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Basis Pursuit Receiver Function

by Mrinal K. Sen,* Reetam Biswas,* Prantik Mandal, and Prakash Kumar

Abstract Receiver functions (RFs) are derived by deconvolution of the horizontal
(radial or transverse) component of ground motion from the vertical component,
which segregates the PS phases. Many methods have been proposed to employ de-
convolution in frequency as well as in time domain. These methods vary in their ap-
proaches to impose regularization that addresses the stability problem. Here, we
present application of a new time-domain deconvolution technique called basis pursuit
deconvolution (BPD) that has recently been applied to seismic exploration data. Un-
like conventional deconvolution methods, the BPD uses an L1 norm constraint on
model reflectivity to impose sparsity. In addition, it uses an overcomplete wedge dic-
tionary based on a dipole reflectivity series to define model constraints, which can
achieve higher resolution than that obtained by the traditional methods. We demon-
strate successful application of BPD based RF estimation from synthetic data for a
crustal model with a near-surface thin layer of thickness 5, 7, 10, and 15 km. The BPD
can resolve these thin layers better with much improved signal-to-noise ratio than the
conventional methods. Finally, we demonstrate application of the BPD receiver func-
tion (BPRF) method to a field dataset from Kutch, India, where near-surface sedimen-
tary layers are known to be present. The BPRFs are able to resolve reflections from
these layers very well.

Introduction

It has now become a common practice to image crust
and upper-mantle discontinuities using receiver functions
(RFs). An RF is essentially a teleseismic record of PS con-
version without the complexity of the source time function.
Vinnik (1977) demonstrated one of the earliest applications
of RF to image the 410 and 660 km discontinuities using PS
converted waves. A seismic trace recorded at a station contains
information about the source structure, mantle propagation ef-
fects, and the crustal structure beneath the station. Figure 1
shows a ray interpretation of the Earth’s layer response to
an incoming plane wave (Ammon, 1991). At near normal in-
cidence (for example, at teleseismic distances), the S waves
are mostly recorded in the horizontal-component geophones
and are negligible in the vertical receivers. The RFs, which are
generated by deconvolution of the radial or transverse compo-
nent of the seismogram from the vertical component, contains
PS converted phases and S-phase reverberations. The process
of deconvolution isolates the near-receiver propagation effects
from the far-field dislocation time function, near-source struc-
ture, and lower-mantle propagation effects. Thus, the RFs can
be used to image crust and upper-mantle structures beneath
the recording station (e.g., Phinney, 1964; Burdick and Lang-
ston, 1977).

Several variants of RF deconvolution have been pro-
posed and implemented in frequency and time domains.
Some algorithms are based on iterative least-squares inver-
sion techniques, and others calculate the direct inverse of the
problem. Phinney (1964) used frequency domain deconvo-
lution for P-waveform modeling of spectral responses from
the crust at several Worldwide Standard Seismograph Net-
work (WWSSN) stations. There exist several problems asso-
ciated with frequency domain deconvolution mainly due to
band limitation of the recorded data. To address this, Burdick
and Langston (1977) introduced the time-domain deconvo-
lution for RF estimation. The time-domain inversion helps to
better preserve the phase information of the signal. Ammon
(1991) enhanced it further by proposing a method to estimate
the absolute amplitude of RFs and also the variation of am-
plitude of converted phases with source–receiver distance.
He also showed the importance of estimation of true amplitude
as it gets affected by scattering, which may be indicative of
anisotropy of the structure below. Gurrola et al. (1995) used
a simultaneous time-domain deconvolution method, which
uses various norms, and were able to improve on the results
by suppressing side lobes and increasing the resolution of the
peak phases.

