164 research outputs found

    Path planning for first responders in the presence of moving obstacles

    Get PDF
    Navigation services have gained much importance for all kinds of human activities ranging from tourist navigation to support of rescue teams in disaster management. However, despite the considerable amount of route guidance research that has been performed, many issues that are related to navigation for first responders still need to be addressed. During disasters, emergencies can result in different types of moving obstacles (e.g., fires, plumes, floods), which make some parts of the road network temporarily unavailable. After such incidents occur, responders have to go to different destinations to perform their tasks in the environment affected by the disaster. Therefore they need a path planner that is capable of dealing with such moving obstacles, as well as generating and coordinating their routes quickly and efficiently. During the past decades, more and more hazard simulations, which can modify the models with incorporation of dynamic data from the field, have been developed. These hazard simulations use methods such as data assimilation, stochastic estimation, and adaptive measurement techniques, and are able to generate more reliable results of hazards. This would allow the hazard simulation models to provide valuable information regarding the state of road networks affected by hazards, which supports path planning for first responders among the moving obstacles. The objective of this research is to develop an integrated navigation system for first responders in the presence of moving obstacles. Such system should be able to navigate one or more responders to one or multiple destinations avoiding the moving obstacles, using the predicted information of the moving obstacles generated from by hazard simulations. In this dissertation, the objective we have is expressed as the following research question: How do we safely and efficiently navigate one or more first responders to one or more destinations avoiding moving obstacles? To address the above research questions, this research has been conducted using the following outline: 1). literature review; 2). conceptual design and analysis; 3). implementation of the prototype; and 4). assessment of the prototype and adaption. We investigated previous research related to navigation in disasters, and designed an integrated navigation system architecture, assisting responders in spatial data storage, processing and analysis.Within this architecture, we employ hazard models to provide the predicted information about the obstacles, and select a geo-database to store the data needed for emergency navigation. Throughout the development of the prototype navigation system, we have proposed: a taxonomy of navigation among obstacles, which categorizes navigation cases on basis of type and multiplicity of first responders, destinations, and obstacles; a multi-agent system, which supports information collection from hazard simulations, spatio-temporal data processing and analysis, connection with a geo-database, and route generation in dynamic environments affected by disasters; data models, which structure the information required for finding paths among moving obstacles, capturing both static information, such as the type of the response team, the topology of the road network, and dynamic information, such as changing availabilities of roads during disasters, the uncertainty of the moving obstacles generated from hazard simulations, and the position of the vehicle; path planning algorithms, which generate routes for one or more responders in the presence of moving obstacles. Using the speed of vehicles, departure time, and the predicted information about the state of the road network, etc., three versions (I, II, and III) of Moving Obstacle Avoiding A* (MOAAStar) algorithms are developed: 1). MOAAstar– I/Non-waiting, which supports path planning in the case of forest fires; 2). MOAAstar–II/Waiting, which introduces waiting options to avoid moving obstacles like plumes; 3). MOAAstar–III/Uncertainty, which can handle the uncertainty in predictions of moving obstacles and incorporate the profile of responders into the routing. We have applied the developed prototype navigation system to different navigation cases with moving obstacles. The main conclusions drawn from our applications are summarized as follows: In the proposed taxonomy, we have identified 16 navigation cases that could occur in disaster response and need to be investigated. In addressing these navigation problems, it would be quite useful to employ computer simulations and models, which can make reliable predicted information about responders, the targets, and obstacles, in finding safe routes for the responders. The approach we provide is general and not limited to the cases of plumes and fires. In our data model, the data about the movement of hazards is represented as moving polygons. This allows the data model to be easily adjusted to merge and organize information from models of different types of disasters. For example, the areas that are affected by floods can also be represented as moving polygons. To facilitate the route calculation, not only the data of obstacles but also the information about the state of road networks affected by obstacles need to be structured and stored in the database. In planning routes for responders, the routing algorithms should incorporate the dynamic data of obstacles to be able to avoid the hazards. Besides, other factors, such as the operation time of tasks, the required arrival time, and departure time, also need to be considered to achieve the objectives in a rescue process, e.g., to minimize the delays caused by the moving obstacles. The profile of responders is quite important for generation of feasible routes for a specific disaster situation. The responders may have different protective equipment that allows them to pass through different types of moving obstacles, and thus can have different classification of risk levels to define the state of the road network. By taking into account the profile of the responders, the navigation system can propose customized and safe routes to them, which would facilitate their disaster response processes. On the basis of our findings, we suggest the following topics for future work: As presented Wang and Zlatanova (2013c), there are still a couple of navigation cases that need to be addressed, especially the ones that involve dynamic destinations. More algorithms would be needed to solve these navigation problems. Besides, some extreme cases (e.g., the obstacle covers the target point during the course of an incident) also need to be investigated. Using standard Web services, an Android navigation application, which can provide navigation services in the environment affected by hazards, needs to be developed and tested in both the daily practice and real disasters. In this application, a user interface with various styling options should also be designed for different situations, e.g., waiting and moving, day and night, and urgent and non-urgent. Because the communication infrastructure may not be available or work properly during a disaster response, a decentralized method is needed to allow different users to negotiate with each other and to make local agreements on the distribution of tasks in case there is no support from the central planning system. Another type of multi-agent system would be needed to handle this situation. Introduce variable traveling speed into the re-routing process. The vehicle speed plays an important role in generation of routes avoiding moving obstacle, and can be influenced by many factors, such as the obstacles, the type of vehicles, traffic conditions, and the type of roads. Therefore, it would be needed to investigate how to derive the current and future speed from trajectories of vehicles. Apply the system to aid navigation in various types of natural disasters, using different hazard simulation models (e.g., flood model). More types of agents would be needed and integrated into the system to handle heterogeneous data from these models. Extensions of the data model are also required to meet a wider range of informational needs when multiple disasters occur simultaneously

