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Abstract

Most existing automatic chord recognition systems use a chromagram in front-end processing and some sort of
classifier (e.g., hidden Markov model, Gaussian mixture model (GMM), support vector machine, or other template
matching technique). The vast majority of front-end algorithms derive acoustic features based on a standard
short-time Fourier analysis and on mapping energy from the power spectrum, or from a constant-Q spectrum, to
chroma bins. However, the accuracy of the resulting spectral representation is a crucial issue. In fact, conventional
methods based on short-time Fourier analysis involve an intrinsic trade-off between time resolution and frequency
resolution. This work investigates an alternative feature set based on time-frequency reassignment, which was applied
in the past to speech processing tasks such as formant extraction. As shown in the following experiments, the
reassigned spectrum provides a very accurate front-end for the GMM-based chord recognition system here
investigated.
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1 Introduction
With the rapid growth of digital media and musical col-
lections that can be accessed via the Web, many new
applications are presently envisaged which require the
analysis of audio contents. Automatic extraction of high-
level information such as rhythm, harmony, key, and
melody therefore represents a primary goal and challenge
in the music information retrieval (MIR) research com-
munity. In particular, automatic chord recognition has
always been of great interest, since a chord sequence
can act as a robust mid-level representation for a vari-
ety of MIR tasks such as cover song identification,
music classification, and retrieval [1]. The majority of
chord recognition systems proposed in the literature
rely on two basic steps, namely feature extraction and
classification.
Feature extraction analyzes the waveform and converts

it into a set of acoustic feature vectors, which efficiently
characterize the input signal in time and frequency [2].
Historically, studies on feature extraction for chord recog-
nition started with the introduction of chroma features,
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a.k.a., pitch class profiles, in 1999 by Fujishima [3]. A
chroma vector represents the power spectrum distribu-
tion over the 12 semitone pitch classes for a given time
interval. It is generally computed by transforming the sig-
nal from the time domain into the frequency domain, with
the help of a short-time Fourier transform (STFT) [4,5]
or of a constant-Q transform [6,7], and then mapping the
energy from spectral bins to chroma bins.
Similarly to the spectrogram for speech analysis, the

chromagram (i.e., a sequence of chroma vectors) is one of
the most effective signal representations for music anal-
ysis and chord recognition. Different ways of computing
chroma features and chromagrams are reported in the
literature [8,9]. In particular, much attention has been
devoted to the problem of higher harmonics and to their
impact on chroma vectors. Several works proposed the
use of some sort of harmonic analysis in order to reveal
the presence of higher harmonic components [10-12]. In
all these approaches, spectral analysis is performed on a
frame-by-frame basis, in order to find all the pitches that
occur at each time instant.
In the work of Mauch and Dixon [10], an approximate

note transcription procedure was applied before calcula-
tion of a wrapped chromagram. Their technique proved to
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be more advantageous when considering ‘difficult’ chords.
Ueda et al. [13] showed the importance of the ‘harmonic
filtering’ step for feature extraction. Their chord recog-
nition system was based on harmonic/percussive sound
separation, which led to the best result in theMIREX 2008
evaluation campaign (http://www.music-ir.org/mirex/
2008/index.php/Audio_Chord_Detection_Results).
In most of the above-mentioned techniques, a power

or magnitude spectrum (regardless of the related phase
information) is restructured into a 12-chroma feature rep-
resentation which depends on the frequency resolution
of the STFT applied to the given music signal sequence.
The central assumption of the STFT is that of station-
arity, i.e., the spectral content of the analyzed frame is
assumed to be constant. In general, small deviations from
this theoretical assumption introduce tolerable artifacts.
However, music is a non-stationary process, sometimes
characterized by sudden changes (e.g., in the onset of a
note or in attack transients of a percussive instrument)
which require a high time resolution, or by quasi steady-
state sequences embedding important small fluctuations
(e.g., vibrato) for which a high frequency resolution would
be necessary.
To increase frequency resolution enough to properly

represent the harmonic contents of the signal, one should
adopt a long analysis window, which introduces draw-
backs due to the increased probability of having a chord
change, or some note transitions, inside it. On the other
hand, reducing the analysis window size does not allow for
a reasonable frequency resolution. As a result, in the liter-
ature, the most widely used frame sizes to derive chroma
vectors range from 180 to 740 ms [4,6,7,14-16]. To pro-
vide smoothed feature sequences, a high overlap ratio (i.e.,
from 50% to 90%), with subsequent median filtering or
averaging, is generally applied. As an alternative approach,
Rocher et al. [17] proposed multi-resolution STFT analy-
sis to estimate chords and tonality at the same time. In that
work, window sizes of 800, 200, and 100 ms were jointly
used to derive three versions of a chromagram.
Such techniques and related window sizes, however,