In this paper, we use a compressive sensing based tech-
nique, namely, the basis pursuit deconvolution (BPD) for RF
deconvolution in time domain. The BPD is based on the idea
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of using an L1 norm minimization technique (Chen et al.,
1998), which has recently been applied to seismic explora-
tion problems (Puryear and Castagna, 2008; Zhang and Casta-
gna, 2011; Zhang et al., 2013). For optimization of our objective
function, we use the Gradient Projection Sparse Reconstruction
(GPSR) technique with theoretically computed regularization
weights that are iteration adaptive (Figueiredo et al., 2007; Bis-
was and Sen, 2014). We show examples of BPD based RF es-
timation for several synthetic datasets and a real dataset from
one three-component seismograph station of the local seismic
network of the National Geophysical Research Institute, Hyder-
abad, in the Kutch rift zone, Gujarat, India.

Theory

The fundamental issue in the generation of an RF is the
deconvolution; the problem associated with deconvolution is
fairly well known. Several approaches have been proposed
by the signal processing and seismology communities to ad-
dress these issues. In an RF, the recorded vertical component
trace is assumed to be the source wavelet containing mantle
and near-source propagation effects. This is convolved with
the impulse response (propagation effects below the receiver)
to generate the horizontal (or radial) component. The process

can be represented by the following simple convolution
model:

H�t� � r�t� � V�t�; �1�
in which r�t� is the earth’s response. Because the vertical
component V�t� and horizontal component H�t� both have
the source and mantle propagation effects, on deconvolution
they get eliminated and we generate the PS converted phases
(Fig. 1). A similar procedure is employed to generate an S-RF
in which the radial component is deconvolved from the ver-
tical component (Ligorría and Ammon, 1999). All our dis-
cussions will apply to both P- and S-RFs unless otherwise
stated although we will discuss P-RFs only.

Existing Deconvolution Methods

Mostly RFs are calculated in the frequency domain by
spectral division (e.g., Vinnik, 1977; Owens et al., 1984) to-
gether with some regularization so at to avoid instability. In
frequency domain it takes the following form:

R�ω� � H�ω�V��ω�
V�ω�V��ω� � δ

; �2�

in which R is the Fourier transform of the RF,H and V are the
Fourier transforms of horizontal and vertical component, re-
spectively, * represents the complex conjugate, and δ repre-
sents the added white noise. The white noise is added to
damp the solution and thus it stabilizes it against small values
by prewhitening the denominator. The above formulation can
be modified to carry out deconvolution for multiple traces
simultaneously instead of stacking results for individual
traces. The above formulation for simultaneous damping fac-
tor deconvolution can be written as

R�ω� �
P

H�ω�V��ω�P
V�ω�V��ω� � δ

; �3�

in which the summation is performed over the number of
traces. The prewhitening or damping can also be carried
out by water-level deconvolution (Owens et al., 1984), which
is similar to damping factor deconvolution but instead of
adding a constant factor δ to the denominator at all frequen-
cies, it employs damping only at those frequencies at which
the values fall below a certain fraction of the peak amplitude.

In the two methods described above, the value of δ is se-
lected by trial and error. In the damped least squares decon-
volution method employed by Bostock (1998), the value of δ
is selected by regression analysis through minimization of the
general cross validation (GCV) function, which is defined by

GCV�δ� �

P
M

P
N
�H − VR�2

�MN −
P
N
R� ; �4�

in which N is the number of frequencies, andM is the number
of traces.

Figure 1. (a) A plot showing arrivals of various direct and con-
verted phases of teleseismic P phases on the radial receiver function
(RF). (b) Ray paths of P-to-S conversions associated with the Moho
and other crustal multiples recorded by a three-component seismo-
graph considering crust overlying an upper mantle for an incoming
teleseismic P wave.
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All the methods described above use a constant value for
δ. Chen et al. (2010) proposed an array-conditioned decon-
volution method, which is data adaptive and independently
determines δ for each frequency. This technique gives better
results in multichannel processing than simultaneous deconvo-
lution, which is biased toward single channel, multievent data
(Chen et al., 2010). The filter derived in this method minimizes
the noise energy and energy related to instability and thus max-
imizes the signal energy (Haldorsen et al., 1994, 1995).

