358 research outputs found

    Learning Task Priorities from Demonstrations

    Full text link
    Bimanual operations in humanoids offer the possibility to carry out more than one manipulation task at the same time, which in turn introduces the problem of task prioritization. We address this problem from a learning from demonstration perspective, by extending the Task-Parameterized Gaussian Mixture Model (TP-GMM) to Jacobian and null space structures. The proposed approach is tested on bimanual skills but can be applied in any scenario where the prioritization between potentially conflicting tasks needs to be learned. We evaluate the proposed framework in: two different tasks with humanoids requiring the learning of priorities and a loco-manipulation scenario, showing that the approach can be exploited to learn the prioritization of multiple tasks in parallel.Comment: Accepted for publication at the IEEE Transactions on Robotic

    Cooperative Vehicle Perception and Localization Using Infrastructure-based Sensor Nodes

    Get PDF
    Reliable and accurate Perception and Localization (PL) are necessary for safe intelligent transportation systems. The current vehicle-based PL techniques in autonomous vehicles are vulnerable to occlusion and cluttering, especially in busy urban driving causing safety concerns. In order to avoid such safety issues, researchers study infrastructure-based PL techniques to augment vehicle sensory systems. Infrastructure-based PL methods rely on sensor nodes that each could include camera(s), Lidar(s), radar(s), and computation and communication units for processing and transmitting the data. Vehicle to Infrastructure (V2I) communication is used to access the sensor node processed data to be fused with the onboard sensor data. In infrastructure-based PL, signal-based techniques- in which sensors like Lidar are used- can provide accurate positioning information while vision-based techniques can be used for classification. Therefore, in order to take advantage of both approaches, cameras are cooperatively used with Lidar in the infrastructure sensor node (ISN) in this thesis. ISNs have a wider field of view (FOV) and are less likely to suffer from occlusion. Besides, they can provide more accurate measurements since they are fixed at a known location. As such, the fusion of both onboard and ISN data has the potential to improve the overall PL accuracy and reliability. This thesis presents a framework for cooperative PL in autonomous vehicles (AVs) by fusing ISN data with onboard sensor data. The ISN includes cameras and Lidar sensors, and the proposed camera Lidar fusion method combines the sensor node information with vehicle motion models and kinematic constraints to improve the performance of PL. One of the main goals of this thesis is to develop a wind induced motion compensation module to address the problem of time-varying extrinsic parameters of the ISNs. The proposed module compensates for the effect of the motion of ISN posts due to wind or other external disturbances. To address this issue, an unknown input observer is developed that uses the motion model of the light post as well as the sensor data. The outputs of the ISN, the positions of all objects in the FOV, are then broadcast so that autonomous vehicles can access the information via V2I connectivity to fuse with their onboard sensory data through the proposed cooperative PL framework. In the developed framework, a KCF is implemented as a distributed fusion method to fuse ISN data with onboard data. The introduced cooperative PL incorporates the range-dependent accuracy of the ISN measurements into fusion to improve the overall PL accuracy and reliability in different scenarios. The results show that using ISN data in addition to onboard sensor data improves the performance and reliability of PL in different scenarios, specifically in occlusion cases

    Registration and categorization of camera captured documents

    Get PDF
    Camera captured document image analysis concerns with processing of documents captured with hand-held sensors, smart phones, or other capturing devices using advanced image processing, computer vision, pattern recognition, and machine learning techniques. As there is no constrained capturing in the real world, the captured documents suffer from illumination variation, viewpoint variation, highly variable scale/resolution, background clutter, occlusion, and non-rigid deformations e.g., folds and crumples. Document registration is a problem where the image of a template document whose layout is known is registered with a test document image. Literature in camera captured document mosaicing addressed the registration of captured documents with the assumption of considerable amount of single chunk overlapping content. These methods cannot be directly applied to registration of forms, bills, and other commercial documents where the fixed content is distributed into tiny portions across the document. On the other hand, most of the existing document image registration methods work with scanned documents under affine transformation. Literature in document image retrieval addressed categorization of documents based on text, figures, etc. However, the scalability of existing document categorization methodologies based on logo identification is very limited. This dissertation focuses on two problems (i) registration of captured documents where the overlapping content is distributed into tiny portions across the documents and (ii) categorization of captured documents into predefined logo classes that scale to large datasets using local invariant features. A novel methodology is proposed for the registration of user defined Regions Of Interest (ROI) using corresponding local features from their neighborhood. The methodology enhances prior approaches in point pattern based registration, like RANdom SAmple Consensus (RANSAC) and Thin Plate Spline-Robust Point Matching (TPS-RPM), to enable registration of cell phone and camera captured documents under non-rigid transformations. Three novel aspects are embedded into the methodology: (i) histogram based uniformly transformed correspondence estimation, (ii) clustering of points located near the ROI to select only close by regions for matching, and (iii) validation of the registration in RANSAC and TPS-RPM algorithms. Experimental results on a dataset of 480 images captured using iPhone 3GS and Logitech webcam Pro 9000 have shown an average registration accuracy of 92.75% using Scale Invariant Feature Transform (SIFT). Robust local features for logo identification are determined empirically by comparisons among SIFT, Speeded-Up Robust Features (SURF), Hessian-Affine, Harris-Affine, and Maximally Stable Extremal Regions (MSER). Two different matching methods are presented for categorization: matching all features extracted from the query document as a single set and a segment-wise matching of query document features using segmentation achieved by grouping area under intersecting dense local affine covariant regions. The later approach not only gives an approximate location of predicted logo classes in the query document but also helps to increase the prediction accuracies. In order to facilitate scalability to large data sets, inverted indexing of logo class features has been incorporated in both approaches. Experimental results on a dataset of real camera captured documents have shown a peak 13.25% increase in the F–measure accuracy using the later approach as compared to the former