are often not sufficient to avoid the above-mentioned
problems. In other words, a chromagram for music sig-
nal analysis, like a spectrogram for speech analysis, is a
time-frequency representation with a given uncertainty
due to the adopted windowing operation, as discussed
in depth in [18,19]. Using other time-frequency analysis
techniques [20], this ‘resolution trade-off ’ between time
and frequency can be addressed to reduce uncertainty in
the resulting representation.
In particular, a very accurate description of the time-

frequency structure for a music signal sequence can
be obtained through the reassigned spectrogram repre-
sentation, which derives from the time-frequency reas-
signment (TFR) technique [20] initially proposed by

Kodera et al. [21]. In practice, TFR remaps the spec-
tral energy corresponding to a spectrogram cell into
another time-frequency point, which is closest to the
true region of support of the analyzed signal. The result-
ing reassigned spectrogram has already been investigated
for different tasks, such as sinusoidal synthesis [22], and
cover song identification [23]. Hainsworth and Wolfe [24]
showed the importance of TFR to segment a monophonic
piano melody and locate partials of individual notes.
As shown in this paper, TFR can also be applied effec-
tively to enhance chroma features for chord recognition,
due to its capability to highlight the energy of harmonic
components.
The second main processing component of an auto-

matic chord recognition system is classification. Possible
classification approaches can here be divided in two cat-
egories: template matching [25,26] and machine learn-
ing [4,14,27], with hidden Markov models (HMM) being
the most popular approach in, e.g., speech processing.
Although the focus of this paper is on feature extraction,
our work also investigates different ways of combining
the HMM framework with the proposed front-end pro-
cessing. In particular, in the following, we investigate the
use of HMMs [28] and Gaussian mixture models (GMM).
Note that the latter can be seen as a specific case of
HMMs [29] and that they have already been adopted for
automatic chord recognition [30].
The structure of the paper is as follows: in Section 2,

the formulation of the time-frequency reassignment tech-
nique is introduced. Sections 3 and 4 describe the chord
recognition system and the adopted evaluation met-
rics, respectively. Experimental results are then given in
Section 5. Section 6 will provide a final discussion and
draw some conclusions.

2 Reassigned spectrum-based chromagram
Let x(n) be a discrete-time signal sampled at Fs sampling
rate. At a given sample l, the STFT is applied to x(n) as
follows:

X(l, k) =
∑N−1

n=0
h(n)x(n + l)e−j2πnk/N , (1)

where h(n) is the discrete version of the continuous win-
dow function h(t) while k andN denote a bin number and
the window size, respectively.
In the following, we will use the magnitude spectrum

|X(l, k)| deriving from Eq. (1). The majority of chroma-
gram extraction techniques use this representation tomap
spectral energies to chroma bins, based on:

d(k) = mod(12log2
(

fk
fref

)
+ 69, 12), (2)

where fref denotes the reference frequency of the ‘A4’ tone
while fk = kFs

N and d(k) are the k-th frequency analyzed
by the STFT and the corresponding semitone chroma bin
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index, respectively. An evident drawback of a process-
ing based on this representation is that it neglects phase
information.
On the other hand, the resulting STFT X(l, k) can be

formulated as:

X(l, k) = |X(l, k)|ejφ(l,k), (3)

where φ(l, k) is the phase spectrum.
Now, let us denote the angular frequency of f as

ω = 2π f . As shown in [18] and [31], starting from a
generic time-frequency point (t,ω) where STFT was com-
puted, the reassigned time-frequency coordinates (t̂, ω̂)

can be derived in different ways.
An efficient computation of t̂(t,ω) and ω̂(t,ω) in the

discrete-time domain was proposed by Auger and Flan-
drin [32] and takes the following form:

t̂(t,ω) = t − �
{
XT h(t,ω)X∗(t,ω)

|X(t,ω)|2
}

(4)

