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Abstract

Context: Characterization of instrumental effects in astronomical imaging is
important in order to extract accurate physical information from the observations.
The measured image in a real optical instrument is usually represented by the
convolution of an ideal image with a Point Spread Function (PSF). Additionally,
the image acquisition process is also contaminated by other sources of noise
(read-out, photon-counting). The problem of estimating both the PSF and a
denoised image is called blind deconvolution and is ill-posed. Aims: We propose a
blind deconvolution scheme that relies on image regularization. Contrarily to most
methods presented in the literature, our method does not assume a parametric
model of the PSF and can thus be applied to any telescope. Methods: Our scheme
uses a wavelet analysis prior model on the image and weak assumptions on the
PSF. We use observations from a celestial transit, where the occulting body can
be assumed to be a black disk. These constraints al...
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ABSTRACT

Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical infor-
mation from the observations. The measured image in a real optical instrument is usually represented by the convolution of an
ideal image with a Point Spread Function (PSF). Additionally, the image acquisition process is also contaminated by other sources
of noise (read-out, photon-counting). The problem of estimating both the PSF and a denoised image is called blind deconvolution
and is ill-posed.
Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the
literature, our method does not assume a parametric model of the PSF and can thus be applied to any telescope.
Methods: Our scheme uses a wavelet analysis prior model on the image and weak assumptions on the PSF. We use observations
from a celestial transit, where the occulting body can be assumed to be a black disk. These constraints allow us to retain mean-
ingful solutions for the filter and the image, eliminating trivial, translated, and interchanged solutions. Under an additive Gaussian
noise assumption, they also enforce noise canceling and avoid reconstruction artifacts by promoting the whiteness of the residual
between the blurred observations and the cleaned data.
Results: Our method is applied to synthetic and experimental data. The PSF is estimated for the SECCHI/EUVI instrument using
the 2007 Lunar transit, and for SDO/AIA using the 2012 Venus transit. Results show that the proposed non-parametric blind
deconvolution method is able to estimate the core of the PSF with a similar quality to parametric methods proposed in the
literature. We also show that, if these parametric estimations are incorporated in the acquisition model, the resulting PSF outper-
forms both the parametric and non-parametric methods.

Key words. Point Spread Function – Blind deconvolution – Venus transit – Moon transit – SDO/AIA – SECCHI/EUVI –
Proximal algorithms – Sparse regularization

1. Introduction

Deconvolution is a ubiquitous data processing method that
arises in a variety of applications, e.g., biomedical imaging
(Jefferies et al. 2002), astronomy (Prato et al. 2012; Shearer
2013), remote sensing (Dong et al. 2011), and video and photo
enhancement (Fergus et al. 2006). Formally, this problem
amounts to recovering a signal x from blurred and corrupted
observations y:

y ¼ Hðh� xÞ; ð1Þ
where � stands for the convolution operation between x and
some other signal h, while H is a general function account-
ing for some corrupting noise, e.g., H(u) :¼ u + n under an
additive corruption model with some (Gaussian) noise n.

For instance, when a scene is captured by an optical instru-
ment, the observation is a blurred or degraded version of the
original image, corrupted by noise and by some effects due
to the instrument (motion, out-of-focus, light scattering, etc.).
In such a case, the imaging system is usually assumed to be
well represented by the sensing model (1) where the ideal
image x is blurred by a Point Spread Function (PSF) h. Implic-
itly, the PSF describes the response of the imaging device to a
Dirac point source, i.e., the impulse response of the instrument,

while H can distinguish different sources of noise contaminat-
ing the image: read-out, photon counting, multiplicative and
compression noise, among others.

If the true PSF can be determined in advance, then it is
possible to recover the original, undistorted image by convolv-
ing the acquired image with the inverse PSF. This is the
so-called ‘‘known-PSF deconvolution’’. In most practical
applications, however, finding the true PSF is impossible and
an approximation must be made. As the acquired image is cor-
rupted by various sources of noise, both the PSF and a deno-
ised version of the image should be recovered together. This
process is known as ‘‘blind deconvolution’’.

Since there are infinite combinations of image and filter
that are compatible with the distorted observations, the blind
deconvolution problem is severely ill-posed. One way to
reduce the number of unknowns is to introduce a forward
(parametric) model of the PSF. For instance, Oliveira et al.
(2007) have modeled the motion blur by a straight line, where
the number of unknowns is reduced to two: the line length and
angle. Babacan et al. (2009) have modeled smoothly varying
PSFs by using a simultaneous autoregressive prior, where the
only parameter to estimate is the variance of a Gaussian
function. However, such methods are limited to specific
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applications as they can only recover the expected model of the
PSF, excluding the estimation of a generic non-parametric PSF.
Furthermore, due to the ill-posedness of the blind deconvolu-
tion problem, a slight mismatch between the specified model
and the true PSF can lead to poorly deconvolved images.

Blind deconvolution is also very sensitive to the noise pres-
ent in the observations. While some works (Ayers & Dainty
1988; Gburek et al. 2006) have used fast and efficient tech-
niques such as a simple inverse filtering to recover both the
PSF and the undistorted image from the blurred observations,
these methods present low tolerance to noise (Fish et al. 1995).

Robust blind deconvolution methods, on the other hand,
optimize a data fidelity term, which is based on the acquisition
model, stabilized by some additional regularization terms. If
the observations are corrupted by an additive Gaussian noise,
the deconvolution problem can be solved by a regularized
least-squares (LS) minimization (Almeida & Almeida 2010).
In the presence of Poisson noise, the problem can be formu-
lated using the Kullback-Leibler (KL) divergence as the data
fidelity term (Fish et al. 1995; Prato et al. 2012, 2013), which
represents a more complex function to minimize. To avoid
dealing with the KL divergence, the Poisson corrupted data
can also be handled through a Variance Stabilization Trans-
form (VST) (Dupé et al. 2009; Shearer et al. 2012; Shearer
2013). The VST provides an approximated Gaussian noise dis-
tributed data and thus allows working with a regularized LS
formulation.

In this work, blind deconvolution is used to recover both
the PSF and the undistorted image from blurred observations
acquired by solar extreme ultraviolet (EUV) telescopes. We
use the proximal alternating minimization method recently
proposed by Attouch et al. (2010) in the context of additive
Gaussian noise. This algorithm allows handling LS problems
for a large class of regularization functionals. The advantage
of this method over usual alternating minimization approaches,
e.g., Fish et al. (1995); Almeida & Almeida (2010), is that it
provides theoretical convergence guarantees and it is general
enough to include a wide variety of prior information. To
our knowledge, it is the first time that blind deconvolution is
solved using the proximal algorithm of Attouch et al. (2010).

In optical telescopes, the PSF originates from various
instrumental effects, such as: optical aberrations (spherical,
astigmatism, coma), diffraction (produced by, e.g., an entrance
filter mesh), scattering (from, e.g., micro-roughness of the mir-
rors resulting in long-range diffuse illumination), charge
spreading, etc. All these effects ‘‘spread’’ light, i.e., incident
photons which would otherwise focus to a single point of the
focal plane, may get detected at a location that is a bit shifted
or even far away. This does affect different types of measure-
ments, such as the photometry of fine features, see, e.g.,
DeForest et al. (2009).

The PSF of solar telescopes is usually modeled using pre-
flight instrument specifications (Martens et al. 1995; Grigis
et al. 2013). After building a specific model for a given instru-
ment, few parameters need to be estimated in order to recover
the PSF. For instance, Gburek et al. (2006) fitted the central
pixels of the TRACE PSF to a Moffat function, while DeForest
et al. (2009) modeled the long-range effect of the TRACE PSF
as the sum of a measured diffraction pattern with a circularly
symmetric scattering profile. The PSFs from the four EUVI
instrument channels on STEREO-B were studied by Shearer
et al. (2012) and by Shearer (2013), where the long-range scat-
tering effect was assumed to follow a parametric piece-wise

power-law model. A similar method was used to estimate the
PSF of the SWAP instrument on board the PROBA2 satellite
(Seaton et al. 2013). Finally, Poduval et al. (2013) provided a
semi-empirical model for the Atmospheric Imaging Assembly
(AIA) on board SDO, similar to the one used by DeForest et al.
(2009) for TRACE. In all these works, the complete set of
parameters that were fitted is in the range of 5–11 values, just
a few compared to the resolution of the PSF (millions of
pixels).

In addition to building a parametric model of the PSF using
the specifications of the instruments, some works (DeForest
et al. 2009; Shearer et al. 2012; Poduval et al. 2013) have used
the information from a celestial transit to help in inferring the
PSF of a given instrument. A celestial transit, shown in
Figure 1, is an astronomical event where the Moon or a planet
moves across the disk of the sun, hiding a part of it, as seen
from the telescope. Since the EUV emission of transiting celes-
tial bodies is zero, any apparent emission is known to be
caused by the instrument. Therefore, this type of event pro-
vides strong prior information that allows the regularization
of the blind deconvolution problem.

Let us note that all these parametric methods present the
disadvantage of being specific for a given instrument and
depending on a good characterization of the PSF, which is
not always possible (Meftah et al. 2014).

1.1. Contribution

Central to our work is the information provided by the transit
of a celestial object whose apparent boundary on the recorded
image can be predicted with high (subpixel) accuracy. This is
typically the case for the observation of Moon or Venus transits
for which ephemeris allows us to precisely know their apparent
boundaries at the recording time, provided of course that (i) the
small variations of the object topography around a perfect disk
(e.g., mountains, craters) are smaller than a pixel width and (ii)
that such a transiting object has no atmosphere that could blur
its apparent boundary (e.g., as for an Earth transit). As will be
clear below, these hypotheses have been respected for at least
two cases: for the instrument SECCHI/EUVI during the 2007
Lunar transit and for SDO/AIA during the 2012 Venus transit.
For these two situations, and for any other transit respecting the
conditions above, we know a priori the values for a set of pixels
in the image and their exact location. Our work uses such
information as constraint in the function to be optimized for
blindly deconvolving images. Notice that our approach could
also be applied to other situations where pixel values and exact
location are known a priori (e.g., dark calibration patterns in
Computer Vision applications).