    Understanding the Role of Dynamics in Brain Networks: Methods, Theory and Application

    Get PDF
    The brain is inherently a dynamical system whose networks interact at multiple spatial and temporal scales. Understanding the functional role of these dynamic interactions is a fundamental question in neuroscience. In this research, we approach this question through the development of new methods for characterizing brain dynamics from real data and new theories for linking dynamics to function. We perform our study at two scales: macro (at the level of brain regions) and micro (at the level of individual neurons). In the first part of this dissertation, we develop methods to identify the underlying dynamics at macro-scale that govern brain networks during states of health and disease in humans. First, we establish an optimization framework to actively probe connections in brain networks when the underlying network dynamics are changing over time. Then, we extend this framework to develop a data-driven approach for analyzing neurophysiological recordings without active stimulation, to describe the spatiotemporal structure of neural activity at different timescales. The overall goal is to detect how the dynamics of brain networks may change within and between particular cognitive states. We present the efficacy of this approach in characterizing spatiotemporal motifs of correlated neural activity during the transition from wakefulness to general anesthesia in functional magnetic resonance imaging (fMRI) data. Moreover, we demonstrate how such an approach can be utilized to construct an automatic classifier for detecting different levels of coma in electroencephalogram (EEG) data. In the second part, we study how ongoing function can constraint dynamics at micro-scale in recurrent neural networks, with particular application to sensory systems. Specifically, we develop theoretical conditions in a linear recurrent network in the presence of both disturbance and noise for exact and stable recovery of dynamic sparse stimuli applied to the network. We show how network dynamics can affect the decoding performance in such systems. Moreover, we formulate the problem of efficient encoding of an afferent input and its history in a nonlinear recurrent network. We show that a linear neural network architecture with a thresholding activation function is emergent if we assume that neurons optimize their activity based on a particular cost function. Such an architecture can enable the production of lightweight, history-sensitive encoding schemes

    Learning Hidden Influences in Large-Scale Dynamical Social Networks: A Data-Driven Sparsity-Based Approach, in Memory of Roberto Tempo

    Get PDF
    The processes of information diffusion across social networks (for example, the spread of opinions and the formation of beliefs) are attracting substantial interest in disciplines ranging from behavioral sciences to mathematics and engineering (see "Summary"). Since the opinions and behaviors of each individual are infl uenced by interactions with others, understanding the structure of interpersonal infl uences is a key ingredient to predict, analyze, and, possibly, control information and decisions [1]. With the rapid proliferation of social media platforms that provide instant messaging, blogging, and other networking services (see "Online Social Networks") people can easily share news, opinions, and preferences. Information can reach a broad audience much faster than before, and opinion mining and sentiment analysis are becoming key challenges in modern society [2]. The first anecdotal evidence of this fact is probably the use that the Obama campaign made of social networks during the 2008 U.S. presidential election [3]. More recently, several news outlets stated that Facebook users played a major role in spreading fake news that might have infl uenced the outcome of the 2016 U.S. presidential election [4]. This can be explained by the phenomena of homophily and biased assimilation [5]-[7] in social networks, which correspond to the tendency of people to follow the behaviors of their friends and establish relationships with like-minded individuals

    Statistical modelling of algorithms for signal processing in systems based on environment perception

    Get PDF
    One cornerstone for realising automated driving systems is an appropriate handling of uncertainties in the environment perception and situation interpretation. Uncertainties arise due to noisy sensor measurements or the unknown future evolution of a traffic situation. This work contributes to the understanding of these uncertainties by modelling and propagating them with parametric probability distributions

    Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors

    Get PDF
    The book describes methods of track and vertex resonstruction in particle detectors. The main topics are pattern recognition and statistical estimation of geometrical and physical properties of charged particles and of interaction and decay vertices
    • …
    corecore