ω̂(t,ω) = ω + �
{
XDh(t,ω)X∗(t,ω)

|X(t,ω)|2
}
, (5)

where XDh is the STFT obtained using a frequency-
weighted window function hD(n) that is a discrete version
of hD(t) = d

dt h(t) and XT h is the STFT obtained using
a time-weighted window function hT (n) that is a discrete
version of hT (t) = th(t) [18]. Reallocating spectral energy
from spectrogram cell (t,ω) to (t̂, ω̂) concludes the reas-
signment operation. As a result, more precise estimates of
spectral energy distribution are obtained.
The principle of the reassignment technique is to real-

locate energy from the geometrical center of the analysis
window to the ‘center of gravity’ of the spectral com-
ponent this energy belongs to. However, the reassigned
spectrogram can be noisy.
The signal has a meaningful output only in the neigh-

borhood of an impulsive or harmonic component. In
contexts for which there is no component of significant
amplitude, the time-frequency reallocations can become
random [33] and a large energy reassignment is generally
observed. In order to obtain a better spectral represen-
tation, keeping the energy of harmonic components and
deemphasizing that of noisy and impulsive components,
the following condition should be met [34]:∣∣∣∣∂

2φ (t,ω)

∂t∂ω
+ 1

∣∣∣∣ < A, (6)

where A is the tolerance factor, which defines the max-
imum deviation of the acceptable spectral component
from a pure sinusoid.
It is worth noting that there is not an optimal value for

A. It depends on the task and, in general, it must be deter-
mined empirically. Fulop and Fitz reported in [33] that
values ranging from 0.1 to 0.2 are reasonable thresholds

for speech signals. Nelson [34] reports on higher values
but, in fact, the application of this theory to music signal
processing requires a specific investigation, as addressed
in Section 5.5. Efficient computation of ∂φ2(t,ω)

∂t∂ω
is given in

[18] and can be expressed as follows:

∂2φ (t,ω)

∂t∂ω
=�

{
XT Dh(t,ω)X∗(t,ω)

|X(t,ω)|2
}

− �
{
XT h(t,ω)XDh(t,ω)

X2(t,ω)

}
,

(7)

where XT Dh(t,ω) is the STFT obtained using a time-
frequency-weighted window function hT D(n) that is a
discrete version of hT D(t) = t d

dt h(t) [18].
A comparison between a spectrogram, reassigned spec-

trogram, and ‘refined’ reassigned spectrogram, for an
excerpt from ‘Girl’ (by The Beatles) is provided in Figure 1.
All spectrograms are computed using Hanning window
of 192 ms with 90% overlapping. The figure shows how
much ‘sharper’ the reassigned spectrogram representation
is, when compared to the original ‘blurred’ spectrogram.
This sharpness is due both to the benefits introduced by
the application of Eqs. (6) and (7) (see Figure 1c) and to the
fact that a substantial amount of energy has been reallo-
cated to different chroma bins, as shown in Figure 1b (see
also the results reported in Section 5.2).

3 Chord recognition system
This section introduces the basic components of the chord
recognition system under study.
The first processing step aims to solve a possible prob-

lem of mis-tuning in the audio input, by estimating the
reference frequency then used to extract acoustic features.
This problem is here addressed by applying a method that
is very similar to that discussed in our previous work [35]
and in [8,36].
Feature extraction is then applied to produce feature

vector streams which represent the input for training or
classification purposes.
Finally, the chord output sequence is produced by the

decoding step, relying on an HMM framework which is
addressed in the following, along withmodel topology and
training.

3.1 Feature vector extraction
The estimation of the reference frequency is an essen-
tial preliminary step of feature extraction processing. In
order to derive it from a musical excerpt, our system col-
lects statistical information about peak distribution in the
harmonic part of the reassigned spectrogram obtained by
applying condition (6). For each peak, the distance from
the nearest note frequency in the scale is derived, where
the tuning system is based on 440 Hz for ‘A4.’ A peak in
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Figure 1 Time-frequency representation of an excerpt from ‘Girl’ (by The Beatles). From top to bottom: spectrogram, reassigned
spectrogram, and harmonic reassigned spectrogram with tolerance factor set to 0.4. All spectrograms are computed using a Hanning window of
192 ms with 90% overlapping.

