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ABSTRACT

REGISTRATION AND CATEGORIZATION
OF CAMERA CAPTURED DOCUMENTS

by
Venkata Gopal Edupuganti

Camera captured document image analysis concerns with processing of documents

captured with hand-held sensors, smart phones, or other capturing devices using advanced

image processing, computer vision, pattern recognition, and machine learning techniques.

As there is no constrained capturing in the real world, the captured documents suffer from

illumination variation, viewpoint variation, highly variable scale/resolution, background

clutter, occlusion, and non-rigid deformations e.g., folds and crumples. Document

registration is a problem where the image of a template document whose layout is known is

registered with a test document image. Literature in cameracaptured document mosaicing

addressed the registration of captured documents with the assumption of considerable

amount of single chunk overlapping content. These methods cannot be directly applied

to registration of forms, bills, and other commercial documents where the fixed content

is distributed into tiny portions across the document. On the other hand, most of

the existing document image registration methods work withscanned documents under

affine transformation. Literature in document image retrieval addressed categorization

of documents based on text, figures, etc. However, the scalability of existing document

categorization methodologies based on logo identificationis very limited. This dissertation

focuses on two problems (i) registration of captured documents where the overlapping

content is distributed into tiny portions across the documents and (ii) categorization of

captured documents into predefined logo classes that scale to large datasets using local

invariant features.

A novel methodology is proposed for the registration of userdefined Regions

Of Interest (ROI) using corresponding local features from their neighborhood. The



methodology enhances prior approaches in point pattern based registration, like RANdom

SAmple Consensus (RANSAC) and Thin Plate Spline-Robust Point Matching (TPS-RPM),

to enable registration of cell phone and camera captured documents under non-rigid

transformations. Three novel aspects are embedded into themethodology: (i) histogram

based uniformly transformed correspondence estimation, (ii) clustering of points located

near the ROI to select only close by regions for matching, and(iii) validation of the

registration in RANSAC and TPS-RPM algorithms. Experimentalresults on a dataset of

480 images captured using iPhone 3GS and Logitech webcam Pro9000 have shown an

average registration accuracy of 92.75% using Scale Invariant Feature Transform (SIFT).

Robust local features for logo identification are determinedempirically by

comparisons among SIFT, Speeded-Up Robust Features (SURF), Hessian-Affine,

Harris-Affine, and Maximally Stable Extremal Regions (MSER).Two different matching

methods are presented for categorization: matching all features extracted from the query

document as a single set and a segment-wise matching of querydocument features using

segmentation achieved by grouping area under intersectingdense local affine covariant

regions. The later approach not only gives an approximate location of predicted logo

classes in the query document but also helps to increase the prediction accuracies. In order

to facilitate scalability to large data sets, inverted indexing of logo class features has been

incorporated in both approaches. Experimental results on adataset of real camera captured

documents have shown a peak 13.25% increase in the F–measureaccuracy using the later

approach as compared to the former.
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CHAPTER 1

INTRODUCTION

Camera captured document image analysis [1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13,

14, 15] concerns with processing of documents captured withhand-held sensors, mobile

phones incorporated with cameras, or other capturing devices using advanced image

processing, computer vision, pattern recognition, and machine learning techniques. As

there is no constrained capturing in the real world, the captured documents suffer from

illumination variation, viewpoint variation, highly variable scale/resolution, background

clutter, occlusion, and complex non-rigid deformations i.e., folds and crumples being seen

in paper images. Figure 1.1 shows a glimpse of camera captured documents with respect to

highly varying challenging conditions. In recent years, few techniques have been developed

in flattening of curved documents [16, 5, 8], document mosaicing [4, 7, 9, 12, 15], curled

text-line segmentation [1], robust text extraction from images [2, 14] and document image

retrieval [17, 18, 10, 11, 13]. Document registration is a problem where the image of

a template document whose layout is known is registered witha test document image.

Literature in document mosaicing addressed registration of captured documents with the

assumption of considerable amount of single chunk overlapping content. These methods

can not be directly applied to registration of forms, bills,and other commercial documents

where the fixed content is distributed into tiny portions across the document. Literature in

document image retrieval addressed categorization of documents based on text, figures, etc.

However, the scalability of existing document categorization methodologies based on logo

identification is very limited [19, 20, 21, 22, 23]. This dissertation focuses on two problems

(i) registration of captured documents where the overlapping content is distributed into tiny

portions across the documents and (ii) categorization of captured documents into predefined

logo classes that scale to large datasets using local invariant features.

1



2

(a) Illumination and view-point variation

(b) Background clutter

(c) Occlusion

(d) Folds and crumples

Figure 1.1 A glimpse of camera captured document images.
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1.1 Local Features

This section introduces a set of local invariant features [24, 25, 26, 27, 28, 29, 30] used

in this dissertation. Due to robustness to local changes e.g., illumination and view-point

in images, local features have been drawing more attention of researchers compared to

global features e.g., color histograms and texture features [31] in a wide variety of tasks

including image classification [32, 33], image search [34, 35], video copy detection [36,

37], robust text detection in document images [2], and so on.Features considered are Scale

Invariant Feature Transform (SIFT) [27, 28], Speeded-Up Robust Features (SURF) [24,

25], Harris-Affine regions [26, 30], Hessian-Affine regions[30], and Maximally Stable

Extremal Regions (MSER) [38, 30]. Figure 1.2 shows different local features extracted

from an example image. The following subsections briefly describe each feature.

1.1.1 Scale Invariant Feature Transform (SIFT)

SIFT [39, 40, 41, 27, 28] features are shown invariant to image scale and rotation, and

are robust to substantial range of affine distortion, changein 3D viewpoint, addition of

noise, and change in illumination. Feature extraction involves a four stage cascade filtering

approach, in which most expensive operations are done at locations that pass initial test.

The following steps comprise SIFT feature extraction:

i Scale-Space Extrema Detection: Construct scale space [42, 27, 28]L(x, y, σ) of an

image from the convolution of a variable-scale Gaussian,G(x, y, σ) with an input

imageI(x, y).

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (1.1)

where * is the convolution operation inx andy, and

G(x, y, σ) = 1
2πσ2 e

−(x2+y2)

2σ2 (1.2)
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(a) SIFT (b) SURF

(c) Hessian-Affine (d) Harris-Affine

(e) MSER

Figure 1.2 Local features example.
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Compute difference of Gaussian functionD(x, y, σ) from the difference of two near

by scales separated by a constant multiplicative factork:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ)
(1.3)

The difference of Gaussian function is a close approximation of scale-normalized

Laplacian of Gaussian [42, 27, 28]. Divide each octave i.e.,doubling ofσ of scale

space into an integer numbers of intervals,k = 21/s. Compare each sample point

in D(x, y, σ) to its eight neighbors in the current image and nine neighbors in the

scale above and below, consider it as a candidate keypoint for further investigation in

later stages only if it is either maximum or minimum of all itsneighbors as shown in

Figure 1.3.

(a) Scale space construction (b) keypoint identification

Figure 1.3 Scale space extrema computation [28].

ii Keypoint Localization: Fit candidate keypoints to nearby data for location, scale,

and ratio of principle curvatures. This is achieved by Taylor expansion [27, 28] (up
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to quadratic terms) of the scale-space function,D(x, y, σ), shifted so that the origin

is at the keypoint:

D(x) = D + ∂DT

∂x
x+ 1

2
xT ∂2D

∂x2 x (1.4)

whereD and its derivatives are evaluated at candidate keypoint andx = (x, y, σ)T is

the offset from this point. The location of the extremum is determined by taking the

derivative of this function with respect tox and setting it to zero, giving

x̂ = −∂2D−1

∂x2
∂D
∂x

(1.5)

Reject keypoints with low contrast i.e., function value at the extremumD(x̂) less

than 0.03 assuming image pixel values in the range [0,1] and ratio between principle

curvatures greater than ten.

D(x̂) = D + 1
2
∂DT

∂x
x̂ (1.6)

iii Orientation Assignment: Select the Gaussian smoothed imageL closest to scale of

the keypoint. Compute an orientation histogram of 36 bins covering 360 degree range

of orientations from the gradient orientationsθ(x, y) of sample points within a region

around the keypoint. Each sample added to the histogram is weighted by its gradient

magnitudem(x, y) and by a Gaussian-weighted circular window with aσ that is 1.5

times that of the scale of the keypoint. Peaks in the orientation histogram correspond

to dominant orientations of local gradients. The highest peak and the peaks within

80% of the highest peak create keypoints with correspondingorientation. Fit a

parabola to three histogram values closest to each peak to interpolate the peak

position.

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/L(x+ 1, y)− L(x− 1, y)))

(1.7)
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iv Keypoint Descriptor: Sample gradient magnitudes and orientations around keypoint

in Gaussian blur image closest to the scale of the keypoint. Rotate coordinates

of descriptor and gradient orientations relative to the keypoint orientation. Assign

weight to gradient magnitudes using a Gaussian function with σ equal to 1.5 times

width of the descriptor window. Assign gradient magnitudesand orientations to a

4×4 array of eight bin orientation histograms i.e., divide sampling region around the

keypoint into 4×4 subgrids using trilinear interpolation, which leads to a 4×4×8

= 128 dimensional descriptor (Figure 1.4 shows computationof descriptor in 2×2

subgrids). Normalize the descriptor to unit length in orderto be invariant to

illumination changes and threshold bin values greater than0.2.

Figure 1.4 A 2×2 array of SIFT description (right) from an 8×8 array of samples
(left) [28].

1.1.2 Speeded-Up Robust Features (SURF)

SURF [24, 25, 43] is invariant to scale and in-plane rotations, and provide some degree

of robustness to skew, anisotropic scaling, and perspective effects. The primary focus of

SURF is on fast detection of interest points in scale space. This is achieved by using integral

images for fast computation of box type convolution filters.Unlike SIFT, interest points
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are detected at the extrema of determinant of Hessian matrixH(x, y, σ).

H(x, y, σ) =







Lxx(x, y, σ) Lxy(x, y, σ)

Lxy(x, y, σ) Lyy(x, y, σ)






(1.8)

whereLxx(x, y, σ) is the convolution of the Gaussian second order derivative∂2

∂x2G(x, y, σ)

with the imageI in point (x, y) at scaleσ, and similarly forLxy(x, y, σ) andLyy(x, y, σ).

This kind of interest point detection favors blob-like structures. In order to assign

orientation to detected interest points, Haar wavelet responses are computed inx andy

direction within a circular neighborhood of radius 6s around the interest point, where

s denote the scale at which the interest point was detected. The wavelet responses are

further weighted with a Gaussianσ = 2s centered at the interest point. A sliding window

approach is used to determine the dominant orientation by distributing horizontal responses

along abscissa and vertical responses along ordinate. For the extraction of descriptor,

a square region with size20s centered around the interest point is selected and oriented

along the dominant orientation. The region is split up regularly into 4×4 square subregions

and each subregion is described by(
∑

dx,
∑

|dx|,
∑

dy,
∑

|dy|), wheredx anddy denote

Haar wavelet response in horizontal and vertical direction, respectively (Figure 1.5 shows

computation of descriptor in 2×2 subgrids). This kind of description leads to a 4×4×4 = 64

dimensional descriptor. A 128 dimensional description is achieved by following extended

description [24].

