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ABSTRACT

REGISTRATION AND CATEGORIZATION
OF CAMERA CAPTURED DOCUMENTS

Venkata Gosgl Edupuganti

Camera captured document image analysis concerns with ggioge of documents
captured with hand-held sensors, smart phones, or otharrgapdevices using advanced
image processing, computer vision, pattern recognitiod,raachine learning techniques.
As there is no constrained capturing in the real world, thew&d documents suffer from
illumination variation, viewpoint variation, highly vaaible scale/resolution, background
clutter, occlusion, and non-rigid deformations e.g., $oland crumples. Document
registration is a problem where the image of a template deotimehose layout is known is
registered with a test document image. Literature in caro@ptured document mosaicing
addressed the registration of captured documents with skangption of considerable
amount of single chunk overlapping content. These methadaat be directly applied
to registration of forms, bills, and other commercial doemts where the fixed content
is distributed into tiny portions across the document. Oe tther hand, most of
the existing document image registration methods work withnned documents under
affine transformation. Literature in document image reaieaddressed categorization
of documents based on text, figures, etc. However, the skglaif existing document
categorization methodologies based on logo identificat@ery limited. This dissertation
focuses on two problems (i) registration of captured docum&here the overlapping
content is distributed into tiny portions across the docotmend (ii) categorization of
captured documents into predefined logo classes that scddege datasets using local
invariant features.

A novel methodology is proposed for the registration of udefined Regions

Of Interest (ROI) using corresponding local features frdmeirt neighborhood. The



methodology enhances prior approaches in point patterdoag)istration, like RANdom
SAmple Consensus (RANSAC) and Thin Plate Spline-Robust Poitttveg (TPS-RPM),
to enable registration of cell phone and camera capturedindects under non-rigid
transformations. Three novel aspects are embedded intméfi@odology: (i) histogram
based uniformly transformed correspondence estimatigrglgstering of points located
near the ROI to select only close by regions for matching, @indvalidation of the
registration in RANSAC and TPS-RPM algorithms. Experimenggllts on a dataset of
480 images captured using iPhone 3GS and Logitech webcar@(@® have shown an
average registration accuracy of 92.75% using Scale mwaFeature Transform (SIFT).
Robust local features for logo identification are determiredpirically by
comparisons among SIFT, Speeded-Up Robust Features (SURESsiaf-Affine,
Harris-Affine, and Maximally Stable Extremal Regions (MSER)o different matching
methods are presented for categorization: matching allifes extracted from the query
document as a single set and a segment-wise matching of daewynent features using
segmentation achieved by grouping area under intersedenge local affine covariant
regions. The later approach not only gives an approximatation of predicted logo
classes in the query document but also helps to increasedbeon accuracies. In order
to facilitate scalability to large data sets, inverted xidg of logo class features has been
incorporated in both approaches. Experimental resultsdatiaset of real camera captured
documents have shown a peak 13.25% increase in the F—-mea&suracy using the later

approach as compared to the former.
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CHAPTER 1

INTRODUCTION

Camera captured document image analysis [1, 2, 3, 4, 5, 6, 9, 80, 11, 12, 13,
14, 15] concerns with processing of documents captured hatid-held sensors, mobile
phones incorporated with cameras, or other capturing dsvising advanced image
processing, computer vision, pattern recognition, andhim&clearning techniques. As
there is no constrained capturing in the real world, the wapt documents suffer from
illumination variation, viewpoint variation, highly vable scale/resolution, background
clutter, occlusion, and complex non-rigid deformatioms, ifolds and crumples being seen
in paper images. Figure 1.1 shows a glimpse of camera capdoiments with respect to
highly varying challenging conditions. In recent yearsy fechniques have been developed
in flattening of curved documents [16, 5, 8], document masgif4, 7, 9, 12, 15], curled
text-line segmentation [1], robust text extraction fromagpes [2, 14] and document image
retrieval [17, 18, 10, 11, 13]. Document registration is algem where the image of
a template document whose layout is known is registered avitbst document image.
Literature in document mosaicing addressed registratiaraptured documents with the
assumption of considerable amount of single chunk ovemgppontent. These methods
can not be directly applied to registration of forms, bilad other commercial documents
where the fixed content is distributed into tiny portionsogsrthe document. Literature in
document image retrieval addressed categorization ofrdents based on text, figures, etc.
However, the scalability of existing document categormamethodologies based on logo
identification is very limited [19, 20, 21, 22, 23]. This déstation focuses on two problems
(i) registration of captured documents where the overlagppontent is distributed into tiny
portions across the documents and (ii) categorizationmticad documents into predefined

logo classes that scale to large datasets using local amtdgatures.



(a) lllumination and view-point variation

(b) Background clutter

(c) Occlusion

(d) Folds and crumples

Figure 1.1 A glimpse of camera captured document images.



1.1 Local Features

This section introduces a set of local invariant featurels 5, 26, 27, 28, 29, 30] used
in this dissertation. Due to robustness to local changes iignination and view-point
in images, local features have been drawing more attenfiorsearchers compared to
global features e.g., color histograms and texture feati8%] in a wide variety of tasks
including image classification [32, 33], image search [, 8ideo copy detection [36,
37], robust text detection in document images [2], and sd-eatures considered are Scale
Invariant Feature Transform (SIFT) [27, 28], Speeded-UpuRbleatures (SURF) [24,
25], Harris-Affine regions [26, 30], Hessian-Affine regioj3®], and Maximally Stable
Extremal Regions (MSER) [38, 30]. Figure 1.2 shows differectl features extracted

from an example image. The following subsections brieflycdbe each feature.

1.1.1 Scale Invariant Feature Transform (SIFT)

SIFT [39, 40, 41, 27, 28] features are shown invariant to ienagale and rotation, and
are robust to substantial range of affine distortion, chand&D viewpoint, addition of
noise, and change in illumination. Feature extractionlve®a four stage cascade filtering
approach, in which most expensive operations are done atidos that pass initial test.

The following steps comprise SIFT feature extraction:

i Scale-Space Extrema Detection: Construct scale space{428RL(x,y, o) of an
image from the convolution of a variable-scale Gaussiaf;, y, o) with an input
image! (z,y).

L(z,y,0) = G(x,y,0)I(z,y) (1.1)
where * is the convolution operation inandy, and

—ac2 y2
Glr.y,0) = size (1.2)

2702 ©



(a) SIFT (b) SURF
(c) Hessian-Affine (d) Harris-Affine

(e) MSER

Figure 1.2 Local features example.



Compute difference of Gaussian functittiz, y, o) from the difference of two near

by scales separated by a constant multiplicative factor

D({L‘,y,d) = (G(w,y,ka)—G(m,y,a))*](x,y) (13)

= L(z,y, ko) — L(x,y,0)
The difference of Gaussian function is a close approximatibscale-normalized
Laplacian of Gaussian [42, 27, 28]. Divide each octave deubling ofs of scale
space into an integer numbenof intervals,k = 2'/. Compare each sample point
in D(z,y,0) to its eight neighbors in the current image and nine neighibothe
scale above and below, consider it as a candidate keypuoifurtber investigation in

later stages only if it is either maximum or minimum of allitsighbors as shown in

Figure 1.3.
=
Scale ﬁy

(next

I
e ) | - -
==

Scale
(first
octave)

Difference of AT
Gaussian Gaussian (DOG) L L Z 7777

(a) Scale space construction (b) keypoint identification

Figure 1.3 Scale space extrema computation [28].

il Keypoint Localization: Fit candidate keypoints to nearlatadfor location, scale,

and ratio of principle curvatures. This is achieved by Tagxpansion [27, 28] (up



to quadratic terms) of the scale-space functibfy, y, o), shifted so that the origin
is at the keypoint:

D(z) = D+ 20y 1,700, (1.4)

whereD and its derivatives are evaluated at candidate keypointaadz,y, o)’ is
the offset from this point. The location of the extremum isedmined by taking the

derivative of this function with respect toand setting it to zero, giving

— _2D1oD (1.5)

=

Reject keypoints with low contrast i.e., function value a& #xtremumD(z) less
than 0.03 assuming image pixel values in the range [0,1] atal between principle

curvatures greater than ten.

D(&) =D+ t22%% (1.6)

Orientation Assignment: Select the Gaussian smoothedermadosest to scale of
the keypoint. Compute an orientation histogram of 36 bingdag 360 degree range
of orientations from the gradient orientatiof(s;, y) of sample points within a region
around the keypoint. Each sample added to the histogramigghtee by its gradient
magnituden(z,y) and by a Gaussian-weighted circular window with that is 1.5
times that of the scale of the keypoint. Peaks in the oriemtdttistogram correspond
to dominant orientations of local gradients. The highestkpend the peaks within
80% of the highest peak create keypoints with correspondmgntation. Fit a
parabola to three histogram values closest to each peakidgpatate the peak

position.

m(z,y) = (L(z+1,y) — Lz = 1,y))* + (L(z,y + 1) — L(z,y — 1))3

O0(z,y) = tan ' ((L(z,y+1) = L(z,y —1))/L{z + 1,y) — L(z — 1,y)))
(1.7)



iv Keypoint Descriptor: Sample gradient magnitudes and tatems around keypoint
in Gaussian blur image closest to the scale of the keypointtatRaoordinates
of descriptor and gradient orientations relative to thepkayt orientation. Assign
weight to gradient magnitudes using a Gaussian functioh sviequal to 1.5 times
width of the descriptor window. Assign gradient magnitudes orientations to a
4x 4 array of eight bin orientation histograms i.e., divide péng region around the
keypoint into 4x4 subgrids using trilinear interpolation, which leads to>a44 8
= 128 dimensional descriptor (Figure 1.4 shows computatfodescriptor in %2
subgrids). Normalize the descriptor to unit length in orderbe invariant to

illumination changes and threshold bin values greater @han

[T, | [
YN /\

BRI A I

¥

/

/

s
- u T -

® kY S

PR IR A — | > >

& - /w‘ * L " —3

\l NoH R v |5

\\_: wl* e = ‘_7/

Image gradients Keypoint descriptor

Figure 1.4 A 2x2 array of SIFT description (right) from anx® array of samples
(left) [28].

1.1.2 Speeded-Up Robust Features (SURF)

SURF [24, 25, 43] is invariant to scale and in-plane rotati@ml provide some degree
of robustness to skew, anisotropic scaling, and perspeefiects. The primary focus of
SURF is on fast detection of interest points in scale spaci.ig hchieved by using integral

images for fast computation of box type convolution filtetinlike SIFT, interest points



are detected at the extrema of determinant of Hessian niétrixy, o).