Contrarily to previous works in solar physics, the blind
deconvolution method demonstrated in this paper is not based
on a specific model of the PSF, but infers it from the observed
data. This allows the method to be used for estimating the PSF
of any instrument provided it has a prior information on a set

Fig. 1. Accumulation of observations of the Venus transit captured
by SDO/AIA on June 5th–6th, 2012.
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of pixel values. Since no model is imposed on the PSF, the
large number of unknowns makes the problem computationally
intractable. We thus focus on the estimation of the PSF core,
which is defined as the central pixels encompassing at least
99% of the total PSF energy. Note that this thresholding fol-
lows the radial energy characterization of the SDO/AIA PSF
in the paper of Poduval et al. (2013) and a similar study of
the available PSFs of SECCHI/EUVI (e.g., Shearer et al.
2012). The PSF core accounts for charge spreading, optical
aberrations, and diffraction effects. Note that the same algo-
rithm would be able to handle a parametric model of the
PSF, provided a precise instrument characterization is avail-
able. For simplicity, we consider an average additive Gaussian
noise model that gathers all sources of noise present in the
observation. A detailed discussion on how to handle more gen-
eral noise models is provided in Section 7.

The proposed method is first tested through simulated real-
istic scenarios. Results show the ability to estimate a given PSF
with high quality. We also show the importance of considering
multiple transit observations in order to provide a better condi-
tioning to the filter estimation problem.

We validate our method on AIA and EUVI observations
using solar transits. The validation of the recovered filters is
based on the reduction of the celestial body apparent emis-
sions. The estimated PSFs were also tested for images contain-
ing active regions. Results show that, when recovering the PSF
core, the proposed non-parametric scheme can achieve similar
results to parametric methods. Also, we consider the case
where the parametric PSF is incorporated in the imaging model
as an additional filter convolving the actual image (Shearer
et al. 2012; Shearer 2013). We show that the resulting paramet-
ric/non-parametric PSF provides better results than both para-
metric and non-parametric PSFs estimated independently. Let
us note that, since parametric methods are based on the physics
of the instrument, they tend to provide a more precise PSF con-
taining both the core and the diffraction peaks. However, when
the telescope presents unknown or unexpected behavior, an
accurate model of the filter cannot be built. In such cases,
we require non-parametric models, as the one presented in this
paper, which due to their flexibility can handle better some
instrument’s properties.

1.2. Outline

In Section 2, we describe the discrete forward model and the
noise estimation. In Section 3, we present the formulation of
the blind deconvolution problem based on the image and filter
prior information. Section 4 describes the alternating minimi-
zation method used for estimating the filter and the image.
It briefly presents the method, including the initialization, the
parameter estimation, the stopping criteria, and the numerical
reconstruction. In Section 5, we present a non-blind deconvo-
lution method that is used for the experimental validation. In
Section 6, we present the results on both synthetic and exper-
imental data for the SDO/AIA and SECCHI/EUVI telescopes.
Finally, Section 7 presents a discussion of the obtained results,
providing some perspectives for future research work.

1.3. Notations

We denote by N, Z, and R the sets of natural, integer, and real
numbers, respectively. The set of the non-negative real num-
bers is denoted by Rþ. Most of the domain dimensions are
denoted by capital roman letters, e.g., M, N, . . . Vectors and

matrices are associated with bold symbols, e.g., U 2 RM�N

or u 2 RM , while scalar values are associated with lowercase
light letters. The ith component of a vector u reads either ui

or (u)i, while the vector ui may refer to the ith element of a vec-
tor set. The vector of 1’s in RD is denoted by 1D = (1, . . . ,1)T.
The set of indices in RD is [D] = {1, . . ., D}. The support of a
vector u 2 RD is defined as supp u = {i 2 [D] : ui 5 0}. The
cardinality of a set C, measuring the number of elements of the
set, is denoted by jCj. The convolution between two vectors u,
v 2 RD for some dimension D 2 N is denoted equivalently by
u � v = v � u. We denote by C0ðVÞ the class of proper, con-
vex and lower-semicontinuous functions from a finite dimen-
sional vector space V (e.g., RD) to (–1, +1] (Combettes
& Pesquet 2011). The (convex) indicator function iCðxÞ of
the set C is equal to 0 if x 2 C and +1 otherwise. The 2-D
discrete delta function, denoted as d0 (m, n), is equal to 1 if
m = n = 0, and 0 otherwise. The transposition of a matrix U
reads UT. For any p � 1, the ‘p-norm of u is

jjujjp ¼
P

ijuijp
� �1=p

. The Frobenius norm of U is given by

jjUjj2F ¼
P

i

P
jj/ijj

2. The Gaussian distribution of mean 0

and variance r2 is denoted by Nð0; r2Þ.

2. Problem statement

The telescope imaging process can be mathematically modeled
as the instrument’s PSF h convolving the true image x, i.e.,
h � x. The convolution operation, represented by �, consists
of integrating portions of the actual scene weighted by the
PSF. In the following, we consider a discrete setting where
the convolution integration is represented by a discrete sum.

2.1. Discrete model

Let us consider that, during the transit, the EUV telescope
acquires a set of P images containing a celestial body. In order
to limit the computation time, the effective Field-of-View
(FoV) of each observation is restricted to an image patch cen-
tered on the transiting celestial body with a size several times
bigger than the body apparent diameter. The effects of this FoV
truncation will be discussed in detail in Sections 3 and 6. In our
work, all n · n images are represented as N = n2 vectors so
that linear transformations of images are identifiable with
matrices. Each observed patch is a collection of values gath-
ered in a vector yj 2 RN , with j = 1, . . . , P. The observed val-
ues are modeled as a ‘‘true’’ image xj 2 RN convolved by the
instrument’s PSF (h 2 RN ). The PSF is assumed to be spatially
and temporally invariant, thus is the same for each observed
patch. For simplicity, we consider that all sources of noise pres-
ent in the observation can be gathered in an average noise
model, which is assumed to be additive, white, and Gaussian.
The observations are then assumed to be affected by an Addi-
tive White Gaussian Noise (AWGN), nj 2 RN , with
ðnjÞi � iidNð0; r2Þ. The acquisition process of the telescope
is thus modeled as follows:

yj ¼ h� xj þ nj: ð2Þ

This model assumes that the observed images yj are
uncompressed and have been corrected for charge-coupled
device (CCD) effects (dark current removal, flat fielding,
despiking). In the case of SDO/AIA, this corresponds to level
1 data processing.

A. González et al.: Non-parametric PSF estimation using blind deconvolution
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In 1-D, the discrete circular convolution
Pn

k¼1ukgi�kþ1 of a
vector u 2 Rn with a filter g 2 Rn can always be described by
the product of u with a circulant matrix

UðgÞ ¼

g1 g2 � � � gn

gn g1 � � � gn�1

..

. ..
.

g2 g3 � � � g1

0
BBBB@

1
CCCCA
2 Rn�n; ð3Þ

a matrix where every row is a right cyclic shift of the kernel g
(Gray 2006). In 2-D and in particular for the model (2),
the convolution of xj by h can still be represented by the
multiplication of xj by matrix UðhÞ 2 RN�N that is now
block-circulant with circulant blocks, i.e., a matrix
made of n · n blocks, each block being a n · n circulant
matrix representing the action of one row of the 2-D filter h
in (2).

If we gather the P ‘‘true’’ images in a single matrix
X ¼ ðx1; . . . ; xP Þ 2 RN�P , the acquisition model can be trans-
formed into the following matrix form:

Y ¼ UðhÞXþ N; ð4Þ

with Y;N 2 RN�P two matrices that similarly gather the P
observed images and their noises, respectively.

2.2. Noise estimation

For the sake of simplicity and to keep fast numerical methods,
the model (4) implicitly considers an additive noise model. A
way to generalize our method to Poisson noise would be to
include a VST (Anscombe 1948; Dupé et al. 2009; Shearer
et al. 2012) in the acquisition model in (4), both on the obser-
vations Yand on the convolution result U(h) X (see Sect. 7 for
more details).

Under the AWGN assumption, the energy of the residual
noise is known to be bounded using the Chernoff-Hoeffding
bound (Hoeffding 1963):

j Y � U hð ÞXj jj2F ¼ j Nj jj
2
F < e2 :¼ r2 NP þ c

ffiffiffiffiffiffiffi
NP
p� �

; ð5Þ

with high probability for c ¼ Oð1Þ. A first guess of the noise
variance r2 can be estimated using the Robust Median Estima-
tor (r2

RME) (Donoho & Johnstone 1994), which is based on the
assumption that the noise is an additional high-frequency com-
ponent in the observed signal. More details on this variance
estimation are provided in Section 6.2.

Let us note that the variance could also be obtained from
the physical noise characteristics using, for instance, dark areas
in the images to estimate the dark noise. However, such com-
putations may not consider all the noise sources present in the
observations, providing an underestimation of the actual
variance.

In this work, we prefer to adopt another strategy. Since
Eq. (5) considers an average noise model and since Eq. (4)
is an AWGN approximation of the actual data noise corruption,
we aim to find an adaptive value of r that optimizes the
AWGN assumption, i.e., which minimizes somehow the prox-
imity of this simple model to the true corruptions. Section 6.2
describes in detail this adaptive strategy and demonstrates its
advantage over the fixed choice r = rRME.

3. Blind deconvolution problem

In this section, we aim at reconstructing both X and h from the
noisy observations Y. Since the data is corrupted by an AWGN,
we can estimate the image and the filter using a least-squares
minimization, i.e., by finding the values that minimize the
energy of the noise:

min~X;~h

1

2
jjY�U ~h

� �
~Xjj2

F
; ð6Þ

with ~X 2 RN�P and ~h 2 RN .
The blind deconvolution problem in (6) is ill-posed and can

have infinite possible solutions. By regularizing this problem
we aim to reduce the amount of possible solutions to those that
are meaningful. In the coming sections, we first describe the
prior information and constraints on the image and the filter
and then use this information to formulate a regularized blind
deconvolution problem.

3.1. Prior information on the image

In the following, we present in detail the available prior infor-
mation on the image candidate.