    Drones for Disaster Response and Relief Operations

    Get PDF
    Aerial drones are one of the most promising and powerful new technologies to improve disaster response and relief operations. Drones naturally complement traditional manned relief operations by helping to ensure that operations can be conducted safer, faster, and more efficiently. When a disaster occurs, drones may be used to provide relief workers with better situational awareness, locate survivors amidst the rubble, perform structural analysis of damaged infrastructure, deliver needed supplies and equipment, evacuate casualties, and help extinguish fires -- among many other potential applications. This report will discuss how drones and the aerial data they collect can be used before, during, and after a disaster. It includes an overview of potential solutions and deployment models, as well as, recommendations on removing regulatory barriers to their use. The American Red Cross, leading private sector companies, and federal agencies coordinated by Measure, a 32 Advisors Company, have come together to explore and explain how and why drones should be used in the wake of natural disasters and other emergencies that threaten widespread loss of life and property

    Aerial Remote Sensing in Agriculture: A Practical Approach to Area Coverage and Path Planning for Fleets of Mini Aerial Robots

    Get PDF
    In this paper, a system that allows applying precision agriculture techniques is described. The application is based on the deployment of a team of unmanned aerial vehicles that are able to take georeferenced pictures in order to create a full map by applying mosaicking procedures for postprocessing. The main contribution of this work is practical experimentation with an integrated tool. Contributions in different fields are also reported. Among them is a new one-phase automatic task partitioning manager, which is based on negotiation among the aerial vehicles, considering their state and capabilities. Once the individual tasks are assigned, an optimal path planning algorithm is in charge of determining the best path for each vehicle to follow. Also, a robust flight control based on the use of a control law that improves the maneuverability of the quadrotors has been designed. A set of field tests was performed in order to analyze all the capabilities of the system, from task negotiations to final performance. These experiments also allowed testing control robustness under different weather conditions

    Hydrodynamic behavior of packed-bed reactors on a floating platform : liquid distribution and drainage dynamics