LIJ? ‘/’U7 70- LI 'r7 70-
H(z,y,0) = (2:4,0) Lay(2:3,0) (1.8)

ny (.I', Y, 0) Lyy(l’, Y, U)

whereL,.(x,y, o) is the convolution of the Gaussian second order deriv%%jyé(x, Y,0)
with the image! in point (z,y) at scales, and similarly forL,,(z,y, o) andLL,,(z,y, o).
This kind of interest point detection favors blob-like sfiwres. In order to assign
orientation to detected interest points, Haar waveletaesgs are computed inandy
direction within a circular neighborhood of radius @round the interest point, where
s denote the scale at which the interest point was detecte@. wllvelet responses are
further weighted with a Gaussian= 2s centered at the interest point. A sliding window
approach is used to determine the dominant orientationdsilaliting horizontal responses
along abscissa and vertical responses along ordinate. hEoextraction of descriptor,
a square region with siz20s centered around the interest point is selected and oriented
along the dominant orientation. The region is split up ragulinto 4x4 square subregions
and each subregion is described(®y d., > |d.|, > dy,, > |d,|), whered, andd, denote
Haar wavelet response in horizontal and vertical directiespectively (Figure 1.5 shows
computation of descriptor inx22 subgrids). This kind of description leads toafix 4 = 64
dimensional descriptor. A 128 dimensional descriptiorcisieved by following extended

description [24].

1.1.3 Harris-Affine Regions
Harris-Affine regions [26, 44, 30] are based on affine nornadilon around Harris points.
Interest points are selected in scale space using seconeémbomatrix of intensity gradient

i.e., autocorrelation matrix.

I}(x,y,0 1.1, (x,y,0
M = 0%3G(z,y,07) * =@y, 0p) v(2,9,00) (1.9)

Imly(m7y70-D) Iyz(xvyvaD)



Z dx
2 ||
2. dy
> layl

Figure 1.5 A 2x2 array of SURF description (right) from anx8 array of samples
(left) [25].

The local image derivatives are computed with Gaussiarekeot scaler, (differentiation
scale) and then averaged in the neighborhood of the poinimopthing with a Gaussian
window of scaleo; (integration scale). The eigen values of the matrix represgo
principal changes in a neighborhood of the point, and istepeints are selected at the
points in which the signal change is significant in orthodaieections. An iterative
estimation of elliptical affine region [45, 46] around irdst points is performed using

autocorrelation matrix. Each elliptical region is desedlby using SIFT description.

1.1.4 Hessian-Affine Regions
Hessian-affine regions [30] are defined by affine normabmairound Hessian points.

Interest points are selected in scale space using Hessiai.ma

Ia:a: ‘,'137 70- IZ‘ x’ 70-
g (,y,0p) ILuy(®,y,0p) (1.10)

I:py<x> Y, UD) Iyl/(x’ Y, UD)

The local maximum of the determinant of the matrix defineddgosd derivatives is used

to select the interest points. Similar to Harris-Affine g, an iterative estimation of



10

elliptical affine region [45, 46] around interest points erformed using autocorrelation

matrix and the corresponding region is described by folg&IFT description.

1.1.5 Maximally Stable Extremal Regions (MSER)

A Maximally Stable Extremal Region (MSER) [47, 38, 30] is a cected component of
an appropriately thresholded image. All the pixels insidSBR have either higher or
lower intensity than all the pixels on its outer boundary.ektract MSER from an image,
first, pixels are sorted by intensity. After sorting, pixale marked in the image (either in
decreasing or increasing order) and the list of growing aathing connected components
and their areas is maintained using the union-find algoritboring this process, the area
of each connected component as a function of intensity redtoThe maximally stable
ones are those corresponding to thresholds where theveetaa change as a function of
relative change of threshold is at a local minimum i.e., MSER the parts of the image
where local binarization is stable over a large range ofsthotls. Finally, each MSER is

approximated by an affine invariant ellipse and describ&usSIFT.

1.2 Feature Matching

Local features discussed in the previous section help teesept an image invariant to
illumination, scale, and view-point. Feature matchingypla vital role to effectively use
extracted features to perform image registration [48, 48@rch [18], retrieval [34, 35],
and so on. The first step in matching is to establish pointespwndences between
two images. A correspondence is established between sifaddures in two different
images based on a distance between feature vectors e.liddanadistance or Mahalanobis
distance [50]. Lowe [28] proposed an efficient way of estdiig correspondences
by exploring nearest neighbor distances in descriptor espadue to noise in feature
extraction and description, the established point comedpences contain outliers. In

order to perform high-level image processing tasks suchegstration and retrieval,
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robust outlier elimination methodologies should be adapt8everal outlier elimination
techniques have been proposed in literature, such as lgaates minimization [51],
RANdom SAmple Consensus (RANSAC) [52, 51, 53, 54], Robust PoittMiag [55, 56],

Hough clustering [57, 58, 51, 28], and so on. On the other hamdrted indexing [34] is
a very popular technique to conduct matching in large scélee following subsections

briefly describe popular outlier eliminations mechanismd imverted index:

1.2.1 Least Squares Minimization
Let x; andy;, 1 < ¢ < K be the two corresponding point sets obtained by estabgishin
correspondences using feature similarity measure e.gljdean distance. It computes

optimal transformatiom by minimizing the following transformation error [51]:

AY = argmjn Zfil l|ly; — Ax;|)? (1.11)

The size of transformation matrixis 2 x 3 for affine transformation (6 degrees of freedom)

and3 x 3 for perspective transformation (8 degrees of freedom).

1.2.2 Hough Transform Clustering

Hough transform [51] method follows the principle of maximuikelihood estimation. It
maps the data into quantized parameter space and seeks foost likely parameter values
to interpret the data through clustering. The number of patars to estimate are 6 and
8 for affine and perspective transformations respectivéyeach correspondence;, v;)
can be represented by one or more transformations, it votallfthe relevant underlying
transformation parameters in the quantized space. Thmaptiansformation parameters

correspond to the bin that accumulates most number of votes.
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1.2.3 RANdom SAmple Consensus (RANSAC)

RANSAC [52, 51] iteratively estimates parameters of an ulydeg transformation model
from a set of observed data i.e., correspondences whichiosrautliers (correspondences
that do not fit to the model). It is a non deterministic aldumit that produces
probabilistic accuracy, with the accuracy increasing aseniterations are conducted. The
key assumption is that the data consists of inliers i.e.respondences that fit to the
transformation model. Several variants of RANSAC [52] hagerbproposed so far with
different objectives such as accuracy, speed, and rolssstriéhe input to the RANSAC
algorithm is point correspondences, underlying trans&tiom model e.g., affine and some

confidence parameters e.g., accuracy. RANSAC iterationdiacked into two stages:

i Hypothesis Generation: Randomly select a subset of poinegpondences and

estimate assumed transformation model with the chosemrtubs

il Hypothesis Evaluation: Test entire point corresponderaggsnst the estimated
model. Divide the point correspondences into hypothetidars (that agree with
the estimated model) and hypothetical outliers (that dcagote with the estimated
model). Update the best estimated model so far with the cumedel if the current

model has more number of hypothetical inliers.

The algorithm iterates until a fixed number of iterations,poedefined accuracy, or a
combination of both. Reestimate the retrieved model usirtg iohiers. The performance

of RANSAC degrades with increase in the number of outliereéyoint correspondences.

1.2.4 Thin Plate Spline-Robust Point Matching (TPS-RPM)

Thin Plate Spline-Robust Point Matching (TPS-RPM) [55, 5@&Joakthm is designed

to derive underlying non-rigid transformation functionordn point correspondences
containing outliers. The reason behind choosing thin pégtene [59] in robust point

matching framework is that it is the only spline that can bsilgadecomposed into
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affine and non-affine subspaces while minimizing a bendiregggnbased on the second
derivative of the spatial mapping. Robust point matching imilar to Expectation
Maximization (EM) algorithm, which iteratively minimizethe following least squares

energy function using deterministic annealing and sddtggsnent:
X 02 02 02
Bres() = 3 Mo = F@a)IP+ XS JUGE? + 2550 + (Gh))dedy - (1.12)

wheref is a thin plate spline mapping function between correspangoint setg, andv,

and) is a regularization parameter.

fa,dyw) = va.d + (v,).w (1.13)

whered is a (D + 1) x (D + 1) matrix representing affine transformatio (s the
dimension of points)y is a K x (D + 1) warping coefficient matrix representing non-affine
deformation { is the first point set cardinality), antv,) = ||vy — va||*log]|vs — va|] iS @

1 x K TPS kernel.

1.2.5 Inverted Indexing

The methodologies introduced in previous subsections arg &xpensive to perform
matching in large scale such as similar image search andvatrwhere a set of features
extracted from a query image i.e., image under observatienmatched against a set of
features from all the images in a dataset. Inverted indepAg61, 62] is a widely used
technique in text retrieval and has been drawing more abtewntf researchers to conduct
large scale visual search and retrieval [34, 63, 35]. The $tep involved in inverted
indexing is the vector quantization of feature descriptots visual words. Unsupervised
clustering methods such as K-means [64] and hierarchicakléns [64] are generally used
to compute clusters of local feature descriptor vectord,each cluster centroid is termed
as a visual word. The set of all visual words comprises toatiseord vocabulary. An

inverted file is structured like an ideal book index. It haseatry for each visual word in
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the vocabulary followed by a list of all the images (possiibgition in the image) in which

the visual word occurs. A query image is represented as amaictisual word frequencies.
The precomputed inverted file is parsed with the query imageVwords and images that
have sufficient number of visual words in intersection with uery image visual words
will be retrieved. The significance of this approach comesfithe fact that only those
images that have visual words in common with query image etreeved. There exists a
number of efficient ways in using inverted files such as tivdiighting [63], Hamming

distance [34], bundling features [35], and so on.

1.3 Topics Overview

Image registration [65, 66, 67, 48, 68, 69, 70, 71, 49, 72,743,75, 76, 77] is a very
well known problem in image processing and computer visidmich derives a geometric
transformation between an arbitrarily deformed image aktbavn image. Few techniques
have been developed for camera captured document imag&ration [4, 7, 9, 12]. These
methods are limited to affine and skew transformations asainas that the content is fixed
between template and test images. Chapter 2 presents a netledulogy to register
Regions Of Interest (ROI) under complex non-rigid deforradi Why only registration
of ROI? Applying traditional Optical Character RecognitidddR) [78, 79, 80] methods
on entire document gives a lot of noise due to camera captaieformations. However,
applying OCR on a region that closely contains ROI extractsdbntent in ROI more
accurately. Figure 1.6 shows the result of applying OCR oiouarregion sizes containing
social security number (SSN) in the W2 form. Figures 1.6(a) ar6(c) show bigger
regions containing SSN, and the corresponding OCR reswtskawn in Figures 1.6(b)
and 1.6(d), respectively. Figures 1.6(e) and 1.6(e) shauvttte application of OCR on a
region that closely contains ROI yields more accurate testihe key point here is deriving
a non-rigid transformation function that maps a user deflR@d in template image (i.e.,

reference image) to the captured image. This is achieveddwding enhancements to the
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previous literature in RANSAC [52, 51] and TPS-RPM [55, 56]althms. Experimental
results on a dataset of 480 images captured using iPhone B&Bogitech webcam Pro

9000 have shown an average registration accuracy of 92.84% SIFT.
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Figure 1.6 Application of OCR on different region sizes of camera cagdisfocument.