(a) Zero disk intensity: Each image of the transit contains
the observation of a celestial body, Venus or the Moon. For
each observation yj, we know that the celestial bodies’ EUV
emission is zero and therefore can be represented as a black
disk of constant radius R and center cj, both being known from
external astronomical observations: (Pesnell et al. 2012) for
SDO/AIA and (J.-P. Wuelser private communication) for
SECCHI/EUVI. The set of pixels of xj inside the disk is
denoted by Xj. In the minimization problem we can set to zero
the pixels of the jth image that are inside the set {Xj}, i.e.,
Xij = (xj)i = 0 for all i 2 Xj. This prior information is crucial
in the regularization of the blind deconvolution problem as it
allows us to remove the issue of interchangeability between
the filter and the image. Furthermore, it prevents ‘‘oppositely’’
translated solutions of the image and the filter, a problem
occurring because the convolution process is blind to such
translations, i.e., h� xj ¼TaT�aðh� xjÞ ¼ ðTahÞ � ðT�axjÞ,
with Ta a translation by a 2 Z2.

(b) Analysis-based sparsity model: As commonly done
with ill-posed inverse problems associated to image restoration
tasks (Starck & Murtagh 1994; Donoho 1995; Starck & Fadili
2009), we regularize our method with a 2-D wavelet prior.
Compared to a frequency representation, as obtained by the
Fourier transform, a 2-D wavelet transform allows representing
images with a multi-resolution scheme (Mallat 2008), i.e., with
a linear combination of localized wave atoms, with variable
sizes and locations, whose number is much smaller than the
initial number of pixels. Most inverse problems in imaging
are regularized using a synthesis wavelet prior, i.e., promoting
the synthesis of the estimated image with as few ‘‘wavelets’’ as
possible (sparsity criterion) (Starck & Murtagh 1994; Donoho
1995). More recently, better inversion results have been
obtained using analysis-based sparsity models (Carrillo et al.
2012; Sudhakar et al. 2015), which rather promote sparse pro-
jections of the estimated image over a redundant system of
wave-functions, i.e., a dictionary. This set can be much larger
than an orthonormal basis and hence it can efficiently capture
much more different image features.

Following this recent trend, we decide to adopt such an
analysis prior that, in opposition to the synthesis framework,
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also allows us to work directly on the image domain without
increasing the dimensionality of the optimization problem.
As a dictionary, we use the system associated to the Undeci-
mated Discrete Wavelet Transform (UDWT; Starck et al.
2010). The UDWT can also be seen as the union of all
translations of an orthonormal DWT. Conversely to the
DWT, this makes the UDWT translation invariant, i.e., it
enables an efficient characterization of all image features what-
ever their location (Starck et al. 2004; Elad et al. 2010), hence
providing a better image reconstruction than the traditional
DWT.

In this context, we assume that, if we represent the image
candidate on a redundant wavelet dictionary W 2 RN�W made
of W vectors in RN , the wavelet coefficients are sparse, i.e., the
coefficient matrix WTX has few important values and its ‘1-
norm (computed over all its entries) is expected to be small.
However, the wavelet coefficients whose support touches the
boundary of the Moon or Venus disk are not sparse. Hence,
we do not consider in this prior model those coefficients that
are affected by the occulting body. Also, we follow a common
practice in the field which removes the (unsparse) scaling coef-
ficients (Mallat 2008) from the ‘1-norm computation. The set
of detail coefficients that are not affected by the black disk
is denoted by H, with jHj ¼ Q. See Section 6.1 for further
details on how to compute the set H. The matrix
SH 2 RQ�W is the corresponding selection operator that
extracts from any coefficient vector u 2 RW only its compo-
nents indexed by H. The global prior information can thus
be exploited by promoting a small ‘1-norm on the wavelet
coefficients belonging to H. The rationale of this prior is to
enforce noise canceling and avoid artifacts in the reconstructed
image.

(c) Image non-negativity: Note that the image corre-
sponds to a measure of a photon emission process, therefore,
its pixel values must be non-negative everywhere.

3.2. Constraints on the PSF

Since the filter is not known a priori and it changes from one
instrument to another, we are interested in adding soft con-
straints that are common to most solar EUV telescopes. We
are not aiming at reconstructing all of the PSF components
but rather at estimating its core, which is responsible for most
of the diffused light.

We first consider that, since the PSF corresponds to an
observation of a point, it is non-negative everywhere. Addition-
ally, by assuming that the amount of light entering in the
instrument is preserved, the ‘1-norm of the filter candidate
must be equal to one. This is explained by taking the sum over
the pixels of one observed patch in (4), which is equal to
1Tyj ¼ 1TUðhÞxj in a noiseless process. Since the filter is
non-negative, taking its ‘1-norm equal to one is equivalent to
1TU(h) = 1T, which results in 1Tyj = 1Txj, i.e., the light is pre-
served. Therefore, the filter candidate must belong to the Prob-
ability Simplex (Parikh & Boyd 2014), defined as
PS ¼ fh : hi � 0; jjhjj1 ¼ 1g.

One important assumption in our proposed method is that
the filter candidate is of size ð2bþ 1Þ � ð2bþ 1Þ, for any
b 2 N, and is centered in the spatial origin of the discrete grid.
This means that the filter candidate has a limited support inside
a set C of size (2b + 1)2, i.e., the filter has only important val-
ues in the central pixels and is negligible beyond the consid-
ered support. This allows us to work with a patch (only a

part of the observation) and not with the complete FoV of
the instrument in order to reduce the computation time.

EUV images have a high dynamic range. Hence, due to
long-range effects, a given pixel value can be affected by
the value of another high intensity pixel located as far as
100 arcsec away for SDO/AIA (Poduval et al. 2013) and
1500 arcsec away for SECCHI/EUVI (Shearer et al.
2012). In such cases, despite a PSF that can rapidly decay
far from its center, the high intensity pixel can induce a
long-range effect that is not taken into account by a filter
with truncated support. Let us define the complementary
set of C as CC = [N]\C, with |CC| = N – (2b + 1)2. We
assume that the actual PSF is composed by two different fil-
ters: the PSF core with support on C, denoted by hC, which
accounts for short-range effects, and another one, denoted
hCC with support on CC, accounting for long-range effects,
i.e., h ¼ hC þ hCC . An accurate estimation of the long-range
PSF is out of the scope of this work. Its effect inside the
disk of the celestial body is modeled as a constant l, i.e.,
hCC � xj

� �
i
� l; 8i 2 Xj (see Appendix A for more details).

For a given patch, the acquisition model in (2) can then be
approximated as: yj ¼ ðhC þ hCCÞ � xj ¼ hC � xj þ l1N : In
this work, we aim at estimating only the PSF core, which is
called h hereafter. The effect of the long-range PSF,
denoted by l, is computed in a preprocessing stage by the
average value inside the center of several observed transit
disks (see Sect. 6.2). This simple estimation is motivated
by the presence of a systematic intensity background at
the center of each observed disk transit. This one is quite
independent of the Sun activity around such disk and its
mean intensity (few tens of DNs) is also far above the esti-
mated noise level (few DNs). In a future work we plan to
replace this rough evaluation by a joint estimation of the
value of l with the filter and the image (see Sect. 7 for some
discussions).

Notice that our method could allow the addition of other
convex constraints, e.g., if we know that the filter is sparse
or that 0 	 hi 	 gi, for some upper bound gi on hi such as a
specific power-law decay. However, we will not consider this
possibility here as we want to stay as agnostic as possible on
the properties of the filter to reconstruct.

3.3. Final formulation

From Sections 3.1 and 3.2, we can formulate the following reg-
ularized blind deconvolution problem:

min~X;~h q jj SHWT ~Xjj1 þ 1
2 jjY� Uð~hÞ ~X� l1N 1T

P jj
2
F

s:t: ð~xjÞi ¼ 0 if i 2 Xj; ð~xjÞi � 0 otherwise
~h 2 PS; supp ~h ¼ C

ð7Þ

with ~X 2 RN�P, ~h 2 RN and l1N 1T
P cancels the long-range

part of the filter. The regularization parameter, denoted by
q, controls the trade-off between the sparsity of the image
projection in a wavelet dictionary and the fidelity to the
observations. This essential parameter is estimated in
Appendix B.2.

It is important to note that the prior information related to
the darkness of the occulting body (ð~xjÞi ¼ 0 if i 2 Xj), which
is crucial in the regularization of the blind deconvolution prob-
lem, is taken into account in the first constraint in (7).

The problem of estimating the image and the filter in (7)
can also be written as
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X
; h
f g ¼ argmin~X;~h L ~X; ~h
� �

s:t: ~X 2 P0; ~h 2 D;

ð8Þ

where L ~X; ~h
� �

¼ q jj SH WT ~Xjj1 þ 1
2 jjZ�Uð~hÞ ~Xjj2F is the

objective function, with Z ¼ Y� l1N 1T
P the modified

observations. The convex sets P0 and D are defined as
follows: P0 ¼ fU 2 RN�P

þ : ðujÞi ¼ 0 if i 2 Xjg;
D ¼ fv 2 RN

þ : jj vjj1 ¼ 1; supp v ¼ Cg.

4. Proximal alternating minimization

In this section, we describe the alternating minimization
method used for solving (8) and hence estimating the image
and the PSF from the noisy observations.

The problem defined in (8) is non-convex with respect to
both X and h, but it is convex with respect to X (resp. h) if
h (resp. X) is known. Such a problem is usually solved itera-
tively, by estimating the image and the filter alternately
(Almeida & Almeida 2010). The general behavior of this type
of algorithm is as follows:

XðkÞ; hðkÞ
� �

! Xðkþ1Þ; hðkÞ
� �

! Xðkþ1Þ; hðkþ1Þ� �
:

It has been shown in Almeida & Almeida (2010) that this
algorithm is able to provide fairly good results. However, there
are no theoretical guarantees for its convergence. Recently,
Attouch et al. (2010) proposed a proximal alternating minimi-
zation algorithm where cost-to-move functions are added to the
common alternating algorithm. These functions are quadratic
costs that penalize variations between two consecutive itera-
tions. They guarantee the algorithm convergence provided
some mild conditions are met on the regularity of the objective
function L X; hð Þ and the constraints in (8). The algorithm
iterates as follows:

Xðkþ1Þ ¼ argmin~X L ~X; hðkÞ
� �

þ kðkÞx
2 jj~X� XðkÞjj2F ;

hðkþ1Þ ¼ argmin~h L Xðkþ1Þ; ~h
� �

þ kðkÞh
2 jj ~h� hðkÞjj22;

ð9Þ

where kx and kh are the cost-to-move penalization parameters
that control the variations between two consecutive iterations.
Section 4.1 describes how these parameters are tuned.