the distribution histogram indicates the deviation (mea-
sured in cents) of the estimated reference frequency from
440 Hz.
Once the reference frequency is estimated, the input

waveform is converted to the frequency domain by the
STFT, as described in Section 2. The STFT analysis is
characterized both by the size of the window applied to
each analysis frame and by the overlap factor. In this work,
the latter is 50%, while window size ranges from 43 to 384
ms, according to the selected feature type.
Direct folding of spectral energy to semitone pitch scale

values using Eq. (2) produces standard chroma (STD)
features. Applying the time-frequency reassignment tech-
nique before this procedure results in a reassigned chroma
(RC) feature set. Note that only frequencies that corre-
spond to a MIDI range between 54 (185 Hz) and 96
(2,093 Hz) notes are used. Harmonic reassigned chroma

(HRC) calculation is then based on the reassigned spec-
trum obtained when fulfilling the condition introduced in
Eq. (6). The influence of the tolerance factor on system
performance is investigated in Section 5.5.

3.2 HMMs and GMMs
HMMs have become very popular in the speech pro-
cessing community since the 1980s and today, represent
an established method for speech recognition applica-
tions [28] as well as for other similar contexts (e.g.,
speaker recognition or classification of environmental
noise). Recent works have shown that HMMs also repre-
sent a very effective statistical framework for music signal
analysis, in particular for chord segmentation and recog-
nition, thanks to its ability to model sequences of acoustic
events similarly to sequences of phonemes or words in
speech [27,37].
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In general, an HMM is characterized by a number of
hidden states and a model topology. Each state is then
assigned a mixture density Gaussian distribution that
characterizes the statistical behavior of the feature vectors
within that state of the model. In this work, feature vec-
tor components are assumed to be uncorrelated with one
another, which means that the covariance matrix has a
diagonal form. Finally, probabilities of self-transitions and
jump-transitions between states complete the statistical
characterization for a model.
As regards model topology, an HMM in which a tran-

sition is allowed between any possible pair of states is
referred to as an ergodic HMM. A GMM can be viewed
as a single-state HMM with a Gaussian mixture observa-
tion density, or an ergodic Gaussian observation HMM
with fixed, equal transition probabilities [38]. Section 3.4
will further discuss the adoption of this model topology in
automatic chord recognition.
The experimental activity reported in the following con-

cerns the use of HMMs and GMMs, combined with TFR-
based features in different ways. Figures 2 and 3 show the
two main phases of the chord recognition task, i.e., train-
ing and decoding, respectively. In both cases, we assume
that the input audio signal has been initially transformed
into a stream of feature vectors.

3.3 Model training
Training of acoustic models is a fundamental step in the
realization of a chord recognition system. In the liter-
ature, different approaches are proposed [14,27], where
a chord is represented as a hidden state of an ergodic
HMM. Similarly to the approaches of Peeters [39] and
Papadopoulos et al. [5], in this work, only one model is
created for each ‘chord type’ from the predefined dictio-
nary. A chord type represents chords with a given set of
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Figure 2 Description of the training phase. The Baum-Welch
algorithm is used for acoustic model training. Training of n-gram
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Figure 3 Block diagram of the decoding system.

intervals between constituent notes regardless of the root
note. In this work, two chord types are used, i.e., major
and minor. An advantage of this approach is in terms of
its flexibility when combined with a language modeling
operation in a separate layer.
The final target of training is to produce 24 acous-

tic models (i.e., 12 for each chord type). In general, the
training is based on the application of the Baum-Welch
algorithm, as depicted in Figure 2.
In order to generate training material, the sequence of

feature vectors is first segmented according to the ground-
truth labels so that each segment contains one chord. The
circular permutation [39] procedure is then applied in
order to discard root information. Here, all major chords
are transposed to C major, and all minor chords are trans-
posed to C minor. For example, given chroma vectors
corresponding to the A minor ground-truth chord, a cir-
cular shift by three bins is applied. A number of feature
vector sequences are collected and subsequently used to
train the corresponding acoustic model. Finally, in order
to obtain model parameters for all possible chords related
to a given chord type, another circular permutation is
applied on mean vectors and the covariance matrix of
multivariate Gaussians. More details on circular permuta-
tion of chroma vectors as well as on processing of means
and covariance matrices are reported in [5].
Besides training of acoustic models, another important

step concerns language modeling. Here, we adopt the
approach described in [15], where ground-truth chord
labels from the training corpus are used as an input to esti-
mate N-gram language model parameters. Both bigram
and trigram models are used here, which means that the
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probability distribution for the next chord is influenced by
the one or two preceding chords.