Apart from the frequency domain spectral division there
are several time-domain deconvolution methods. The time-
domain methods mainly solve an optimization problem
derived from equation (1), which can be represented by the
following linear system of equations

dsyn � Gm; �5�
in which dsyn represents a synthetic horizontal component, the
matrixG represents the operator matrix containing shifted ver-
tical seismogram representing a convolution kernel, and m
represents the vector of the model RF.

Here, we try to minimize the misfit between the syn-
thetic and the observed horizontal seismograms. Similar to
the procedure employed in the frequency domain, the system
is solved with damping or constraints using the least-squares
approach. Gurrola et al. (1995) applied a time-domain tech-
nique in simultaneous deconvolution, in which instead of solv-
ing for an individual RF for each trace and stacking all the ones
for a small range of distance and back azimuth, it solves for all
traces simultaneously.

Typically, the optimization problem solves for unknown
model parameters by minimizing a functional that contains a
data misfit term and a model norm, in which each uses an L2
norm. The objective function is given by

kdobs − dsynk22 � λkmk22; �6�
in which m represents the RF vector and λ is a regularization
weight that determines relative importance of data and
model norms.

Some other variants of RF estimation were proposed
by Kikuchi and Kanamori (1982) and Ligorría and Ammon
(1999), who solved the RF deconvolution in time domain by a
forward iterative deconvolution technique. This method mea-
sures the similarity of two waveforms by a cross-correlation
function. Here, the vertical and horizontal components of the
seismograms are cross correlated, and a peak in RF series is
placed at the point of maximum cross correlation. This RF
series is then convolved with the vertical component to generate
the predicted trace, which is then subtracted from the observed
trace, and this process is iterated until a certain misfit is reached.

Basis Pursuit Deconvolution

One common approach to reflectivity estimation is to
replace the L2 model norm in equation (6) with an L1 norm.

The mixed L1–L2 norm poses some difficulties in solving
the system, but it introduces sparsity in the reflectivity series
(RF), reducing unwanted side lobes. The BPD uses a mixed
norm objective function problem having L1 norm of the
model and L2 norm of the data error, which introduces spar-
sity in layers (Zhang and Castagna, 2011; Zhang et al.,
2013). We describe the method in brief; however complete
details can be found in Zhang and Castagna (2011). The BPD
attempts to minimize the L2 norm of data jointly with the L1
norm of the model parameters using a regularization param-
eter (λ) that determines the relative weight between the two
norms. The objective function is given by

E�m� � kdobs − dsynk22 � λkmk1
� kdobs −Gmk22 � λkmk1: �7�

In a Bayesian framework, the result of an inverse prob-
lem is described by the posterior probability density function
(PPD) in model space, which is the product of a likelihood
function and an a priori probability density function (PDF) in
model space (e.g., Tarantola, 1984; Sen and Stoffa, 2013). In
the present context with reference to equation (7), the PPD is
therefore proportional to exp�−E�m��. Thus, the first part (or
the data norm) is the exponent of the likelihood function,
which is a Gaussian, and the second part, that is, the model
norm corresponding to the prior PDF, is a Laplace distribution.

In BPD, we decompose the reflectivity series in terms
of a linear combination of even (re) and odd (ro) dipoles
(Fig. 2). Using these dipole pairs, we construct a dipole dic-
tionary, termed the wedge dictionary by Zhang and Castagna
(2011), so as to accommodate layers of varying thickness
arranged with increasing time separation Δt. The even and
odd dipoles are given by

re�t; p; q;Δt� � δ�t − pΔt� � δ�t − pΔt� qΔt�;
ro�t; p; q;Δt� � δ�t − pΔt� − δ�t − pΔt� qΔt�; �8�

in which p represents the shift of reflectivity pair in time and
varies from 1 to P, total samples in the trace; and q represents
the bed time thickness, which ranges from 1 to maximum
bed time thickness Q. The dipole dictionary when multiplied
with the corresponding coefficients a and b produces the

Figure 2. Any reflection pair can be represented as the sum of
linear combination of even and odd dipole pairs. Thus, the coefficients
a and b are now the new model parameters (Zhang et al., 2013).