1.1.3 Harris-Affine Regions

Harris-Affine regions [26, 44, 30] are based on affine normalization around Harris points.

Interest points are selected in scale space using second moment matrix of intensity gradient

i.e., autocorrelation matrix.

M = σ2
DG(x, y, σI) ∗







I2x(x, y, σD) IxIy(x, y, σD)

IxIy(x, y, σD) I2y (x, y, σD)






(1.9)
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Figure 1.5 A 2×2 array of SURF description (right) from an 8×8 array of samples
(left) [25].

The local image derivatives are computed with Gaussian kernels of scaleσD (differentiation

scale) and then averaged in the neighborhood of the point by smoothing with a Gaussian

window of scaleσI (integration scale). The eigen values of the matrix represent two

principal changes in a neighborhood of the point, and interest points are selected at the

points in which the signal change is significant in orthogonal directions. An iterative

estimation of elliptical affine region [45, 46] around interest points is performed using

autocorrelation matrix. Each elliptical region is described by using SIFT description.

1.1.4 Hessian-Affine Regions

Hessian-affine regions [30] are defined by affine normalization around Hessian points.

Interest points are selected in scale space using Hessian matrix.

H =







Ixx(x, y, σD) Ixy(x, y, σD)

Ixy(x, y, σD) Iyy(x, y, σD)






(1.10)

The local maximum of the determinant of the matrix defined by second derivatives is used

to select the interest points. Similar to Harris-Affine regions, an iterative estimation of
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elliptical affine region [45, 46] around interest points is performed using autocorrelation

matrix and the corresponding region is described by following SIFT description.

1.1.5 Maximally Stable Extremal Regions (MSER)

A Maximally Stable Extremal Region (MSER) [47, 38, 30] is a connected component of

an appropriately thresholded image. All the pixels inside MSER have either higher or

lower intensity than all the pixels on its outer boundary. Toextract MSER from an image,

first, pixels are sorted by intensity. After sorting, pixelsare marked in the image (either in

decreasing or increasing order) and the list of growing and merging connected components

and their areas is maintained using the union-find algorithm. During this process, the area

of each connected component as a function of intensity is stored. The maximally stable

ones are those corresponding to thresholds where the relative area change as a function of

relative change of threshold is at a local minimum i.e., MSERare the parts of the image

where local binarization is stable over a large range of thresholds. Finally, each MSER is

approximated by an affine invariant ellipse and described using SIFT.

1.2 Feature Matching

Local features discussed in the previous section help to represent an image invariant to

illumination, scale, and view-point. Feature matching plays a vital role to effectively use

extracted features to perform image registration [48, 49],search [18], retrieval [34, 35],

and so on. The first step in matching is to establish point correspondences between

two images. A correspondence is established between similar features in two different

images based on a distance between feature vectors e.g., Euclidean distance or Mahalanobis

distance [50]. Lowe [28] proposed an efficient way of establishing correspondences

by exploring nearest neighbor distances in descriptor space. Due to noise in feature

extraction and description, the established point correspondences contain outliers. In

order to perform high-level image processing tasks such as registration and retrieval,
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robust outlier elimination methodologies should be adapted. Several outlier elimination

techniques have been proposed in literature, such as least squares minimization [51],

RANdom SAmple Consensus (RANSAC) [52, 51, 53, 54], Robust Point Matching [55, 56],

Hough clustering [57, 58, 51, 28], and so on. On the other hand, inverted indexing [34] is

a very popular technique to conduct matching in large scale.The following subsections

briefly describe popular outlier eliminations mechanisms and inverted index:

1.2.1 Least Squares Minimization

Let xi andyi, 1 ≤ i ≤ K be the two corresponding point sets obtained by establishing

correspondences using feature similarity measure e.g., Euclidean distance. It computes

optimal transformationA by minimizing the following transformation error [51]:

A∗ = argmin
A

∑K
i=1 ||yi − Axi||

2 (1.11)

The size of transformation matrixA is2×3 for affine transformation (6 degrees of freedom)

and3× 3 for perspective transformation (8 degrees of freedom).

1.2.2 Hough Transform Clustering

Hough transform [51] method follows the principle of maximum likelihood estimation. It

maps the data into quantized parameter space and seeks for the most likely parameter values

to interpret the data through clustering. The number of parameters to estimate are 6 and

8 for affine and perspective transformations respectively.As each correspondence(xi, yi)

can be represented by one or more transformations, it vote for all the relevant underlying

transformation parameters in the quantized space. The optimal transformation parameters

correspond to the bin that accumulates most number of votes.
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1.2.3 RANdom SAmple Consensus (RANSAC)

RANSAC [52, 51] iteratively estimates parameters of an underlying transformation model

from a set of observed data i.e., correspondences which contains outliers (correspondences

that do not fit to the model). It is a non deterministic algorithm that produces

probabilistic accuracy, with the accuracy increasing as more iterations are conducted. The

key assumption is that the data consists of inliers i.e., correspondences that fit to the

transformation model. Several variants of RANSAC [52] have been proposed so far with

different objectives such as accuracy, speed, and robustness. The input to the RANSAC

algorithm is point correspondences, underlying transformation model e.g., affine and some

confidence parameters e.g., accuracy. RANSAC iterations aredivided into two stages:

i Hypothesis Generation: Randomly select a subset of point correspondences and

estimate assumed transformation model with the chosen subset.

ii Hypothesis Evaluation: Test entire point correspondencesagainst the estimated

model. Divide the point correspondences into hypotheticalinliers (that agree with

the estimated model) and hypothetical outliers (that do notagree with the estimated

model). Update the best estimated model so far with the current model if the current

model has more number of hypothetical inliers.

The algorithm iterates until a fixed number of iterations, orpredefined accuracy, or a

combination of both. Reestimate the retrieved model using only inliers. The performance

of RANSAC degrades with increase in the number of outliers in the point correspondences.

1.2.4 Thin Plate Spline-Robust Point Matching (TPS-RPM)

Thin Plate Spline-Robust Point Matching (TPS-RPM) [55, 56] algorithm is designed

to derive underlying non-rigid transformation function from point correspondences

containing outliers. The reason behind choosing thin platespline [59] in robust point

matching framework is that it is the only spline that can be easily decomposed into
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affine and non-affine subspaces while minimizing a bending energy based on the second

derivative of the spatial mapping. Robust point matching is similar to Expectation

Maximization (EM) algorithm, which iteratively minimizesthe following least squares

energy function using deterministic annealing and soft-assignment:

ETPS(f) =
K
∑

a=1

||ya − f(va)||
2 + λ

∫ ∫

[(∂
2f

∂x2 )
2 + 2( ∂2f

∂x∂y
)2 + (∂

2f
∂y2

)2]dxdy (1.12)

wheref is a thin plate spline mapping function between corresponding point setsya andva

andλ is a regularization parameter.

f(va, d, w) = va.d+ φ(va).w (1.13)

whered is a (D + 1) × (D + 1) matrix representing affine transformation (D is the

dimension of points),w is aK×(D+1) warping coefficient matrix representing non-affine

deformation (K is the first point set cardinality), andφ(va) = ||vb − va||
2log||vb − va|| is a

1×K TPS kernel.

1.2.5 Inverted Indexing

The methodologies introduced in previous subsections are very expensive to perform

matching in large scale such as similar image search and retrieval, where a set of features

extracted from a query image i.e., image under observation are matched against a set of

features from all the images in a dataset. Inverted indexing[60, 61, 62] is a widely used

technique in text retrieval and has been drawing more attention of researchers to conduct

large scale visual search and retrieval [34, 63, 35]. The first step involved in inverted

indexing is the vector quantization of feature descriptorsinto visual words. Unsupervised

clustering methods such as K-means [64] and hierarchical K-means [64] are generally used

to compute clusters of local feature descriptor vectors, and each cluster centroid is termed

as a visual word. The set of all visual words comprises to visual word vocabulary. An

inverted file is structured like an ideal book index. It has anentry for each visual word in
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the vocabulary followed by a list of all the images (possiblyposition in the image) in which

the visual word occurs. A query image is represented as a vector of visual word frequencies.

The precomputed inverted file is parsed with the query image visual words and images that

have sufficient number of visual words in intersection with the query image visual words

will be retrieved. The significance of this approach comes from the fact that only those

images that have visual words in common with query image are retrieved. There exists a

number of efficient ways in using inverted files such as tf-idfweighting [63], Hamming

distance [34], bundling features [35], and so on.

1.3 Topics Overview

Image registration [65, 66, 67, 48, 68, 69, 70, 71, 49, 72, 73,74, 75, 76, 77] is a very

well known problem in image processing and computer vision,which derives a geometric

transformation between an arbitrarily deformed image and aknown image. Few techniques

have been developed for camera captured document image registration [4, 7, 9, 12]. These

methods are limited to affine and skew transformations and assume that the content is fixed

between template and test images. Chapter 2 presents a novel methodology to register

Regions Of Interest (ROI) under complex non-rigid deformations. Why only registration

of ROI? Applying traditional Optical Character Recognition (OCR) [78, 79, 80] methods

on entire document gives a lot of noise due to camera capturing deformations. However,

applying OCR on a region that closely contains ROI extracts the content in ROI more

accurately. Figure 1.6 shows the result of applying OCR on various region sizes containing

social security number (SSN) in the W2 form. Figures 1.6(a) and 1.6(c) show bigger

regions containing SSN, and the corresponding OCR results are shown in Figures 1.6(b)

and 1.6(d), respectively. Figures 1.6(e) and 1.6(e) show that the application of OCR on a

region that closely contains ROI yields more accurate results. The key point here is deriving

a non-rigid transformation function that maps a user definedROI in template image (i.e.,

reference image) to the captured image. This is achieved by providing enhancements to the



15

previous literature in RANSAC [52, 51] and TPS-RPM [55, 56] algorithms. Experimental

results on a dataset of 480 images captured using iPhone 3GS and Logitech webcam Pro

9000 have shown an average registration accuracy of 92.75% using SIFT.

(a) (b)

(c) (d) (e) (f)

Figure 1.6 Application of OCR on different region sizes of camera captured document.

