55 research outputs found

    Simultaneous Beat and Downbeat-Tracking Using a Probabilistic Framework: Theory and Large-Scale Evaluation

    Full text link

    Sparse and structured decomposition of audio signals on hybrid dictionaries using musical priors

    No full text
    International audienceThis paper investigates the use of musical priors for sparse expansion of audio signals of music, on an overcomplete dual-resolution dictionary taken from the union of two orthonormal bases that can describe both transient and tonal components of a music audio signal. More specifically, chord and metrical structure information are used to build a structured model that takes into account dependencies between coefficients of the decomposition, both for the tonal and for the transient layer. The denoising task application is used to provide a proof of concept of the proposed musical priors. Several configurations of the model are analyzed. Evaluation on monophonic and complex polyphonic excerpts of real music signals shows that the proposed approach provides results whose quality measured by the signal-to-noise ratio is competitive with state-of-the-art approaches, and more coherent with the semantic content of the signal. A detailed analysis of the model in terms of sparsity and in terms of interpretability of the representation is also provided, and shows that the model is capable of giving a relevant and legible representation of Western tonal music audio signals

    Automatic music transcription: challenges and future directions

    Get PDF
    Automatic music transcription is considered by many to be a key enabling technology in music signal processing. However, the performance of transcription systems is still significantly below that of a human expert, and accuracies reported in recent years seem to have reached a limit, although the field is still very active. In this paper we analyse limitations of current methods and identify promising directions for future research. Current transcription methods use general purpose models which are unable to capture the rich diversity found in music signals. One way to overcome the limited performance of transcription systems is to tailor algorithms to specific use-cases. Semi-automatic approaches are another way of achieving a more reliable transcription. Also, the wealth of musical scores and corresponding audio data now available are a rich potential source of training data, via forced alignment of audio to scores, but large scale utilisation of such data has yet to be attempted. Other promising approaches include the integration of information from multiple algorithms and different musical aspects

    Automatic chord transcription from audio using computational models of musical context

    Get PDF
    PhDThis thesis is concerned with the automatic transcription of chords from audio, with an emphasis on modern popular music. Musical context such as the key and the structural segmentation aid the interpretation of chords in human beings. In this thesis we propose computational models that integrate such musical context into the automatic chord estimation process. We present a novel dynamic Bayesian network (DBN) which integrates models of metric position, key, chord, bass note and two beat-synchronous audio features (bass and treble chroma) into a single high-level musical context model. We simultaneously infer the most probable sequence of metric positions, keys, chords and bass notes via Viterbi inference. Several experiments with real world data show that adding context parameters results in a significant increase in chord recognition accuracy and faithfulness of chord segmentation. The proposed, most complex method transcribes chords with a state-of-the-art accuracy of 73% on the song collection used for the 2009 MIREX Chord Detection tasks. This method is used as a baseline method for two further enhancements. Firstly, we aim to improve chord confusion behaviour by modifying the audio front end processing. We compare the effect of learning chord profiles as Gaussian mixtures to the effect of using chromagrams generated from an approximate pitch transcription method. We show that using chromagrams from approximate transcription results in the most substantial increase in accuracy. The best method achieves 79% accuracy and significantly outperforms the state of the art. Secondly, we propose a method by which chromagram information is shared between repeated structural segments (such as verses) in a song. This can be done fully automatically using a novel structural segmentation algorithm tailored to this task. We show that the technique leads to a significant increase in accuracy and readability. The segmentation algorithm itself also obtains state-of-the-art results. A method that combines both of the above enhancements reaches an accuracy of 81%, a statistically significant improvement over the best result (74%) in the 2009 MIREX Chord Detection tasks.Engineering and Physical Research Council U
    corecore