Basis Pursuit Receiver Function 2675



reflectivity series. Mathematically, the reflectivity series in
terms of the dictionary can be represented as

r�t; p; q;Δt� �
XP
p�1

XQ
q�1

�apqre�t; p; q;Δt�

� bpqro�t; p; q;Δt��: �9�

The dipole dictionary is convolved with the wavelet W
(vertical component) resulting in kernel matrixK replacingG
in equation (5). This gives rise to the following new equation:

dsyn � Kh; �10�

in which the model vector h � a b
� �

T contains a series of
coefficients a and b. Also, the seismogram (radial component)
obtained by our forward model equation (1) can be expressed
in terms of the kernel matrix as

H�t��
XP
p�1

XQ
q�1

�apqW�re�t;p;q;Δt��bpqW�ro�t;p;q;Δt��

�Kh: �11�

Thus our objective function changes to the following form:

E�h� � kdobs − dsynk22 � λkhk1 � kdobs −Khk22 � λkhk1;
�12�

which is solved for the coefficients of even and odd dipoles.
We have used the GPSR with theoretical lambda calculation to
solve for the optimal value of E�h�. Because of the represen-
tation of RF in terms of sparse basis, its resolution is expected
to increase (Zhang and Castagna, 2011).

Gradient Projection Sparse Reconstruction with
Theoretical Lambda

GPSR (Figueiredo et al., 2007) is a recently developed
L1 norm minimization algorithm, which solves our uncon-
strained optimization problem described by equation (7) or
(12) by converting it to a quadratic formulation. Algorithm
details can be found in Figueiredo et al. (2007). We will de-
scribe this method briefly, for completeness. The GPSR first
defines two vectors u and v such that

h � u − v; u ≥ 0; v ≥ 0; �13�

in which ui � �hi�� and vi � �hi�− for all i � 1; 2…n and
�·�� denotes positive part operator. Thus, khk1 � 1Tnu�
1Tnv, in which 1n � �1; 1;…; 1�T is the vector consisting of
n ones. Thus, equation (7) can be rewritten in the form of
bound-constrained quadratic program (BCQP) as follows:

min
u;v

1

2
kdobs −K�u − v�k � λ1Tnu� λ1Tnv: �14�

This can be further written in the more standard BCQP form
and then solved following a gradient projection algorithm
described in Figueiredo et al. (2007).

Biswas and Sen (2014) modified the GPSR algorithm to
calculate the regularization parameter λ at each iteration by
an iteration adaptive analytical formula using the Bayesian
approach for the mixed norm (Alliney and Ruzinsky, 1994).
It calculates the optimal value of λ at each iteration by min-
imizing a function of an auxiliary variable α given by

S�α�
�
I� 1

α
KTK

�
1=N

; �15�

in which I is an identity matrix, N is the number of data
points, and the function S�α� is given by

S�α� � kzk22 − zTK�αI �KTK�−1KTz; �16�

with z � −dobs and α � λ2σ2, in which σ is the variance of
the distribution.