Chapter 3 presents a methodology to categorize camera captured documents into

predefined logo classes. Existing approaches in logo detection [19, 20, 21, 22, 23] are

limited to scanned documents and few approaches have addressed logo detection in natural

scenes [81, 82]. Literature in document retrieval [17, 83, 18, 10, 11, 12] requires either

full or partial archived document as a query rather than justlogo. A signature detection

and matching methodology is presented in [84]. Due to large diversity in logos i.e., text,
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graphics, and a mixture of both and the noise introduced by camera capturing i.e., scale,

illumination, and viewpoint variations, detection of logos is very challenging. Robust

local features are derived by comparisons among various local affine invariant features

under different criteria such as feature repeatability, distinctiveness, etc. A two step

matching methodology is presented to efficiently search andretrieve the underlying logo

classes. Besides, Hamming Embedding [85, 34] is applied to reduce the noise in descriptor

quantization and inverted indexing of logo classes to conduct real time category prediction.

Experimental results on a data set of real camera captured documents have shown the

behavior of different feature representations in categoryprediction.

Chapter 4 presents a segment-wise matching approach to perform document

categorization by detecting logos. Literature in block segmentation of documents addressed

the segmentation of printed [86] and scanned documents [87,88, 89, 90]. The key step

involved in such approaches is the binarizaion, which introduces a lot of noise in camera

captured documents. In order to overcome camera capturing artifacts, an approach to

segment query document image is presented by grouping area under intersecting dense

local affine covariant regions [30]. The presented methodology not only improves the

prediction accuracies but also gives an approximate position of the predicted logo classes in

the query document. Experimental results on a data set of real camera captured documents

have shown a peak 13.25% increase in the F-measure [64] accuracy as compared to the

methodology presented in Chapter 3.

The conclusions and future work are presented in Chapter 5, where the major

contribution of this dissertation is summarized and futureresearch directions are discussed.



CHAPTER 2

REGISTRATION OF REGIONS OF INTEREST

Document registration [4, 7, 9, 12] is a problem where the image of a template

document whose layout is known is registered with a test document image. Given the

registration parameters, layout of the template image is superimposed on the test document.

Registration algorithms have been popular in applications,such as forms processing where

the superimposed layout is used to extract relevant fields. The proliferation of camera

captured images makes it necessary to address camera noise such as non-uniform lighting,

clutter and highly variable scale/resolution along with complex non-rigid deformations

such as folds and crumples. This chapter presents a novel registration methodology for

user defined Regions of Interest (ROI) under complex deformations using enhancements

to prior approaches in point pattern based registration, like RANdom SAmple Consensus

(RANSAC) and Thin Plate Spline-Robust Point Matching (TPS-RPM). Three significant

aspects that comprise the framework are (i) histogram baseduniformly transformed

correspondence estimation, (ii) clustering of points located near ROI to select only close

by regions for matching, and (iii) validation of the registration in RANSAC and TPS-RPM

algorithms. Experimental results section discusses behavior of registration accuracies using

SIFT and SURF features.

2.1 Related Work

Image registration [55, 56, 91, 92, 93, 94] by establishing correspondences across interest

points in image pairs has been well studied in image processing and computer vision.

Registration becomes more challenging when outliers exist in the correspondence set.

These outliers could arise from noise in image acquisition,feature extraction, and/or

matching. Several local invariant (e.g., scale, affine, andintensity) detectors and

17
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descriptors [25, 95, 28, 29, 30, 96] have been proposed to overcome the natural variations

in image acquisition. Feature similarity measures, such asL2 norm, cosine distance,

etc, together with outlier elimination techniques, such asRANdom Sample Consensus

(RANSAC) [52], Hough Transform [28], and TPS-RPM [55, 56], havebeen applied to

establish true correspondences. The goal of most techniques is to estimate underlying

transformation function across natural images for purposes such as image stitching [97, 98],

image augmentation [99], or camera geometry estimation [54].

Camera captured documents differ from natural images in a fewcritical areas: (i)

Non-linear deformations, such as folds, are common in documents, (ii) In most forms, the

filled values are large in number and the amount of similar content between the test and

template is a percentage of the document content, and (iii) Content such as logos, and

even text is repeated at multiple locations within the document. Figure 2.1 shows a few

forms that are quite sparse in content, where the same text occurs at multiple locations

in a document. This results in a new class of outliers that aresimilar in the domain of

local features but correspond to a different region that is not aligned with the global image

layout. The existence of correspondences from one region tomultiple regions increases

the number of outliers and has an adverse effect on traditional iterative methods such as

RANSAC. These challenges are in addition to known problems in camera capture, such

as lighting variations, clutter, camera equipment differences, and scale. Document image

processing has earlier used registration techniques for forms processing. The motivation

has frequently been that information from a small part of thedocument is critical for most

user applications. For example, the amount and date on a receipt is all that is needed as an

input to a tax software. Limiting downstream processing to relevant regions is known to be

useful both from the view of accuracy and speed. To extract only relevant regions, a test

image is registered with a template image that has known layout. Here, selected regions of

text are extracted from a filled in form (test image) using information about the form layout

(template image). Registration parameters are used to overlay the layout of the template
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1 (a) Regions in blue rectangle are similar i.e., ”Bill”, (b)-(f) captured document
images with non-planar deformations and occlusion.
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image onto the test image. The layout specifies geometric positions of the relevant fields,

which are then extracted from the test image. While several prior techniques [100, 101,

102, 103] fall in this area, these methods address only affinetransformations and assume a

high quality image.

Approaches such as RANSAC [52] and Hough clustering [28] estimate true

correspondence by fitting a transformation function to existing correspondences. They

are designed to eliminate correspondences between points that have high feature similarity

but do not agree with the global image geometry. By design, outliers would also influence

the transformation function, and would be considered as inliers if they conform to the

underlying transformation. For example, Figure 2.2 shows an outlier that conforms to

global geometry has been considered as an inlier. This, and similar outliers deviate

the region of interest from the desired location. Applying these methods directly for

non-rigid registration is not acceptable as the underlyingtransformation function varies at

different parts of the image. Several non-rigid registration frameworks [55, 56, 92, 93, 94]

have been developed for the non-rigid registration of medical images. One of them is

the Robust Point Matching (RPM) [56, 94] algorithm, which formulates the registration

problem as a maximum likelihood estimation problem using mixture models. Chui

and Rangarajan [56] embedded the Expectation Maximization (EM) frame work in a

deterministic annealing scheme by considering the soft-assignment of point sets to allow

partial matches. Thin Plate Splines (TPS) [59] are used for the estimation of underlying

transformation function, as TPS can be decomposed into affine and non-affine sub spaces.

The Robust Hybrid Deformable Matching (RHDM) framework [94] incorporates feature

dissimilarity measure into the TPS-RPM framework. Sofka et al. [93] pointed out that the

TPS-RPM algorithm would fail on extraneous structures, suchas H-shape point sets, as it

tries to align the center of mass of the point sets in the earlyiterations of the algorithm,

leading to a bias in the estimate, which it can not overcome inthe later stages of the

algorithm. Recently, Myronenko et. al. [92] incorporated motion coherence theory into the
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framework in the place of TPS. All these methods fail to consider a few factors: (i) Initial

correspondences are not taken into account, (ii) New correspondences which are not in

the initial correspondence set are created during matching, (iii) It is assumed that template

points i.e., points in the source image are sparsely distributed, and (iv) The same search

range parameter is considered for all template point clusters. The subsequent sections show

that accounting for these factors in image registration is central to non-affine document

registration.

(a)

(b)

Figure 2.2 (a) Correspondences before RANSAC, (b) Correspondences after RANSAC.
Wrong correspondence is shown in red color (cross marked). This outlier deviates the
region of interest from the desired location.
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2.2 Document Image Registration Methodology

Figure 2.3 presents an overview of the methodology that is designed to address some

of the drawbacks described earlier. The rectangular boxes (blue color) in the template

image of Figure 2.3 indicate the regions of interest to be extracted from a test image.

Clusters of template points are formed using k-means [104] inthe template image.

Clusters that satisfy a proximity criterion with respect to the Regions Of Interest (ROI)

are selected for registration. Furthermore, a histogram based uniformly transformed

correspondence estimation is incorporated into the framework to speed up iterative

correspondence estimation. The following subsections show how the prior knowledge of

correspondences can be integrated into TPS-RPM framework, and enhance RANSAC and

TPS-RPM by minimizing the registration error computed usinglocal gradient information

by demonstrating the performance of these algorithms for non-rigid deformations.

The rest of this section describes the methodology in detail. Sections 2.2.3 and 2.2.4

present the iterative approaches for outlier elimination and registration using RANSAC

and enhanced RANSAC, respectively. Iterative approaches fornon-rigid registration using

TPS-RPM and enhanced TPS-RPM framework are presented in Sections 2.2.5 and 2.2.6,

respectively.

2.2.1 Template Point Selection and Initial Correspondence

Extract invariant points from the template and test images using methods such as SIFT or

SURF. Denote the points in template and test image byX andY respectively. Cluster

feature points in the template image using K-means algorithm [104]. For each ROIr in the

template image, points belonging tom clusters that are closest to the ROI are selected as

the template point set for the ROI(Xr). The idea behind the selection of points only in the

m closest clusters is that these points move closely with the ROI, and further it reduces the

non rigidity among the points.



23

Figure 2.3 Overview of document image registration. The template image can be a
scanned image or electronically generated where the RegionsOf Interest (ROI) are known.
Expected output is ROI in the test image.

Lowe’s [28] method of initial correspondence generation isused to map points in

Xr onto feature points inY [28]. For eachxi ∈ Xr, two closest points inY are found

by using Euclidian distance in the feature space. If the ratio of these distances is less

than t, then the template point with lesser distance is added to thecorrespondence set

C = {(xi, yj)|xi ∈ Xr and yj ∈ Y }. The correspondences now have a many-to-one

mapping fromX toY . For each test pointyj ∈ C, a new correspondence setC ′ is obtained

by performing a reverse mapping. Each point inyj ∈ C is now mapped onto the points

xi ∈ C. Correspondences are retained only if the obtained mapping is already present inC.
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This ensures that for eachyj ∈ Y , there exists only onexi ∈ Xr. The new correspondences

are nowC ′ = {(xi, yj)|xi ∈ Xr, yj ∈ Y , and(xi, yj) ∈ C}.

2.2.2 Refine Correspondence Set Using Histogram

Eliminate correspondences among outliers by using a histogram of Euclidean distances

on the Cartesian coordinate space. The Euclidean distance between Cartesian coordinates

of xi andyj for all (xi, yj) ∈ C ′ is obtained and placed into histogram bins as shown in

Figure 2.4. Bin size is given by(maxdist − mindist)/(number of bins), wheremaxdist,

mindist are the maximum and minimum Euclidean distances of the corresponding points

(xi, yj) ∈ C ′ and number of binsis empirically set to ten. Correspondences whose

euclidean distances fall in the peak bin and the bins that arewithin the thresholdte

(empirically set 80%) of the height of the peak bin are selected in a new setC ′′. This

step operates under the assumption that while local distortions in document images

can be non-planar, these distortions will not grossly alterthe relative distribution of

corresponding points. The results section will discuss howthis step eliminates gross

outliers, improving the convergence rate of iterative mechanisms. Figure 2.5(a) shows

the one-to-one correspondences (C ′) obtained for a test image, Figure 2.5(b) shows refined

correspondences (C ′′), and Figure 2.5(c) shows the correspondences after RANSAC under

affine transformation.