Chapter 3 presents a methodology to categorize camera edpdocuments into
predefined logo classes. Existing approaches in logo deteft9, 20, 21, 22, 23] are
limited to scanned documents and few approaches have addrego detection in natural
scenes [81, 82]. Literature in document retrieval [17, 88,10, 11, 12] requires either
full or partial archived document as a query rather thanlpgd. A signature detection

and matching methodology is presented in [84]. Due to laigersity in logos i.e., text,
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graphics, and a mixture of both and the noise introduced byeca capturing i.e., scale,
illumination, and viewpoint variations, detection of laye very challenging. Robust
local features are derived by comparisons among various lftine invariant features
under different criteria such as feature repeatabilitgtidctiveness, etc. A two step
matching methodology is presented to efficiently searchratréeve the underlying logo
classes. Besides, Hamming Embedding [85, 34] is applieditaceethe noise in descriptor
quantization and inverted indexing of logo classes to cotial time category prediction.
Experimental results on a data set of real camera capturednuents have shown the
behavior of different feature representations in categoegliction.

Chapter 4 presents a segment-wise matching approach tormpedocument
categorization by detecting logos. Literature in blocksegtation of documents addressed
the segmentation of printed [86] and scanned documents8B789, 90]. The key step
involved in such approaches is the binarizaion, which thiees a lot of noise in camera
captured documents. In order to overcome camera capturtifgcés, an approach to
segment query document image is presented by grouping acdex intersecting dense
local affine covariant regions [30]. The presented methmglolnot only improves the
prediction accuracies but also gives an approximate positi the predicted logo classes in
the query document. Experimental results on a data set loéaegera captured documents
have shown a peak 13.25% increase in the F-measure [64]aaycas compared to the
methodology presented in Chapter 3.

The conclusions and future work are presented in Chapter ®renvthe major

contribution of this dissertation is summarized and futes=arch directions are discussed.



CHAPTER 2

REGISTRATION OF REGIONS OF INTEREST

Document registration [4, 7, 9, 12] is a problem where the genaf a template
document whose layout is known is registered with a test mhecut image. Given the
registration parameters, layout of the template imagegssunposed on the test document.
Registration algorithms have been popular in applicatisnsh as forms processing where
the superimposed layout is used to extract relevant fieldse proliferation of camera
captured images makes it necessary to address camera undisgssnon-uniform lighting,
clutter and highly variable scale/resolution along withmgdex non-rigid deformations
such as folds and crumples. This chapter presents a novstreggpn methodology for
user defined Regions of Interest (ROI) under complex defoomsitusing enhancements
to prior approaches in point pattern based registratite, RANdom SAmple Consensus
(RANSAC) and Thin Plate Spline-Robust Point Matching (TPS-RPNiyee significant
aspects that comprise the framework are (i) histogram bas&drmly transformed
correspondence estimation, (ii) clustering of points tedanear ROI to select only close
by regions for matching, and (iii) validation of the regaton in RANSAC and TPS-RPM
algorithms. Experimental results section discusses hehafiregistration accuracies using

SIFT and SURF features.

2.1 Related Work

Image registration [55, 56, 91, 92, 93, 94] by establishiogespondences across interest
points in image pairs has been well studied in image proecgssnd computer vision.
Registration becomes more challenging when outliers erighé correspondence set.
These outliers could arise from noise in image acquisiti@ature extraction, and/or

matching. Several local invariant (e.g., scale, affine, ameénsity) detectors and

17
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descriptors [25, 95, 28, 29, 30, 96] have been proposed tcowe the natural variations
in image acquisition. Feature similarity measures, such2asorm, cosine distance,
etc, together with outlier elimination techniques, suchR&Ndom Sample Consensus
(RANSAC) [52], Hough Transform [28], and TPS-RPM [55, 56], hdeen applied to
establish true correspondences. The goal of most techsiigu® estimate underlying
transformation function across natural images for purpsseh as image stitching [97, 98],
image augmentation [99], or camera geometry estimatioh [54

Camera captured documents differ from natural images in acféwal areas: (i)
Non-linear deformations, such as folds, are common in decus (ii) In most forms, the
filled values are large in number and the amount of similatenbetween the test and
template is a percentage of the document content, and (iitedd such as logos, and
even text is repeated at multiple locations within the doeotn Figure 2.1 shows a few
forms that are quite sparse in content, where the same texr®at multiple locations
in a document. This results in a new class of outliers thatsarglar in the domain of
local features but correspond to a different region thabisatigned with the global image
layout. The existence of correspondences from one regionuitiple regions increases
the number of outliers and has an adverse effect on tradititerative methods such as
RANSAC. These challenges are in addition to known problemsameza capture, such
as lighting variations, clutter, camera equipment diffieess, and scale. Document image
processing has earlier used registration techniques farsfgrocessing. The motivation
has frequently been that information from a small part ofdbeument is critical for most
user applications. For example, the amount and date on gptécall that is needed as an
input to a tax software. Limiting downstream processingetevant regions is known to be
useful both from the view of accuracy and speed. To extralst @hevant regions, a test
image is registered with a template image that has knowrulaytere, selected regions of
text are extracted from a filled in form (test image) usinginiation about the form layout

(template image). Registration parameters are used toagvéite layout of the template
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Figure 2.1 (a) Regions in blue rectangle are similar i.e., "Bill”, (b)-¢aptured document
images with non-planar deformations and occlusion.
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image onto the test image. The layout specifies geometritiguus of the relevant fields,
which are then extracted from the test image. While severat pgchniques [100, 101,
102, 103] fall in this area, these methods address only affamsformations and assume a
high quality image.

Approaches such as RANSAC [52] and Hough clustering [28]nedt true
correspondence by fitting a transformation function to texgscorrespondences. They
are designed to eliminate correspondences between poattisave high feature similarity
but do not agree with the global image geometry. By desigriepsitwould also influence
the transformation function, and would be considered asrmlif they conform to the
underlying transformation. For example, Figure 2.2 showsatlier that conforms to
global geometry has been considered as an inlier. This, antias outliers deviate
the region of interest from the desired location. Applyimgde methods directly for
non-rigid registration is not acceptable as the underlyiagsformation function varies at
different parts of the image. Several non-rigid registnaframeworks [55, 56, 92, 93, 94]
have been developed for the non-rigid registration of nadimages. One of them is
the Robust Point Matching (RPM) [56, 94] algorithm, which forates the registration
problem as a maximum likelihood estimation problem usingtome models. Chui
and Rangarajan [56] embedded the Expectation Maximizatitv) (frame work in a
deterministic annealing scheme by considering the saigament of point sets to allow
partial matches. Thin Plate Splines (TPS) [59] are usedherestimation of underlying
transformation function, as TPS can be decomposed intceadfiad non-affine sub spaces.
The Robust Hybrid Deformable Matching (RHDM) framework [9dtorporates feature
dissimilarity measure into the TPS-RPM framework. Sofkal €8] pointed out that the
TPS-RPM algorithm would fail on extraneous structures, aghl-shape point sets, as it
tries to align the center of mass of the point sets in the atatations of the algorithm,
leading to a bias in the estimate, which it can not overcomthénlater stages of the

algorithm. Recently, Myronenko et. al. [92] incorporatedtimo coherence theory into the
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framework in the place of TPS. All these methods fail to cdesi few factors: (i) Initial
correspondences are not taken into account, (ii) New qooregences which are not in
the initial correspondence set are created during matcliipdt is assumed that template
points i.e., points in the source image are sparsely diggd and (iv) The same search
range parameter is considered for all template point alsisiéhe subsequent sections show
that accounting for these factors in image registrationeistral to non-affine document

registration.
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Wrong correspondence is shown in red color (cross marked)s dutlier deviates the
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2.2 Document Image Registration Methodology

Figure 2.3 presents an overview of the methodology that sgded to address some
of the drawbacks described earlier. The rectangular bdse (color) in the template

image of Figure 2.3 indicate the regions of interest to beaekd from a test image.
Clusters of template points are formed using k-means [104fhen template image.

Clusters that satisfy a proximity criterion with respect e tRegions Of Interest (ROI)
are selected for registration. Furthermore, a histograsedbauniformly transformed

correspondence estimation is incorporated into the fraomlewto speed up iterative
correspondence estimation. The following subsectiong/ $taw the prior knowledge of

correspondences can be integrated into TPS-RPM framewadker@hance RANSAC and
TPS-RPM by minimizing the registration error computed udoual gradient information

by demonstrating the performance of these algorithms forngid deformations.

The rest of this section describes the methodology in d&aittions 2.2.3 and 2.2.4
present the iterative approaches for outlier eliminatiod eegistration using RANSAC
and enhanced RANSAC, respectively. Iterative approachasoiorigid registration using
TPS-RPM and enhanced TPS-RPM framework are presented imSe&ti2.5 and 2.2.6,

respectively.

2.2.1 Template Point Selection and Initial Correspondence

Extract invariant points from the template and test imag#sgimethods such as SIFT or
SURF. Denote the points in template and test imageXbgnd Y respectively. Cluster
feature points in the template image using K-means algurjit04]. For each ROI in the
template image, points belonging o clusters that are closest to the ROI are selected as
the template point set for the RQX,.). The idea behind the selection of points only in the
m closest clusters is that these points move closely with tBe &d further it reduces the

non rigidity among the points.
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Template Test Image

o '! Your Vodafone bill

Initial correspondence Estimation Uniqueness constraint

Refining correspondences using Histogram

Iterative outlier elimination mechanism

1234567300
tD"’t:’, 1,312.00
extraction §4311.10 |

ERERD)

Registration of Regions Of Interest

Figure 2.3 Overview of document image registration. The template enegn be a
scanned image or electronically generated where the Re@ibimserest (ROI) are known.
Expected output is ROI in the test image.

Lowe’s [28] method of initial correspondence generatiomsed to map points in
X, onto feature points iy’ [28]. For eachr; € X,., two closest points it” are found
by using Euclidian distance in the feature space. If theoratithese distances is less
thant, then the template point with lesser distance is added tacdieespondence set
C = {(xi,y;)|lz; € X, andy; € Y}. The correspondences now have a many-to-one
mapping fromX to Y. For each test point; € C, a new correspondence $étis obtained
by performing a reverse mapping. Each poinyjne C' is now mapped onto the points

x; € C. Correspondences are retained only if the obtained mappelgaady present if.
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This ensures that for eagh € Y, there exists only one; € X,. The new correspondences

are nowC” = {(z;,y;)|z; € X,,y; € Y, and(x;,y;) € C}.