3.4 Model topology
The model topology is an important choice in speech pro-
cessing applications based on HMMs. The most common
approach to continuous speech recognition is to select
a number of context-dependent (or independent) phone
models, characterized by a left-to-right topology and a
limited number of states. For instance, a three-state model
is often used, in which the first state refers to the begin-
ning of the phone, the second state refers to the heart
of the phone, and the third state refers to the end of the
phone. The basic assumption is that the sound to model
is characterized by an underlying temporal structure and
that each state is assigned a Gaussian mixture observation
density characterizing a specific sub-phone unit.
However, when a clear temporal structure is not evi-

dent in the speech sound to model, or when one needs
to model an underlying set of hidden classes (e.g., speaker
properties in the case of speaker identification), a GMM
can represent a better solution. Indeed, GMMs are more
commonly used than HMMs in speaker identification, as
discussed in [38], and in acoustic event classification [40].
As regards chord recognition, a chord can be defined

as ‘a combination of notes that sound simultaneously or
nearly simultaneously’ [41]. However, in pop music, this
concept is rather vague. Score transcription of a song
is typically characterized by a compact representation
consisting of a limited number of chords, each of them
often corresponding to a segment in which the singer
and instruments produce sequences of notes, in a non-
simultaneous way, primarily related to that chord, but
with major deviations with respect to the ideal case out-
lined by the above-mentioned definition of chord. In this
context, one cannot rely on the existence of an evident
temporal structure related to the physical process charac-
terizing all the realizations of a given chord, as is donewith
phone modeling for speech recognition.
As shown in Section 5.3, in the chord recognition task

here addressed, no advantage is observed when using
more than one state, i.e., a GMM with a given number
of Gaussian mixture densities outperforms an HMM that
consists of two or more states and is characterized by the
same number of Gaussians.

3.5 Decoding step
In the decoding step, the Viterbi algorithm uses trained
models that are connected in a chord loop network, as
shown in Figure 4. An insertion penalty is introduced
to influence the transition probability between chords.
Varying the insertion penalty allows label sequences to
be obtained with different degrees of fragmentation, as
typically done in speech recognition tasks. As shown in

Cmaj

Begin End
BmagC#maj

Dmaj

Bmin

Insertion penalty

Figure 4 Chord loop grammar for the decoding step.

[15], the insertion penalty (or self-transition probability in
[30]) can have a significant impact on the overall perfor-
mance. For this reason, every experimental result reported
in the following is based on a preliminary step with which
we derived the optimal insertion penalty that maximized
chord recognition performance.
As in speech recognition systems based on multiple-

pass decoding [42], the decoding procedure here consists
of two steps. In the first step, an efficient bigram language
model is applied in the Viterbi decoding, which produces a
lattice. This lattice can be represented by a directed graph,
where nodes denote time instants, while arcs represent
different chord hypotheses. A sample lattice representa-
tion is shown in Figure 5. In the second step, the lattice
obtained is rescored by applying a more sophisticated
trigram language model on the reduced search space.

4 Evaluationmethodology and datasets
4.1 Recognition rate
The main goal of this work is to evaluate the effective-
ness of the proposed acoustic features in carrying relevant
information for chord discrimination. Two chord recogni-
tion tasks are addressed in the following sections.
A simplified version of the chord recognition task is

introduced in Section 5.1, where the chord loop pre-
sented in Figure 4, without transition from ‘end’ to ‘start’
states, is adopted. This means that for a given input,
the recognizer outputs one of the chords included in
the loop. In this case, language modeling is omitted.
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Figure 5 Example of a lattice produced in a two-step decoding
process.
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For this preliminary evaluation, we used a large set of
recordings of individual notes collected at the Univer-
sity of Iowa (http://theremin.music.uiowa.edu/MIS.html).
This dataset contains high-quality note samples recorded
from different instruments. Evaluation is performed based
on recognition rate (RR), in this case, computed as the
total duration of correctly classified chords divided by the
total duration of chords, as reported in the following:

RR = |recognized_chords| ∩ |ground − truth_chords|
|ground − truth_chords| .

