81 research outputs found

    The role of morphology of the thumb in anthropomorphic grasping : a review

    Get PDF
    The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of success. Nevertheless, manipulation ability in those hands is to be ameliorated even though they can grasp objects successfully. An appropriate model of the thumb is important to manipulate the objects against the fingers and to maintain the stability. Modeling these complex interactions about the mechanical axes of the joints and how to incorporate these joints in robotic thumbs is a challenging task. This article presents a review of the biomechanics of the human thumb and the robotic thumb designs to identify opportunities for future anthropomorphic robotic hands

    Robotic Manipulation of Environmentally Constrained Objects Using Underactuated Hands

    Get PDF
    Robotics for agriculture represents the ultimate application of one of our society\u27s latest and most advanced innovations to its most ancient and vital industry. Over the course of history, mechanization and automation have increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. As a challenging step, manipulating objects in harvesting automation is still under investigation in literature. Harvesting or the process of gathering ripe crops can be described as breaking environmentally constrained objects into two or more pieces at the desired locations. In this thesis, the problem of purposefully failing (breaking) or yielding objects by a robotic gripper is investigated. A failure task is first formulated using mechanical failure theories. Next, a grasp quality measure is presented to characterize a suitable grasp configuration and systematically control the failure behavior of the object. This approach combines the failure task and the capability of the gripper for wrench insertion. The friction between the object and the gripper is used to formulate the capability of the gripper for wrench insertion. A new method inspired by the human pre-manipulation process is introduced to utilize the gripper itself as the measurement tool and obtain a friction model. The developed friction model is capable of capturing the anisotropic behavior of materials which is the case for most fruits and vegetables.The limited operating space for harvesting process, the vulnerability of agricultural products and clusters of crops demand strict conditions for the manipulation process. This thesis presents a new sensorized underactuated self-adaptive finger to address the stringent conditions in the agricultural environment. This design incorporates link-driven underactuated mechanism with an embedded load cell for contact force measurement and a trimmer potentiometer for acquiring joint variables. The integration of these sensors results in tactile-like sensations in the finger without compromising the size and complexity of the proposed design. To obtain an optimum finger design, the placement of the load cell is analyzed using Finite Element Method (FEM). The design of the finger features a particular round shape of the distal phalanx and specific size ratio between the phalanxes to enable both precision and power grasps. A quantitative evaluation of the grasp efficiency by constructing a grasp wrench space is also provided. The effectiveness of the proposed designs and theories are verified through real-time experiments. For conducting the experiments in real-time, a software/hardware platform capable of dataset management is crucial. In this thesis, a new comprehensive software interface for integration of industrial robots with peripheral tools and sensors is designed and developed. This software provides a real-time low-level access to the manipulator controller. Furthermore, Data Acquisition boards are integrated into the software which enables Rapid Prototyping methods. Additionally, Hardware-in-the-loop techniques can be implemented by adding the complexity of the plant under control to the test platform. The software is a collection of features developed and distributed under GPL V3.0

    Scalable Tactile Sensing for an Omni-adaptive Soft Robot Finger

    Full text link
    Robotic fingers made of soft material and compliant structures usually lead to superior adaptation when interacting with the unstructured physical environment. In this paper, we present an embedded sensing solution using optical fibers for an omni-adaptive soft robotic finger with exceptional adaptation in all directions. In particular, we managed to insert a pair of optical fibers inside the finger's structural cavity without interfering with its adaptive performance. The resultant integration is scalable as a versatile, low-cost, and moisture-proof solution for physically safe human-robot interaction. In addition, we experimented with our finger design for an object sorting task and identified sectional diameters of 94\% objects within the ±\pm6mm error and measured 80\% of the structural strains within ±\pm0.1mm/mm error. The proposed sensor design opens many doors in future applications of soft robotics for scalable and adaptive physical interactions in the unstructured environment.Comment: 8 pages, 6 figures, full-length version of a submission to IEEE RoboSoft 202

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    Synergy-Based Human Grasp Representations and Semi-Autonomous Control of Prosthetic Hands