2.2.2 Refine Correspondence Set Using Histogram

Eliminate correspondences among outliers by using a hetogf Euclidean distances
on the Cartesian coordinate space. The Euclidean distathwedye Cartesian coordinates
of z; andy; for all (z;,y;) € C’ is obtained and placed into histogram bins as shown in
Figure 2.4. Bin size is given bymazgs — mings:)/(number of bins)wheremazx 4,
mings are the maximum and minimum Euclidean distances of the sporaling points
(z;,y;) € C' and number of binsis empirically set to ten. Correspondences whose
euclidean distances fall in the peak bin and the bins thatwatt@n the thresholdt,
(empirically set 80%) of the height of the peak bin are sel@éh a new setC”. This
step operates under the assumption that while local dstsrtin document images
can be non-planar, these distortions will not grossly alker relative distribution of
corresponding points. The results section will discuss o step eliminates gross
outliers, improving the convergence rate of iterative natéms. Figure 2.5(a) shows
the one-to-one correspondencés)(obtained for a test image, Figure 2.5(b) shows refined
correspondences’(’), and Figure 2.5(c) shows the correspondences after RANSWEru

affine transformation.

2.2.3 lIterative Approaches for Outlier Elimination: RANSAC

RANSAC is an iterative optimization algorithm that repeat® tphases: (i) generation
of hypothesis by randomly sampling the data and (ii) hypsitheerification on data.
Termination is done after a fixed number of iterations or whetermination condition
is met [52]. Each RANSAC iteration selects three random rahrear points from

x; € X such that(z;,y;) € C”. Using the correspondence betweenand y;, an

affine transformation matri®/ is computed. The transformation matriX is applied on
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Figure 2.4 Correspondence estimation using Euclidean distance histog

Vr;|x;,y; € C”, to obtaing;. If z; = y;, z; is marked as inlier, else; is marked as outlier.
If the number of inliers in a particular iteration is greattean inliers in a previous iteration,
the current set of inliers is accepted. The algorithm is beated after a fixed number of

iterations.

2.2.4 Enhanced RANSAC for Robust Registration

RANSAC is able to eliminate correspondences that do not confo global geometry, and
obtain a gross match between the template and test image&vdg as mentioned eatrlier,
an additional verification is needed to eliminate outlierisiag from locally non-affine
distortions as shown in Figure 2.2. Since specific regionthefimage are of interest,
processing is limited to ROI. In addition, assume that tldtebe image regions near the
ROI that are similar across the test and template image. dh garation of RANSAC,
when the transformation matrix/ is obtained, usel/ to warp the test image onto
the template using cubic interpolation. Histogram of OmeinGradients (HOG) [28] is

computed from image regions surrounding the ROI in the tatepmage and warped test
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(b)

(©)

Figure 2.5 Correspondences at different stages of the framework (a) bfiwe’s [28]
method and one-one mapping, (b) after Euclidean distaneeddaistogram, and (c) after
RANSAC.
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image. A modified RANSAC is performed using Chi-square [50]ilsirity of the HOG as

the matching criterion. The method is described in Algonth. Figures 2.6, 2.7, 2.8,
and 2.9 illustrate the approach of Enhanced RANSAC. FiguresBdivs the original

template image with marked ROI, clusters of SIFT points iolei& using K-means, near
by regions of ROI obtained from clusters of SIFT points, andamera captured test
image. Correspondences after the application of Euclidestarste histogram are shown
in Figure 2.7. Figure 2.8 shows the warped images along Wélektracted near by regions
during intermediate iterations of enhanced RANSAC. Fin&igure 2.9 shows the warped

image obtained by enhanced RANSAC along with the projecteddR@he test image.

2.2.5 Thin Plate Spline-Robust Point Matching

While enhanced RANSAC is capable of addressing some of therdafmns, methods like
TPS-RPM have been specifically designed to derive non-nigidstormation functions [56,
94]. This section describes the TPS-RPM algorithm, and a fawlacks of the method
when applied to registration of ROI. Enhancements to TPS-R&provided in the
subsequent section. Léf = x; : i = 1,2, ..., N be a sparsely distributed template point
setandY = y; : j = 1,2,..., M be a relatively dense test point set. Both point sets are
projected on a normalized Cartesian coordinate plane. TR8{BP, 94] uses Gaussian
mixture density to model the distribution of test points,ii@lGaussian cluster centers are
determined by the template points. In order to robustlyratite two sets, the algorithm
performs deterministic annealing, where the temperdiucé the annealing process acts
as a search range parameter. At high temperatures thethfgaligns the two point sets
by preserving global structure of the template points.7Adecreases, the search becomes
local, where it accounts local deformations. It starts thieealing process with a larg@r
such that all the test points will be in the vicinity of temiggoint clusters. At eacfh,

it alternately estimates the correspondences and comfhaamderlying transformation

function. It computes the probabilities of all test poingsrig assigned to the template point
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Figure 2.6 (a) Template image (ROI marked in blue rectangle), (b) ehssdf SIFT points
on (a), (c)-(d) near by regions for validation in enhanced FSANE, and (d) test image.
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Algorithm 1 Ouitlier Elimination Using Enhanced RANSAC
Input: Set of input correspondencés, Test images3; m, the number of fixed regions

for the registration of ROI.
HOG,; :i=1,2,...,m,; HOG of fixed nearby regions.
HOG 4, : maximum positive integer.
Output: Refined correspondence g&t’ with inliers, Transformation matri®/.
Initialization: iterations = 0;inliers = 0; outliers = 0; M AX ., = maximum number
of iterations.
while iterations < M AX;., dO
Hypothesis generation: Randomly select three correspondences among non-
collinear points fromC”. Compute the transformation matXurrent,,; from the
three correspondences.
Hypothesis evaluation: Warp the test imagés with Current,, to align with the
template image. Compute HOG of the fixed regions in the warpeie HOG; :
ji=1,2,....m,
Compute the chi-square distance betwéeQG,; and HOG, : 4,5 = 1,2,...,m,,
average it withm,., and denote it a'urrg;s;.
if Currgiee < HOG g5 then
Update:
HOG 4t <+ Currgs
M + Currentys
end if
end while

Update Correspondence s&t’ with the correspondences that agree with
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Figure 2.7 Correspondences after Euclidean distance based histoghélisn mvatching
SIFT features extracted from Figure 2.6(d) with Figure R)6(

clusters and computes the probable location of the matgyong for each template point.
With the template points and the corresponding probablemrad points, it estimates
the transformation functiorf using TPS [59] to ensure smoothness in the transformation
function. It repeats the annealing process with the teragdaint clusters centered Atz;)

until 7" reaches final temperatufg,,,, i.e., average of the squared distance between the
nearest neighbors of the test points. To handle outliersoth point sets it maintains
two additional clusters centered at the center of mass obdtle point sets with large

temperaturdy.

Drawbacks:
e The assumption of template point set as a sparsely distdbabe is not true in
the case of document images with multi-scale local feajuaesSIFT and SURF

generates dense points in a given region.



(a) iteration 12

(b) iteration 28

Figure 2.8 Results of intermediate enhanced RANSAC iterations, exddacalidation
regions (two left columns) from warped images (right colynabtained by random
sampling of correspondences.



Figure 2.9 (a) Final warped image obtained by using enhanced RANSAC =indoted
validation regions from it and (b) projected ROI on the tesage using the transformation
matrix obtained by the warped image in (a).
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e TPS-RPM aligns the template point set to the test point setdmgidering only
the geometry of the template point set. Apart from geomdtgrd is an initial
correspondence set which provides additional informatqarevent template points

being assigned to irrelevant test points.

e Each iteration of TPS-RPM generates new correspondenceshvdre not in
the initial correspondence set. The new irrelevant coomedpnces penalize the

estimated transformation function.

2.2.6 Enhanced TPS-RPM
Enhanced TPS-RPM algorithm is designed to overcome the @ckslof TPS-RPM. Apart
from the template point seX, and test point seY’, the algorithm takes into account the
correspondence sét’. To prevent each template point being moved towards thiewaat
test point, it assigns different temperatdrieto each Gaussian cluster center Finally,
the algorithm refines the new correspondences with neasyighl correspondences in
C"”. Remaining parts of this section present the problem fortimaenhanced TPS-RPM
algorithm, and the refinement of new correspondences.

Let C" = (z;,y;)|z; € X,,y; € Y be the set of input correspondences computed
using the methodology in Section 2.2.2, whéfg = z; : i = 1,2,..., N andY = y; :
j =1,2,..., M are the template and test point sets, respectively. As apesmpping is
enforced in the correspondence sEtjs equal toM. Let f be the underlying Thin Plate
Spline [59] based non-rigid transformation function, ahd transformed template point
setisX/ =z, = f(x;) : i = 1,2,...,N. Construct a correspondence matfixto store

the probabilities of each test point being assigned to eaciplate point with dimension
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(N +1) x (M +1).

P11 ve P1M P1,M+1

o ) e . 2.1)
PN1 o Dim DP1,M+1
PN+11 - PN4im | O

The innerN x M sub-matrix defines the probabilities of eagtbeing assigned tg;. The
presence of an extra row and column in the matrix handlegeosith both point sets. Each
pi; IS computed as

(= f@) T = F =)

2T; (2.2)

bij = 7€

whereT; : i = 1,2,..., N is the temperature of each template point cluster. Foreutli
clusters, the temperatufg is kept at maximum throughout the annealing process. As
discussed in Section 2.2.5, wh&nreached/};,,., the correspondence is almost binary. If
x; Is mapped tg; thenp;; ~ 1. Similarly, if z; is an outlier them; »,+; ~ 1, and ify; is an
outlier therpy11,; = 1. The matrixP satisfies the following row and column normalization

conditions.
Z?g{lpzj = 1, forj=1,2,.... M, and 2.3)
Zj‘ﬁlpij = 1, fori=1,2,.,N
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The goal of the framework is to find an optimal transformatieatrix P’ and the optimal

transformation functiorf’ that minimizes the energy functidti( P, f) as defined below.

P = argr?inE<P, ),

E(P f) = EgéP, f) +AE(f) + Eu(P), where

Ey(Pf) = YN, ij\il pisllys — f(@)]|? (2.4)
B = J) [(%)2 vo(24) + (%)Q]

EJ(P) = TY Y0 pylogp; — ¢ 3000, by

In the energy functiort’ (Equation 2.4),E,(P, f) is the geometric feature-based energy
term defined by Euclidean distancé.(f) is the smoothness energy term withbeing
the regularization parameter that controls smoothneskeofransformation function. To
favor rigid transformations at higher temperatures ana@lloon-rigid transformation at
lower temperatures, the framework redugassing an annealing schedule i.8.,= \;,;: T;
where\,,;; is a constant; = 1,2,..., N. E,(P) is a combination of two terms; the first
term controls fuzziness d? and the last term prevents too many points being rejected as
outliers.