2.2.3 Iterative Approaches for Outlier Elimination: RANSAC

RANSAC is an iterative optimization algorithm that repeats two phases: (i) generation

of hypothesis by randomly sampling the data and (ii) hypothesis verification on data.

Termination is done after a fixed number of iterations or whena termination condition

is met [52]. Each RANSAC iteration selects three random non-collinear points from

xi ∈ X such that(xi, yj) ∈ C ′′. Using the correspondence betweenxi and yj, an

affine transformation matrixM is computed. The transformation matrixM is applied on
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Figure 2.4 Correspondence estimation using Euclidean distance histogram.

∀xi|xi, yj ∈ C ′′, to obtainx̄i. If x̄i ≡ yj, xi is marked as inlier, elsexi is marked as outlier.

If the number of inliers in a particular iteration is greaterthan inliers in a previous iteration,

the current set of inliers is accepted. The algorithm is terminated after a fixed number of

iterations.

2.2.4 Enhanced RANSAC for Robust Registration

RANSAC is able to eliminate correspondences that do not conform to global geometry, and

obtain a gross match between the template and test images. However, as mentioned earlier,

an additional verification is needed to eliminate outliers arising from locally non-affine

distortions as shown in Figure 2.2. Since specific regions ofthe image are of interest,

processing is limited to ROI. In addition, assume that therewill be image regions near the

ROI that are similar across the test and template image. In each iteration of RANSAC,

when the transformation matrixM is obtained, useM to warp the test image onto

the template using cubic interpolation. Histogram of Oriented Gradients (HOG) [28] is

computed from image regions surrounding the ROI in the template image and warped test
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(a)

(b)

(c)

Figure 2.5 Correspondences at different stages of the framework (a) after Lowe’s [28]
method and one-one mapping, (b) after Euclidean distance based histogram, and (c) after
RANSAC.
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image. A modified RANSAC is performed using Chi-square [50] similarity of the HOG as

the matching criterion. The method is described in Algorithm 1. Figures 2.6, 2.7, 2.8,

and 2.9 illustrate the approach of Enhanced RANSAC. Figure 2.6shows the original

template image with marked ROI, clusters of SIFT points obtained using K-means, near

by regions of ROI obtained from clusters of SIFT points, and acamera captured test

image. Correspondences after the application of Euclidean distance histogram are shown

in Figure 2.7. Figure 2.8 shows the warped images along with the extracted near by regions

during intermediate iterations of enhanced RANSAC. Finally,Figure 2.9 shows the warped

image obtained by enhanced RANSAC along with the projected ROI on the test image.

2.2.5 Thin Plate Spline-Robust Point Matching

While enhanced RANSAC is capable of addressing some of the deformations, methods like

TPS-RPM have been specifically designed to derive non-rigid transformation functions [56,

94]. This section describes the TPS-RPM algorithm, and a few drawbacks of the method

when applied to registration of ROI. Enhancements to TPS-RPMare provided in the

subsequent section. LetX = xi : i = 1, 2, ..., N be a sparsely distributed template point

set andY = yj : j = 1, 2, ...,M be a relatively dense test point set. Both point sets are

projected on a normalized Cartesian coordinate plane. TPS-RPM [56, 94] uses Gaussian

mixture density to model the distribution of test points, while Gaussian cluster centers are

determined by the template points. In order to robustly align the two sets, the algorithm

performs deterministic annealing, where the temperatureT of the annealing process acts

as a search range parameter. At high temperatures the algorithm aligns the two point sets

by preserving global structure of the template points. AsT decreases, the search becomes

local, where it accounts local deformations. It starts the annealing process with a largerT

such that all the test points will be in the vicinity of template point clusters. At eachT ,

it alternately estimates the correspondences and computesthe underlying transformation

function. It computes the probabilities of all test points being assigned to the template point
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(a) (b)

(c) (d) (e)

Figure 2.6 (a) Template image (ROI marked in blue rectangle), (b) clusters of SIFT points
on (a), (c)-(d) near by regions for validation in enhanced RANSAC, and (d) test image.
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Algorithm 1 Outlier Elimination Using Enhanced RANSAC
Input: Set of input correspondencesC ′′, Test imageB; mr the number of fixed regions

for the registration of ROI.

HOGi : i = 1, 2, ...,mr; HOG of fixed nearby regions.

HOGdist : maximum positive integer.

Output: Refined correspondence setC ′′′ with inliers, Transformation matrixM .

Initialization: iterations = 0; inliers = 0; outliers = 0;MAXiter = maximum number

of iterations.

while iterations < MAXiter do

Hypothesis generation: Randomly select three correspondences among non-

collinear points fromC ′′. Compute the transformation matrixCurrentM from the

three correspondences.

Hypothesis evaluation: Warp the test imageB with CurrentM to align with the

template image. Compute HOG of the fixed regions in the warped imageHOGj :

j = 1, 2, ...,mr

Compute the chi-square distance betweenHOGi andHOGj : i, j = 1, 2, ...,mr,

average it withmr, and denote it asCurrdist.

if Currdist < HOGdist then

Update:

HOGdist ← Currdist

M ← CurrentM

end if

end while

Update Correspondence setC ′′′ with the correspondences that agree withM .
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Figure 2.7 Correspondences after Euclidean distance based histogram while matching
SIFT features extracted from Figure 2.6(d) with Figure 2.6(b).

clusters and computes the probable location of the matchingpoint for each template point.

With the template points and the corresponding probable matching points, it estimates

the transformation functionf using TPS [59] to ensure smoothness in the transformation

function. It repeats the annealing process with the template point clusters centered atf(xi)

until T reaches final temperatureTfinal i.e., average of the squared distance between the

nearest neighbors of the test points. To handle outliers in both point sets it maintains

two additional clusters centered at the center of mass of theboth point sets with large

temperatureT0.

Drawbacks:

• The assumption of template point set as a sparsely distributed one is not true in

the case of document images with multi-scale local features, as SIFT and SURF

generates dense points in a given region.
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(a) iteration 12

(b) iteration 28

Figure 2.8 Results of intermediate enhanced RANSAC iterations, extracted validation
regions (two left columns) from warped images (right column) obtained by random
sampling of correspondences.
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Figure 2.9 (a) Final warped image obtained by using enhanced RANSAC and extracted
validation regions from it and (b) projected ROI on the test image using the transformation
matrix obtained by the warped image in (a).
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• TPS-RPM aligns the template point set to the test point set by considering only

the geometry of the template point set. Apart from geometry there is an initial

correspondence set which provides additional informationto prevent template points

being assigned to irrelevant test points.

• Each iteration of TPS-RPM generates new correspondences which are not in

the initial correspondence set. The new irrelevant correspondences penalize the

estimated transformation function.

2.2.6 Enhanced TPS-RPM

Enhanced TPS-RPM algorithm is designed to overcome the drawbacks of TPS-RPM. Apart

from the template point setXr and test point setY , the algorithm takes into account the

correspondence setC ′′. To prevent each template point being moved towards the irrelevant

test point, it assigns different temperatureTi to each Gaussian cluster centerxi. Finally,

the algorithm refines the new correspondences with nearby identical correspondences in

C ′′. Remaining parts of this section present the problem formulation, enhanced TPS-RPM

algorithm, and the refinement of new correspondences.

Let C ′′ = (xi, yj)|xi ∈ Xr, yj ∈ Y be the set of input correspondences computed

using the methodology in Section 2.2.2, whereXr = xi : i = 1, 2, ..., N andY = yj :

j = 1, 2, ...,M are the template and test point sets, respectively. As one-one mapping is

enforced in the correspondence set,N is equal toM . Let f be the underlying Thin Plate

Spline [59] based non-rigid transformation function, and the transformed template point

set isX ′
r = x′

i = f(xi) : i = 1, 2, ..., N . Construct a correspondence matrixP to store

the probabilities of each test point being assigned to each template point with dimension
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(N + 1)× (M + 1).

P =

































p11 ... p1M p1,M+1

. ... . .

. ... . .

. ... . .

pN1 ... p1M p1,M+1

pN+1,1 ... pN+1,M 0

































(2.1)

The innerN ×M sub-matrix defines the probabilities of eachxi being assigned toyj. The

presence of an extra row and column in the matrix handles outliers in both point sets. Each

pij is computed as

pij = 1
Ti
e
−

(yj−f(xi))
T (yj−f(xi))

2Ti (2.2)

whereTi : i = 1, 2, ..., N is the temperature of each template point cluster. For outlier

clusters, the temperatureT is kept at maximum throughout the annealing process. As

discussed in Section 2.2.5, whenTi reachesTfinal the correspondence is almost binary. If

xi is mapped toyj thenpij ≈ 1. Similarly, if xi is an outlier thenpi,M+1 ≈ 1, and ifyj is an

outlier thenpN+1,j ≈ 1. The matrixP satisfies the following row and column normalization

conditions.
∑N+1

i=1 pij = 1, for j = 1, 2, ...,M, and

∑M+1
j=1 pij = 1, for i = 1, 2, ..., N

(2.3)
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The goal of the framework is to find an optimal transformationmatrixP ′ and the optimal

transformation functionf ′ that minimizes the energy functionE(P, f) as defined below.

[P ′, f ′] = argmin
P,f

E(P, f),

E(P, f) = Eg(P, f) + λEs(f) + Ea(P ), where

Eg(P, f) =
∑N

i=1

∑M
j=1 pij||yj − f(xi)||

2

Es(f) =
∫ ∫

[

(

∂2f
∂u2

)2

+ 2
(

∂2f
∂u∂v

)2

+
(

∂2f
∂v2

)2
]

Ea(P ) = T
∑N

i=1

∑M
j=1 pij logpij − ζ

∑N
i=1

∑M
j=1 pij

(2.4)

In the energy functionE (Equation 2.4),Eg(P, f) is the geometric feature-based energy

term defined by Euclidean distance.Es(f) is the smoothness energy term withλ being

the regularization parameter that controls smoothness of the transformation function. To

favor rigid transformations at higher temperatures and local non-rigid transformation at

lower temperatures, the framework reducesλ using an annealing schedule i.e.,λi = λinitTi

whereλinit is a constant,i = 1, 2, ..., N . Ea(P ) is a combination of two terms; the first

term controls fuzziness ofP and the last term prevents too many points being rejected as

outliers.

The transformation functionf uses TPS [59], which can be decomposed into

affine and non-affine subspaces, thereby accommodating bothrigid and non-rigid

transformations.

f(xi, d, w) = xi.d+ φ(xi).w (2.5)

wherexi is the homogeneous point representation of the 2D pointxi, d is a(D+1)×(D+1)

affine transformation matrix of theD-dimensional image (For 2D imagesD=2), andw is a

N × (D + 1) warping coefficient matrix representing non-affine deformation. φ(xi) is the

TPS kernel of size1× (N + 1), where each entryφk(xi) = ||xk − xi||
2log||xk − xi||.
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Algorithm 2 Enhanced TPS-RPM Pseudo Code
Input: Template point setXr, Test point setY , and the correspondence setC ′′.