The non-convexity of (8) prevents attaining a global mini-
mizer. However, it can be shown that, since the objective func-
tion L X; hð Þ and the constraints in (8) meet the conditions
stated in Attouch et al. (2010), the algorithm (9) converges
to a critical point of the problem. Later in this section we
describe how to stop the iterations so that the vicinity of a crit-
ical point of (8) is reached.

4.1. Cost-to-move parameters

The presence of cost-to-move parameters (kx, kh) different than
zero ensures the convergence of the algorithm (9) to a critical
point of (X, h) (Attouch et al. 2010). However, their values are
not crucial in the reconstruction results. In the following, we
describe the tuning criteria used in this work which is based
on the works of Puy & Vandergheynst (2014). The iterations
start with high values of kx and kh, keeping the image and
the filter estimations closer to the initial values. When the num-
ber of iterations k increases, the filter and the image estimates

become more and more accurate and the parameters kx and kh

can be progressively decreased.

4.2. Stopping criteria

It is important to find an automatic criterion for stopping the
iterations in (9) when the solution reaches the vicinity of a crit-
ical point of (8). A usual stopping criterion is based on the
quality of the reconstruction with respect to the Ground Truth
image and filter, which are in general unavailable. As proposed
by Almeida & Figueiredo (2013b), we use the spectral charac-
teristics of the noise to analyze the quality of the estimation.
This allows stopping the minimization when a high-quality
solution has been obtained. Let us define each residual image
at iteration k as the difference between the observed image and
the blurred estimate:

RðkÞ ¼ Z�Uðhðkþ1ÞÞXðkþ1Þ ¼ rðkÞ1 ; . . . ; rðkÞP

� �
: ð10Þ

Since the observation model is degraded by an additive
white noise, we know that the residual image is spectrally
white if the estimation at iteration k has a good quality, other-
wise the residual contains structured artifacts. Therefore, the
iterations can be stopped when the residual is spectrally white,
i.e., when the 2-D autocorrelation Crjrjðm; nÞ of each residual

image rðkÞj is approximately the function d0(m, n). Let us note
that, for the computation of the 2-D autocorrelation function,
each residual vector rðkÞj needs to be previously transformed
into a matrix of n · n pixels and normalized to zero mean
and unit variance.

Considering a (2L + 1) · (2L + 1) window, we compute
the distance between the autocorrelation and the Kronecker
function d0 as follows:

MðrðkÞj Þ ¼ �
XðL;LÞ

ðm;nÞ¼ð�L;�LÞ
d0ðm; nÞ � Crjrjðm; nÞ
� �2

¼ �
XðL;LÞ

ðm;nÞ¼ð�L;�LÞ
ðm;nÞ6¼ð0;0Þ

Crjrjðm; nÞ
� �2

;
ð11Þ

which is higher for whiter residuals. As suggested by Almeida
& Figueiredo (2013b), in our experiments we have used L = 4.
We then average over the measures obtained for each residual
image:

MðRðkÞÞ ¼ 1

P

XP

j¼1

MðrðkÞj Þ: ð12Þ

In practice, we observe that MðRðkÞÞ has large negative
values at the beginning of the iterations when the image and
the filter are not properly estimated. Then, the value of
MðRðkÞÞ increases with k until it reaches a maximum close
to zero. Finally, it starts to decrease again after the algorithm
has converged to the best estimations for a fixed value of q
and starts overfitting the noise. Therefore, the iterations can
be stopped when the maximum of the whiteness measure
(M) is reached. A similar behavior has also been observed
by Almeida & Figueiredo (2013b).

4.3. Numerical reconstruction

The proximal alternating minimization algorithm is summa-
rized in Algorithm 1. This algorithm requires to set the initial
values of the image, the filter, and the regularization parameter.
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The initialization of the image and the filter is discussed in
Appendix B.1, and the regularization parameter is tuned itera-
tively as explained in Appendix B.2.

The first step in Algorithm 1 estimates the image by min-
imizing a sum of three convex functions with the image con-
strained to the set P0. This constraint can be handled by
adding the convex indicator function on the set, i.e., iP0ðXÞ.
The resulting optimization, containing a sum of two smooth
and two non-smooth convex functions, can be solved using
the primal-dual algorithm of Chambolle & Pock (2011)
summarized in Appendix C.1.

Algorithm 1: Proximal alternating minimization algorithm

Initialize: X(1) = X0; h(1) = h0; kð1Þx ¼ kð1Þh ¼ q ¼ q0;
D = 0.75; MaxIter = 20

1: for k = 1 to MaxIter do
1st step, image estimation:

2: Xðkþ1Þ ¼ argmin~X2P0
L ~X;hðkÞ;q
� �

þ kðkÞx
2 jj~X� X kð Þjj2F

2nd step, filter estimation:
3: hðkþ1Þ ¼ argmin~h2D L Xðkþ1Þ; ~h

� �
þ kðkÞh

2 jj~h� hðkÞjj22
Parameters update:

4: kðkþ1Þ
x ¼ kðkÞx �

5: kðkþ1Þ
h ¼ kðkÞh �

Compute residuals and whiteness measure:
6: RðkÞ ¼ Z�Uðhðkþ1ÞÞXðkþ1Þ

7: Compute MðRðkÞÞ using (12)
Stop when residual is spectrally whiter:

8: if Mðkþ1Þ <MðkÞ then break.
9: Return XðkÞ and hðkÞ.

The second step in Algorithm 1 estimates the filter by min-
imizing a sum of two smooth convex functions with the filter
constrained to the set D. The optimization problem can be
solved using the Accelerated Proximal Gradient (APG) method
(Parikh & Boyd 2014). This algorithm is able to minimize a
sum of a non-smooth and a smooth convex function, which
allows us to handle the constraint as a convex indicator func-
tion on the set, i.e., iDðhÞ. The APG algorithm is briefly
described in Appendix C.2.

The algorithms used to solve the minimization problems
described above were chosen because they are well suited to
solve each problem optimally. Since the cost functions are dif-
ferent in each step, the same algorithm could not be used to
optimally find a solution of both problems. The presence of
two non-smooth functions in the first step prevents the use of
the APG algorithm. For the second step, the algorithm of
Chambolle & Pock (2011) could be used to solve the optimi-
zation problem, however, this algorithm presented a slower
convergence than APG, which is optimal when the optimized
cost contains a differentiable function.

Let us note that, in the numerical reconstruction, the con-
volution operator is implemented using the Fast Fourier Trans-
form (FFT). This operation assumes that the boundaries of the
image are periodic, a condition that is far from reality. In actual
imaging, no condition can be assumed on the boundary pixels,
i.e., they cannot be assumed to be zero, neither periodic, nor
reflexive. Not taking care of the boundaries conditions would
introduce ringing artifacts. Based on the work of Almeida &
Figueiredo (2013a), in the numerical experiments we consider
unknown boundary conditions, i.e., the pixels belonging to the

image border are not observed. To take this into account, the
problem formulation needs to be appropriately modified as dis-
cussed in Appendix D.

5. Filter validation through non-blind deconvolution

This section is dedicated to the validation of the filter estimated
using Algorithm 1. Since the true emissions of the Moon and
Venus are zero, the deconvolution with a correct filter should
remove all the celestial bodies’ apparent emissions. Therefore,
the validation process consists of taking an image from a tran-
sit observation that was not used for filter estimation (i.e.,
yj 62 fy1; . . . ; yPg), deconvolving this image using the esti-
mated filter h, and verifying that, in the reconstructed image
x
j , the pixels inside the celestial body disk are zero.

To obtain this reconstructed image, we formulate a least-
squares minimization problem regularized using the prior
information available on the image, that is, that the image is
non-negative and has a sparse representation on a suitable
wavelet basis W 2 RW�N . The proposed non-blind deconvolu-
tion method reads as follows:

x
j ¼ argmin~xj
q jjS� WT ~xjjj1 þ 1

2 jj zj � h� ~xjjj22
s:t: ~xj 2 P

ð13Þ

where S� 2 RS�W is the selection operator of the set D, with
j�j ¼ S, which contains the detail coefficients. The convex
set P is defined as P ¼ u 2 RN : ui � 0

� �
. The non-blind

image estimation is solved using an extension of the primal-
dual algorithm of Chambolle & Pock (2011) (see Sect. C.1
for more details). Since this algorithm is able to minimize a
sum of three non-smooth convex functions, the constraint
can be handled as a convex indicator function. Notice that
other algorithms could be used such as the Generalized For-
ward Backward algorithm (Raguet et al. 2013).

6. Experiments

In this section, we first present some synthetic results that
allow us to validate the effectiveness of the proposed blind
deconvolution method to recover the correct filter. Later we
present experimental results on images taken by the SDO/
AIA and SECCHI/EUVI telescopes.

All algorithms were implemented in MATLAB and exe-
cuted on a 3.2 GHz Intel i5-650 CPU with 3.7 GiB of
RAM, running on a 64 bit Ubuntu 14.04 LTS operating
system.

6.1. Synthetic data

Three synthetic images are selected to test the reconstruction
(P = 3). They are defined on a 256 · 256 pixel grid
(N = 2562). To simulate actual images from the celestial tran-
sit, we take an image of the Sun (the image observed by SDO/
AIA at 00:00 UT on June 6th, 2012) and select three different
cutouts of N pixels each. The center of the cutouts is arbitrarily
selected such that the corresponding regions are sufficiently
distant from each other and correspond to a sample of a full
Venus trajectory. In each image, we add a black disk of radius
R = 48 pixels, centered at the pixel [129, 129], which repre-
sents the celestial body. Figure 2 depicts the images from the
simulated transit.
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During the solar transit, the position and size of the celes-
tial body are known at all moments. However, when this event
is imaged, the coordinates of the center represented in the dis-
crete image grid may contain an error of maximum one pixel.
This uncertainty is simulated in our synthetic experiments by
considering the sets Xj and H to be defined using disks of radii
rX and rH, respectively, with one pixel difference with respect
to the actual object’s radius, i.e., rX = R � 1 and rH = R + 1.