Examples

Synthetic Examples

The objective of the numerical experiments reported in
this section is to demonstrate the efficacy of our basis pursuit
receiver function (BPRF) to resolve thin layers on a suite of
synthetic data for four different crustal models each containing
a thin bed (Figs. 3a and 4a–c). For this purpose, we generated
synthetic vertical and radial seismograms for a simple crustal
model containing a thin surface layer above Moho with in-
creasing thickness of 5, 7, 10, and 15 km and computed syn-
thetic seismograms using the reflectivity method (Fuchs and
Müller, 1971). For each case, we generated the full waveform
synthetics at approximately ∼0:5 Hz dominant frequency.
The plane containing the vertical and radial components is ro-
tated such that the vertical component is along the direction
of the maximum polarization direction of the P wave. This
rotation results in a clean decomposition of P–SV–SH compo-
nents. The rotated components are then subjected to time-
domain deconvolution and our modified GPSR algorithm with
a wedge dictionary (equation 9) and nonwedge dictionary
(equation 7). Figures 3a and 4a–c show the RFs for 5, 7, 10,
and 15 km thick layers, respectively. Figure 3b–e shows some
characteristic curves; Figure 3b,c, and e shows the variation of
data norm, model norm, and total norm, respectively, as a func-
tion of iteration. The model norm increases with iteration ini-
tially (Fig. 3c) and then becomes nearly flat beyond iteration
30. This is because our starting model contains a series of zero
reflectivity (the sparsest set); the algorithm finds the minimum
number of spikes or layers needed to fit the data adequately.
Figure 3d shows variation of theoretically calculated λ as a
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function of iteration, which demonstrates that the variable λ
becomes stable after about 30 iterations beyond which the error
does not change significantly. It is clear that our modified
GPSR algorithm with wedge dictionary was able to resolve
even the 5 km thin layer case, which was not possible with the
traditional method (see the peaks in the highlighted rectangles).
The traditional method could not even resolve the 7 km thick
layer, which was resolved by the nonwedge dictionary case
(Fig. 4a). The traditional method started resolving from the
10 km (Fig. 4b) thick layer onwards. Also the later phases
(highlighted by ellipses in the figures), are much better re-
solved by the GPSR using the wedge dictionary.

We further demonstrate that, like RFs estimated by other
deconvolution techniques, BPRF can also be inverted to derive

realistic models. In Figures 5–7, we show the inversion results
along with comparison with the time-domain RF for different
synthetic cases. The inversion results are shown in each subplot
(c). It is clearly seen that the traditional and BPRF produce al-
most similar models. Here, the model in Figure 5 is the same as
that used in Figure 4 for the thin bed at 7 km above the Moho.
The example in Figure 6 is for the bed 15 km above the Moho,
whereas in Figure 7 we took the 5 km thick layer at the surface
so as to mimic the real field example, which is discussed later.

Now, let us discuss Figure 5, in which we have a 7 km
thin bed; similar discussion and interpretation will apply to
Figures 6 and 7. Recall that the synthetic full waveforms
were generated for a model with a crust that is 40 km thick
and contains a thin layer of 7 km thickness just above the

Figure 3. Plot of RF and other characteristic plots for a 5 km thick layer synthetic model. (a) Plot of RF for a case of a 5 km thick layer
using time-domain deconvolution and Gradient Projection Sparse Reconstruction (GPSR) with nonwedge and wedge dictionary. The Pp
phase has been muted to highlight the PS converted phases. Initial PS phases shown by a rectangular box are resolved only by GPSR using
wedge. (b) Plot of error and model norm along with iteration for GPSR algorithm. (c) Plot of λ along with iteration for GPSR algorithm.
(d). Plot of objective function along with iteration for GPSR algorithm.
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Moho. The vertical and radial waveforms are processed to
estimate the traditional RF and BPRF as described in an earlier
section. Note that the traditional RF (Fig. 5a) hardly sees the
primary conversions (marked asPsL1, andPsL2) from the two
discontinuities, however, it produces an invertedmodel (blue)
that is close to the true one (black dashed line). This is pri-
marily due to the timings and amplitudes of its multiples at
∼16 and 21 s. The noise-free synthetics can clearly show these
multiple arrivals, but real data may not record these faithfully
due to noise and may also be interpreted as two different
discontinuities unless and until we have goodmoveout curves
for these. On the other hand, the BPRF (Fig. 5b) can clearly
resolve the two closely separated discontinuities giving an
unambiguous impression about the derived model.
Figures 6 and 7 represent cases where we havewell-separated
discontinuities. In one case, the thin layer above the Moho is
15 km thick (Fig. 6), and in the other case a 5 km thin layer is at
the top of the model (Fig. 7). Here, both the RFs clearly
distinguish and resolve the L1 and L2 interfaces.