The transformation functiory uses TPS [59], which can be decomposed into
affine and non-affine subspaces, thereby accommodating thgith and non-rigid

transformations.

flzi, d,w) = z.d + () w (2.5)

wherez; is the homogeneous point representation of the 2D poimtis a(D+1) x (D+1)
affine transformation matrix of thB-dimensional image (For 2D imagés=2), andw is a
N x (D + 1) warping coefficient matrix representing non-affine defdioma ¢(z;) is the

TPS kernel of sizé x (N + 1), where each entryy (z;) = ||z — z;||?log||zr — x4]|-
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Algorithm 2 Enhanced TPS-RPM Pseudo Code
Input: Template point sek,., Test point set’, and the correspondence gét

Output: Correspondence matrik and transformatiorf = d, w.
Initialize: Temperaturel; : ¢ = 1,2,..., N of each template point cluster with the
Euclidean distance between the template point and the spmneling test poiny;,
specified inC”, T;,,, as average of the squared distance between the nearedtarsigh
of the test points.
Initialize: smoothness parameter<— \7; :i=1,2,..., N
Initialize: d with identity matrix, P using Equation. 2.2, and with a zero matrix.
while max(T;) > Tinq dO
repeat
Update Correspondence ComputeP using Equation 2.2
Normalize P using Equation 2.3 iteratively.
Update transformation Updatew andd using QR decomposition( [55, 56])
until P, d andw converged
UpdateT; < T;v, update); <+ \oT;;7 = 1,2, ..., N; (v is the annealing rate)

end while
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2.2.7 Refining New Correspondences

Even though the correspondence set is taken into accoergetiof correspondences after
the Algorithm 2 contains new correspondences which aremot'j as the se€” contains
correspondences of the dense points. The new correspasletimduced by TPS-RPM
lead to inaccurate transformation of the ROI i.e., blue sogieown in Figure 2.10(b).
To overcome this, refine the new correspondences with thesmondences af” that
fall in the h x h window i.e., yellow boxes/{ is empirically set to 15) of the new
correspondence shown in Figure 2.10(a). Furthermore erdffi@ registration parameters
obtained in Section 2.2.6 by minimizing the HOG error as dbed in enhanced RANSAC
(Section 2.2.4). Figures 2.11(a) and 2.11(b) show the spamrdences after enhanced
TPS-RPM and the projected ROI, respectively.

2.3 Results and Discussion

Experiments are conducted with twelve types of formstythills falling in two different
categories; one setis made of colored documents, showgumds 2.13 and 2.14, that have
rich graphics and the other contains black and white doctsnshown in Figure 2.12, that
have minimal or no graphics. Test set consists of 480 imagjéescted using two capturing
devices iPhone3GS and Logitech webcam Pro 9000, 240 imagyeg aach capturing
device. A few samples are shown in Figure 2.1. For each tyderai, a template is
collected from a color scanner at 150 dpi and locations ofrélggiired fields of interest
are marked manually. During run-time, this template image lacations of the fields of
interest are input to the registration algorithm. For eaminf 20 test images are collected
with each of the two capturing devices. The experiments ns&MD Athlon Dual core
2.69GHz machine with 1.75GB memory, taking on average 2rgkdo register each
image excluding feature extraction.

Five approaches have been compared: RANSAC, RANSAC + Histodgahanced
RANSAC + Histogram, TPS-RPM, Enhanced TPS-RPM, and Enhanc&RFM with
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Figure 2.11 Refining correspondences using enhanced TPS-RPM. (a) conckspces
after refinement (Section 2.2.7), and (b) ROI from corresienices of (a).
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Figure 2.12 Black and white templates with minimal graphics along withIRBown in
blue rectangular boxes.
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Figure 2.13 Color templates with graphics along with ROI shown in bluetaagular

boxes.
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Figure 2.14 A few more color templates with graphics along with ROl shawrblue

rectangular boxes.
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refinement of new correspondences. In RANSAC, algorithm ptesen Section 2.2.3 is

applied after obtaining initial correspondences (Seci@nl). In RANSAC + Histogram,

RANSAC is applied after refining the initial correspondengsisig histogram of Euclidean
distances (Section 2.2.2). In Enhanced RANSAC + Histograme,enhanced RANSAC
algorithm presented in Section 2.2.4 is applied after thelilgan distance based
histogram.

For RANSAC, RANSAC + Histogram, and Enhanced RANSAC + Histogram,
thresholdt of Lowe’s approach is set to 0.9 and maximum RANSAC iteratisnset to
100. In the case of the three methods based on TPS-RPM, Ldweshbld is set to 0.6
and 0.8 for SIFT and SURF, respectively, to generate reasospéirse points with enough
correspondences. This difference in Lowe’s threshold 16iTSand SURF comes from
the fact that non-rigid registration depends on the salrabf control points. Empirical
evaluation shows that SIFT generates enough control puiitkssmall threshold value
compared to SURF. Matching is restricted to points in the tatepimage that fall in
clusters close to an ROI. The set of template image pointetaded for matching are
selected in the following manner: (i) For each ROI, all ctustare marked as unselected,
(i) While the number of match points for the ROI is less tha®,3be nearest unselected
cluster is marked as selected and add points in this clusténg set of match points
for the ROI. Figure 2.15 shows the performance of differegfistration methodologies
with SIFT and SURF features on different template images. d$®egion accuracy is
measured as number of truly registered regions (90% ovedapled by total number
of regions. Enhanced RANSAC + Histogram and Enhanced TPS-RRMrafinement
of correspondences outperforms the other methods. Entdi8-RPM with refinement
performs slightly better than Enhanced RANSAC + Histogrant has the advantage of
deriving complex transformation. TPS-RPM performance igrpwhich is likely due to
its assumption of sparseness in the point sets. In black &itd wnages that are primarily

white with sparse content e.g., W2 forms, SURF performs venr pa all the methods.
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Figure 2.15 Comparison of registration methodologies using SIFT and S\pRiRt
features on different image types.
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Euclidean distance Histogram as a preprocessing step to RENgnificantly improves
the performance of RANSAC on all the test cases. To test teetadf pre-processing steps
on RANSAC convergence, RANSAC is terminated when 90% of theespondences are
inliers. Using Euclidean distance Histogram for pre-pesteg reduced the number of
iterations by 60%, showing a positive effect on the convecgeof RANSAC. Furthermore,
SIFT gives larger number of control points surrounding tkd Rith superior repeatability
as compared to SURF. This is likely to be critical for nondigegistration and leads to

SIFT performing slightly better than SURF on all templategtyp

2.4 Conclusions

A framework for robust registration of camera captured doent images is presented.
Four novel aspects that comprise the framework are: clagt@f feature points using
K-means, Histogram based outlier refinement to speed ugtiteralgorithms, enhanced
RANSAC for robust registration of document images, and finathhanced TPS-RPM
with refined correspondences for registration of imageseumbn-rigid deformation.
Clustering of feature points enables selection of nearbyonsgfor registration of
ROI. Euclidean distance based histogram not only elimgdbe outliers but also
enhances the convergence rate of RANSAC. Enhanced RANSACIthalgorefines the
global registration parameters to suit each ROI, accomtirgglaon-affine deformations.
Enhanced TPS-RPM incorporates prior knowledge of corregpares into TPS-RPM and
leads to better registration of non-rigidly deformed imag@ne limitation is that matching
is applied to known ROI in the template image. While this isa@smmable assumption for

several document processing applications, it is not a asimption in general.
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(@) (b)
-
(©) (d)

(e)

Figure 2.16 Registered ROI in the images from the test set.



CHAPTER 3

CATEGORIZATION OF CAMERA CAPTURED
DOCUMENTS BY DETECTING LOGOS

This chapter presents a methodology to categorize camertred documents into
predefined logo classes. The existence of camera captwisg such as intensity and large
scale variations, partial occlusions, cluttering, and-narorm folds make the detection
task challenging. Besides, the appearance of logos is tinitea small portion of the
captured document and a single document might contain rharedne logo. The selection
of robust local features and the corresponding paramedepseisented by comparisons
among SIFT, SURF, MSER, Hessian-Affine, and Harris-Affine. €kaluation of the
methodology is conducted not only with respect to amounfpate required to store the
local features information but also with respect to categdion accuracy. Moreover, the

methodology handles the detection of multiple logos on heudhent at the same time.

3.1 Related Work

Logos [19, 20, 22] play a vital role in uniquely identifyingd@cument type. Generally,
the appearance of logos is limited to a small portion of theudwent content and a
single document might contain more than one logo as showngaré& 3.1(b). Logo
detection [19, 21, 22, 23] on scanned documents is a very kvadlvn problem in
document analysis community. Most of these approachesorelyonnected component
extraction [19, 21, 22, 23]. A Bayesian approach by provideeglback between detection
and recognition phases is specified in [22]. A method basedoomdary extraction of
feature rectangles to generate robust candidate logosomoged in [21]. Geometric
relationship among connected components is enforced ih tdSeliminate outliers.

However, connected component extraction approaches relgirarization [105, 106],

a7
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which introduces a lot of noise in camera captured documém{20], SIFT [28] features
from a query image i.e., image under observation are mat@taithst all the descriptors of
logo classes. Though accuracies are reasonable on scanc@dehts, matching against

all logo classes descriptors would not scale to large dasaaed is not a good strategy for

real time applications.

(a) intensity and view-point variation

(b) background clutter and multiple logos (c) crumples

Figure 3.1 Camera captured documents with logos.

On the other hand, literature in scalable document refrieeghodologies [17, 83,

10, 11, 12] rely on the entire document content includingd,téigures, and tables etc.
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rather than just logos. A sequence of words is used as a gudfy’]. A subregion of
the document is used as a query in [10, 11, 12]. One commorrtiaspiese approaches
is that they need scanned documents as input. A documemvettmethodology using
text is presented in [18]. Local invariant features are usaépresent the predefined logo
classes and the query document in order to overcome thesnfjal typically found in
camera capture such as intensity variations, clutter, ygeimt variations, and crumples.
Due to the availability of various local invariant featursch as SIFT [28], SURF [25],
MSER [30], Hessian-Affine [30], and Harris-Affine [30], tleers always a question of
selecting the robust feature.

The rest of the chapter is organized as follows: Section &8gnts the comparison
of various local invariant features and the selection of forethe logo detection task.
The detailed methodology of camera captured document a@tetjon is presented in
Section 3.3. Section 3.4 presents the experimental resulischallenging data set, which
also discusses the impact of dimensionality reduction apdesentation of the features.