Output: Correspondence matrixP and transformationf = d, w.

Initialize: TemperatureTi : i = 1, 2, ..., N of each template point cluster with the

Euclidean distance between the template point and the corresponding test pointyj

specified inC ′′, Tfinal as average of the squared distance between the nearest neighbors

of the test points.

Initialize: smoothness parameterλi ← λ0Ti : i = 1, 2, ..., N

Initialize: d with identity matrix,P using Equation. 2.2, andw with a zero matrix.

while max(Ti) > Tfinal do

repeat

Update Correspondence:ComputeP using Equation 2.2

NormalizeP using Equation 2.3 iteratively.

Update transformation Updatew andd using QR decomposition( [55, 56])

until P, d andw converged

UpdateTi ← Tiγ, updateλi ← λ0Ti; i = 1, 2, ..., N ; (γ is the annealing rate)

end while
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2.2.7 Refining New Correspondences

Even though the correspondence set is taken into account, the set of correspondences after

the Algorithm 2 contains new correspondences which are not inC ′′, as the setC ′′ contains

correspondences of the dense points. The new correspondences introduced by TPS-RPM

lead to inaccurate transformation of the ROI i.e., blue boxes shown in Figure 2.10(b).

To overcome this, refine the new correspondences with the correspondences ofC ′′ that

fall in the h × h window i.e., yellow boxes (h is empirically set to 15) of the new

correspondence shown in Figure 2.10(a). Furthermore, refine the registration parameters

obtained in Section 2.2.6 by minimizing the HOG error as described in enhanced RANSAC

(Section 2.2.4). Figures 2.11(a) and 2.11(b) show the correspondences after enhanced

TPS-RPM and the projected ROI, respectively.

2.3 Results and Discussion

Experiments are conducted with twelve types of forms/utility bills falling in two different

categories; one set is made of colored documents, shown in Figures 2.13 and 2.14, that have

rich graphics and the other contains black and white documents, shown in Figure 2.12, that

have minimal or no graphics. Test set consists of 480 images collected using two capturing

devices iPhone3GS and Logitech webcam Pro 9000, 240 images using each capturing

device. A few samples are shown in Figure 2.1. For each type ofform, a template is

collected from a color scanner at 150 dpi and locations of therequired fields of interest

are marked manually. During run-time, this template image and locations of the fields of

interest are input to the registration algorithm. For each form, 20 test images are collected

with each of the two capturing devices. The experiments use an AMD Athlon Dual core

2.69GHz machine with 1.75GB memory, taking on average 2 seconds to register each

image excluding feature extraction.

Five approaches have been compared: RANSAC, RANSAC + Histogram, Enhanced

RANSAC + Histogram, TPS-RPM, Enhanced TPS-RPM, and Enhanced TPS-RPM with
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(a)

(b)

Figure 2.10 (a) Correspondences after enhanced TPS-RPM, (b) ROI from
correspondences of (a) (ROI is in blue color at top right corner).
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(a)

(b)

Figure 2.11 Refining correspondences using enhanced TPS-RPM. (a) correspondences
after refinement (Section 2.2.7), and (b) ROI from correspondences of (a).
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(a) (b)

(c) (d)

(e)

Figure 2.12 Black and white templates with minimal graphics along with ROI shown in
blue rectangular boxes.
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(a) (b)

(c) (d)

Figure 2.13 Color templates with graphics along with ROI shown in blue rectangular
boxes.
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(a) (b)

(c)

Figure 2.14 A few more color templates with graphics along with ROI shownin blue
rectangular boxes.
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refinement of new correspondences. In RANSAC, algorithm presented in Section 2.2.3 is

applied after obtaining initial correspondences (Section2.2.1). In RANSAC + Histogram,

RANSAC is applied after refining the initial correspondencesusing histogram of Euclidean

distances (Section 2.2.2). In Enhanced RANSAC + Histogram, the enhanced RANSAC

algorithm presented in Section 2.2.4 is applied after the Euclidean distance based

histogram.

For RANSAC, RANSAC + Histogram, and Enhanced RANSAC + Histogram,

thresholdt of Lowe’s approach is set to 0.9 and maximum RANSAC iterationsis set to

100. In the case of the three methods based on TPS-RPM, Lowe’s threshold is set to 0.6

and 0.8 for SIFT and SURF, respectively, to generate reasonably sparse points with enough

correspondences. This difference in Lowe’s threshold for SIFT and SURF comes from

the fact that non-rigid registration depends on the selection of control points. Empirical

evaluation shows that SIFT generates enough control pointswith small threshold value

compared to SURF. Matching is restricted to points in the template image that fall in

clusters close to an ROI. The set of template image points to be used for matching are

selected in the following manner: (i) For each ROI, all clusters are marked as unselected,

(ii) While the number of match points for the ROI is less than 300, the nearest unselected

cluster is marked as selected and add points in this cluster to the set of match points

for the ROI. Figure 2.15 shows the performance of different registration methodologies

with SIFT and SURF features on different template images. Registration accuracy is

measured as number of truly registered regions (90% overlap) divided by total number

of regions. Enhanced RANSAC + Histogram and Enhanced TPS-RPM with refinement

of correspondences outperforms the other methods. Enhanced TPS-RPM with refinement

performs slightly better than Enhanced RANSAC + Histogram asit has the advantage of

deriving complex transformation. TPS-RPM performance is poor, which is likely due to

its assumption of sparseness in the point sets. In black and white images that are primarily

white with sparse content e.g., W2 forms, SURF performs very poor on all the methods.
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(a)

(b)

Figure 2.15 Comparison of registration methodologies using SIFT and SURFpoint
features on different image types.
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Euclidean distance Histogram as a preprocessing step to RANSAC significantly improves

the performance of RANSAC on all the test cases. To test the effect of pre-processing steps

on RANSAC convergence, RANSAC is terminated when 90% of the correspondences are

inliers. Using Euclidean distance Histogram for pre-processing reduced the number of

iterations by 60%, showing a positive effect on the convergence of RANSAC. Furthermore,

SIFT gives larger number of control points surrounding the ROI with superior repeatability

as compared to SURF. This is likely to be critical for non-rigid registration and leads to

SIFT performing slightly better than SURF on all template types.

2.4 Conclusions

A framework for robust registration of camera captured document images is presented.

Four novel aspects that comprise the framework are: clustering of feature points using

K-means, Histogram based outlier refinement to speed up iterative algorithms, enhanced

RANSAC for robust registration of document images, and finally enhanced TPS-RPM

with refined correspondences for registration of images under non-rigid deformation.

Clustering of feature points enables selection of nearby regions for registration of

ROI. Euclidean distance based histogram not only eliminates the outliers but also

enhances the convergence rate of RANSAC. Enhanced RANSAC algorithm refines the

global registration parameters to suit each ROI, accommodating non-affine deformations.

Enhanced TPS-RPM incorporates prior knowledge of correspondences into TPS-RPM and

leads to better registration of non-rigidly deformed images. One limitation is that matching

is applied to known ROI in the template image. While this is a reasonable assumption for

several document processing applications, it is not a validassumption in general.
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(a) (b)

(c) (d)

(e)

Figure 2.16 Registered ROI in the images from the test set.



CHAPTER 3

CATEGORIZATION OF CAMERA CAPTURED

DOCUMENTS BY DETECTING LOGOS

This chapter presents a methodology to categorize camera captured documents into

predefined logo classes. The existence of camera capturing noise such as intensity and large

scale variations, partial occlusions, cluttering, and non-uniform folds make the detection

task challenging. Besides, the appearance of logos is limited to a small portion of the

captured document and a single document might contain more than one logo. The selection

of robust local features and the corresponding parameters is presented by comparisons

among SIFT, SURF, MSER, Hessian-Affine, and Harris-Affine. Theevaluation of the

methodology is conducted not only with respect to amount of space required to store the

local features information but also with respect to categorization accuracy. Moreover, the

methodology handles the detection of multiple logos on the document at the same time.

3.1 Related Work

Logos [19, 20, 22] play a vital role in uniquely identifying adocument type. Generally,

the appearance of logos is limited to a small portion of the document content and a

single document might contain more than one logo as shown in Figure 3.1(b). Logo

detection [19, 21, 22, 23] on scanned documents is a very wellknown problem in

document analysis community. Most of these approaches relyon connected component

extraction [19, 21, 22, 23]. A Bayesian approach by providingfeedback between detection

and recognition phases is specified in [22]. A method based onboundary extraction of

feature rectangles to generate robust candidate logos is proposed in [21]. Geometric

relationship among connected components is enforced in [19] to eliminate outliers.

However, connected component extraction approaches rely on binarization [105, 106],

47
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which introduces a lot of noise in camera captured documents. In [20], SIFT [28] features

from a query image i.e., image under observation are matchedagainst all the descriptors of

logo classes. Though accuracies are reasonable on scanned documents, matching against

all logo classes descriptors would not scale to large data sets, and is not a good strategy for

real time applications.

(a) intensity and view-point variation

(b) background clutter and multiple logos (c) crumples

Figure 3.1 Camera captured documents with logos.

On the other hand, literature in scalable document retrieval methodologies [17, 83,

10, 11, 12] rely on the entire document content including text, figures, and tables etc.
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rather than just logos. A sequence of words is used as a query in [17]. A subregion of

the document is used as a query in [10, 11, 12]. One common aspect of these approaches

is that they need scanned documents as input. A document retrieval methodology using

text is presented in [18]. Local invariant features are usedto represent the predefined logo

classes and the query document in order to overcome the challenges typically found in

camera capture such as intensity variations, clutter, view-point variations, and crumples.

Due to the availability of various local invariant featuressuch as SIFT [28], SURF [25],

MSER [30], Hessian-Affine [30], and Harris-Affine [30], there is always a question of

selecting the robust feature.

The rest of the chapter is organized as follows: Section 3.2 presents the comparison

of various local invariant features and the selection of onefor the logo detection task.

The detailed methodology of camera captured document categorization is presented in

Section 3.3. Section 3.4 presents the experimental resultson a challenging data set, which

also discusses the impact of dimensionality reduction and representation of the features.

Finally, Section 3.5 concludes the chapter.

3.2 Comparative Analysis of Local Invariant Features

This section presents the selection of desired local feature by comparisons among various

local invariant features. The features in consideration are SIFT [28], SURF [25],

MSER [30], Hessian-Affine [30], and Harris-Affine [30]. The comparison is done using

25 logo classes and 125 camera captured documents with five documents under each logo

class.