Two kinds of discrete filters are selected and they have a
limited support on a 33 · 33 pixel grid (b = 16). The first filter
is simulated by an anisotropic Gaussian function with standard
deviation of two pixels horizontally and four pixels vertically,
rotated by 45� (see Fig. 3A). The second filter is simulated by a
X shape (see Fig. 3B), hereafter called the X filter. These func-
tions help to demonstrate the capacity of the proposed method
to recover not only diffusion filters such as the anisotropic
Gaussian, but also diffraction filters such as the X example.
Let us note that, in these synthetic experiments, there is no
need to test the long-range assumption on the PSF.

The measurements are simulated according to (2), where
additive white Gaussian noise N � iidNð0; r2Þ is added in
order to simulate a realistic scenario. The noise variance (r2)
is set such that the blurred signal-to-noise ratio
BSNR = 10log10 (var(U(h)X)/r2) is equal to 30 dB, which
corresponds to a realistic BSNR in the actual observations.

During the experiments, the wavelet transformation used
for the sparse image representation is the redundant
Daubechies wavelet basis1 with two vanishing moments and
three levels of decomposition (Mallat 2008). Other mother
wavelets and more vanishing moments can be considered, how-
ever, due to the dictionary redundancy, the choice does not
have a significant impact on the reconstruction results. Higher
levels can also be considered but the computational time is

notably higher and the reconstruction quality does not signifi-
cantly improve.

As discussed in Section 3.1, the wavelet coefficients whose
support touches the boundary of the occulting body are not
sparse as they spread over all the scales of the wavelet trans-
form. Thus, we need to define the set H containing the coeffi-
cients that are not affected by the disk. To determine this set,
we first generate a set of images with constant background that
contain disks of radius rH centered as the celestial body. All the
elements inside the disks are set as random values with a stan-
dard uniform distribution (Uð0; 1Þ). We then compute the
wavelet coefficients of this image on the basis W. Finally, the
set H is composed by the indices of the detail coefficients that
are equal to zero.

The reconstruction quality of X* with respect to the true
image XGT is measured using the increase in SNR (ISNR)
defined as ISNR ¼ 20log10 jjY� XGT jjF = jjX
 � XGT jjF .
The reconstruction quality of h* with respect to the true filter
hGT is measured using the reconstruction SNR (RSNR), where
RSNR ¼ 20log10jjhGT jj2=jjhGT � h
jj2.

Let us first analyze the behavior of the algorithm when we
increase the number of observations P used for the reconstruc-
tion. Table 1 presents the reconstruction quality of the results
using the blind deconvolution problem for the anisotropic
Gaussian filter of Figure 3A. The results correspond to an aver-
age over four trials and they are presented for P = 1, 2, and 3
observations. For P = 2, 3 we use a warm start by initializing
the algorithm with the results obtained for P � 1.

We notice that the reconstruction quality of the filter signif-
icantly improves as the number of observations P increases.
The whiteness measure MðRÞ presents the same behavior,
which indicates that the residual image is whiter when more
observations are considered. This is explained by an increase
of the available information in the filter reconstruction problem
for the same number of unknowns.

Regarding the numerical complexity, the algorithm
requires an average of five iterations on the value of q and a
total time of 1.5 h. When the number of iterations on q
increases, we observed that the estimated residual energy is
closer to the actual noise energy.
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Fig. 3. Realistic filters in a (2b + 1) · (2b + 1) window with
b = 16. (A) Anisotropic Gaussian Filter. (B) X Filter.
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Fig. 2. Realistic images: (A) first image x1, (B) second image x2, and (C) third image x3 from the simulated transit.

Table 1. Reconstruction quality for the different number of
simulated transit observations using the synthetic anisotropic
Gaussian filter.

P ISNR X [dB] RSNR h [dB] M(R)
1 1.27 9.63 –0.25
2 1.33 13.07 –0.16
3 1.36 14.05 –0.03

1 The wavelet operator and the other operators used in this work
were numerically implemented using the SPARCO framework
(Berg et al. 2007).
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Let us now show some reconstruction results of the differ-
ent filters and how they reproduce the true zero pixel values
inside the object. Figure 4A depicts the first noisy observed
patch and Figure 4B presents the resulting PSF when recon-
structing the anisotropic Gaussian filter for P = 3. We can
observe how the algorithm is able to estimate the filter with
a high quality, even when no hard constraints are introduced
on the filter shape. The reconstruction quality can be further
improved if stronger conditions are assumed on the filter.

Figure 4C presents the reconstructed image using the esti-
mated filter from Figure 4B in the non-blind deconvolution of
Section 5. Note that the majority of the pixels inside the esti-
mated disk are zero, except for some numerical errors. To
quantify this validation, we use as measurement the disk inten-
sity, i.e., the sum of the pixel values inside the disk. We com-
pare the ratio between the disk intensity for the deconvolved
image, denoted by SX, and the disk intensity for the observed
patch, denoted by SY . We obtained a disk intensity ratio of
SX=SY ¼ 8:16� 10�2. This shows the effectiveness of the
estimated filter to recover the true zero emissions inside the
disk.

Figure 5 depicts the results for P = 3 observations using
the X filter of Figure 3B. Let us note that the reconstruction
quality is lower than in the case of the Gaussian filter because
the X filter is more complex and hence it is harder to estimate
without extra information on its shape. Nevertheless, since
it causes less diffusion on the observation, the image recon-
struction quality is better. When comparing the values
inside the disk between the observations and the estimated
images, we observed that the disk intensity ratio is
SX=SY ¼ 2:03� 10�2, which validates the zero emissions
inside the disk.

Finally, we also considered a case (not displayed here)
where the observation is only corrupted by noise. As expected,
the filter estimated by the algorithm is a high-quality

Kronecker delta function with RSNR = 66 dB. This result
shows the capability of the algorithm to recover highly local-
ized filters of one pixel radius.

6.2. Experimental data

The proposed blind deconvolution method was tested on two
experimental sets of data. A first data set corresponds to the
observations of the Venus transit on June 5th–6th, 2012 by
the Atmospheric Imaging Assembly (AIA; Lemen et al.
2012) on board the Solar Dynamics Observatory (SDO). The
second data set corresponds to the observations of the Moon
transit on February 25th, 2007 by the Extreme Ultraviolet
Imager (EUVI; Howard et al. 2008), a part of the Sun Earth
Connection Coronal and Heliospheric Investigation (SECCHI)
instrument suite on board the STEREO-B spacecraft. These
images are compressed using the RICE algorithm (Nightingale
2011), which is lossless (Pence et al. 2009) and hence does not
introduce additional errors in the PSF estimation.

In the following, we present for each telescope the results
obtained when reconstructing the filter using the blind decon-
volution approach. Then, we validate the obtained filters with
transit images that were not used for the PSF estimation.
Finally, we demonstrate how the obtained filters work when de-
convolving non-transit images. All results are compared with
previously estimated PSFs.

6.2.1. SDO/AIA – Venus transit

We consider three 4096 · 4096 level 1 images from the transit
(P = 3) recorded by the 19.3 nm channel of AIA. The filter is
assumed to have a limited support inside a 129 · 129 pixel
grid (b = 64), which allows encompassing 99% of the energy
of previously estimated PSFs. The presence of a long-range
PSF was verified in the observations by analyzing the pixels
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Fig. 4. Results for the anisotropic Gaussian filter and P = 3. (A) Noisy observation of image 1 (y1). (B) Filter reconstruction (h*) using blind
deconvolution, RSNR = 14.05 dB. (C) Image Reconstruction (x
1) using non-blind deconvolution, ISNR = 1.83 dB.
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Fig. 5. Results for the X filter and P = 3. (A) Noisy observation of image 1 (y1). (B) Filter reconstruction (h*) using blind deconvolution,
RSNR = 7.52 dB. (C) Image reconstruction (x
1) using non-blind deconvolution, ISNR = 2.55 dB.
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inside the disk of Venus. To estimate this effect, we considered
a total of 10 patches and computed the mean intensity value on
a disk of radius 10 pixels inside the disk of Venus. The
obtained value l = 43.3 DN was removed from the observa-
tions to estimate the filter using the blind deconvolution
scheme.

The radius of the Venus disk is known to be 49 pixels and
hence, the disk represents a small area inside the high-resolu-
tion image. Since the blind deconvolution takes benefit mainly
from the black disk in the transit images, we select a patch of
size N = 2562 centered on the Venus disk. As explained in
Appendix D, our method considers unknown border pixels
based on the filter support (completely defined by b after
removing the value of l from the observed patch). Therefore,
cropping the observed image does not have any effects on the
reconstruction results. Furthermore, considering smaller obser-
vations keeps the optimization problem computationally
tractable.

As explained in Section 2.2, we use an adaptive noise esti-
mation strategy to optimize the AWGN assumption in (4). For
this, we start from r = rRME, the value estimated by the
Robust Median Estimator (RME). Then, the blind deconvolu-
tion method is performed for different values of r that are mul-
tiples of rRME. Finally, we take the value of r that optimizes
the whiteness of the residual MðRÞ as defined in (12), i.e.,
the residual in (10) only contains white noise without any
remaining signal features. The variance r2

RME is computed as
follows (Donoho & Johnstone 1994):

r2
RME ¼

medj a j
0:6745

; ð14Þ

where a is a vector containing the finest scale wavelet coeffi-
cients of the observed vector yj, i.e., a ¼ SKWTyj, with
SK 2 RN�W the selection operator of the set K that contains

the finest scale wavelet coefficients. This estimation resulted
in rRME = 2.81 DN.