Finally, Section 3.5 concludes the chapter.

3.2 Comparative Analysis of Local Invariant Features

This section presents the selection of desired local fediyrcomparisons among various
local invariant features. The features in consideratiom 8tFT [28], SURF [25],
MSER [30], Hessian-Affine [30], and Harris-Affine [30]. Theraparison is done using
25 logo classes and 125 camera captured documents with fovergmts under each logo
class.

LetL ={Ly, Lo, ..., L, } be a set of logo classes, wherds the total number of logo
classes. Each logo clagsis represented by using feature pointd.; = {(z?,y’, f7)} for
j € {1,2,....n;}, wheren; is the total number of feature points in ti#é logo class;
(z7,47) and f/ are the Cartesian coordinates afdimensional description of thg"

feature point, respectively. Similarly, query image isresented ag) = {(z7, v/, f1)}
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for j € {1,2,...,n,}, wheren, is the total number of features points extracted from the
query document. Denote th¢" feature inL; and@ asL! and@Q’, respectively, and the
correspondingi-dimensional feature descriptors ﬁéand f7, respectively. Lowe’s [28]
thresholdt is used to make the comparisons, which is defined as the ratite alistance
between the logo descriptor and the first nearest neighbongrthe query descriptors

fq € Q in thed-dimensional feature space to that of the second nearegtbwi

_  bulgm 3.1
b= by (1)

whereD() is the Euclidean distance iidimensional feature space, andl, nn2 € {1, 2,

..., n,} are the indices of the first and second nearest neighbgfsitothe feature space.
A correspondence for eacﬂr{ is established witl))""! only if ¢ is less than a predefined
threshold, i.e.Q"! is the corresponding feature point & feature ofL; in Q. Ast goes
down from 1 to 0, the ambiguity in the correspondences deesggand more discriminative
correspondences will be established. The behavior of thal Imvariant features is
analyzed with respect to three important criteria: coroesience precision, number of
true correspondences, and the number of inter-logo canelgnces. Correspondence
precision (as defined in Equation 3.2) and the number of muespondences are analyzed
by establishing the correspondences between each loge atasthe corresponding five
camera captured documents. The number of true correspoesiésn counted with the
help of the established ground truth. Figures 3.2(a) an¢bB.&how the behavior of
average correspondence precision and average numbee afimespondences at different
thresholdst, respectively. A robust feature must have high averageespaondence
precision along with the large number of feature points opsut partial occlusions and
non-rigid deformations in the logo. Figure 3.2(c) showsdkierage number of inter-logo
correspondences established with different feature tgpearious thresholds of(for each
logo classL; € L, the remaining classes; € L;i # i’ are used as queries). As some

of the local features are common among multiple logos, ualhtipe features will reduce
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the discriminative power. One with lower number of averagerilogo correspondences
should be preferred. From Figure 3.2, SIFT features at thdeshthreshold, i.e., 0.6, are

the desired choice compared to the remaining features aeshtblds. Section 3.3 presents
an efficient logo-based categorization methodology udiegderived feature type and the

corresponding threshotd

Number of true correspondences (3 2)
Total no. of correspondences

Correspondence Precision

3.3 Methodology

The system has two modes of operation: off-line and on-l@f&line mode is responsible
for feature extraction from the logo classes, represemtatind storage of the extracted
data. On-line mode works in two stages. In stage 1, featuresxracted from the
qguery document and are matched against the features in thbada to determine the
candidate logo classes. In stage 2, ta@andidate logo classes are then subjected to the
cluster-based refinement process in the image space tmat@rfalse positives. Finally, the
guery document is categorized into the candidate logoetdeét after stage 2. Figure 3.3
shows the overview of system configuration. The followingsactions briefly explain the

individual components of the system.

3.3.1 Off-line: Representation and Storage of Logo Class Faaes
Let X = {(27,9/, f/)}, 1 < j < n be the set of SIFT [28] features extracted from all the

logo classed.; € L; wheren is the total number of logo class features.

1. Dimensionality Reduction: This step is optional, and duees the dimensionality
of SIFT [28] features. Generatel@8 x 128 dimensional matrixP with random
numbers. SubjecP to QR decomposition [34] to obtain the orthogonal matpx
The firstr,; rows of the matrixQ) form the projection matrix?. Project all the

descriptorsf’ € X onto R to reduce their dimensionality tg.
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on-line
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| Dimensionality reduction |

Binary signature generation
using Hamming Embedding

| Inverted file index |

Cluster

centroids

wlx [y [forb |2 Hdlx|y|forb |--

wx [y [forb_}>[ #dx[y[forb |-
\Ll%

:

1

1

Id|x|y|forb H Id|x|y|fr3rb |"'

| - }%| Id|x|y|forb |—>| Id|x|y|forﬁ |---

Cluster-based refinement of Stage 2
correspondences in the image
space oftop I logo classes

Document A
categorization e

Figure 3.3 Document categorization framework.
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2. Cluster Formation: Form the clusters of descriptre X in r4-dimensional space
using K-means [104], and denote the cluster centroids as{c;|1 < i < k}. The

clusters are computed using SIFT features extracted frgmdtasses.

3. Hamming Embedding (HE): The main objective of this stefo isonvert the feature
17 € X into a binary stringy’ for efficient representation, storage, and matching. For
eachr;-dimensional descriptof’ € C;;1 < i < k, Hamming Embedding (HE) [34]

is adapted to convert it to a bit string of lengthr, as defined in Equation 3.3.

V(r) =1, if fI(z) <=Cy(x); 1 < <y (3.3)

=0, otherwise;

4. Inverted File Indexing: Inverted file indexing [34, 63}wtture is used to store the
logo classes information. Only the cluster centraigse C are indexed, and all
the SIFT [28] features within each cluster are linked tortlcerresponding cluster
centroid. The feature information attached is the logosctasmber(d), Cartesian
coordinatesr’, 3/, and the featurg” (or) binary stringt’ as shown in Figure 3.3.

Denote the established index structurd as

3.3.2 On-line: Feature Extraction on Query Document and Matclng

Let Q@ = {(z,v},f))}, 1 < j < n, be the set of SIFT [28] features extracted from
the query document image and represented in the similar enaamlogo class features
(Section 3.3.1); where, is the total number of SIFT [28] features extracted from the
guery document. Algorithm 3 presents the mechanism of nagdieatures in) with the
established inverted file indexof Section 3.3.1.

Refinement of Scores using Neighborhood CheclAs the scores after stage 1 matching
contain lot of outliers, refine the established corresponés in the tog candidate logo
classes using cluster-based neighborhood check in theeirspace. Figure 3.4 shows

matches established during Stage 1 matching. One can entoecordering among the
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Algorithm 3 Stage 1 Matching
Input: Inverted File Index/(Section 3.3.1), Query featurés

Output: ScoresS; € S;1 < i < m of the logo classes.
Initialize: All S; € S to zero.
forall Q7 € Q do
Determine the nearest clustér € I;
Initialize: D (Distance to all features ;) to zero.
forall (b*|f*) € C; do
Compute the distancB? = D(b*| f*, Q’); where D() iszor() for b*, and Euclidean
distance in-;-dimensional space fof?;
end for
sort D in decreasing order;
Increment the scoré;yp1y by 1 only if (D'/D?) < t; where D' and D? are the
distances to the first and second nearest featur@s,afndt is Lowe’s [28] threshold;
end for

sortS in decreasing order;
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local features [35], and check for the relative order cdesisy between query document
and the candidate logo class, or refine the corresponderycégimg a transformation

model [28] to the correspondences. Due to the non-rigidrdetions i.e., crumples, a
cluster-based neighborhood check is applied in the imagees determine the outliers.
Algorithm 4 presents the underlying mechanism. Figure 8@ns the matches refined

after neighborhood check.

Figure 3.4 Matches established during Stage 1 matching.

3.4 Experimental Results and Discussion

Test set consists of 375 camera captured query documentssofution 160& 1200
belonging to 25 logo classes. Figure 3.6 shows the logoedaasd their distribution in
the test set. F—measure [64] as defined in Equation 3.4 isagsdluate the methodology.

F—measure combines both recall and precision into a singlasare, which is well



Figure 3.5 Matches established after neighborhood check.
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Algorithm 4 Stage 2 Matching: Cluster-Based Neighborhood Check
Input: Top! candidate logo classés € L after stage 1 matching, and the corresponding

scoresS’ € S'.
Output: Refined Scores’ of the candidate logo classes.
forall L; € L' do
Initialize: neighborhood cardinality, to [ sqrt(S?)].
repeat
for all featuregz7,y’) € L’ do
Let N(27,y7) and N,(«J,y) be ther. neighborhood features of th¢/"
correspondence between the logo claks and the query documeng)
respectively;

Determine the probability ofj* correspondence being an inlier & =

(N (2 5N Ng(d,53)) .

Te !

Mark the;" correspondence as inlierf# > ¢,; where threshold, is set to 0.5;
end for
Update the correspondencedinwith inliers, and refine thé! with the cardinality
of L) i.e., || Li||;
until S/ <3
end for
sort.S” in decreasing order, and eliminate all the logo clagses L’ with the scores

S < 3;
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informative compared to individual recall and precisioores. The higher the F—-measure,
the better the categorization accuracy. Figures 3.8 ansh®\® the established matches of

the images from the dataset with the corresponding logos.

_ Number of true categories retrieved
Recall = Total number of true categories
.. _ Number of true categories retrieved 3.4
Precision = Total number of identified categories ( )
_ Precisionx Recall
F easure = 2 X Precision+ Recall

Table 3.1 shows the accuracies at different stages, andrehff SIFT [28] feature
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(d) 15 documents (e) 135 documents (f) 45 documents (g) 105 documents

Figure 3.6 Logo classes and their distribution in test set.

representations witkh = 100,¢ = 0.5, and/ = 5. HE-128 and HE-64 in the Table 3.1
corresponds to feature representation with Hamming Enmbgd(HE) and bit string

lengths of 128 and 64, respectively. From the Table 3.1,asdithension of the SIFT [28]
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Figure 3.7 Category identification: left:query document, right: pretdd categories (true:
scores in green, false: scores in red).