In the examples so far, our models consisted of horizon-
tal layers. Next, we considered a dipping layer model and
generated RFs using basis pursuit and compared those with
the traditional RF (Fig. 8). First, we generated synthetic
waveforms (Frederiksen and Bostock, 2000) for a model
shown in Figure 8c, where both Moho and a thin layer of
10 km thickness above the Moho dip to the right. The syn-
thetic data were generated in all back-azimuthal directions
from 0° to 360° with a step of 10°. The dips for Moho
and the layer are 5° and 10°, respectively. The generated ra-
dial and transverse data were then used to estimate the tradi-
tional and basis pursuit RFs. Figure 8a,b shows the SVand SH
components, respectively, in which the traditional RFs and
BPRF are superimposed to compare their amplitudes and tim-
ings. It is clearly seen that traditional RF and BPRF match
well for both the SV and SH components. However, within
the time window of 2–6 s (Fig. 8a,b) the BPRFs are able to
resolve the thin bed that is also reflected in the SH compo-
nent (b).

Figure 4. Plot of RF using time-domain deconvolution and GPSR with wedge and nonwedge dictionary for (a) 7 km, (b) 10 km, and
(c) 15 km thick thin layer at the surface synthetic model. The Pp phase has been muted to highlight the PS converted phases. The resolution of
the initial phases has been marked by the rectangular block and the later phases or multiples by the ellipse.
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Real Data

The Kutch rift basin is characterized by a 1–2 km thick
top alluvium layer underlain by a 3–4 km thick Jurassic sedi-
mentary layer (Gupta et al., 2001). To examine the ability of

our BPRF technique in delineating thin sedimentary layers,
we apply our technique on the broadband waveform data

of teleseismic events of magnitude greater thanMw 5, within

teleseismic distance ranges of 30°–95° from the Vajepar

Figure 5. Synthetic RF and the inversion result for a 7 km thick layer above Moho. (a) Traditional RF for a case of 7 km thick layer using
time-domain deconvolution (black) and the RF calculated from the best-fitted velocity model (blue) in panel (c). (b) RF estimated using GPSR
(black), and the best-fitted velocity model is shown in panel (c) as red. (c) Velocity models calculated from the time-domain RF (blue) and
BPD receiver function (BPRF) (red) along with true model (dotted black) and starting model (gray).

Figure 6. Synthetic RF and the inversion result for a 15 km thick layer above Moho. (a) Traditional RF for a case of 15 km thick layer
using time-domain deconvolution (black) and the RF calculated from the best-fitted velocity model (blue) in panel (c). (b) RF estimated using
GPSR (black), and the best-fitted velocity model is shown in panel (c) as red. (c) Velocity models calculated from the time-domain RF (blue)
and BPRF (red) along with true model (dotted black) and starting model (gray).

Basis Pursuit Receiver Function 2679



(VJP) station of our Kutch seismic network (Fig. 9). We gen-
erated RFs using our modified GPSR algorithm with wedge
and nonwedge dictionary and also with time-domain decon-
volution techniques (Ligorría and Ammon, 1999). First, we
applied instrument corrections to the Z–N–E components of
digital broadband waveforms using pole-zeros information
of the sensor. Then, the waveforms were rotated into radial
and transverse components using the back-azimuth informa-
tion. We further rotated the Z–R–T components into P–SV–
SH components using an incidence angle derived from the
minimum SV energy on the P component at zero time to have
an optimal isolation of P–SV–SH (Kumar and Kawakatsu,
2011). Once the traces were rotated into P and SV components,

we employed source normalization using a time-domain de-
convolution technique (Berkhout, 1977). The distance effect
due to different source distributions in RFs is corrected by ap-
plying moveout to a reference slowness of 6:4 s=deg (Yuan
et al., 2006) using the global IASP91 Earth model (Kennett
and Engdahl, 1991).

