophilic, clean-mixed, 

and clean-lipophilic. 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B1. CHS_5_185.0957. 
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Gaussian Model Fit 

 

Model View 

 

 

Figure B2. CHD_65_215. 

 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B3. CHT_121_242. 
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Gaussian Model Fit 

 

Model View 

 

 

Figure B4. CMS_13089_915. 

 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B5. CMD_985_585. 
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Gaussian Model Fit 

 

Model View 

 

 

Figure B6. CMT_1315_933. 

 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B7. CLS_827_509. 
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Gaussian Model Fit 

 

Model View 

 

 

Figure B8. CLD_865_524. 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B9. CLT_253_288. 
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Low-Noise–Hydrophilic Category 

 

Results are shown for the following categories: low-noise–hydrophilic, low-

noise–mixed, and low-noise–lipophilic. 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B10. LHS_49_230. 
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Gaussian Model Fit 

 

Model View 

 

 

Figure B11. LHD_108_86. 

 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B12. LHT_75_261. 
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Gaussian Model Fit 

 

Model View 

 

 

Figure B13. LMS_7_189. 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B14. LMD_151_297. 
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Gaussian Model Fit 

 

Model View 

 

 

Figure B15. LMT_163_300. 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B16. LLS_89_272. 
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Gaussian Model Fit 

 

Model View 

 

 

Figure B17. LLD_81_263. 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B18. LLT_57_238. 

 

 

 



91 

 

High-Noise–Hydrophilic Category 

 

Results are shown for the following categories: high-noise–hydrophilic, high-

noise–mixed, and high-noise–lipophilic. 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B19. HHS_507_306. 
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Gaussian Model Fit 

 

Model View 

 

 

Figure B20. HHD_507_306. 

 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B21. HHT_23_185. 
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Gaussian Model Fit 

 

Model View 

 

 

Figure B22. HMS_125_211. 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B23. HMD_153_217. 
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Gaussian Model Fit 

 

Model View 

 

 

Figure B24. HMT_85_199. 

 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B25. HLS_609_343. 
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Gaussian Model Fit 

 

Model View 

 

 

Figure B26. HLD_159_219. 

 

 

 

Gaussian Model Fit 

 

Model View 

 

 

Figure B27.  HLT_83_199. 
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