(8)

Another recognition task is then addressed in the suc-
cessive sections, which also includes the application of
language modeling. In order to evaluate the chord recog-
nition performance based on the given chroma feature
sets, in this case, a threefold cross validation was accom-
plished on the commonly used Beatles dataset enriched
with 38 songs of Queen and Zweieck. The distribution
of songs into the three folds was accomplished on a ran-
dom basis. The corresponding labels were kindly provided
by C. Harte [43] and M. Mauch [44]. The RR measure
expressed in terms of percentage is utilized as an evalu-
ation metric. Predefined chord set consists of major and
minor chord classes, resulting in 24 different chords. The
7th, min7, maj7, minmaj7, min6, maj6, 9, maj9, and min9
chords are merged to their root triads. Suspended aug-
mented and diminished chords are discarded from this
evaluation task.

4.2 Other metrics
Concerning the experiments on the simplified chord
recognition task described in Section 5.1, in order to
investigate more in-depth the properties of the proposed
features, two additional criteria are used, i.e., ratio (R) and
cosine measure (CM), which are computed as proposed in
[45].
Let c(n) be an unwrapped chroma vector extracted from

a chord sample that was generated from a set of notes e.
The R estimate is the ratio of the power in the expected
semitone bins, over the total power of that analysis frame.
The expected semitone bins include the fundamentals and
three partials for every note from set e.
To estimate CM, a chroma template y(n) is built so

that its values are set to 1 in the chroma bins that cor-
respond to the fundamentals and to [0.66 0.33 0.16] in
the chroma bins that correspond to the first three over-
tones, respectively. The CM estimate is then computed as
CM = 〈y·c〉

‖y‖‖c‖ , where 〈·〉 is the inner product and ‖·‖ is the
L2 norm.

5 Experimental results
In this section, we describe a series of experiments that
show the convenience of using HRC features in the
front-end processing. In Section 5.1, we start this study
by comparing the impact of STD, RC, and HRC fea-
tures on chord recognition performance in a task for
which we minimize possible problems related to tempo-
ral structure, as discussed in Section 3.4. The following
sections provide experimental results using the Beatles
corpus, for which the latter problems generally hold.
We progressively analyze different aspects that influence
the behavior of the system under study, starting from
the impact of TFR processing in terms of energy real-
location. Chord recognition performance is then inves-
tigated when different model topologies and window
lengths are chosen, as well as when the tuning operation
is performed.
Finally, Section 5.5 aims to confirm the superiority of

HRC features over STD and RC ones, providing experi-
mental results obtained both on the Beatles corpus and on
the RWC data set.

5.1 Chroma quality analysis
In this preliminary analysis, in order to generate chord
waveforms, we used the dataset of the University of
Iowa that was mentioned in Section 4.1. For a given
chord type, the recordings of three constituent notes
are chosen from three random instruments. All the
note onsets were synchronized with each other. If a
note of a given instrument has a duration of more
than 2 s, everything that is after the 2nd second is
discarded. Then, these samples are mixed together,
producing a waveform of 2-s duration. The proposed
schema for generating data results in 200 waveforms
with the corresponding ground-truth information on the
notes.
The obtained material is then used to evaluate the qual-

ity of different chroma features as described in the pre-
vious section. For the RR measure, half of the generated
material was used as training set, and the other half was
used for testing purposes. Chroma features were extracted
with 192-ms window lengths, an overlapping factor of 90%
and Hanning windowing.
The evaluation results for the three given chroma fea-

tures are reported in Figure 6. In all the cases, HRC
and RC significantly outperform STD feature. In partic-
ular, when comparing STD and HRC features, relative
improvements of 18.7%, 6.2%, and 3.5% are observed in
terms of R, CM, and RR, respectively. Moreover, the ratio
measurements prove the ability of HRC to deempha-
size noise and impulsive components, which frequently
occur during the note onsets. In fact, a relative improve-
ment of 5.4% in terms of R is observed comparing RC
and HRC.

http://theremin.music.uiowa.edu/MIS.html
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Figure 6 Chroma quality estimates. R, CM, and RR normalized values between 0 and 1 for STD, RC, and HRC features.

5.2 Energy allocation in time-frequency
In order to estimate the impact of the time-frequency
reassignment operation, statistical information on the
energy reallocation distance in time-frequency coordi-
nates from the Beatles corpus was also extracted. For
window length of 96 ms, �f and �t distributions have
zero-mean and standard deviations of 15.68 Hz and
14.3 ms, respectively. The statistics of the frequency reas-
signments that lead to energy moving to another semitone
bin are given in Table 1. This table shows that about
9.7% of all the reassignments result in moving energy
to an adjacent semitone bin, which makes an impact on
the chroma energy distribution. Indeed, reallocating a
substantial amount of energy between different chroma
components can improve the performance of a chord
recognition system.