    Get PDF
    Pour combler l'écart entre l'augmentation de la demande énergétique et l'épuisement de la production d'hydrocarbures onshore, l'exploitation des hydrocarbures offshore est de plus en plus envisagée, en particulier les gisements de gaz / pétrole dans les eaux plus profondes. En attendant, un grand nombre d'unités de traitement déployées pour la production d'hydrocarbures doivent respecter les contraintes environnementales conçues pour la protection maritime. Les systèmes tels que les réacteurs et les épurateurs à lit fixe embarqués deviennent inévitablement l'une des options les plus prometteuses pour atteindre ces deux objectifs. De nombreux efforts dans la littérature pour dévoiler l'hydrodynamique de l'écoulement multiphasé dans les lits garnis révèlent que des défis persistent soit dans leur conception / mise à l'échelle, soit dans leurs opérations. De plus, exposer ces réacteurs à des conditions marines difficiles telles que la convolution de la dynamique des navires et de l'hydrodynamique à l'intérieur des réacteurs à lit fixe conduit à des situations encore plus compliquées pour maintenir des performances de fonctionnement acceptables dans les conditions flottantes. Un grand nombre de preuves issues de la littérature a jusqu'à présent mis en évidence l'échec des colonnes garnies avec des garnissages aléatoires, des garnissages structurés ou des mousses à alvéoles ouvertes, pour empêcher la maldistribution des liquides dans les lits fixes destinés à fonctionner à bord de navires ou de platesformes flottantes. Les efforts de recherche doivent donc se poursuivre dans le but de trouver des composants internes robustes et capables de résilience contre la maldistribution des liquides dans les réacteurs / unités de séparation gaz-liquide. Ce projet de doctorat s’est proposé des recherches visant dans un premier temps de tester des internes disponibles commercialement pouvant préserver des performances similaires à celles des unités terrestres classiques. Au meilleur de notre connaissance, la sensibilité et la susceptibilité des réacteurs monolithes à une mauvaise distribution soumis à des conditions offshore n'ont pas encore été étudiées. Plutôt que de se concentrer uniquement sur une étude des lits monolithiques, le chapitre 1 opte pour une campagne expérimentale plus large comprenant un garnissage aléatoire et un garnissage en mousse à cellules ouvertes pour des comparaisons systématiques de la distribution des liquides en conditions flottantes. La distribution liquide des colonnes embarquées garnies de divers garnissages et pour une large plage de débit gaz / liquide est systématiquement comparée à l'aide d'un capteur à treillis métallique (WMS) et d'un émulateur hexapode à six degrés de liberté. La vraisemblance de conditions météorologiques extracôtières rudes pourrait menacer la sureté de l'exploitation des lits fixes, en particulier dans des situations extrêmes telles que des cyclones, des épisodes d'icebergs, etc. Pour assurer la sécurité du personnel et des installations, l’opération des colonnes garnies à bord doit être immédiatement interrompue pour éviter des problèmes de sécurité critiques sous de telles circonstances. Par conséquent, la base de connaissances sur la dynamique de drainage des liquides dans les lits flottants est iv essentielle pour assurer une vidange rapide du liquide. Néanmoins, l'étude de la dynamique du drainage liquide des lits fixes en conditions flottantes est à tout le moins rare. Par conséquent, le chapitre 2 se propose de comparer expérimentalement le drainage du liquide dans des colonnes garnies dans les conditions marines à celui observé dans une colonne statique verticale à l’instar des applications terrestres. En dehors de cela, l'influence des mouvements du navire (par exemple, cavalement, embardée, pilonnement, roulis, tangage, et lacet) à différentes amplitudes et périodes d'oscillation sur la dynamique de drainage des liquides est étudiée pour approfondir nos connaissances. Parallèlement à l'étude expérimentale, un modèle numérique Euler-Euler transitoire et en trois dimensions est utilisé en complément pour tenter de prédire la dynamique du drainage des liquides dans les lits flottants. D'autres facteurs susceptibles d'affecter la dynamique de drainage sont analysés par la simulation numérique. Ainsi, le chapitre 3 met en évidence l'influence globale des propriétés des liquides, de la structure du lit et des types de mouvement associé à la sollicitation marine. Par ailleurs, la campagne expérimentale en fournissant des données mesurables a permis de valider le modèle dans les conditions de roulis et de tangage testées au laboratoire.To fill the gap between increasing energy demand and depletion of onshore hydrocarbon production, offshore hydrocarbon exploitation is increasingly contemplated especially the gas/oil fields in the deeper water. Meantime, large amount of deployed processing units for hydrocarbon productions must comply with the environmental codes designated for maritime protection. Systems such as embarked packed-bed reactors and scrubbers inevitably become one of the most promising options to achieve both purposes. Numerous efforts in literature to unveil the hydrodynamics of multiphase flow in packed beds reveal that challenges persist either in their design/scale-up or during the operations. Moreover, exposing these reactors to harsh marine conditions such as the convolution of ship dynamics and hydrodynamics inside packed-bed reactors leads to even more complex situations to maintain the proper operation performance of packed-bed reactors under floating conditions. A lot of evidence from literature has pointed out the failure of random and structured packings and open-cell foams, to prevent liquid maldistribution in packed beds destined to operate on-board sailing ships and floating platforms. Research efforts must therefore continue in the quest for robust internals capable of resilience against liquid maldistribution in gas-liquid reactors/separation units. The proposed Ph.D. research aims at firstly following a sound path to adapt commercially existing internals being capable of preserving performance similar to landbased packed beds. To the best of literature exploring, the sensitivity and susceptibility of monolith reactors to maldistribution subjected to offshore conditions have yet to be investigated. Rather than focusing on a study of monolith beds alone, Chapter 1 opts for a broader experimental campaign including a random packing and an open-cell foam packing for the sake of systematic comparisons of the liquid distribution under floating conditions. Liquid distribution of embarked columns packed with various internals under wide gas/liquid flow range is systematically compared with the assistance of wire mesh sensor (WMS) and six-degree-of-freedom emulator hexapod. Severe offshore weather conditions threaten the operation safety of floating packed beds especially encountering extreme situations such as cyclone, iceberg episodes and so forth. To ensure the safety of staff and facilities, the onboard packed columns must be immediately shutdown to avoid critical safety concerns under such circumstances. Therefore, knowledgebase of liquid draining dynamics in floating packed beds is the essence to ensure timely discharge of liquid. Nevertheless, the study regarding liquid drainage dynamics of packed beds under floating conditions is scarce to say the least. Then, Chapter 2 compares liquid draining of packed columns embarking on floating platforms with static land-based one experimentally. Other than that, the influence of ship motions (e.g., roll, roll & pitch, heave etc.) with different oscillation amplitudes and periods on liquid draining dynamics is investigated to deepen the insights. vi In parallel with the experimental study, a 3D transient Euler-Euler CFD model is employed as a supplementary analysis to further deepen the understanding of liquid drainage dynamics in floating packed beds. More factors possibly affecting the draining dynamics are exploited by numerical simulation. Consequently, Chapter 3 highlights the comprehensive influence of liquid properties, bed structure and moving types instead of focusing on impact of movements alone. Meanwhile, with sufficient body of experimental campaign, the validity and accuracy of model are strongly endorsed