Figure 6 shows the resulting PSFs for different values of r.
We can observe that the whitest residual is obtained for
r = 2rRME = 5.62 DN and we thus select this value for our
non-parametric PSF estimate h
np depicted in Figure 6B. Let
us note that, if the noise is underestimated, we reconstruct part
of the noise in the PSF and image, and the resulting PSF is too
noisy (see Fig. 6A). Oppositely, if the noise is overestimated,
the algorithm provides the trivial solution, i.e., the PSF tends
to a discrete delta and the image to the observations (see
Fig. 6C).

The estimated non-parametric PSF in Figure 6B is com-
pared with the parametric PSF estimated by Poduval et al.
(2013), depicted in Figure 7A. This PSF, denoted hp1, was
obtained by fitting a parametric model based on the optical
characterization of the telescope. We observe that the obtained
non-parametric filter is highly localized in the center of the dis-
crete grid and presents a limited support. Let us note that the
observation noise level prevents the estimation of the diffrac-
tion peaks present in hp1. These can only be obtained by con-
straining the shape of the filter in the reconstruction process, as
implicitly done by parametric deconvolution methods.

To solve the blind deconvolution problem, the algorithm
requires an average of four iterations on the value of q and a
total time of 8 h on our computer. In order to reduce the com-
putation time, some functions such as the proximity operators
may be computed in parallel, as many of the convex functions
on which they are defined are separable (Parikh & Boyd 2014).
The computation time can be further reduced if, for instance,
the algorithms are implemented in C language instead of
MATLAB.

In order to obtain a more accurate PSF estimation contain-
ing the diffraction peaks, let us incorporate a parametric PSF
inside the acquisition model in (2) by considering a combined
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parametric/non-parametric PSF defined as h
p�np ¼ hp � h
np
(Shearer et al. 2012; Shearer 2013). The parametric part is
obtained by considering only the mesh diffraction components
in the PSF estimated by Poduval et al. (2013). This modified
PSF, denoted hp2, is depicted in Figure 7B. The non-parametric
part (h
np) is estimated using the proposed blind deconvolution
approach. Figure 7C presents the resulting parametric/non-
parametric PSF, i.e., h
p2�np.

We can observe that the resulting parametric/non-paramet-
ric PSF is a corrected version of the parametric model from
Figure 7B. Its central shape is also more diffused similarly to
what is observed in the parametric PSF estimated by Poduval
et al. (2013).

The estimated filters from Figures 6B, 7A, and 7C were
validated using the non-blind deconvolution formulation from
Section 5. Notice that, similarly to what has been done for the
blind deconvolution, the value of q has been selected adap-
tively by optimizing the residual whiteness defined in (11).
We also observed empirically that the value of q must be kept
smaller than the one obtained in Algorithm 2. The validation
was done on transit images using the modified observations
with l = 43.3 DN. A first validation was performed on the
Venus transit image taken by SDO/AIA at 00:02 UT on June
6th, 2012 (see Fig. 8A), a patch that has not been used before
for estimating h*. A second validation of the filters was done
on the Moon transit image taken by SDO/AIA at 13:00 UT on
March 4th, 2011 (see Fig. 9A).

We quantify the apparent disk emissions by summing the
pixel values inside the disk. Table 2 displays the disk intensity
ratio for the images deconvolved using the following filters: (1)
the parametric PSF estimated by Poduval et al. (2013), i.e., hp1;
(2) the non-parametric PSF of Figure 6B, i.e., h
np; and (3) the
parametric/non-parametric PSF of Figure 7C, i.e., h
p2�np.

We observe that, for both transits, the parametric/non-para-
metric model reaches lower disk apparent emissions. We also
note that, compared to the non-parametric filter estimation,
the parametric model provides slightly better results in terms
of reducing the disk apparent emissions. However, the non-
parametric scheme presents the advantage of being generally
applicable for any optical instrument without the need of an
exact model of the imaging process.

Figures 8 and 9 illustrate the image reconstruction results
when using the non-parametric PSF, i.e., h
np. Figures 8A and
9A present the observed patches; Figures 8B and 9B depict
the 2-D estimated images; and Figures 8C and 9C present
1-D profiles that allow the observation of the disks of Venus
and the Moon, respectively. Due to lack of space, only the
non-parametric PSF validation is illustrated.

Let us note that, if the long-range effect l is not removed
from the observations, the parametric PSFs taken with a larger
support of 2048 · 2048 pixels are not able to eliminate the off-
set and, hence, are not able to remove the apparent emissions
inside the disk of Venus.

Finally, the estimated filters were also used to deconvolve
non-transit images. For this, the non-blind deconvolution for-
mulation from Section 5, using an adaptive q, was applied to
the modified observations with l = 43.3 DN. The results are
shown for a non-transit image taken by SDO/AIA at 10:00
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Table 2. Disk intensity ratio for the different filters.

Filter SX =SY Venus SX =SY Moon
hp1 0.74 · 10�2 1.30 · 10�2

h
np 3.65 · 10�2 3.64 · 10�2

h
p2�np 0.28 · 10�2 0.65 · 10�2
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UT on August 8th, 2011. We selected a portion of the original
image of 512 · 512 pixels around the active region (see
Fig. 10A). Figure 10B depicts the 2-D estimated image using
the non-parametric PSF, i.e., h
np, and Figure 10C shows a
1-D profile along y = 187.

We observe that the non-parametric PSF enhances the
image, providing brighter active regions and coronal loops,
and darker regions of lower intensity than in the original
image. To compare those results with those of the other filters
mentioned above, we take the ratio between the deconvolved
images and the observation (computing a pixel-by- pixel divi-
sion), as shown in Figure 11. We notice that the deconvolution
resulting from the combined parametric/non-parametric PSF
presents a higher correction from the observations than the
ones obtained using the other filters. In dark regions, the
non-parametric PSF provides results similar to those obtained
by the parametric PSF, however, in brighter areas the non-
parametric PSF seems to be able to recover more details.

6.2.2. SECCHI/EUVI – Moon transit

We consider three 2048 · 2048 images from the transit
(P = 3) recorded by the 17.1 nm channel of EUVI. The images
are calibrated with the secchi_prep.pro procedure avail-
able within the IDL SolarSoft library. Following the practice
described for the SDO/AIA Venus transit, each image was
cropped using a 512 · 512 window (N = 5122) centered
around the Moon disk. The filter is assumed to have a limited
support inside a 129 · 129 pixel grid (b = 64). This allows
one to obtain the core of the PSF of around 100 · 100 pixels,
as observed by Shearer et al. (2012), and encompass 99% of
the energy of previously estimated PSFs.

The long-range PSF is modeled by a constant l = 12.5 DN,
estimated by computing the mean intensity value (over five
patches) on a disk of radius 10 pixels inside the Moon disk.
The estimated noise variance using the RME provided

r2
RME ¼ 2:21 DN2. Following the same procedure as described

before for SDO/AIA, we obtained that the value of r that
allows obtaining the whitest residual is r = 2 rRME = 4.04 DN.

Hereafter, we provide a comparison between the following
filters: (1) the parametric PSF given by the euvi_psf.pro
procedure of SolarSoft, i.e., hp1

, the standard PSF used for
SECCHI/EUVI image analysis; (2) the parametric PSF esti-
mated by Shearer et al. (2012), i.e., hp2

, and given by the
euvi_deconvolve.pro procedure of SolarSoft; (3) the
non-parametric PSF, i.e., h
np; (4) the parametric/non-paramet-
ric PSF obtained by incorporating in the acquisition model the
parametric PSF given by euvi_psf.pro, i.e., h
p1�np; and (5)
the parametric/non-parametric PSF obtained by incorporating
in the acquisition model the parametric PSF given by
euvi_deconvolve.pro, i.e., h
p2�np. The core of the para-
metric and non-parametric filters is presented in Figure 12 and
the core of the resulting parametric/non-parametric filters is
depicted in Figure 13.

We can observe that while the two parametric PSFs favor
both diagonals, the one given by the euvi_deconvolve.pro
presents a slight dominance of that at 45�. The estimated non-
parametric PSF clearly favors one of the two diagonals. Never-
theless, it presents an orientation at �45�. The source of this
difference in orientation is unknown and it should be further
investigated. This, however, is beyond the scope of the present
paper. Both parametric/non-parametric PSFs present a similar
behavior, favoring both diagonals but with a slight dominance
of that at �45�.

The filters from Figures 12 and 13 were validated using the
non-blind deconvolution described in Section 5. Similarly to
what has been done for SDO/AIA, the value of q has been
selected adaptively by optimizing the value of the residual
whiteness. Let us note that, as observed empirically, the value
of q must be kept smaller than the one obtained in Algorithm 2.
The filter validation was performed on the Moon transit
image taken by SECCHI/EUVI at 08:02 UT on February
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25th, 2007 (see Fig. 14A). Let us note that this patch has not
been used before for estimating h* and that the non-blind
deconvolution is applied to the modified observation using
l = 12.5 DN. We quantify the apparent Moon emissions by
summing the pixel values inside the disk. Table 3 displays
the disk intensity ratio for the image deconvolved using the dif-
ferent filters presented above.

We notice that, as for the Venus transit images, when the
long-range effect l is not removed from the observations, the

parametric PSFs considered in a larger support of
1024 · 1024 pixels are not able to remove the offset and to
recover zero emissions inside the lunar disk. If the long-range
effect is considered through the parameter l, the non-paramet-
ric PSF presents a better behavior and is able to reduce more of
the disk emissions as compared to the parametric PSFs (see
Table 3). We also observe that the parametric/non-parametric
PSFs reach lower disk apparent emissions.

In Figure 14 we illustrate the reconstruction results when
using the non-parametric PSF, i.e., h
np. Figure 14A presents
the observed patch, Figure 14B depicts the 2-D estimated
image, and Figure 14C depicts a 1-D profile along
y = 257 (to allow the observation of the lunar disk). Due to
lack of space, only the non-parametric PSF validation is
illustrated.

We can observe that, in Figure 14, part of the off-limb por-
tion of the image is forced to zero. Since this part of the image
is fainter than the lunar disk, the proposed non-blind deconvo-
lution method in Section 5 is not able to preserve such low
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y = 257. Figures (A) and (B) contain a green line indicating the 1-D profiles shown on figure (C).

Table 3. Moon disk intensity ratio for the different filters.