5.3 Number of states
The first chord recognition experiments on the Beat-
les dataset regarded the analysis of performance when
varying the number of states. RR, as a function of the
total number of Gaussians for a different number of hid-
den states, is presented in Figure 7. The total number of

Table 1 Semitone change distribution, when using the
reassigned spectrum, where frequency shift is expressed
in terms of semitones

Frequency shift Energy reassignments (%)

−3 0.14

−2 0.43

−1 4.28

0 90.23

1 4.33

2 0.37

3 0.19

Gaussians, which can be calculated as number of Gaus-
sians per state multiplied by the number of states, repre-
sents the model complexity. Experimental results showed
that using a one-state model leads to the highest RR for
a given model complexity. Given this, all the next exper-
iments will be conducted using a GMM, i.e., a one-state
HMM topology. For a detailed analysis on the applica-
tion of more complex HMM and GMMmodels, including
full covariance matrices, one can refer to the work of Cho
et al. [30], which also shows a limited advantage in using
statistical models with higher complexity.

5.4 Influence on performance of tuning and window
length

As mentioned in the previous sections, an important step
in the feature extraction process is the estimation of the
deviation of the A4 note from 440 Hz and subsequent
compensation for mis-tuning [35]. Results with STD, RC,
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Figure 7 Recognition rate for HRC feature as a function of the
total number of Gaussians. Performance is shown for a different
number of hidden states in HMM.
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and HRC features, with and without tuning, are provided
in Table 2.
These experimental results show that the tuning

operation plays an important role and leads to an increase
in performance for all the features. Moreover, the results
show the advantage of adopting HRC features, which will
be investigated in more detail in the following section.
Since the time-frequency reassignment technique used

here includes the application of windowing, the impact
of different window types on the performance was also
investigated. Here, we will only report on the influ-
ence of window length on chord recognition rate, since
preliminary experiments using different window types
(i.e., Hanning, Hamming, Kaiser, and Blackman) had
showed that no significant difference in performance is
observed for any of the investigated features, i.e., STD, RC,
and HRC. Similar results were obtained in [35]. Given this
experimental evidence, a Hanning window is adopted in
all the following experiments.
Figures 8 and 9 report on recognition rates using RC and

STD features with different window lengths and numbers
of Gaussians. For each configuration, the performance
was derived using the best insertion penalty, as outlined
in Section 3.5. These results show that an optimal win-
dow length for the RC feature set is 96 ms, as opposed to
the STD feature, for which such a short window length
would provide a much lower performance. This fact is
coherent with a more accurate energy localization in time
for the TFR-based features. For the sake of conciseness, a
similar figure regarding the use of HRC is not reported,
since the recognition rate is always higher than the cor-
responding one reported in Figure 8 for the RC feature.
In other words, the trend of performance is similar for any
of the selected window lengths, suggesting that it should
be set to 96 ms also when RC features are used.

5.5 Harmonic reassigned chroma
As shown in Table 2, adopting HRC features improves the
chord recognition rate. The purpose of this section is to
provide more details on this experimental evidence.
First of all, the impact of the tolerance factor A intro-

duced in Eq. (6) was investigated, as shown in Figure 10.
The optimal value of A for this chord recognition task
turns out to be 0.4, with a recognition rate of 78.28%,
although small deviations from this setting have a minor
impact in terms of loss of performance.

Table 2 Influence of tuning on chord recognition
performance, using STD and RC features

STD RC HRC

No tuning 70.33 76.70 77.59

Tuning 71.29 77.29 78.28
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Figure 8 Recognition rates using RC features for different
window lengths and Gaussian numbers.