    Abstracts of the 10th Conference of the Italian Society of Agricultural Engineering

    Get PDF

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Privacy in Mobile Agent Systems: Untraceability

    Get PDF
    Agent based Internet environments are an interesting alternative to existing approaches of building software systems. The enabling feature of agents is that they allow software development based on the abstraction (a "metaphor") of elements of the real world. In other words, they allow building software systems, which work as human societies, in which members share products and services, cooperate or compete with each other. Organisational, behavioural and functional models etc applied into the systems can be copied from the real world. The growing interest in agent technologies in the European Union was expressed through the foundation of the Coordination Action for Agent-Based Computing, funded under the European Commission's Sixth Framework Programme (FP6). The action, called AgentLink III is run by the Information Society Technologies (IST) programme. The long-term goal of AgentLink is to put Europe at the leading edge of international competitiveness in this increasingly important area. According to AgentLink "Roadmap for Agent Based Computing"; agent-based systems are perceived as "one of the most vibrant and important areas of research and development to have emerged in information technology in recent years, underpinning many aspects of broader information society technologies"; However, with the emergence of the new paradigm, came also new challenges. One of them is that agent environments, especially those which allow for mobility of agents, are much more difficult to protect from intruders than conventional systems. Agent environments still lack sufficient and effective solutions to assure their security. The problem which till now has not been addressed sufficiently in agent-based systems is privacy, and particularly the anonymity of agent users. Although anonymity was studied extensively for traditional message-based communication for which during the past twenty five years various techniques have been proposed, for agent systems this problem has never been directly addressed. The research presented in this report aimed at filling this gap. This report summarises results of studies aiming at the identification of threats to privacy in agent-based systems and the methods of their protection.JRC.G.6-Sensors, radar technologies and cybersecurit

    Digital Twins for Logistics and Supply Chain Systems: Literature Review, Conceptual Framework, Research Potential, and Practical Challenges

    Full text link
    To facilitate an effective, efficient, transparent, and timely decision-making process as well as to provide guidelines for industry planning and public policy development, a conceptual framework of digital twins (DTs) for logistics and supply chain systems (LSCS) is needed. This paper first introduces the background of the logistics and supply chain industry, the DT and its potential benefits, and the motivations and scope of this research. The literature review indicates research and practice gaps and needs that motivate proposing a new conceptual DT framework for LSCS. As each element of the new framework has different requirements and goals, it initiates new research opportunities and creates practical implementation challenges. As such, the future of DT computation involves advanced analytics and modeling techniques to address the new agenda's requirements. Finally, ideas on the next steps to deploy a transparent, trustworthy, and resilient DT for LSCS are presented.Comment: 45 page

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties
    corecore