Filter SX =SY

hp1
5.72 · 10�3

hp2
5.80 · 10�3

h
np 2.02 · 10�3

h
p1�np 1.81 · 10�3

h
p2�np 1.29 · 10�3
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intensities. However, finding a deconvolution method that
would preserve these low intensities in the off-limb region
(e.g., by selecting other sparsity priors) is beyond the scope
of this work.

The estimated filters were also used to deconvolve non-
transit images. For this, the non-blind deconvolution formula-
tion from Section 5, using an adaptive q, was applied to the
modified observations with l = 12.5 DN. The results are
shown for a non-transit image taken by SECCHI/EUVI at
04:02 UT on February 25th, 2007. We selected a portion of
the original image of 256 · 256 pixels around the active region
(see Fig. 15A). Figure 15B depicts the 2-D estimated image
using the non-parametric PSF, i.e., h
np, and Figure 15C shows
a 1-D profile along y = 141.

Figure 15 shows that the estimated non-parametric PSF is
able to enhance the image and provide more details. Similarly
to SDO/AIA, we compare these results with the ones from the
other PSFs by taking the ratio between the deconvolved images
and the observation (computing a pixel-by-pixel division).
Results are depicted in Figure 16. We observe that the non-
parametric PSF provides similar results to those obtained by
the parametric PSF given by the euvi_psf.pro procedure.
These two PSFs are able to provide higher details than the
parametric PSF given by the euvi_deconvolve.pro pro-
cedure. The deconvolution resulting from the combined para-
metric/non-parametric PSFs present a higher correction from

the observations than the ones obtained using the other three
filters. This corresponds to what was observed for the Moon
transit images in Table 3.

7. Discussion and perspectives

We proposed a blind deconvolution method that allows one to
recover the PSF of a given astronomical instrument provided
the latter captures a celestial body transit (as observed in
Fig. 1). The proposed non-parametric approach is comparable
to previous parametric ones with respect to the quality of the
PSF core. It presents, however, some limitations in terms of
the considered noise model and the estimation of the PSF
long-range effects. Fortunately, the optimization techniques
we use in this work are flexible enough to open perspectives
of improvement in future works.

7.1. Noise model

The incidence of photon flux on a EUV telescope is converted
to digital numbers (DN) through a series of steps, each poten-
tially introducing some noise. The beam of photons impinges
the optical system where the PSF acts as a blurring operator.
Simultaneously, a spectral selection is performed on the signal
before it reaches the CCD detector. The latter has an heteroge-
neous response across its surface. Finally, the camera
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electronics convert electrons into DN, adding the read-out
noise. The pixels in the resulting image can be modeled as
the realization from a random variable Y, whose noise part
can be decomposed into additive, Poissonian, and multiplica-
tive degradations. The expectation (E) and the variance (V)
of Y then verify:

E½Y � ¼ x and V½Y � ¼ r2 þ bxþ ax2; ð15Þ

where r is the standard deviation of the additive component
and a, b are parameters.

Shearer et al. (2012) handled Poisson corrupted data
through a Variance Stabilization Transform (VST) which pro-
vides an approximated Gaussian noise distributed data. In
order to generalize our AWGN model to models such as
(15), a VST could be included in the ‘2-fidelity term in (7)
and (13), on both the observations and the convolution result
(Shearer et al. 2012). This can be done provided that we know
the conversion between DN and the photon counts (e.g., from
instrument specifications). The algorithm described in Section 4
is adaptable to this stabilized fidelity term through specific
proximal operators or gradient descent (Dupé et al. 2009;
Anthoine et al. 2012). Notice, however, that such a stabilization
cannot be applied only on the observations as a mere prepro-
cessing of the data, while using afterwards other deconvolution
methods assuming additive Gaussian noise corruption. Indeed,
the VST being a non-linear process of the form
x 2 Rþ7!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
axþ b
p

for some a; b 2 Rþ (Anscombe 1948), it
breaks the convolutive model (2) on which those deconvolution
methods rely. In other words, the VST of the convolution of
h by xj in (2) is not equivalent to (and hardly approximable
by) the convolution of the variance stabilized vectors, which
breaks the applicability of those techniques. As an alternative
to using a VST, the true Poisson distribution could also be used
to design a specific fidelity term, which is based on the nega-
tive log-likelihood of the posterior distribution induced by the
observation model, i.e., the KL divergence of this distribution
(Fish et al. 1995; Anthoine et al. 2012; Prato et al. 2013). How-
ever, it is unclear how to adapt the method proposed by
Attouch et al. (2010) to the resulting framework.

7.2. Estimation of long-range effects

Our paper aimed at preventing strong assumptions on the
shape of the central part of the PSF. We provide a general
deconvolution method for different types of telescopes, the
generality of our method being of particular interest for tele-
scopes exhibiting optical aberrations. This strategy differs from
the one adopted by most parametric PSF estimations. Nonethe-
less, additional convolutive filter regularizations could be
included in our scheme by, for instance, promoting the sparsity
(in synthesis or in analysis) of this filter in an appropriate basis
(e.g., wavelet basis), or by enforcing a certain decaying law of
its amplitude in function of the radial distance. Both kind of
priors can be expressed as convex costs (e.g., with a ‘1-norm
or a weighted ‘1-ball constraint) with closed-form (or simple)
proximal operators. These adaptations can thus be integrated in
Algorithm 1 with additional efforts for limiting the computa-
tional time of the more complex deconvolution procedure.
Moreover, such additional priors can help in enlarging the sup-
port C where the filter is truly estimated, hence reaching an
estimation of the long-range PSF.

Regarding the approximation of the long-range PSF impact
by a constant, we notice that, instead of estimating the constant
l in a preprocessing step (see Sect. 3.2), in future work we
could let l be a free parameter of the deconvolution problem
(7). The value of l can then be optimized jointly with the
image and the filter as this does not break the convexity of
the subproblems detailed in Section 4.

Finally, inspired by the works of Shearer et al. (2012) and
Shearer (2013), a convolutive combination of a known para-
metric filter with an unknown non-parametric one was consid-
ered in this work to further stabilize the non-convexity of the
blind deconvolution problem. However, this construction is
limited since, from the convolution theorem, no correction of
the parametric PSF can be made in the part of its spectrum
where it vanishes. Future works should therefore consider addi-
tive correction of the parametric PSF as suggested by Poduval
et al. (2013), a modification that Algorithm 1 could also
include.

8. Conclusion

We have demonstrated how a non-parametric blind deconvolu-
tion technique is able to estimate the core of the PSF of an opti-
cal instrument with high quality. The quality of the estimated
PSF core is comparable with the one provided by parametric
models based on the optical characterization of the imaging
instrument. We also demonstrate that, if the parametric PSF
is incorporated in the acquisition model, the blind deconvolu-
tion approach is able to provide a ‘‘corrected’’ PSF such that
most of the apparent emissions inside the disk of a celestial
body during a solar transit can be removed. Let us note that
non-parametric techniques cannot outperform the accuracy of
parametric methods, however in situations where the telescope
imaging model cannot be obtained due to some instrument’s
properties (e.g., PICARD/SODISM; Meftah et al. 2014), the
non-parametric method presents a great advantage. Moreover,
the proposed method is not specific to a given instrument but
can be applied to any optical instrument provided that we have
strong knowledge of some image pixel values and their exact
location, such as the information available during the transit
of the Moon or a planet. We have also shown that the use of
the Proximal Alternating Minimization technique proposed
by Attouch et al. (2010) allows to efficiently solve the non-
convex problem of blind deconvolution with theoretical
convergence guarantees. Furthermore, we show the importance
of considering multiple observations for the same filter in order
to provide a better conditioning to the filter estimation
problem.
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Appendix A
On the approximation of the long-range PSF impact
by a constant

In this work, in order to compensate the restriction of the esti-
mated filter to its core, we assume that, for moderate solar
intensities, the long-range effect of the PSF can be approxi-
mated by a constant inside a limited patch. This assumption
is compatible with the observations made on the convolution
of a solar image with a parametric filter that only contains
the long-range effect, i.e., a filter built by taking a standard
parametric PSF containing long-range patterns and setting to
zero the central pixels inside a window of size
(2b + 1) · (2b + 1) with b = 64.

For SDO/AIA, we use the parametric filter estimated by
Grigis et al. (2013). The validation was performed using a
4096 · 4096 level 1 image from the Venus transit recorded
by the 19.3 nm channel of AIA at 00:00:01 UT on June 6th,
2012. These results are presented in Figure A.1.

For SECCHI/EUVI, we use the parametric filter given by
the euvi_psf.pro procedure of SolarSoft. The validation
was performed using a 2048 · 2048 image from the Moon
transit recorded by the 17.1 nm channel of EUVI at 14:00:00
UT on February 25th, 2007. The convolution results are pre-
sented in Figure A.2.

The resulting low-frequency images in Figure A.1-C and
Figure A.2-C validate the use of a constant l to approximate
the long-range effect. Let us note that this is just a first
approach to estimate the long-range effect and that more
sophisticated methods can be used as explained in Section 7.

Appendix B
Algorithm initialization

Algorithm 1 requires an initial value of the image (X0), the fil-
ter (h0), and the regularization parameter (q0). In this section,
we describe in detail how we proceed with this initialization.

B.1. Image and filter

For the first value of q, the alternating algorithm (Algorithm 1)
is initialized with the trivial solution, where the image is given
by the observations Z and the filter is given by the delta func-
tion d0. For the subsequent iterations on q, the image and the
filter are initialized using the value of the previous iteration.

B.2. Regularization parameter

The regularization parameter has an important role in solving
the first step in Algorithm 1, since it determines the trade-off
between the image regularization and the fidelity to the obser-
vations. Several works have studied the choice of this parame-
ter when solving general ill-posed inverse problems. In basis
pursuit denoising, Donoho & Johnstone (1994) proposed a uni-
versal value for q given by r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðNÞ

p
. Since this value

increases with the amount of samples (N), it tends to provide
overly smoothed images. Another state-of-the-art choice, pro-
posed by Donoho & Johnstone (1995), is based on the minimi-
zation of the Stein’s Unbiased Risk Estimate (SURE; Stein
1981). This method provides accurate denoising results, how-
ever it requires complete knowledge of the degradation model
which makes it unsuitable for our blind deconvolution
problem. In this work, we use the Bayesian approach proposed
by Chang et al. (2000), to estimate the parameter q using the

noise characteristics and the probability distribution function
of the wavelet coefficients:

q ¼
ffiffiffi
2
p

r2

s
; ðB:1Þ

where s is the standard deviation of the wavelet coefficients of
the signal to reconstruct. When we assume that they follow a
Laplacian probability distribution with zero mean, the value
of s can be estimated as:

ffiffi
2
p

PQ

PP
j¼1jjðAÞjjj1, where

A ¼ SHWTX is the matrix containing the image wavelet coef-
ficients inside the set H.