Figure 3.8 Matches established for Elsevier logo.
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Figure 3.9 Matches established for W2 logo.

features decreases from 128 to 16, the corresponding stagenteasure decreases
gradually, and stage 2 matching significantly improves thges1 matching F—-measures.
HE with 128-bit string representation achieves a reas@fabineasure accuracy of 68.24%
with enormous savings in storage. A similar kind of patternliserved at = 50 andk =
200, with a minor change of 1 to 2% in the F—-measure, and $§figigher accuracies with
increasing number of clusteks The derived threshold= 0.6 is also empirically verified by
a comparison among other threshold values, and observhadritg-measure accuracies at
t = 0.6. A F—-measure accuracy of 36.54% is achieved by diraddpting the HE method
of [34] with 128 bits and the specified parameters. Furtheentbe methodology is verified
on Tobacco-800 [107] dataset and achieved a 95.14% F—neeascuracy as opposed to
92.5% using [19]. Finally, Figure 3.7 shows the scores ofitlemtified categories of a
guery document at each stage. On an average, it takes 1 s&coatkégorize the given

guery document on Intel core 2 duo machine using MATLAB.
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Table 3.1 Accuracies at Different Stages of Matching and Differerdatibee
Representations

Feature Representation (dimensions)

16

32

64

128

HE-64

HE-128

Average Recall

Stage 1

72.31%

84.18%

85.69%

88%

70%

83.24%

Stage 2

63.24%

76.13%

79.2%

81.07%

62.58%

78.13%

Average Precision

Stage 1

28.35%

44.48%

40.49%

50.32%

21.17%

30.77%

Stage 2

48.94%

69.24%

69.3%

75.07%

57.55%

60.57%

Average F—m

easure

Stage 1

40.73%

58.21%

54.99%

64.03%

32.51%

44.93%

55.18%

72.52%

73.92%

77.95%

59.96%

68.24%

Stage 2

3.5 Conclusions

A methodology to categorize camera captured documentsdbaisdogo detection is

presented. The selection of robust features is done by adsopa among various local
invariant features. The methodology not only categoribesdaptured document under
partial occlusions, intensity variations, and non-rigigfatmations but also identifies
multiple categories if present. Evaluation of methodolagypresented with respect to

different feature representations.



CHAPTER 4

SEGMENT-WISE MATCHING FOR CATEGORIZATION

This chapter presents a segment-wise matching approactategorization of camera
captured documents into predefined logo classes. SIFT dstasepresent logo classes and
guery document in order to overcome the challenges typitalind in camera capture such
as intensity variations, clutter, view-point variatioasd crumples. To obtain higher recall
and precision accuracies, segmentation of query docummexgfd is presented by grouping
area under intersecting dense affine covariant regions tormeme the margin between
the matching scores of true logo classes and the rest. Besidaple descriptions of
each feature that belong to different dominant orientationthe surrounding region are
grouped and Hamming Embedding (HE) is applied to suppressdlse during descriptor
guantization. Experimental results on a challenging ddtdemonstrate a peak 13.25%
increase in the F—-measure accuracy compared to the metigydotesented in previous

chapter.

4.1 Motivation

SIFT features are empirically shown robust to a wide varietychallenges such as
background clutter, intensity variations, view-pointia#ions, and crumples in Chapter
3. The methodology categorizes query document into prestbfiogo classes in a two
stage matching fashion. In the first stage, local featums the entire query document are
matched to determine candidate logo classes. Neighbortioeck of computed matches
is performed in second stage to refine retrieved candidgtedtasses. Generally, the cost
of performing second stage matching, which typically acemdates outlier elimination
mechanisms, increases with increase in the number of fadéehes. Most of these false

matches arise from using feature matches from the entireyqleument. Figure 4.1

63
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illustrates the motivation to conduct matching limited égd regions. An example query
image and the corresponding SIFT features extracted frane ghown in Figure 4.1(a) and
Figure 4.1(b) respectively. Figure 4.1(d) shows the panihg of the number of matches
of Figure 4.1(b) with Figure 4.1(c) to different regions dietquery document. From
Figure 4.1(d), it is clear that the corresponding logo regie., Elsevier accommodates
more number of matches compared to other regions. Limitiegnbatches to those that
arise from true logo region not only helps to increase théopeance of outlier elimination
techniques but also gives an approximate position of the tbagss in the query document.
Similarly, Figure 4.2(b) shows that the region containiadgt@rn recognition logo contains
more number of matches compared to other regions when magtéhgure 4.1(b) with
Figure 4.2(a). Furthermore, by distributing the matchediti@rent regions of the query
document and selecting a region with more number of matobeésces the number of
matches of an irrelevant logo class. In this chapter, aniefiienethodology to categorize
camera captured documents into predefined logo classexserged by limiting the
matching to segments achieved by grouping area under eatérg dense affine covariant
regions [30].

The rest of the chapter is organized as follows: Sectione2qnts feature extraction
and grouping of descriptors belonging to same feature riegendex computation of logo
classes is presented in Section 4.3. Section 4.4 presemitedanethodology of camera
captured document categorization. Section 4.5 presepeyriexental results on a dataset

of real camera captured documents. Finally, Section 4.6ladas the chapter.

4.2 Feature Extraction and Grouping

SIFT is used to represent logo classes and query documdrt. cBboses interest points
at the extremum of difference-of-Gaussian scale space2@Rand describes the region
around the interest points invariant to rotation. GivenraadeA, let X = {(z7,v7, f7)},

1 < j < m be the set of SIFT feature descriptors extracted frdpwherem is the
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(@) (b)

(©) (d)

Figure 4.1 (a) Query image, (b) SIFT features extracted from (a), (setkr logo, (d)
matched features of (b) with (c).
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(@) (b)

Figure 4.2 (a) Pattern Recognition logo and (b) matched features ofr€igul(b) with
(a).

total number of descriptors extractga;, y’) denotes feature point position iy, and f7
represents correspondigdimensional description. SIFT describes surroundingoreg
around interest points with respect to all dominant origeos in that region [28]. This
leads to a state where each feature point has one or moredeatgscriptions associated
with it. Figure 4.3 shows SIFT features extracted from exanipgo classes, one can
observe that some feature points have multiple dominaections (arrows in different
directions at the same feature point). While matching a s8tleT features extracted from
one image with another set of SIFT features extracted frazorsimage, these isolated
descriptors could lead to false matches. To suppress sndtokfalse matches, descriptors
corresponding to same feature point and supporting regeonsicale are grouped. Refine
X such thatX = {(z7,47,{f’})}, 1 < j < r; wherer is the total number of feature points
extracted, and f/} is the set of alld-dimensional descriptions corresponding to feature

point (27, 37). The rest of the chapter us&S to denotej’" feature inX.



67

;‘Illil 1\

iy
Wy

Figure 4.3 SIFT features from example logo classes.

4.3 Inverted Index Computation

In order to avoid matching query document features withuiest in all logo classes,
inverted index [63, 61, 35] data structure is adapted toiefftty match with logo classes.
This section presents an approach to store SIFT featuremcted from logo classes and
other related information to enhance query document cles$igition. The inverted index
computation is performed off-line. Lét = {L4, Lo, ..., L,,} be the set of logo classes to

be indexed. For each logo classe L, 1 <i < n, repeat the following steps.

1. Feature Extraction: Extract SIFT features [28]= {(«7, v/, {f/}1)}, 1 < j < m;;
wherem; is the total number of features extracted from logo clas$x{ , yf ) denotes
feature position inL; and {f/} denotes set of all correspondingdimensional

descriptions as mentioned in Section 4.2.

2. Feature Quantization: Compute visual word vocabulary- {C.}, 1 < k£ < K;
where K is the size of the vocabulary,;, is k" cluster centroid; by subjecting a
hundred thousand SIFT feature descriptors that arise frgnyglocument collection
to K-means [64] clustering. These descriptors are not jusitdd to logos and
represent the information from text, figures, etc. For eaalufre poinfX’ in X;, 1 <
j < m,;; compute set of visual Word!m{} by quantizing [63] set of all associated
d-dimensional feature descriptofg’ } using vocabulary”. While quantizing, along
with visual words{wff}, compute corresponding Hamming Embedding (HE) [34]

{he{} using Equation 4.1, which provides an encoding of the dpswriin the
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corresponding cluster. Updalg as{(z/, v/, {w’}, {hel})}; .

)

hel(z) =1, if fl(x) <= C,y(@); 1<z <d )

=0, otherwise;

. Inverted Indexing: For each visual wouﬁ in X;, compute indexed feature as shown
in Figure 4.4 and attach it to inverted ind&xat visual Wordwff. Logo ID islogo class
ID i.e., 4, Feature ID is the SIFT feature in which the visual wotg appears i.e;j,

HE is he!, andNumber of feature wordsis the set cardinality{w’}| of featureX? .

Off-line On-line Segmentation by
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Query Iimage
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R Ry pe
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Figure 4.4 Document categorization framework.
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4.4 Categorization of Query Document

Generally, query document images contain a lot of data atheem logos such as text,
tables, figures, etc. Computing matching scores using égtideatures from the entire
document with the computed inverted indéxcould spoil logo classes prediction as
shown in Figure 4.1. So, content on query document is segdauging dense affine-
covariant regions, such as Hessian-Affine [30] and Harfig& [30]. Hessian-Affine

regions are selected as they produce more repeatable segpompared to Harris-Affine

regions [30]. Hessian-Affine regions are defined by affinenadization around Hessian
points [30]. An iterative estimation of elliptical affinegien around Hessian interest points
is performed using autocorrelation matrix [45, 46]. Thddeing subsections briefly

present the methodology of segmentation and underlying agsses prediction in the

guery document.

4.4.1 Segmentation

Extract Hessian-Affine region® = {(z,y/,al,b/,c¢))}, 1 < j < m, from query
documentimage; where, is the total number of regions extractéd’, /) denotes feature
point position, anda?, b7, ) is the corresponding region representation as ellipsearye|
regions are less repeatable to view-point and illuminatemmations, eliminate regions iR
which contain more than two other regions. Grouping the afedl ellipses that intersect
with each other yieldseg, number of segments which are quite separated from each other
in query document. Figure 4.5 shows a segmented image achl®y grouping dense
ellipses. Figure 4.5(b) shows Hessian-Affine regions ek@from a query image shown
in Figure 4.5(a). Figure 4.5(c) shows the correspondingstdesAffine regions remained
after the elimination of regions that contain more than tegions. Finally, Figure 4.5(d)
shows the segments achieved by grouping the areas of adhethat intersect with each

other. Figure 4.6 shows segmentations achieved on sonlemtialg images from the data

set. First column of Figure 4.6 corresponds to original aaeaptured documents and the
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corresponding segmented images are shown in second cokigure 4.6 shows that the

logos are quite separated from other content and entiredoggpfall under same segment.
Though some non logo regions are also included in the sanmaesggorresponding to

logo, the area of the segment is still much less than theeegtiery document and solves
the purpose of using features close to the logo region fochiwey. LetP = {p’},

1 < j < seg, be the set of polygons obtained by approximating each of ¢égensnt

contours with a polygon [108].