    Get PDF
    Das sichere und stabile Greifen mit humanoiden Roboterhänden stellt eine große Herausforderung dar. Diese Dissertation befasst sich daher mit der Ableitung von Greifstrategien für Roboterhände aus der Beobachtung menschlichen Greifens. Dabei liegt der Fokus auf der Betrachtung des gesamten Greifvorgangs. Dieser umfasst zum einen die Hand- und Fingertrajektorien während des Greifprozesses und zum anderen die Kontaktpunkte sowie den Kraftverlauf zwischen Hand und Objekt vom ersten Kontakt bis zum statisch stabilen Griff. Es werden nichtlineare posturale Synergien und Kraftsynergien menschlicher Griffe vorgestellt, die die Generierung menschenähnlicher Griffposen und Griffkräfte erlauben. Weiterhin werden Synergieprimitive als adaptierbare Repräsentation menschlicher Greifbewegungen entwickelt. Die beschriebenen, vom Menschen gelernten Greifstrategien werden für die Steuerung robotischer Prothesenhände angewendet. Im Rahmen einer semi-autonomen Steuerung werden menschenähnliche Greifbewegungen situationsgerecht vorgeschlagen und vom Nutzenden der Prothese überwacht

    Model Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges

    Full text link
    Continuum soft robots are mechanical systems entirely made of continuously deformable elements. This design solution aims to bring robots closer to invertebrate animals and soft appendices of vertebrate animals (e.g., an elephant's trunk, a monkey's tail). This work aims to introduce the control theorist perspective to this novel development in robotics. We aim to remove the barriers to entry into this field by presenting existing results and future challenges using a unified language and within a coherent framework. Indeed, the main difficulty in entering this field is the wide variability of terminology and scientific backgrounds, making it quite hard to acquire a comprehensive view on the topic. Another limiting factor is that it is not obvious where to draw a clear line between the limitations imposed by the technology not being mature yet and the challenges intrinsic to this class of robots. In this work, we argue that the intrinsic effects are the continuum or multi-body dynamics, the presence of a non-negligible elastic potential field, and the variability in sensing and actuation strategies.Comment: 69 pages, 13 figure

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Artificial Intelligence and Ambient Intelligence

    Get PDF
    This book includes a series of scientific papers published in the Special Issue on Artificial Intelligence and Ambient Intelligence at the journal Electronics MDPI. The book starts with an opinion paper on “Relations between Electronics, Artificial Intelligence and Information Society through Information Society Rules”, presenting relations between information society, electronics and artificial intelligence mainly through twenty-four IS laws. After that, the book continues with a series of technical papers that present applications of Artificial Intelligence and Ambient Intelligence in a variety of fields including affective computing, privacy and security in smart environments, and robotics. More specifically, the first part presents usage of Artificial Intelligence (AI) methods in combination with wearable devices (e.g., smartphones and wristbands) for recognizing human psychological states (e.g., emotions and cognitive load). The second part presents usage of AI methods in combination with laser sensors or Wi-Fi signals for improving security in smart buildings by identifying and counting the number of visitors. The last part presents usage of AI methods in robotics for improving robots’ ability for object gripping manipulation and perception. The language of the book is rather technical, thus the intended audience are scientists and researchers who have at least some basic knowledge in computer science

    Data-driven Mechanical Design and Control Method of Dexterous Upper-Limb Prosthesis

    Get PDF
    With an increasing number of people, 320,000 per year, suffering from impaired upper limb function due to various medical conditions like stroke and blunt trauma, the demand for highly functional upper limb prostheses is increasing; however, the rates of rejection of prostheses are high due to factors such as lack of functionality, high cost, weight, and lack of sensory feedback. Modern robotics has led to the development of more affordable and dexterous upper limb prostheses with mostly anthropomorphic designs. However, due to the highly sophisticated ergonomics of anthropomorphic hands, most are economically prohibitive and suffer from control complexity due to increased cognitive load on the user. Thus, this thesis work aims to design a prosthesis that relies on the emulation of the kinematics and contact forces involved in grasping tasks with healthy human hands rather than on biomimicry for reduction of mechanical complexity and utilization of technologically advanced engineering components. This is accomplished by 1) experimentally characterizing human grasp kinematics and kinetics as a basis for data-driven prosthesis design. Using the grasp data, steps are taken to 2) develop a data-driven design and control method of an upper limb prosthesis that shares the kinematics and kinetics required for healthy human grasps without taking the anthropomorphic design. This thesis demonstrates an approach to decrease the gap between the functionality of the human hand and robotic upper limb prostheses by introducing a method to optimize the design and control method of an upper limb prosthesis. This is accomplished by first, collecting grasp data from human subjects with a motion and force capture glove. The collected data are used to minimize control complexity by reducing the dimensionality of the device while fulfilling the kinematic and kinetic requirements of daily grasping tasks. Using these techniques, a task-oriented upper limb prosthesis is prototyped and tested in simulation and physical environment.Ph.D
    • …
    corecore