We also treat these rotated waveforms with the basis pur-
suit deconvolution. The computed radial RFs from our modi-
fied GPSR method show clear multiples along with several
small amplitude PS conversions perhaps from other thin
layers with large acoustic impedances (Fig. 10). However, the
RFs, which are estimated using the iterative time-domain de-
convolution method, show broad direct P and PS conversions

Figure 7. Synthetic RF and the inversion result for a 5 km thin layer at the surface. (a) Traditional RF for a case of 5 km thick thin layer
using time-domain deconvolution (black) and the RF calculated from the best-fitted velocity model (blue) in panel (c). (b) RF estimated using
GPSR (black) and the best-fitted velocity model is shown in panel (c) as red. (c) Velocity models calculated from the time-domain RF (blue)
and BPRF (red) along with true model (dotted black) and starting model (gray).

Figure 8. Comparison of the synthetic traditional (red) and BP (blue) RFs for dipping layer model along the back azimuth. The (a) radial
and (b) transverse components are generated by deconvolving the respective component by the corresponding vertical. The model is shown in
(c), where the Moho and the thin layer dip at an angle of 5° and 10°, respectively.

2680 M. K. Sen, R. Biswas, P. Mandal, and P. Kumar



from the Moho, but they do not show any clear splitting of
direct P into small amplitude PSS conversion (Fig. 10). Even
though the conversions are not as clear as they are in the BPRF,
they can perhaps be identified there due to subtle changes in
the waveforms. The conversion from sediment-basement in-
terface (PSS) arrives just after the arrival of direct P on radial
RFs (Fig. 10).

We further demonstrate that the BPRF for observed data
can be inverted to obtain a 1D velocity model like traditional
RF computed by another deconvolution technique. The

velocity models derived by using the two RF traces are
shown in Figure 10c. The derived models are similar in that
they resolve a near-surface layer and the Moho appears as a
linear gradient rather than a sharp discontinuity. However,
the BPRF derived model is smoother than that derived by
the traditional RF, which is noisy.

Discussion and Conclusion

RFs are now fairly popular in imaging crustal and upper-
mantle discontinuities. Several methods exist for estimating
RFs by time or frequency domain deconvolution. Here, we
propose yet another method that makes use of a dipole dic-
tionary and the L1 norm constraint in the deconvolution.
Unlike the standard L1 norm constraint on reflectivity that
imposes sparseness in reflectivity, the BPD imposes sparse-
ness in layers. Our numerical examples with synthetics as
well as real data demonstrate that BPRFs are stable and are
able to decipher thin layers in the RFs. Even if thin layer es-
timation is of no interest in RF studies, the BPRF can be used
routinely for obtaining stable RFs. The resolution criterion of
BP in case of seismic reflection is discussed by Chung and
Lawton (1995) and more recently by Zhang and Castagna
(2011) as the tuning thickness of thin beds. Similarly, we
define the tuning thickness (tr) of a thin bed resolvable using

the P-to-S converted wave to be tr �
��
6

p
πf0

, in which f0 is the

dominant frequency. One requirement of BPRF is the choice
of the regularization weight that determines the relative im-
portance of data and model norms. We demonstrate that a

Figure 9. A plot showing one three-component broadband
seismograph station. Stations (black solid triangles): VJP, Vajepar.
Major faults (lines): ABF, Allah Bund fault; KMF, Kachchh main-
land fault; KHF, Katrol Hill fault; NPF, Nagar Parkar fault.

Figure 10. Plot of observed RF stack with inversion for the station VJP in Kutch region. The stack has been generated using 118
individual corresponding RFs. The black wiggles in (a) and (b) are the stack traces after the traditional time-domain deconvolution and
GPSR wedge dictionary, respectively. The blue and red wiggles are the best inverted model obtained by the model shown in the same color
in panel (c).
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theoretical regularization weight that is iteration adaptive is
very effective for this purpose.

Data and Resources

Seismograms used in this study were recorded on one
three-component seismograph station of a local seismic
network of the Council of Scientific and Industrial Research
National Geophysical Research Institute (CSIR-NGRI), Hy-
derabad, in the Kutch rift zone, Gujarat, India. Data is con-
fidential and is not available to the general public. The BPRF
code will be made available to the community.
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