@ (b)

(©) (d)

Figure 4.5 (a) query image, (b) affine covariant regions, (c) refinedoregy and (d)
segmentation after grouping area under intersecting megio
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4.4.2 Feature Extraction, Quantization and Segment-wise Guping
Extract SIFT features [28) = {(z7, 47, {f’})}, 1 < j < m,; wherem,, is the total number
of features extracted from the query documént; /) denotes feature position add’}
denotes set of all correspondidegdimensional descriptions as mentioned in Section 4.2.
Perform feature quantization ap as presented in Section 4.3 to updéteas { (27, y/,
{w'}, {hei})}.

Divide @ into seg, groups by assigning each query feature(jh to one of the
segment polygons®’ that contain corresponding feature point’,y’). Denote the

resulting feature groups &%, 1 < g < seg,.

4.4.3 Matching and Score Computation

For each group of featur&g,, 1 < g < seg,, repeat the following steps:

1. Scores Initialization: Initialize segment scores ofered logo classeS, = {s}},

1 <i < nto zero; where is the total number of indexed logo classes.

2. Matching: Experiments are conducted with the followiwg types of matching.
(i) With out using HE: Parse inverted indéxfor each featur@g € (), and update
scores;, if a feature ini** logo class completely intersects with query feat@ﬂg'e
as specified in Equation 4.2. While parsing inverted indielauffer all logo classes
along with feature numbers i.d=gature ID in which the corresponding visual word
appears. Consider only those logo classes as a match whielféatsire that exactly

contains same set of visual words as query feature.

s 1 =1, if }{wé}ﬁ{wf}\ -1 (4.2)

9 {w) YU{w!}|

(i) Using HE: Score update is performed similar to aboveahizg method, except

individual visual words match is refined using hamming distaas specified in
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Equation 4.3.

Hamming-match(hel, hel) =1, if zor(hel, hel) < hy 4.3)
=0, otherwise

where h; is hamming distance threshold:; is set to 22 as suggested in [34] for

128-dimensional SIFT description in the experiments.

Compute document-wise logo class scofes= {s'}, 1 < i < n ass' = max(s,),

1 < g < seg,. This step updates the retrieved logo classes scores veithethk segment
score associated with the corresponding logo class. Samesg in descending order, and
categorize query document into all logo classes that hager@ svhich is not less thatn

of the top logo class score. The impactpfs briefly explained in the experimental results

section.

4.5 Experimental Results and Discussion

Test set consists of 300 query documents of resolution 26QR00 belonging to 25
logo classes captured using Logitech Webcam Pro 9000. As spiery documents also
contain more than one logo class e.g., scientific articlegre 4.7 shows logo classes and
their distribution in the test set. The test set is compogery challenging documents
such as illumination and view-point variations, cluttgsirand crumples as shown in
Figure 3.1. Recall [64], precision [64], and F-measure [64é]measured as defined in
Equations 4.4, 4.5, and 4.6, respectively for each querymeat and average them over
all 300 documents to produce average recall, average mecesnd average F—measure
accuracies. The higher these measures are, the betteethietfpm. Following experiments
are conducted using 128 dimensional SIFT description agdhludary sizes of 100, 500,
and 1000 computed using K-means clustering of one hundads#md SIFT descriptors

extracted from the test set.

_ Number of true logo classes predicted 4.4
Recall = Total number of true logo classes ( ) )
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.- _ Number of true logo classes predicted 4.5
Precision = Total number of predicted logo classes ( )
F—measure = 2 X Recallx Precision (46)

Recall+ Precision

Eight matching methods are compared using SIFT featuneBullt Matching SIFT
features from the entire query document image, (i) FHH: Matching SIFT features
from the entire query document image using Hamming Embegld{ini) Full . NN:
While matching SIFT features from the entire query documeige, only discriminative
matches are considered i.e. if a feature has more than orah nmathe same logo class
then the corresponding matches will be discarded, (iv)_.RNLHE: Similar to FulLNN
except that HE is enforced during matching, (v) Segmentgnteat-wise matching of
SIFT features from the entire query document image as piegé@nSection 4.4.3 with out
using HE, (vi) SegmentBIE: Similar to Segments with additional match refinememasi
HE, (vii) SegmentdNN: While matching SIFT features segment-wise, only discrative
matches are considered as mentioned in RN, and (viii) SegmentdNN_HE: HE is
applied while performing SegmenkéN. Figures 4.8 and 4.9 show average recall and
average precision accuracies at different vocabularyssimingt, = 0.8. Enforcing
discriminative matches during matching i.e., all NN vatsammproves average recall,
shown in Figure 4.8 and applying HE to establish a match Bagmtly improves the
average precision for all methodologies, shown in Figuge #igure 4.8 also shows that
the application of HE does not significantly change averagall. However, enforcing
discriminative matches considerably improves averageigiomn, shown in Figure 4.9.
Furthermore, segment-wise matching not only improvesvbeage recall but also average
precision. Similar pattern is observedat 0.6, which is shown in Figures 4.10 and 4.11.
As more number of false predictions fall by reducing the shadd¢, to 0.6 the average

precision accuracies are lower than thosg, & 0.8, which provokes higher average recall
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accuracies at, = 0.6. Additionally, both average recall and average piegiaccuracies
increase as the vocabulary size increases.

Tables 4.1 and 4.2 list the F—-measure accuracigs=a0.8 and;, = 0.6, respectively.
The F—measure accuracies improve by 3.15% to 13.25% uginges#-wise matchingi.e.,
SegmentNN_HE compared to entire query document features i.e., RNIHE. Though
the F—measure accuracies are slightly bettey at0.6, the improvement is slightly higher
att, = 0.8. The improvement in F-measure accuracy goes down astabulary size
increases. Figure 4.12 compares the F—-measure accurd8#sTo Speeded-Up Robust
Features (SURF) [25], Hessian-Affine [30], and Harris-Aff[86] at ¢, = 0.8 andt, =
0.6. In the case of Harris-Affine, segmentation is conduatgdg Harris-Affine regions.
Figure 4.12 demonstrates that SIFT outperforms other fedypes and SURF is the poor
performer amongst all and the F-measures accuracies gindysbetter at, = 0.6. The
entire methodology is implemented in C++ using OpenCV 2.3 &edeixperiments are
conducted on an AMD quad core Linux machine with 8GB RAM. Orrage, it takes 500

milli seconds to categorize a single 1601200 camera captured document.

Table 4.1 F—-measure Accuraciesigt= 0.8

Vocabulary Size

100 500 1000

Full 7.75% | 10.29%| 10.91%
Full_.HE 35.03%| 58.97%| 64.36%
Full_NN 7.55% | 7.20% | 9.84%

Full_NN_HE 43.50%| 63.77%| 68.76%

Segments 7.09% | 13.64%| 16.54%

SegmentHE 49.01%| 66.76%)| 69.60%

Segment\N 6.57% | 10.39%| 13.14%

SegmentNN_HE | 55.22%| 71.32%| 73.16%
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Figure 4.12 F—measure accuracies of different feature types at,(2)0.8 and (b), =

0.6.
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Table 4.2 F—-measure Accuraciesi@t= 0.6

Vocabulary Size

100 500 1000

Full 7.84% | 7.93% | 8.54%
Full_.HE 38.58%| 60.70%| 64.78%
Full_NN 9.46% | 8.36% | 8.78%

Full_NN_HE 48.70%| 67.02%| 71.85%

Segments 8.30% | 9.05% | 12.49%

SegmentdHE 55.09%| 69.15%| 71.55%

SegmentNN 7.85% | 10.74%| 15.48%

SegmentdNN_HE | 60.36%| 72.78%| 74.42%

4.6 Conclusions

An affine covariant region driven segmentation approachategorize camera captured
documents by identifying logos is presented. The presentttiodology not only helps to
improve prediction accuracies but also gives an approxnatation of the underlying
logo classes in the query document, which is critical to sl correspondences
for applications like registration and mosaicing. HammiBghbedding (HE) and
discriminative matches are applied to increase averageisppe and average recall
accuracies, respectively. Experimental results on a eéatak real camera captured
documents demonstrated a 13.25% increase in the F—-meastumey by computing
segment-wise matching scores. Though the presented s&jioens reasonable, a more

robust segmentation is desired to improve the predicticaracies.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In recent years, camera captured document image analydiawsng more attention of
researches due to the rapid development of inexpensivelinelddensors, camera enabled
smart phones, tablets, and so on. As there is no constraamdrig in the real world,
the captured documents suffer from illumination, scale wagvpoint variations along
with clutter, occlusion, and crumples. Two high level pregiag tasks, registration and
categorization of camera captured documents using loealifes are presented in this

dissertation.

5.1 Summary of Contributions

The following summarizes the contributions of this disggon:

1. Anovel framework to register Regions of Interest (ROI)emabn-rigid deformations

is developed.

e Clustering of feature points near ROI and histogram basedemtnt of
outliers in the correspondence set to improve convergericgaditional
iterative outlier elimination mechanisms such as RANdom $knConsensus
(RANSAC) and Thin Plate Spline-Robust Point Matching (TPS-RRivH
embedded.

e Enhancements to RANSAC and TPS-RPM are proposed by valid#tieg

registration parameters.

e Behavior of SIFT and SURF with respect to proposed enhancement

presented.
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2. A methodology to categorize camera captured documemds gredefined logo

classes is presented.

e Robust features are derived by comparisons among varioas imariant
features under different criteria such as feature counpeatability, and

distinctiveness.

e Trade-off between feature representation and categmizadccuracy is

demonstrated.

3. A segment-wise matching methodology to categorize cacegtured documents by

detecting logos is presented.

e Segmentation of query documents using dense affine covamgmons is

proposed.
e Feature-wise grouping of descriptors is presented.

e Experimental results on a data set of real camera captui@dmknts achieved
a peak 13.25% accuracy using segment-wise matching as cednbe former

approach.

5.2 Limitations and Future Work

The following lists the future work that comprises the addrneg of limitations as well as

the extensions of the presented work:

1. One limitation in the presented registration methodplegthat the matching is
applied to known ROI in the template image. While this is aoeable assumption
for several document processing applications, it is notid essumption in general.
Future work focuses on the elastic registration [65, 74,7@8,75] of entire camera
captured document image by fusing page segmentation [1@D, 11 1], text flow

analysis [105, 112, 113, 114], and geometric rectificati@thods [16, 5, 8] with the
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approach presented in Chapter 2. Besides, improving thenaggs of ROI using a
short video of the document captured in different perspestj15] is also the focus

of future research.

. Though the segmentation methodology presented in Chaptanproved the
prediction accuracies, it is not robust to the occlusiors sgvere camera capturing
noise. Enhancing the presented segmentation approachdmstament layout [115,

116, 111] and document content [117, 118, 119] is also thasfof future research.

. Finally, future work also includes the robust text datetin natural scene images

and videos [2, 14].
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