LetL = {L1, L2, ..., Lm} be a set of logo classes, wherem is the total number of logo

classes. Each logo classLi is represented by usingni feature pointsLi = {(x
j, yj , f j)} for

j ∈ {1, 2, ..., ni}, whereni is the total number of feature points in theith logo class;

(xj, yj) and f j are the Cartesian coordinates andd-dimensional description of thejth

feature point, respectively. Similarly, query image is represented asQ = {(xj
q, y

j
q , f

j
q )}
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for j ∈ {1, 2, ..., nq}, wherenq is the total number of features points extracted from the

query document. Denote thejth feature inLi andQ asLj
i andQj, respectively, and the

correspondingd-dimensional feature descriptors asf j
i andf j

q , respectively. Lowe’s [28]

thresholdt is used to make the comparisons, which is defined as the ratio of the distance

between the logo descriptor and the first nearest neighbor among the query descriptors

fq ∈ Q in thed-dimensional feature space to that of the second nearest neighbor.

t =
D(fj

i ,f
nn1
q )

D(fj
i ,f

nn2
q )

(3.1)

whereD() is the Euclidean distance ind-dimensional feature space, andnn1, nn2 ∈ {1, 2,

..., nq} are the indices of the first and second nearest neighbors tof j
i in the feature space.

A correspondence for eachLj
i is established withQnn1 only if t is less than a predefined

threshold, i.e.,Qnn1 is the corresponding feature point tojth feature ofLi in Q. As t goes

down from 1 to 0, the ambiguity in the correspondences decreases, and more discriminative

correspondences will be established. The behavior of the local invariant features is

analyzed with respect to three important criteria: correspondence precision, number of

true correspondences, and the number of inter-logo correspondences. Correspondence

precision (as defined in Equation 3.2) and the number of true correspondences are analyzed

by establishing the correspondences between each logo class and the corresponding five

camera captured documents. The number of true correspondences is counted with the

help of the established ground truth. Figures 3.2(a) and 3.2(b) show the behavior of

average correspondence precision and average number of true correspondences at different

thresholdst, respectively. A robust feature must have high average correspondence

precision along with the large number of feature points to support partial occlusions and

non-rigid deformations in the logo. Figure 3.2(c) shows theaverage number of inter-logo

correspondences established with different feature typesat various thresholds oft (for each

logo classLi ∈ L, the remaining classesLi′ ∈ L; i 6= i′ are used as queries). As some

of the local features are common among multiple logos, usingall the features will reduce
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(a)

(b)

(c)

Figure 3.2 Comparisons among various local invariant features.
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the discriminative power. One with lower number of average inter-logo correspondences

should be preferred. From Figure 3.2, SIFT features at the shaded thresholdt, i.e., 0.6, are

the desired choice compared to the remaining features and thresholds. Section 3.3 presents

an efficient logo-based categorization methodology using the derived feature type and the

corresponding thresholdt.

Correspondence Precision = Number of true correspondences
Total no. of correspondences

(3.2)

3.3 Methodology

The system has two modes of operation: off-line and on-line.Off-line mode is responsible

for feature extraction from the logo classes, representation, and storage of the extracted

data. On-line mode works in two stages. In stage 1, features are extracted from the

query document and are matched against the features in the database to determine the

candidate logo classes. In stage 2, topl candidate logo classes are then subjected to the

cluster-based refinement process in the image space to eliminate false positives. Finally, the

query document is categorized into the candidate logo classes left after stage 2. Figure 3.3

shows the overview of system configuration. The following subsections briefly explain the

individual components of the system.

3.3.1 Off-line: Representation and Storage of Logo Class Features

Let X = {(xj, yj, f j)}, 1 ≤ j ≤ n be the set of SIFT [28] features extracted from all the

logo classesLi ∈ L; wheren is the total number of logo class features.

1. Dimensionality Reduction: This step is optional, and it reduces the dimensionality

of SIFT [28] features. Generate a128 × 128 dimensional matrixP with random

numbers. SubjectP to QR decomposition [34] to obtain the orthogonal matrixQ.

The first rd rows of the matrixQ form the projection matrixR. Project all the

descriptorsf j ∈ X ontoR to reduce their dimensionality tord.
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Figure 3.3 Document categorization framework.



54

2. Cluster Formation: Form the clusters of descriptorsf j ∈ X in rd-dimensional space

using K-means [104], and denote the cluster centroids asC = {ci|1 ≤ i ≤ k}. The

clusters are computed using SIFT features extracted from logo classes.

3. Hamming Embedding (HE): The main objective of this step isto convert the feature

f j ∈ X into a binary stringbj for efficient representation, storage, and matching. For

eachrd-dimensional descriptorf j ∈ Ci; 1 ≤ i ≤ k, Hamming Embedding (HE) [34]

is adapted to convert it to a bit stringbj of lengthrd as defined in Equation 3.3.

bj(x) = 1, if f j(x) <= Ci(x); 1 ≤ x ≤ rd

= 0, otherwise;
(3.3)

4. Inverted File Indexing: Inverted file indexing [34, 63] structure is used to store the

logo classes information. Only the cluster centroidsCi ∈ C are indexed, and all

the SIFT [28] features within each cluster are linked to their corresponding cluster

centroid. The feature information attached is the logo class number(Id), Cartesian

coordinatesxj, yj, and the featuref j (or) binary stringbj as shown in Figure 3.3.

Denote the established index structure asI.

3.3.2 On-line: Feature Extraction on Query Document and Matching

Let Q = {(xj
q, y

j
q , f

j
q )}, 1 ≤ j ≤ nq be the set of SIFT [28] features extracted from

the query document image and represented in the similar manner as logo class features

(Section 3.3.1); wherenq is the total number of SIFT [28] features extracted from the

query document. Algorithm 3 presents the mechanism of matching features inQ with the

established inverted file indexI of Section 3.3.1.

Refinement of Scores using Neighborhood Check:As the scores after stage 1 matching

contain lot of outliers, refine the established correspondences in the topl candidate logo

classes using cluster-based neighborhood check in the image space. Figure 3.4 shows

matches established during Stage 1 matching. One can enforce the ordering among the
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Algorithm 3 Stage 1 Matching
Input: Inverted File IndexI(Section 3.3.1), Query featuresQ.

Output: ScoresSi ∈ S; 1 ≤ i ≤ m of the logo classes.

Initialize: All Si ∈ S to zero.

for all Qj ∈ Q do

Determine the nearest clusterCi ∈ I;

Initialize: D (Distance to all features∈ Ci) to zero.

for all (bz|f z) ∈ Ci do

Compute the distanceDz = D(bz|f z, Qj); where D() isxor() for bz, and Euclidean

distance inrd-dimensional space forf z;

end for

sortD in decreasing order;

Increment the scoreSId(D1) by 1 only if (D1/D2) ≤ t; whereD1 andD2 are the

distances to the first and second nearest features ofQj, andt is Lowe’s [28] threshold;

end for

sortS in decreasing order;
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local features [35], and check for the relative order consistency between query document

and the candidate logo class, or refine the correspondences by fitting a transformation

model [28] to the correspondences. Due to the non-rigid deformations i.e., crumples, a

cluster-based neighborhood check is applied in the image space to determine the outliers.

Algorithm 4 presents the underlying mechanism. Figure 3.5 shows the matches refined

after neighborhood check.

Figure 3.4 Matches established during Stage 1 matching.

3.4 Experimental Results and Discussion

Test set consists of 375 camera captured query documents of resolution 1600×1200

belonging to 25 logo classes. Figure 3.6 shows the logo classes and their distribution in

the test set. F–measure [64] as defined in Equation 3.4 is usedto evaluate the methodology.

F–measure combines both recall and precision into a single measure, which is well
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Figure 3.5 Matches established after neighborhood check.
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Algorithm 4 Stage 2 Matching: Cluster-Based Neighborhood Check
Input: Topl candidate logo classesL′ ∈ L after stage 1 matching, and the corresponding

scoresS ′ ∈ S .

Output: Refined ScoresS ′ of the candidate logo classes.

for all Li ∈ L′ do

Initialize: neighborhood cardinalityre to ⌈ sqrt(S ′
i)⌉.

repeat

for all features(xj, yj) ∈ L′
i do

Let N(xj, yj) and Nq(x
j
q, y

j
q) be the re neighborhood features of thejth

correspondence between the logo classL′
i and the query documentQ

respectively;

Determine the probability ofjth correspondence being an inlier asP j =

(N(xj ,yj)∩Nq(x
j
q ,y

j
q))

re
;

Mark thejth correspondence as inlier ifP j ≥ tp; where thresholdtp is set to 0.5;

end for

Update the correspondences inLi with inliers, and refine theS ′
i with the cardinality

of L′
i i.e.,‖L′

i‖;

until S ′
i ≤ 3

end for

sortS ′ in decreasing order, and eliminate all the logo classesL′
i ∈ L′ with the scores

S ′
i ≤ 3;
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informative compared to individual recall and precision scores. The higher the F–measure,

the better the categorization accuracy. Figures 3.8 and 3.9show the established matches of

the images from the dataset with the corresponding logos.

Recall = Number of true categories retrieved
Total number of true categories

Precision = Number of true categories retrieved
Total number of identified categories

F–measure = 2× Precision×Recall
Precision+Recall

(3.4)

Table 3.1 shows the accuracies at different stages, and different SIFT [28] feature

(a) 15 documents

(b) 15 documents

(c) 15 documents

(d) 15 documents (e) 135 documents (f) 45 documents (g) 105 documents

Figure 3.6 Logo classes and their distribution in test set.

representations withk = 100, t = 0.5, andl = 5. HE-128 and HE-64 in the Table 3.1

corresponds to feature representation with Hamming Embedding (HE) and bit string

lengths of 128 and 64, respectively. From the Table 3.1, as the dimension of the SIFT [28]
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Figure 3.7 Category identification: left:query document, right: predicted categories (true:
scores in green, false: scores in red).

Figure 3.8 Matches established for Elsevier logo.
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Figure 3.9 Matches established for W2 logo.

features decreases from 128 to 16, the corresponding stage 2F–measure decreases

gradually, and stage 2 matching significantly improves the stage 1 matching F–measures.