The next set of experiments aimed to compare HRC,
RC, and STD features when varying the complexity and
accuracy of the models. Figure 11 depicts recognition
rates for different numbers of Gaussians. In all three cases,
the results indicate that 2,048 is a good choice in terms
of number of Gaussians. Higher values would not bring
significant improvements and would increase the compu-
tational load. This experimental evidence, however, may
depend on the task and, in particular, on the size of the
training material.
In order to understand the impact of the training mate-

rial on the result, another set of experiments was carried
out using the RWC dataset [46], which consists of 100
pop songs. The RWC dataset was used for training, while
the same Beatles dataset was used for testing. Table 3
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Figure 9 Recognition rates using STD features for different
window lengths and Gaussian numbers.
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Figure 10 Recognition rate for HRC as a function of the tolerance factor.

reports on recognition rates for 32, 512, and 2,048 Gaus-
sians taken from results presented in Figure 11, as well as
results obtained by training models on the RWC dataset.
Note that in speech recognition, a mismatch between

training and testing conditions often leads to a signif-
icant loss of performance. Our experiments show that
performance is obviously lower when chord models are
trained on the RWC dataset. However, the loss of per-
formance due to this mismatch is not substantial (i.e., a
reduction of about 2% to 3%), which confirms that the
proposed system seems to be quite robust to different
possible choices of training material.
Moreover, it is worth noting that the advantage of using

TFR over STD features is confirmed when models are
trained on the RWC dataset. Also in this case, HRC
features always outperform RC ones.

6 Conclusions
This paper investigates the important role that acoustic
feature extraction plays in automatic chord recognition.
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Figure 11 Recognition rate as a function of the number of
Gaussians. Performance is shown for the three different feature sets,
STD, RC, and HRC.

The chord recognition system under study is based on a
probabilistic approach to statistically model sequences of
chroma features.
The main focus of the work is on the reassigned spec-

trogram. This time-frequency representation is here pro-
posed as alternative to the standard STFT to derive
a more accurate set of chroma features. Experimental
results showed that better chord recognition rates can be
obtained with TFR-based features, if compared to per-
formance provided by traditional STFT-based chroma
features. Applying harmonic component separation in the
spectral domain further increases this performance. The
experimental section comprises a quantitative analysis
which shows the effectiveness of time-frequency reas-
signment from different perspectives and with a different
assignment to some key parameters.
As final result, a substantial improvement over the

baseline system was obtained using the HRC feature,
with a 78.28% recognition rate on a commonly used
dataset. Note that an extended version of the same chord
recognition system, but with additional bass chroma fea-
ture and multi-stream HMMs, was then adopted in the
MIREX 2011 evaluation, in which it provided one of
the best performances in terms of overlap ratio, which
was equal to 82.85% (http://nema.lis.illinois.edu/nema_
out/mirex2011/results/ace/).

Table 3 Recognition rates using the RWC dataset for
training and the Beatles dataset for test (RWC), compared
to performance obtained training on a threefold cross
validation of the Beatles dataset (Beatles)

Number of Gaussians 32 512 2,048

STD (Beatles) 65.67 69.84 71.29

RC (Beatles) 71.63 75.91 77.29

HRC (Beatles) 73.57 76.52 78.28

STD (RWC) 63.67 66.42 68.2

RC (RWC) 69.85 72.5 74.51

HRC (RWC) 71.89 74.95 75.89

http://nema.lis.illinois.edu/nema_out/mirex2011/results/ace/
http://nema.lis.illinois.edu/nema_out/mirex2011/results/ace/
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Overall, this study also represents a starting point to
explore different research topics.
Our experimental activity demonstrated that using a

one-state HMM, i.e., GMM, leads to better performance
than using two or more states. This fact probably depends
on the characteristics of the training and testing mate-
rial, in particular on its labeling. While the purpose of
this work was to use an HMM as a framework to ana-
lyze the convenience of using TFR features, the above-
mentioned issue would definitely deserve a specific study
based on a different definition of the chord recognition
problem as well as on the adoption of other labeled music
material.
As shown by the results of theMIREX 2011 chord detec-

tion evaluation campaign, multi-stream HMMs represent
another possible area to further investigate, in order to
better characterize the frequency band splitting and the
related optimal weighting of each stream.
Another direction regards the introduction of rhythm

analysis in the given framework. The most straightfor-
ward possible improvement can be obtained by including
a probabilistic modeling of the temporal structure. This
can be done by embedding an additional hidden layer in
HMMs, as proposed in [47], where hidden states corre-
spond to different beat phases.
Finally, an interesting research issue to investigate, in

order to improve the quality of feature vectors when
using TFR, is the application of a more accurate analy-
sis of higher harmonics. For instance, one could adopt
the higher harmonic subtraction technique outlined in
[10,11].
For most of the outlined directions, more complex

chord recognition tasks will be addressed by both increas-
ing the size of the chord set and processing different music
styles (e.g., jazz).
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