Since the Ground Truth signal X is usually not available,
the value of s in (B.1) is determined using the modified obser-
vations Z, i.e., s ¼ sZ ¼

ffiffi
2
p

PQ

PP
j¼1jjðA0Þjjj1, with A0 ¼ SHWTZ.

Since this value is higher than the actual q, it will lead to over-
regularized images. Therefore, we propose to refine the value of q
by an iterative update based on the discrepancy principle between
the actual noise energy in (5) and the energy of the residual image
(10). By performing a maximum of five updates of the parameter
q, we assure an appropriate image regularization. The iterative
estimation of q is summarized in Algorithm 2.

Algorithm 2: Iterative estimation of q

Initialize: Xð1Þ ¼ Z; hð1Þ ¼ d0; qð1Þ ¼ ð
ffiffiffi
2
p

r2=sZÞ;
e ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NP þ 2

ffiffiffiffiffiffiffi
NP
pp

; MaxIter ¼ 5
1: for l = 1 to MaxIter do

Images and Filter estimation:
2: Estimate X(l+1) and h(l+1) using Algorithm 1 with

X0 = X(l), h0 = h(l) and q0 = q(l)

Compute residual and whiteness measure:
3: RðlÞ ¼ Z�Uðhðlþ1ÞÞXðlþ1Þ

4: Compute MðRðlÞÞ using (12)
Parameter update:

5: e lð Þ ¼ jjRðlÞjjF
6: qðlþ1Þ ¼ qðlÞ e=eðlÞ

� �
Stop when residual is spectrally whiter:

7: if Mðlþ1Þ <MðlÞ then break.
8: Return X
 ¼ Xðlþ1Þ and h
 ¼ hðlþ1Þ

Appendix C
Numerical reconstruction algorithms

For the sake of completeness, in this section, we briefly
describe the proximal algorithms that we use to solve the
two subproblems of Algorithm 1. We refer the reader to Cham-
bolle & Pock (2011); Combettes & Pesquet (2011); Parikh &
Boyd (2014), for a comprehensive understanding.

Proximal algorithms rely on a key element in convex signal
analysis, the proximal operator

proxmuz :¼ argminu2RD uðuÞ þ 1

2m
jju� zjj2; ðC:1Þ

which is uniquely defined for any function u 2 C0ðRDÞ, for
some D 2 N (Combettes & Pesquet 2011). Proximal algo-
rithms allow the minimization of non-smooth functions such
as the ‘1-norm and the indicator functions present in the image
and filter subproblems.
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C.1 First subproblem: Image estimation

In the first subproblem, we are interested in finding the image
candidate that minimizes

X kþ1ð Þ ¼ argmin~X2RN�P q jjSH WT ~Xjj1 þ
1

2
jjZ�U h kð Þ� �

~Xjj2
F

þ k kð Þ
x

2
jj ~X� X kð Þjj2F þ iP0

~X
� �

;

ðC:2Þ

a problem that contains a sum of four functions belonging to
C0ðRDÞ, for some dimensions D 2 fQP ;NPg. For this, we
use the Chambolle-Pock (CP) primal-dual algorithm
(Chambolle & Pock 2011), which is commonly used for solv-
ing the minimization of two functions in C0. In order to take
into account the sum of more than two functions, the algorithm
is extended as in González et al. (2014). If we set
F 1ðV1Þ ¼ qjjV1jj1 for V1 2 RQ�P , F 2ðV2Þ ¼ 1

2 jjZ� V2jj2F
for V2 2 RN�P , F 3ðV3Þ ¼ k kð Þ

x
2 jjV3 � X kð Þjj2F for V3 2 RN�P ,

and HðUÞ ¼ iP0ðUÞ for U 2 RN�P , the CP iterations are:

Vðtþ1Þ
1 ¼ proxmF 
1

VðtÞ1 þ mSHWT �UðtÞ
� �

;

Vðtþ1Þ
2 ¼ proxmF 
2

VðtÞ2 þ mUðhðkÞÞ�UðtÞ
� �

;

Vðtþ1Þ
3 ¼ proxmF 
3

VðtÞ3 þ m�UðtÞ
� �

;

Uðtþ1Þ ¼ proxa
3H UðtÞ � b

3 WST
HVðtþ1Þ

1 þ U hðkÞ
� �� �T

Vðtþ1Þ
2 þ Vðtþ1Þ

3

h in o
;

�Uðtþ1Þ ¼ 2 Uðtþ1Þ � UðtÞ;

ðC:3Þ

with U(t) tending to a minimizer X(k+1) of (C.2) for t ! +1.
The functions F 
i are the convex conjugates of functions Fi,
with i = {1, 2, 3}, and their proximal operators are computed
via the proximal operator of Fi in (C.1) by means of the con-
jugation property (Combettes & Pesquet 2011):
proxmF 
i

z ¼ z� m prox1
mF i

1
m z
� �

. The step sizes m and b are adap-
tively selected using the procedure described in González et al.
(2014).

C.2 Second subproblem: filter estimation

In the second subproblem, we are interested in finding the filter
candidate that minimizes

hðkþ1Þ ¼ argmin~h2RN
1

2

XP

j¼1

jj zj �Uðxðkþ1Þ
j Þ ~hjj

2

2

þ kðkÞh

2
jj ~h� h kð Þjj22 þ iDð~hÞ; ðC:4Þ

with Uðxðkþ1Þ
j Þ 2 RN�N a block-circulant matrix of kernel

xðkþ1Þ
j . This problem has the following shape

argminu2RN F ðuÞ þ GðuÞ; ðC:5Þ

with F ðuÞ ¼ 1
2

PP
j¼1jjzj �U x kþ1ð Þ

j

� �
ujj

2

2
þ k kð Þ

h
2 jju� h kð Þjj22

and GðuÞ ¼ iDðuÞ. Since F : RN ! R is convex and differen-
tiable with gradient rF , and G : RN to R [ fþ1g belongs to
C0ðRN Þ, the problem can be solved using the Accelerated
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Fig. A.1. Validating the approximation of the long-range PSF impact by a constant inside the disk of Venus. (A) Logarithm of the filter used
for the validation: parametric filter estimated by Grigis et al. (2013) with the central pixels set to zero inside a window of size
(2b + 1) · (2b + 1), with b = 64. (B) Observed image inside a window containing the disk of Venus. (C) Convolved image inside a window
containing the disk of Venus. The intensity within the window is almost constant.
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Fig. A.2. Validating the approximation of the long-range PSF impact by a constant inside the lunar disk. (A) Logarithm of the filter used for
the validation: parametric filter given by the euvi_psf.pro procedure of SolarSoft with the central pixels set to zero inside a window of size
(2b + 1) · (2b + 1), with b = 64. (B) Observed image inside a window containing the lunar disk. (C) Convolved image inside a window
containing the lunar disk. The window intensity is almost constant.
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Proximal Gradient (APG) method (Parikh & Boyd 2014). The
APG iterations are:

vðtþ1Þ ¼ uðtÞ þ bðtÞ uðtÞ � uðt�1Þ� �
;

uðtþ1Þ ¼ proxmG vðtþ1Þ � mrF vðtþ1Þ� �� �
;

bðtÞ ¼ t
tþ3 ;

ðC:6Þ

with u(t) tending to a minimizer h(k+1) of (C.4) for t ! +1.
The step size m is adaptively selected using the line search of
Beck & Teboulle (2010).

Appendix D
Convolutions with unknown boundary conditions

As explained in Section 2, our blind deconvolution approach is
realized in a restricted FoV of size n · n. For all our computa-
tions, as those realized in Algorithm 1, fast convolution meth-
ods exploiting the FFT must be performed. Therefore, it is
important to properly handle the frontiers of our images and
avoid both implicit FFT frontier periodizations and the influ-
ence of unobserved image values integrated by the filter exten-
sion. Inspired by the work of of Almeida & Figueiredo
(2013a), we implement their unknown boundary conditions,
where instead of expanding the observation using zero padding
as in Anconelli et al. (2006) and Prato et al. (2012), the bound-
aries are considered unknown in the convolution process and
then, by properly selecting the pixels inside the known bound-
aries, the observed image is obtained. In a nutshell, the
unknown boundary conditions method proceeds by considering

every convolution in a bigger space obtained by expanding the
original one by the radius of the filter in all directions, i.e., by a
border of width b. Later, the optimization methods can freely
set the values in this border. We only impose that the correct
convolution values are those selected in the former domain.

Mathematically, we consider a larger image �xj 2 RM and a
larger filter �h 2 RM , with M = N + 2b. The observation is
obtained by selecting the pixels inside the boundaries of the
convolved image using a selection operator SN 2 RN�M. The
problem in (2) can be rewritten as:

Y ¼ SN Uð�hÞ �Xþ N: ðD:1Þ

The regularized blind deconvolution problem in (7) trans-
forms as follows:

min~X;~h

s:t:

qjjSH WT ~Xjj1 þ 1
2 jjZ� SN Uð~hÞ ~Xjj2F

ð~xjÞi ¼ 0 if i 2 Xj; ð~xjÞi � 0 otherwise
~h 2 PS; supp ~h 2 C

ðD:2Þ

with ~X 2 RM�P and ~h 2 RM . The actual image X* and filter h*

are obtained by applying the operator SN to both the estimated
image �X
 and filter �h
, respectively, i.e., X
 ¼ SN

�X
,
h
 ¼ SN

�h
.
The unknown boundaries are also taken into consideration

in the set H by excluding from this set the wavelet coefficients
that are affected by the image boundaries.
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