HE with 128-bit string representation achieves a reasonable F–measure accuracy of 68.24%

with enormous savings in storage. A similar kind of pattern is observed atk = 50 andk =

200, with a minor change of 1 to 2% in the F–measure, and slightly higher accuracies with

increasing number of clustersk. The derived thresholdt = 0.6 is also empirically verified by

a comparison among other threshold values, and observed higher F–measure accuracies at

t = 0.6. A F–measure accuracy of 36.54% is achieved by directlyadapting the HE method

of [34] with 128 bits and the specified parameters. Furthermore, the methodology is verified

on Tobacco-800 [107] dataset and achieved a 95.14% F–measure accuracy as opposed to

92.5% using [19]. Finally, Figure 3.7 shows the scores of theidentified categories of a

query document at each stage. On an average, it takes 1 secondto categorize the given

query document on Intel core 2 duo machine using MATLAB.
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Table 3.1 Accuracies at Different Stages of Matching and Different Feature
Representations

Feature Representation (dimensions)

16 32 64 128 HE-64 HE-128

Average Recall

Stage 1 72.31% 84.18% 85.69% 88% 70% 83.24%

Stage 2 63.24% 76.13% 79.2% 81.07% 62.58% 78.13%

Average Precision

Stage 1 28.35% 44.48% 40.49% 50.32% 21.17% 30.77%

Stage 2 48.94% 69.24% 69.3% 75.07% 57.55% 60.57%

Average F–measure

Stage 1 40.73% 58.21% 54.99% 64.03% 32.51% 44.93%

Stage 2 55.18% 72.52% 73.92% 77.95% 59.96% 68.24%

3.5 Conclusions

A methodology to categorize camera captured documents based on logo detection is

presented. The selection of robust features is done by comparisons among various local

invariant features. The methodology not only categorizes the captured document under

partial occlusions, intensity variations, and non-rigid deformations but also identifies

multiple categories if present. Evaluation of methodologyis presented with respect to

different feature representations.



CHAPTER 4

SEGMENT-WISE MATCHING FOR CATEGORIZATION

This chapter presents a segment-wise matching approach forcategorization of camera

captured documents into predefined logo classes. SIFT is used to represent logo classes and

query document in order to overcome the challenges typically found in camera capture such

as intensity variations, clutter, view-point variations,and crumples. To obtain higher recall

and precision accuracies, segmentation of query document image is presented by grouping

area under intersecting dense affine covariant regions to maximize the margin between

the matching scores of true logo classes and the rest. Besides, multiple descriptions of

each feature that belong to different dominant orientations in the surrounding region are

grouped and Hamming Embedding (HE) is applied to suppress the noise during descriptor

quantization. Experimental results on a challenging dataset demonstrate a peak 13.25%

increase in the F–measure accuracy compared to the methodology presented in previous

chapter.

4.1 Motivation

SIFT features are empirically shown robust to a wide varietyof challenges such as

background clutter, intensity variations, view-point variations, and crumples in Chapter

3. The methodology categorizes query document into predefined logo classes in a two

stage matching fashion. In the first stage, local features from the entire query document are

matched to determine candidate logo classes. Neighborhoodcheck of computed matches

is performed in second stage to refine retrieved candidate logo classes. Generally, the cost

of performing second stage matching, which typically accommodates outlier elimination

mechanisms, increases with increase in the number of false matches. Most of these false

matches arise from using feature matches from the entire query document. Figure 4.1
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illustrates the motivation to conduct matching limited to logo regions. An example query

image and the corresponding SIFT features extracted from itare shown in Figure 4.1(a) and

Figure 4.1(b) respectively. Figure 4.1(d) shows the partitioning of the number of matches

of Figure 4.1(b) with Figure 4.1(c) to different regions of the query document. From

Figure 4.1(d), it is clear that the corresponding logo region i.e., Elsevier accommodates

more number of matches compared to other regions. Limiting the matches to those that

arise from true logo region not only helps to increase the performance of outlier elimination

techniques but also gives an approximate position of the logo class in the query document.

Similarly, Figure 4.2(b) shows that the region containing pattern recognition logo contains

more number of matches compared to other regions when matching Figure 4.1(b) with

Figure 4.2(a). Furthermore, by distributing the matches todifferent regions of the query

document and selecting a region with more number of matches reduces the number of

matches of an irrelevant logo class. In this chapter, an efficient methodology to categorize

camera captured documents into predefined logo classes is presented by limiting the

matching to segments achieved by grouping area under intersecting dense affine covariant

regions [30].

The rest of the chapter is organized as follows: Section 4.2 presents feature extraction

and grouping of descriptors belonging to same feature. Inverted index computation of logo

classes is presented in Section 4.3. Section 4.4 presents detailed methodology of camera

captured document categorization. Section 4.5 presents experimental results on a dataset

of real camera captured documents. Finally, Section 4.6 concludes the chapter.

4.2 Feature Extraction and Grouping

SIFT is used to represent logo classes and query document. SIFT chooses interest points

at the extremum of difference-of-Gaussian scale space [42,28] and describes the region

around the interest points invariant to rotation. Given an imageA, letX = {(xj, yj, f j)},

1 ≤ j ≤ m be the set of SIFT feature descriptors extracted fromA; wherem is the
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(a) (b)

(c) (d)

Figure 4.1 (a) Query image, (b) SIFT features extracted from (a), (c) Elsevier logo, (d)
matched features of (b) with (c).
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(a) (b)

Figure 4.2 (a) Pattern Recognition logo and (b) matched features of Figure 4.1(b) with
(a).

total number of descriptors extracted,(xj, yj) denotes feature point position inA, andf j

represents correspondingd-dimensional description. SIFT describes surrounding region

around interest points with respect to all dominant orientations in that region [28]. This

leads to a state where each feature point has one or more feature descriptions associated

with it. Figure 4.3 shows SIFT features extracted from example logo classes, one can

observe that some feature points have multiple dominant directions (arrows in different

directions at the same feature point). While matching a set ofSIFT features extracted from

one image with another set of SIFT features extracted from second image, these isolated

descriptors could lead to false matches. To suppress such kind of false matches, descriptors

corresponding to same feature point and supporting region i.e., scale are grouped. Refine

X such thatX = {(xj, yj , {f j})}, 1 ≤ j ≤ r; wherer is the total number of feature points

extracted, and{f j} is the set of alld-dimensional descriptions corresponding to feature

point (xj, yj). The rest of the chapter usesXj to denotejth feature inX.
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Figure 4.3 SIFT features from example logo classes.

4.3 Inverted Index Computation

In order to avoid matching query document features with features in all logo classes,

inverted index [63, 61, 35] data structure is adapted to efficiently match with logo classes.

This section presents an approach to store SIFT features extracted from logo classes and

other related information to enhance query document class prediction. The inverted index

computation is performed off-line. LetL = {L1, L2, ..., Ln} be the set of logo classes to

be indexed. For each logo classLi ∈ L, 1 ≤ i ≤ n, repeat the following steps.

1. Feature Extraction: Extract SIFT features [28]Xi = {(xj
i , y

j
i , {f

j
i })}, 1 ≤ j ≤ mi;

wheremi is the total number of features extracted from logo classLi; (x
j
i , y

j
i ) denotes

feature position inLi and {f j
i } denotes set of all correspondingd-dimensional

descriptions as mentioned in Section 4.2.

2. Feature Quantization: Compute visual word vocabularyC = {Ck}, 1 ≤ k ≤ K;

whereK is the size of the vocabulary,Ck is kth cluster centroid; by subjecting a

hundred thousand SIFT feature descriptors that arise from query document collection

to K-means [64] clustering. These descriptors are not just limited to logos and

represent the information from text, figures, etc. For each feature pointXj in Xi, 1 ≤

j ≤ mi; compute set of visual words{wj
i } by quantizing [63] set of all associated

d-dimensional feature descriptors{f j
i } using vocabularyC. While quantizing, along

with visual words{wj
i }, compute corresponding Hamming Embedding (HE) [34]

{heji} using Equation 4.1, which provides an encoding of the descriptor in the
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corresponding cluster. UpdateXi as{(xj
i , y

j
i , {w

j
i }, {he

j
i})}; .

heji (x) = 1, if f j
i (x) <= Cwj

i
(x); 1 ≤ x ≤ d

= 0, otherwise;
(4.1)

3. Inverted Indexing: For each visual wordwj
i in Xi, compute indexed feature as shown

in Figure 4.4 and attach it to inverted indexI at visual wordwj
i . Logo ID is logo class

ID i.e., i, Feature ID is the SIFT feature in which the visual wordwj
i appears i.e.,j,

HE is heji , andNumber of feature words is the set cardinality|{wj
i }| of featureXj

i .

Figure 4.4 Document categorization framework.
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4.4 Categorization of Query Document

Generally, query document images contain a lot of data otherthan logos such as text,

tables, figures, etc. Computing matching scores using extracted features from the entire

document with the computed inverted indexI could spoil logo classes prediction as

shown in Figure 4.1. So, content on query document is segmented using dense affine-

covariant regions, such as Hessian-Affine [30] and Harris-Affine [30]. Hessian-Affine

regions are selected as they produce more repeatable regions compared to Harris-Affine

regions [30]. Hessian-Affine regions are defined by affine normalization around Hessian

points [30]. An iterative estimation of elliptical affine region around Hessian interest points

is performed using autocorrelation matrix [45, 46]. The following subsections briefly

present the methodology of segmentation and underlying logo classes prediction in the

query document.

4.4.1 Segmentation

Extract Hessian-Affine regionsR = {(xj
r, y

j
r , a

j
r, b

j
r, c

j
r)}, 1 ≤ j ≤ mr from query

document image; wheremr is the total number of regions extracted,(xj
r, y

j
r) denotes feature

point position, and(ajr, b
j
r, c

j
r) is the corresponding region representation as ellipse. As large

regions are less repeatable to view-point and illuminationvariations, eliminate regions inR

which contain more than two other regions. Grouping the areaof all ellipses that intersect

with each other yieldssegq number of segments which are quite separated from each other

in query document. Figure 4.5 shows a segmented image achieved by grouping dense

ellipses. Figure 4.5(b) shows Hessian-Affine regions extracted from a query image shown

in Figure 4.5(a). Figure 4.5(c) shows the corresponding Hessian-Affine regions remained

after the elimination of regions that contain more than two regions. Finally, Figure 4.5(d)

shows the segments achieved by grouping the areas of all regions that intersect with each

other. Figure 4.6 shows segmentations achieved on some challenging images from the data

set. First column of Figure 4.6 corresponds to original camera captured documents and the
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corresponding segmented images are shown in second column.Figure 4.6 shows that the

logos are quite separated from other content and entire logoarea fall under same segment.

Though some non logo regions are also included in the same segment corresponding to

logo, the area of the segment is still much less than the entire query document and solves

the purpose of using features close to the logo region for matching. LetP = {pj},

1 ≤ j ≤ segq be the set of polygons obtained by approximating each of the segment

contours with a polygon [108].

(a) (b)

(c) (d)

Figure 4.5 (a) query image, (b) affine covariant regions, (c) refined regions, and (d)
segmentation after grouping area under intersecting regions.
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4.4.2 Feature Extraction, Quantization and Segment-wise Grouping

Extract SIFT features [28]Q = {(xj, yj, {f j})}, 1 ≤ j ≤ mq; wheremq is the total number

of features extracted from the query document;(xj, yj) denotes feature position and{f j}

denotes set of all correspondingd-dimensional descriptions as mentioned in Section 4.2.

Perform feature quantization onQ as presented in Section 4.3 to updateQ as{(xj, yj,

{wj}, {hej})}.

Divide Q into segq groups by assigning each query feature inQj to one of the

segment polygonsP j that contain corresponding feature point(xj, yj). Denote the

resulting feature groups asQg, 1 ≤ g ≤ segq.

4.4.3 Matching and Score Computation

For each group of featuresQg, 1 ≤ g ≤ segq, repeat the following steps:

1. Scores Initialization: Initialize segment scores of indexed logo classesSg = {sig},

1 ≤ i ≤ n to zero; wheren is the total number of indexed logo classes.

2. Matching: Experiments are conducted with the following two types of matching.

(i) With out using HE: Parse inverted indexI for each featureQj
g ∈ Qg and update

scoresig, if a feature inith logo class completely intersects with query featureQj
g

as specified in Equation 4.2. While parsing inverted indexI, buffer all logo classes

along with feature numbers i.e.,Feature ID in which the corresponding visual word

appears. Consider only those logo classes as a match which hasa feature that exactly

contains same set of visual words as query feature.

sig + = 1, if
|{wj

g}∩{w
j
i }|

|{wj
g}∪{w

j
i }|

= 1 (4.2)

(ii) Using HE: Score update is performed similar to above matching method, except

individual visual words match is refined using hamming distance as specified in
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Figure 4.6 Segmentation on challenging images: original images are shown in first
column and corresponding segmentation images are shown in second column.
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Equation 4.3.

Hamming match(hejg, he
j
i ) = 1, if xor(hejg, he

j
i ) ≤ ht

= 0, otherwise
(4.3)

whereht is hamming distance threshold.ht is set to 22 as suggested in [34] for

128-dimensional SIFT description in the experiments.

Compute document-wise logo class scoresS = {si}, 1 ≤ i ≤ n as si = max(sig),

1 ≤ g ≤ segq. This step updates the retrieved logo classes scores with the peak segment

score associated with the corresponding logo class. Sort scoresS in descending order, and

categorize query document into all logo classes that have a score which is not less thantp

of the top logo class score. The impact oftp is briefly explained in the experimental results

section.

4.5 Experimental Results and Discussion

Test set consists of 300 query documents of resolution 1600× 1200 belonging to 25

logo classes captured using Logitech Webcam Pro 9000. As some query documents also

contain more than one logo class e.g., scientific articles, Figure 4.7 shows logo classes and

their distribution in the test set. The test set is composed of very challenging documents

such as illumination and view-point variations, cluttering, and crumples as shown in

Figure 3.1. Recall [64], precision [64], and F–measure [64] are measured as defined in

Equations 4.4, 4.5, and 4.6, respectively for each query document and average them over

all 300 documents to produce average recall, average precision, and average F–measure

accuracies. The higher these measures are, the better the prediction. Following experiments

are conducted using 128 dimensional SIFT description and vocabulary sizes of 100, 500,

and 1000 computed using K-means clustering of one hundred thousand SIFT descriptors

extracted from the test set.

Recall = Number of true logo classes predicted
Total number of true logo classes

(4.4)
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(a) 12 documents

(b) 12 documents

(c) 12 documents

(d) 12 documents (e) 108 documents (f) 36 documents (g) 84 documents

Figure 4.7 Logo classes and their distribution in query documents dataset.
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Precision = Number of true logo classes predicted
Total number of predicted logo classes

(4.5)

F–measure = 2× Recall×Precision
Recall+Precision

(4.6)

Eight matching methods are compared using SIFT features: (i) Full: Matching SIFT

features from the entire query document image, (ii) FullHE: Matching SIFT features

from the entire query document image using Hamming Embedding, (iii) Full NN:

While matching SIFT features from the entire query document image, only discriminative

matches are considered i.e. if a feature has more than one match in the same logo class

then the corresponding matches will be discarded, (iv) FullNN HE: Similar to FullNN

except that HE is enforced during matching, (v) Segments: Segment-wise matching of

SIFT features from the entire query document image as presented in Section 4.4.3 with out

using HE, (vi) SegmentsHE: Similar to Segments with additional match refinement using

HE, (vii) SegmentsNN: While matching SIFT features segment-wise, only discriminative

matches are considered as mentioned in FullNN, and (viii) SegmentsNN HE: HE is

applied while performing SegmentsNN. Figures 4.8 and 4.9 show average recall and

average precision accuracies at different vocabulary sizes using tp = 0.8. Enforcing

discriminative matches during matching i.e., all NN variants improves average recall,

shown in Figure 4.8 and applying HE to establish a match significantly improves the

average precision for all methodologies, shown in Figure 4.9. Figure 4.8 also shows that

the application of HE does not significantly change average recall. However, enforcing

discriminative matches considerably improves average precision, shown in Figure 4.9.

Furthermore, segment-wise matching not only improves the average recall but also average

precision. Similar pattern is observed attp = 0.6, which is shown in Figures 4.10 and 4.11.

As more number of false predictions fall by reducing the thresholdtp to 0.6 the average

precision accuracies are lower than those attp = 0.8, which provokes higher average recall
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accuracies attp = 0.6. Additionally, both average recall and average precision accuracies

increase as the vocabulary size increases.

Tables 4.1 and 4.2 list the F–measure accuracies attp = 0.8 andtp = 0.6, respectively.

The F–measure accuracies improve by 3.15% to 13.25% using segment-wise matching i.e.,

SegmentNN HE compared to entire query document features i.e., FullNN HE. Though

the F–measure accuracies are slightly better attp = 0.6, the improvement is slightly higher

at tp = 0.8. The improvement in F–measure accuracy goes down as thevocabulary size

increases. Figure 4.12 compares the F–measure accuracies of SIFT, Speeded-Up Robust

Features (SURF) [25], Hessian-Affine [30], and Harris-Affine[30] at tp = 0.8 andtp =

0.6. In the case of Harris-Affine, segmentation is conductedusing Harris-Affine regions.

Figure 4.12 demonstrates that SIFT outperforms other feature types and SURF is the poor

performer amongst all and the F–measures accuracies are slightly better attp = 0.6. The

entire methodology is implemented in C++ using OpenCV 2.3 and the experiments are

conducted on an AMD quad core Linux machine with 8GB RAM. On average, it takes 500

milli seconds to categorize a single 1600×1200 camera captured document.

Table 4.1 F–measure Accuracies attp = 0.8

Vocabulary Size

100 500 1000

Full 7.75% 10.29% 10.91%

Full HE 35.03% 58.97% 64.36%

Full NN 7.55% 7.20% 9.84%

Full NN HE 43.50% 63.77% 68.76%

Segments 7.09% 13.64% 16.54%

SegmentsHE 49.01% 66.76% 69.60%

SegmentsNN 6.57% 10.39% 13.14%

SegmentsNN HE 55.22% 71.32% 73.16%
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(a)

(b)

Figure 4.8 Average recall accuracies attp = 0.8.
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(a)

(b)

Figure 4.9 Average precision accuracies attp = 0.8.
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(a)

(b)

Figure 4.10 Average recall accuracies attp = 0.6.
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(a)

(b)

Figure 4.11 Average precision accuracies attp = 0.6.
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(a)

(b)

Figure 4.12 F–measure accuracies of different feature types at (a)tp = 0.8 and (b)tp =
0.6.
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Table 4.2 F–measure Accuracies attp = 0.6

Vocabulary Size

100 500 1000

Full 7.84% 7.93% 8.54%

Full HE 38.58% 60.70% 64.78%

Full NN 9.46% 8.36% 8.78%

Full NN HE 48.70% 67.02% 71.85%

Segments 8.30% 9.05% 12.49%

SegmentsHE 55.09% 69.15% 71.55%

SegmentsNN 7.85% 10.74% 15.48%

SegmentsNN HE 60.36% 72.78% 74.42%

4.6 Conclusions

An affine covariant region driven segmentation approach to categorize camera captured

documents by identifying logos is presented. The presentedmethodology not only helps to

improve prediction accuracies but also gives an approximate location of the underlying

logo classes in the query document, which is critical to establish correspondences

for applications like registration and mosaicing. HammingEmbedding (HE) and

discriminative matches are applied to increase average precision and average recall

accuracies, respectively. Experimental results on a dataset of real camera captured

documents demonstrated a 13.25% increase in the F–measure accuracy by computing

segment-wise matching scores. Though the presented segmentation is reasonable, a more

robust segmentation is desired to improve the prediction accuracies.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In recent years, camera captured document image analysis isdrawing more attention of

researches due to the rapid development of inexpensive hand-held sensors, camera enabled

smart phones, tablets, and so on. As there is no constrained capturing in the real world,

the captured documents suffer from illumination, scale andviewpoint variations along

with clutter, occlusion, and crumples. Two high level processing tasks, registration and

categorization of camera captured documents using local features are presented in this

dissertation.

5.1 Summary of Contributions

The following summarizes the contributions of this dissertation:

1. A novel framework to register Regions of Interest (ROI) under non-rigid deformations

is developed.

• Clustering of feature points near ROI and histogram based refinement of

outliers in the correspondence set to improve convergence of traditional

iterative outlier elimination mechanisms such as RANdom SAmple Consensus

(RANSAC) and Thin Plate Spline-Robust Point Matching (TPS-RPM)are

embedded.

• Enhancements to RANSAC and TPS-RPM are proposed by validatingthe

registration parameters.

• Behavior of SIFT and SURF with respect to proposed enhancements is

presented.

83
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2. A methodology to categorize camera captured documents into predefined logo

classes is presented.

• Robust features are derived by comparisons among various local invariant

features under different criteria such as feature count, repeatability, and

distinctiveness.

• Trade-off between feature representation and categorization accuracy is

demonstrated.

3. A segment-wise matching methodology to categorize camera captured documents by

detecting logos is presented.

• Segmentation of query documents using dense affine covariant regions is

proposed.

• Feature-wise grouping of descriptors is presented.

• Experimental results on a data set of real camera captured documents achieved

a peak 13.25% accuracy using segment-wise matching as compared the former

approach.

5.2 Limitations and Future Work

The following lists the future work that comprises the addressing of limitations as well as

the extensions of the presented work:

1. One limitation in the presented registration methodology is that the matching is

applied to known ROI in the template image. While this is a reasonable assumption

for several document processing applications, it is not a valid assumption in general.

Future work focuses on the elastic registration [65, 74, 68,72, 75] of entire camera

captured document image by fusing page segmentation [109, 110, 111], text flow

analysis [105, 112, 113, 114], and geometric rectification methods [16, 5, 8] with the
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approach presented in Chapter 2. Besides, improving the registration of ROI using a

short video of the document captured in different perspectives [15] is also the focus

of future research.

2. Though the segmentation methodology presented in Chapter4 improved the

prediction accuracies, it is not robust to the occlusions and severe camera capturing

noise. Enhancing the presented segmentation approach using document layout [115,

116, 111] and document content [117, 118, 119] is also the focus of future research.

3. Finally, future work also includes the robust text detection in natural scene images

and videos [2, 14].
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